Powered by Deep Web Technologies
Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

2

CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.

E.F. Loros

2000-06-23T23:59:59.000Z

3

Federal Fuels Taxes and Tax Credits (Update) (released in AEO2008)  

Reports and Publications (EIA)

The Annual Energy Outlook 2008 (AEO) reference case incorporates current regulations that pertain to the energy industry. This section describes the handling of federal taxes and tax credits in AEO2008, focusing primarily on areas where regulations have changed or the handling of taxes or tax credits has been updated.

2008-01-01T23:59:59.000Z

4

World Oil Prices in AEO2007 (released in AEO2007)  

Reports and Publications (EIA)

Over the long term, the Annual Energy Outlook 2007 (AEO) projection for world oil prices -- defined as the average price of imported low-sulfur, light crude oil to U.S. refiners -- is similar to the AEO2006 projection. In the near term, however, AEO2007 projects prices that are $8 to $10 higher than those in AEO2006.

2007-01-01T23:59:59.000Z

5

AEO2015 BWG  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

purposes only - do not cite or circulate Tech. update example: commercial rooftop heat pumps AEO2015 Builldings Working Group Washington, D.C., August 7, 2014 5 Discussion...

6

World Oil Prices in AEO2006 (released in AEO2006)  

Reports and Publications (EIA)

World oil prices in the Annual Energy Outlook 2006 (AEO) reference case are substantially higher than those in the AEO2005 reference case. In the AEO2006 reference case, world crude oil prices, in terms of the average price of imported low-sulfur, light crude oil to U.S. refiners, decline from current levels to about $47 per barrel (2004 dollars) in 2014, then rise to $54 per barrel in 2025 and $57 per barrel in 2030. The price in 2025 is approximately $21 per barrel higher than the corresponding price projection in the AEO2005 reference case.

2006-01-01T23:59:59.000Z

7

CARRIER PREPARATION BUILDING MATERIALS HANDLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Carrier Preparation Building Materials Handling System receives rail and truck shipping casks from the Carrier/Cask Transport System, and inspects and prepares the shipping casks for return to the Carrier/Cask Transport System. Carrier preparation operations for carriers/casks received at the surface repository include performing a radiation survey of the carrier and cask, removing/retracting the personnel barrier, measuring the cask temperature, removing/retracting the impact limiters, removing the cask tie-downs (if any), and installing the cask trunnions (if any). The shipping operations for carriers/casks leaving the surface repository include removing the cask trunnions (if any), installing the cask tie-downs (if any), installing the impact limiters, performing a radiation survey of the cask, and installing the personnel barrier. There are four parallel carrier/cask preparation lines installed in the Carrier Preparation Building with two preparation bays in each line, each of which can accommodate carrier/cask shipping and receiving. The lines are operated concurrently to handle the waste shipping throughputs and to allow system maintenance operations. One remotely operated overhead bridge crane and one remotely operated manipulator is provided for each pair of carrier/cask preparation lines servicing four preparation bays. Remotely operated support equipment includes a manipulator and tooling and fixtures for removing and installing personnel barriers, impact limiters, cask trunnions, and cask tie-downs. Remote handling equipment is designed to facilitate maintenance, dose reduction, and replacement of interchangeable components where appropriate. Semi-automatic, manual, and backup control methods support normal, abnormal, and recovery operations. Laydown areas and equipment are included as required for transportation system components (e.g., personnel barriers and impact limiters), fixtures, and tooling to support abnormal and recovery operations. The Carrier Preparation Building Materials Handling System interfaces with the Cask/Carrier Transport System to move the carriers to and from the system. The Carrier Preparation Building System houses the equipment and provides the facility, utility, safety, communications, and auxiliary systems supporting operations and protecting personnel.

E.F. Loros

2000-06-28T23:59:59.000Z

8

AEO2010 Early Release Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reference case than in the updated AEO2009 reference case. Delivered commercial energy consumption grows from 8.6 quadrillion Btu in 2008 to 10.5 quadrillion Btu in 2030, about...

9

Energy Technologies on the Horizon (released in AEO2006)  

Reports and Publications (EIA)

A key issue in mid-term forecasting is the representation of changing and developing technologies. How existing technologies will evolve, and what new technologies might emerge, cannot be known with certainty. The issue is of particular importance in Annual Energy Outlook 2006 (AEO), the first AEO with projections out to 2030.

2006-01-01T23:59:59.000Z

10

World Oil Prices and Production Trends in AEO2009 (released in AEO2009)  

Reports and Publications (EIA)

The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

2009-01-01T23:59:59.000Z

11

World Oil Prices and Production Trends in AEO2008 (released in AEO2008)  

Reports and Publications (EIA)

Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

2008-01-01T23:59:59.000Z

12

2017 Levelized Costs AEO 2012 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand Barrels perResidential EnergyG (2005)8 Levelized Costs AEO

13

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

E-Print Network [OSTI]

revisions to the EIA’s natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

14

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark; Wiser, Ryan

2006-01-01T23:59:59.000Z

15

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

16

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

Bolinger, Mark

2009-01-01T23:59:59.000Z

17

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

E-Print Network [OSTI]

Administration. 1998. Annual Energy Outlook 1999: WithDepartment of Energy’s Annual Energy Outlook (AEO) forecastDepartment of Energy’s Annual Energy Outlook 1999 (AEO99)

Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

18

EPACT2005: Status of Provisions (Update) (released in AEO2007)  

Reports and Publications (EIA)

The Energy Policy Act 2005 (EPACT) was signed into law by President Bush on August 8, 2005, and became Public Law 109-058. A number of provisions from EPACT2005 were included in the Annual Energy Outlook 2006 (AEO) projections. Many others were not considered in AEO2006particularly, those that require funding appropriations or further specification by federal agencies or Congress before implementation.

2007-01-01T23:59:59.000Z

19

Clean Air Interstate Rule: Changes and Modeling in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

On December 23, 2008, the D.C. Circuit Court remanded but did not vacate the Clean Air Interstate Rule (CAIR), overriding its previous decision on February 8, 2008, to remand and vacate CAIR. The December decision, which is reflected in Annual Energy Outlook 2010 (AEO) , allows CAIR to remain in effect, providing time for the Environmental Protection Agency to modify the rule in order to address objections raised by the Court in its earlier decision. A similar rule, referred to as the Clean Air Mercury Rule (CAMR), which was to set up a cap-and-trade system for reducing mercury emissions by approximately 70%, is not represented in the AEO2010 projections, because it was vacated by the D.C. Circuit Court in February 2008.

2010-01-01T23:59:59.000Z

20

California's Move Toward E10 (released in AEO2009)  

Reports and Publications (EIA)

In Annual Energy Outlook 2009, (AEO) E10–a gasoline blend containing 10% ethanol–is assumed to be the maximum ethanol blend allowed in California erformulated gasoline (RFG), as opposed to the 5.7% blend assumed in earlier AEOs. The 5.7% blend had reflected decisions made when California decided to phase out use of the additive methyl tertiary butyl ether in its RFG program in 2003, opting instead to use ethanol in the minimum amount that would meet the requirement for 2.0% oxygen content under the Clean Air Act provisions in effect at that time.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

State Renewable Energy Requirements and Goals: Update Through 2007 (Update) (released in AEO2008)  

Reports and Publications (EIA)

In recent years, the Annual Energy Outlook (AEO) has tracked the growing number of states that have adopted requirements or goals for renewable energy. While there is no federal renewable generation mandate, the states have been adopting such standards for some time. AEO2005 provided a summary of all existing programs in effect at that time, and subsequent AEOs have examined new policies or changes to existing ones. Since the publication of AEO2007, four states have enacted new renewable portfolio standards (RPS) legislation, and five others have strengthened their existing RPS programs. In total, 25 states and the District of Columbia.

2008-01-01T23:59:59.000Z

22

Federal Fuels Taxes and Tax Credits (released in AEO2007)  

Reports and Publications (EIA)

The Annual Energy Outlook 2007 (AEO) reference case and alternative cases generally assume compliance with current laws and regulations affecting the energy sector. Some provisions of the U.S. Tax Code are scheduled to expire, or may be subject to adjustment, before the end of the projection period. In general, scheduled expirations and adjustments provided in legislation or regulations are assumed to occur, unless there is significant historical evidence to support an alternative assumption. This section examines the AEO2007 treatment of three provisions that could have significant impacts on U.S. energy markets: the gasoline excise tax, biofuel (ethanol and biodiesel) tax credits, and the production tax credit for electricity generation from certain renewable resources.

2007-01-01T23:59:59.000Z

23

AEO2014 Liquid Fuels Markets Working Group Meeting 1  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply AEO2014

24

AEO2014 Oil and Gas Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply AEO20149

25

Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, and Morphologyusing TD-DFT. |Description

26

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

Bolinger, Mark A.

2010-01-01T23:59:59.000Z

27

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

E-Print Network [OSTI]

1 1.1 History of Natural Gas8 4.1 U.S. Wellhead and AEO Natural Gas8 4.2 U.S. Wellhead and Henry Hub Natural Gas

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-01-01T23:59:59.000Z

28

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

E-Print Network [OSTI]

late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

Bolinger, Mark

2008-01-01T23:59:59.000Z

29

EIA - AEO2012 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

in 2010 by 4.3 percent. Electricity sales continue to grow through 2035 in the AEO2012 Reference case, but the growth is tempered by a variety of regulatory and socioeconomic...

30

EIA - AEO2011 Early Release Energy-Related Carbon Dioxide Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

After a decline from 2007 to 2009, electricity sales resume growth in 2012 in the AEO2011 Reference case, but the growth is tempered by a variety of regulatory and socioeconomic...

31

A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS  

E-Print Network [OSTI]

Documentation Report: Wind Energy Submodule (WES). DOE/EIA-The Economic Value of Wind Energy at High Power SystemOF THE TREATMENT OF WIND ENERGY IN THE AEO99 VERSION OF NEMS

Osborn, Julie G.; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

2001-01-01T23:59:59.000Z

32

Energy Independence and Security Act of 2007: Summary of Provisions (released in AEO2008)  

Reports and Publications (EIA)

The Energy Independence and Security Act of 2007 was signed into law on December 19, 2007, and became Public Law 110-140. Provisions in EISA2007 that require funding appropriations to be implemented, whose impact is highly uncertain, or that require further specification by federal agencies or Congress are not included in Annual Energy Outlook 2008 (AEO). For example, the Energy Information Administration (EIA) does not try to anticipate policy responses to the many studies required by EISA2007, nor to predict the impact of research and development (R&D) funding authorizations included in the bill. Moreover, AEO2008 does not include any provision that addresses a level of detail beyond that modeled in the National Energy Modeling System (NEMS), which was used to develop the AEO2008 projections. AEO2008 addresses only those provisions in EISA2007 that establish specific tax credits, incentives, or standards.

2008-01-01T23:59:59.000Z

33

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

CO2 Emissions Total U.S. energy-related CO2 emissions do not return to their 2005 level (5,997 million metric tons) by the end of the AEO2013 projection period.6 Growth in...

34

Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)  

Reports and Publications (EIA)

Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

2005-01-01T23:59:59.000Z

35

Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets  

SciTech Connect (OSTI)

This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

2005-02-09T23:59:59.000Z

36

State Renewable Energy Requirements and Goals: Update through 2009 (Update) (released in AEO2010)  

Reports and Publications (EIA)

To the extent possible,Annual Energy Outlook 2010 (AEO) incorporates the impacts of state laws requiring the addition of renewable generation or capacity by utilities doing business in the states. Currently, 30 states and the District of Columbia have enforceable renewable portfolio standards (RPS) or similar laws). Under such standards, each state determines its own levels of generation, eligible technologies, and noncompliance penalties. AEO2010 includes the impacts of all laws in effect as of September 2009 (with the exception of Hawaii, because the National Energy Modeling System provides electricity market projections for the continental United States only).

2010-01-01T23:59:59.000Z

37

Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

Bolinger, Mark A.; Wiser, Ryan H.

2010-01-04T23:59:59.000Z

38

Federal Fuels Taxes and Tax Credits (released in AEO2009)  

Reports and Publications (EIA)

Provides a review and update of the handling of federal fuels taxes and tax credits, focusing primarily on areas for which regulations have changed or the handling of taxes or credits has been updated in Annual Energy Outlook 2009.

2009-01-01T23:59:59.000Z

39

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2006-12-06T23:59:59.000Z

40

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices  

SciTech Connect (OSTI)

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

Bolinger, Mark; Wiser, Ryan

2005-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices  

SciTech Connect (OSTI)

On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

Bolinger, Mark; Wiser, Ryan

2004-12-13T23:59:59.000Z

42

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

43

Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

2008-01-07T23:59:59.000Z

44

Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices  

SciTech Connect (OSTI)

On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

Bolinger, Mark; Wiser, Ryan

2009-01-28T23:59:59.000Z

45

Vacuum Vessel Remote Handling  

E-Print Network [OSTI]

and Remote Handling 4 Vacuum vessel functions · Plasma vacuum environment · Primary tritium confinement, incl ports 65 tonnes - Weight of torus shielding 100 tonnes · Coolant - Normal Operation Water, Handling 12 Vessel octant subassembly fab. (3) · Octant-to-octant splice joint requires double wall weld

46

Seed Cotton Handling & Storage  

E-Print Network [OSTI]

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

47

Uranium hexafluoride handling. Proceedings  

SciTech Connect (OSTI)

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

48

CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect (OSTI)

This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-07T23:59:59.000Z

49

Contact-Handled and Remote-Handled Transuranic Waste Packaging  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel other directives.

2011-08-09T23:59:59.000Z

50

MATERIAL HANDLING, STORAGE, AND DISPOSAL  

E-Print Network [OSTI]

Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

US Army Corps of Engineers

51

Waste Description Type of Project Pounds Reduced, Reused,  

E-Print Network [OSTI]

Accelerator =1; National Synchrotron Light Source=1; Basic Energy Sciences=1) each handle 66 lbs. of hazardousWaste Description Type of Project Pounds Reduced, Reused, Recycled or Conserved in 2009 Waste Type Description Details * Alkaline batteries Recycling 200 Industrial waste $10 $0 $10 Two hundred pounds

52

Remote-Handled Transuranic Content Codes  

SciTech Connect (OSTI)

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: • A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. • A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is “3.” The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits based on a 10-day shipping period (rather than the standard 60-day shipping period) may be used as specified in an approved content code.

Washington TRU Solutions

2006-12-01T23:59:59.000Z

53

Cask system design guidance for robotic handling  

SciTech Connect (OSTI)

Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs.

Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

1990-10-01T23:59:59.000Z

54

COS/HST FUV Grating Shipping Container Handling Procedure Date: November 30, 1999  

E-Print Network [OSTI]

COS/HST FUV Grating Shipping Container Handling Procedure Date: November 30, 1999 Document Number University of Colorado Campus Box 593 Boulder, Colorado 80309 #12;REVISIONS Letter ECO No. Description Check. Wilkinson 11-30-99 The Center for Astrophysics and Space Astronomy Reviewed: COS/HST FUV Grating Shipping

Colorado at Boulder, University of

55

Remote-Handled Transuranic Content Codes  

SciTech Connect (OSTI)

The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

Washington TRU Solutions

2001-08-01T23:59:59.000Z

56

EHS-Net Tomato Handling Study EHS-Net Tomato Handling Study Protocol  

E-Print Network [OSTI]

EHS-Net Tomato Handling Study 1 EHS-Net Tomato Handling Study Protocol I. Project Overview Title EHS-Net Tomato Handling Study Protocol Summary Few studies have examined in detail the nature Health Specialists Network (EHS-Net) special study. EHS- Net is a collaboration involving the Centers

57

AEO2014 Preliminary Results  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply

58

AEO2015 BWG  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas

59

Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)  

Reports and Publications (EIA)

This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

2007-01-01T23:59:59.000Z

60

User interface handles for web objects  

E-Print Network [OSTI]

On the desktop, users are accustomed to having visible handles to objects that they can organize, share, and manipulate. Web applications today feature many loosely defined classes of such objects, like flight itineraries, ...

Pham, Hubert

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Compressed Gas Cylinder Safe Handling, Use and  

E-Print Network [OSTI]

Compressed Gas Cylinder Safe Handling, Use and Storage 2012 Workplace Safety and Environmental Protection #12;i College/Unit: Workplace Safety and Environmental Protection Procedure Title: Compressed Gas................................................ 4 7 General Gas Cylinder Information

Saskatchewan, University of

62

2004 Biodiesel Handling and Use Guidelines (Revised)  

SciTech Connect (OSTI)

This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It is intended to fleets and individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel.

Not Available

2004-11-01T23:59:59.000Z

63

Dairy Manure Handling Systems and Equipment.  

E-Print Network [OSTI]

The Texas A&M University System ? Texas Agricultural Extension Service Zerle L. Carpenter, Director College Station 8?1446 DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT DAIRY MANURE HANDLING SYSTEMS AND EQUIPMENT John M. Sweeten, Ph....D., P.E.* A manure management system for a modern dairy should be capable of controlling solid or liquid manure and wastewater from the open corrals (manure and rainfall runoff), free stall barn , feeding barn , holding lot or holding shed , milking...

Sweeten, John M.

1983-01-01T23:59:59.000Z

64

Exception Handling i C: Evaluering og videreudvikling af makrobaseret 'Exception Handling'-funktionalitet i ANSI C.  

E-Print Network [OSTI]

??I dette projekt dokumenteres og evalueres det makrobaserede exception handling bibliotek "Cexcept" - udviklet i C - og funktionaliteten beskrives indga?ende. Derudover udvides implementationen med… (more)

Jermiin Ravn Moll, Jonas

2005-01-01T23:59:59.000Z

65

LM Records Handling System-Fernald Historical Records System...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fernald Historical Records System, Office of Legacy Management LM Records Handling System-Fernald Historical Records System, Office of Legacy Management LM Records Handling...

66

LM Records Handling System (LMRHS01) - Rocky Flats Environmental...  

Office of Environmental Management (EM)

LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

67

STEP Intern Job Description  

Broader source: Energy.gov [DOE]

STEP Intern Job Description, from the Tool Kit Framework: Small Town University Energy Program (STEP).

68

DOE handbook: Tritium handling and safe storage  

SciTech Connect (OSTI)

The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

NONE

1999-03-01T23:59:59.000Z

69

Remote-handled transuranic system assessment appendices. Volume 2  

SciTech Connect (OSTI)

Volume 2 of this report contains six appendices to the report: Inventory and generation of remote-handled transuranic waste; Remote-handled transuranic waste site storage; Characterization of remote-handled transuranic waste; RH-TRU waste treatment alternatives system analysis; Packaging and transportation study; and Remote-handled transuranic waste disposal alternatives.

NONE

1995-11-01T23:59:59.000Z

70

Project Description: page 1 Project Description  

E-Print Network [OSTI]

Project Description: page 1 Project Description I. Introduction: Josephson junction networks Over the past 25 years, superconducting Josephson junctions have gradually become one of the major topics standards. Our research uses Josephson junctions as model systems for problems in nonlinear and neural

Segall, Ken

71

Student Groups Student Group Description Short Description  

E-Print Network [OSTI]

Student Groups Student Group Description Short Description AHR Scholar-Architecture Scholar ART Honors - Architecture Honors H04 Honors - Allied Medical Prof Honors H05 Honors - Arts & Sciences Honors H14 Honors - Envir&Natural Resources Honors H15 Honors - Food, Agr, & Envir Sci Honors H16 Honors

72

340 waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

VAIL, T.S.

1999-04-01T23:59:59.000Z

73

340 Waste handling facility interim safety basis  

SciTech Connect (OSTI)

This document presents an interim safety basis for the 340 Waste Handling Facility classifying the 340 Facility as a Hazard Category 3 facility. The hazard analysis quantifies the operating safety envelop for this facility and demonstrates that the facility can be operated without a significant threat to onsite or offsite people.

Stordeur, R.T.

1996-10-04T23:59:59.000Z

74

Easy Gardening.....Harvesting and Handling Vegetables  

E-Print Network [OSTI]

Easy Gardening Joseph Masabni, Assistant Professor and Extension Horticulturist, The Texas A&M University System HARVESTING ? HANDLING ? STORING VEGETABLES -1- T ohelpensurethatthevegetables yougrowandprepareareofhigh quality.... Acknowledgments Thispublicationwasrevisedfromearlierversionswrittenby SamCotner,ProfessorEmeritusandformerExtension Horticulturist,andAlWagner,formerProfessorand ExtensionHorticulturist. -6- Produced by AgriLife Communications, The Texas A&M System Extension...

Cotner, Sam; Masabni, Joseph; Wagner, Al

2009-05-29T23:59:59.000Z

75

Architecturing Conflict Handling of Pervasive Computing Resources  

E-Print Network [OSTI]

Architecturing Conflict Handling of Pervasive Computing Resources Henner Jakob1 , Charles Consel1 to conflict in their usage of shared resources, e.g., controlling doors for security and fire evacuation computing resources. This approach covers the software devel- opment lifecycle and consists of enriching

Paris-Sud XI, Université de

76

Waste Handling and Disposal Biological Safety  

E-Print Network [OSTI]

plumbing services, EHS personnel wastewater treatment plant personnel, and the general public canWaste Handling and Disposal Biological Safety General Biosafety Practices (GBP) Why You Should Care on the next experiment. Are you working with r/sNA, biological toxins, human materials, needles, plasticware

Pawlowski, Wojtek

77

Mechanical Engineer Company Description  

E-Print Network [OSTI]

Mechanical Engineer Company Description Control Solutions Inc. is a small, dynamic, and rapidly. Position Description The Mechanical Engineer is responsible for all aspects associated with the mechanical enclosures, brackets, cabling assemblies among others. Systems include mechanisms, sensors, hydraulics, among

Kostic, Milivoje M.

78

Human error contribution to nuclear materials-handling events  

E-Print Network [OSTI]

This thesis analyzes a sample of 15 fuel-handling events from the past ten years at commercial nuclear reactors with significant human error contributions in order to detail the contribution of human error to fuel-handling ...

Sutton, Bradley (Bradley Jordan)

2007-01-01T23:59:59.000Z

79

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION  

E-Print Network [OSTI]

MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI SITE REMEDIATION April 13, 2004 Prepared for. Wright Street Littleton, CO 80127 #12;MATERIALS HANDLING AND TRANSPORTATION PLAN CSMRI Site Remediation By: Date: Robert Krumberger Project Manager New Horizons Environmental Consultants, Inc. Approved By

80

System for handling and storing radioactive waste  

DOE Patents [OSTI]

A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

System for handling and storing radioactive waste  

DOE Patents [OSTI]

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19T23:59:59.000Z

82

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

David Duncan

2011-05-01T23:59:59.000Z

83

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

84

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2011-03-01T23:59:59.000Z

85

NASA Academy Program Descriptions  

E-Print Network [OSTI]

NASA Academy Program Descriptions October 2010 #12;NASA Academy Program Descriptions 2011 October 11, 2010 1/5 NASA Academy at ARC, GRC, GSFC, and MSFC Websites: Ames: http://academy.arc.nasa.gov Glenn: http://academy.grc.nasa.gov Goddard: http://academy.gsfc.nasa.gov Marshall: http://academy

Wang, Z. Jane

86

STATISTICAL DESCRIPTION OF THE  

E-Print Network [OSTI]

STATISTICAL DESCRIPTION OF THE CHIRIKOV-TAYLOR MODEL IN THE PRESENCE OF NOISE A. B. RECHESTER that the presence of noise makes the statistical description of this system unique. Theform of the diffusion, and statistical averaging, performed ana- lytically with thepath-integral method, are the same. Some

Karney, Charles

87

Forest Landscape Description and  

E-Print Network [OSTI]

Forest Landscape Description and Inventories a basis for landplanning and design Pacific Southwest landscape description and inventories ­ a basis for land plan- ning and design. Berkeley, Calif., Pacific SW. Illustrates their application in two inventories made to aid managers and landscape architects in planning

Standiford, Richard B.

88

Primer on tritium safe handling practices  

SciTech Connect (OSTI)

This Primer is designed for use by operations and maintenance personnel to improve their knowledge of tritium safe handling practices. It is applicable to many job classifications and can be used as a reference for classroom work or for self-study. It is presented in general terms for use throughout the DOE Complex. After reading it, one should be able to: describe methods of measuring airborne tritium concentration; list types of protective clothing effective against tritium uptake from surface and airborne contamination; name two methods of reducing the body dose after a tritium uptake; describe the most common method for determining amount of tritium uptake in the body; describe steps to take following an accidental release of airborne tritium; describe the damage to metals that results from absorption of tritium; explain how washing hands or showering in cold water helps reduce tritium uptake; and describe how tritium exchanges with normal hydrogen in water and hydrocarbons.

Not Available

1994-12-01T23:59:59.000Z

89

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect (OSTI)

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

90

Remote-handled transuranic waste study  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

NONE

1995-10-01T23:59:59.000Z

91

Safety Enhancements for TRU Waste Handling - 12258  

SciTech Connect (OSTI)

For years, proper Health Physics practices and 'As Low As Reasonably Achievable' (ALARA) principles have fostered the use of glove boxes or other methods of handling (without direct contact) high activities of radioactive material. The physical limitations of using glove boxes on certain containers have resulted in high-activity wastes being held in storage awaiting a path forward. Highly contaminated glove boxes and other remote handling equipment no longer in use have also been added to the growing list of items held for storage with no efficient method of preparation for proper disposal without creating exposure risks to personnel. This is especially true for wastes containing alpha-emitting radionuclides such as Plutonium and Americium that pose significant health risks to personnel if these Transuranic (TRU) wastes are not controlled effectively. Like any good safety program or root cause investigation PFNW has found that the identification of the cause of a negative change, if stopped, can result in a near miss and lessons learned. If this is done in the world of safety, it is considered a success story and is to be shared with others to protect the workers. PFNW believes that the tools, equipment and resources have improved over the past number of years but that the use of them has not progressed at the same rate. If we use our tools to timely identify the effect on the work environment and immediately following or possibly even simultaneously identify the cause or some of the causal factors, we may have the ability to continue to work rather than succumb to the start and stop-work mentality trap that is not beneficial in waste minimization, production efficiency or ALARA. (authors)

Cannon, Curt N. [Perma-Fix Northwest Richland, Inc., Richland, WA 99354 (United States)

2012-07-01T23:59:59.000Z

92

Description urse deals w  

E-Print Network [OSTI]

H Place: O Meeting Tentativ W L o L W L M L Description urse deals w g offshore r seamounts, animal ecology. Plant-animal interactions in the shallow subtidal zone. Lab & Field Work: Community analysis

93

B Plant facility description  

SciTech Connect (OSTI)

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

94

Energy Intensity Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate. During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8% per year from 1973 to 2008. In the Annual Energy Outlook 2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9% from 2008 to 2035.

2010-01-01T23:59:59.000Z

95

AEO2014 results and status updates for the AEO2015  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas SupplyFOR:

96

Qualitative human reliability analysis for spent fuel handling  

SciTech Connect (OSTI)

Human reliability analysis (HRA) methods have been developed primarily to provide information for use in probabilistic risk assessments (PRAs) that analyze nuclear power plant (NPP) operations. Given the original emphasis of these methods, it is understandable that many HRAs have not ventured far from NPP control room applications. Despite this historical focus on the control room, there has been growing interest and discussion regarding the application of HRA methods to other NPP activities such as spent fuel handling (SFH) or operations in different types of facilities. One recently developed HRA method, 'A Technique for Human Event Analysis' (ATHEANA) has been proposed as a promising candidate for diverse applications due to its particular approach for systematically uncovering the dynamic, contextual conditions influencing human performance. This paper describes one successful test of this proposition by presenting portions of a recently completed project in which a scoping study was performed to accomplish the following goals: (1) investigate what should be included in a qualitative HRA for spent fuel and cask handling operations; and (2) demonstrate that the ATHEANA HRA technique can be usefully applied to these operations. The preliminary, scoping qualitative HRA examined, in a generic manner, how human performance of SFH and dry cask storage operations (DCSOs) can plausibly lead to radiological consequences that impact the public and the environment. The study involved the performance of typical, qualitative HRA tasks such as collecting relevant information and the preliminary identification of human failure events or unsafe actions, relevant influences (e.g., performance shaping factors, other contextual factors), event scenario development and categorization of human failure event (HFE) scenario groupings. Information from relevant literature sources was augmented with subject matter expert interviews and analysis of an edited video of selected operations. Elements of NUREG-1792, Good Practices for Implementing Human Reliability Analyses (HRA) and NUREG-1624, Rev. 1, Technical Basis and Implementation Guidelines for A Technique for Human Event Analysis (ATHEANA) formed critical parts of the technical basis for the preliminary analysis. Mis-loading of spent fuel into a cask and dropping of a loaded cask were the two human failure event groupings of primary interest, although all human performance aspects of DCSOs were considered to some extent. Of important note is that HRA is typically performed in the context of a plant-specific PRA study. This analysis was performed without the benefit of the context provided by a larger PRA study, nor was it plant specific, and so it investigated only generic HRA issues relevant to SFH. However, the improved understanding of human performance issues provided by the study will likely enhance the ability to carry out a detailed qualitative HRA for a specific NPP at some point in the future. Furthermore, support was obtained regarding the potential for applying ATHEANA beyond NPP settings. This paper provides a description of the process followed during the analysis, a description of the HFE scenario groupings, discussion regarding general human performance vulnerabilities, and a detailed examination of one HFE scenario developed in the study. (authors)

Brewer, J. D. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0748 (United States); Amico, P. [Science Applications International Corporation (United States); Cooper, S. E. [United Stated Nuclear Regulatory Commission (United States)

2006-07-01T23:59:59.000Z

97

Handbook for Handling, Storing, and Dispensing E85  

SciTech Connect (OSTI)

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2008-04-01T23:59:59.000Z

98

LM Records Handling System (LMRHS01) - Electronic Records Keeping...  

Energy Savers [EERE]

System (LMRHS01) - Electronic Records Keeping System, Office of Legacy Management, LM Records Handling System (LMRHS01) - Electronic Records Keeping System, Office of Legacy...

99

LM Records Handling System (LMRHS01) - Energy Employees Occupational...  

Broader source: Energy.gov (indexed) [DOE]

Employees Occupational Illness Compensation Program Act, Office of Legacy Management LM Records Handling System (LMRHS01) - Energy Employees Occupational Illness Compensation...

100

Impacts of capture and handling on wild birds.  

E-Print Network [OSTI]

??Bird ringing is a key ecological research technique that involves the capture and handling of birds. It is used extensively to obtain information on population… (more)

Duarte, Leila

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Biodiesel Handling and Use Guide: Fourth Edition (Revised)  

SciTech Connect (OSTI)

Intended for those who blend, distribute, and use biodiesel and its blends, this guide contains procedures for handling and using these fuels.

Not Available

2009-01-01T23:59:59.000Z

102

Industrial Plans for AEO2014  

U.S. Energy Information Administration (EIA) Indexed Site

you for your attention 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

103

AEO2012 Early Release Overview  

Gasoline and Diesel Fuel Update (EIA)

beginning in 2016. * The electricity module was updated to incorporate the Cross-State Air Pollution Rule (CSAPR) 2 as finalized by the EPA in July 2011. CSAPR requires...

104

AEO2014 Early Release Overview  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerr g0@3 Early Release

105

AEO2014: Preliminary Industrial Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas SupplyFOR:

106

Industrial Plans for AEO2014  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ithWellheadFeet) Year591,60930,

107

AEO Early Release 2013 - oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEii

108

AEO2012 Early Release Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEiiRenewables

109

AEO2013 Early Release Overview  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand Barrels perResidential EnergyG (2005)8

110

H dli dHandling and Safety Training  

E-Print Network [OSTI]

HendershotPam Hendershot Praxair Distribution Inc. Praxair Distribution Inc., Quality Department .Copyright © 2000, Praxair Technology, Inc. All rights reserved. .Rev. Date 04/24/2006-A 1 #12;Safe Handling Dangers Proper PPEp Proper Handling and Transporting of cryogen liquidscryogen liquids Praxair

Farritor, Shane

111

Operating Experience Level 3, Losing Control: Material Handling Dangers  

Broader source: Energy.gov [DOE]

This Operating Experience Level 3 (OE-3) document provides information about the dangers inherent in material handling and the role hazard analysis, work planning, and walkdowns can play in preventing injuries during heavy equipment moves. More than 200 material handling events reported to the Occurrence Reporting and Processing System (ORPS) from January 1, 2010, through August 31, 2014.

112

NIH POLICY MANUAL 1345 -HANDLING AND SAFEGUARDING OF CONTROLLED SUBSTANCES  

E-Print Network [OSTI]

NIH POLICY MANUAL 1345 - HANDLING AND SAFEGUARDING OF CONTROLLED SUBSTANCES FOR NONHUMAN USE: This Chapter describes NIH policies and procedures for handling and safeguarding controlled substances the chapter in compliance with the NIH Office of Management Assessment standardized format. The revised

Bandettini, Peter A.

113

Guidance Document Safe Handling of Sulfides and Hydrogen Sulfide  

E-Print Network [OSTI]

Guidance Document Safe Handling of Sulfides and Hydrogen Sulfide [This is a brief summary. Read concern would be hydrogen sulfide, whether handling in the pure gaseous form or by generation from various threshold level, the oxidative enzymes would be overwhelmed. Uses: Sulfides and hydrogen sulfide are used

114

1993 baseline solid waste management system description  

SciTech Connect (OSTI)

Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

1994-02-01T23:59:59.000Z

115

Student Ambassador Job description  

E-Print Network [OSTI]

Blue 1 Student Ambassador Job description Department: Student Administration and Registry Location: Varies - as advised by the UK Student Recruitment and Outreach Team Job title: Student Ambassador Responsible to: UK Student Recruitment and Outreach Team Payment and benefits: ÂŁ6.42 per hour Duration

Anderson, Jim

116

CANISTER TRANSFER SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Canister Transfer System receives transportation casks containing large and small disposable canisters, unloads the canisters from the casks, stores the canisters as required, loads them into disposal containers (DCs), and prepares the empty casks for re-shipment. Cask unloading begins with cask inspection, sampling, and lid bolt removal operations. The cask lids are removed and the canisters are unloaded. Small canisters are loaded directly into a DC, or are stored until enough canisters are available to fill a DC. Large canisters are loaded directly into a DC. Transportation casks and related components are decontaminated as required, and empty casks are prepared for re-shipment. One independent, remotely operated canister transfer line is provided in the Waste Handling Building System. The canister transfer line consists of a Cask Transport System, Cask Preparation System, Canister Handling System, Disposal Container Transport System, an off-normal canister handling cell with a transfer tunnel connecting the two cells, and Control and Tracking System. The Canister Transfer System operating sequence begins with moving transportation casks to the cask preparation area with the Cask Transport System. The Cask Preparation System prepares the cask for unloading and consists of cask preparation manipulator, cask inspection and sampling equipment, and decontamination equipment. The Canister Handling System unloads the canister(s) and places them into a DC. Handling equipment consists of a bridge crane hoist, DC loading manipulator, lifting fixtures, and small canister staging racks. Once the cask has been unloaded, the Cask Preparation System decontaminates the cask exterior and returns it to the Carrier/Cask Handling System via the Cask Transport System. After the DC is fully loaded, the Disposal Container Transport System moves the DC to the Disposal Container Handling System for welding. To handle off-normal canisters, a separate off-normal canister handling cell is located adjacent to the canister transfer cell and is interconnected to the transfer cell by means of the off-normal canister transfer tunnel. All canister transfer operations are controlled by the Control and Tracking System. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal Waste Handling Building (WHB) support systems.

B. Gorpani

2000-06-23T23:59:59.000Z

117

Studies and research concerning BNFP: cask handling equipment standardization  

SciTech Connect (OSTI)

This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time.

McCreery, Paul N.

1980-10-01T23:59:59.000Z

118

ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling Building System and other internal WHB support systems.

B. Gorpani

2000-06-26T23:59:59.000Z

119

Detailed Description of Key NIF Milestones for NNSA Description  

E-Print Network [OSTI]

1 Detailed Description of Key NIF Milestones for NNSA Short Description NIC EP Rev 4.0 Approved = Milestone Reporting Tool, which NNSA uses to support quarterly status reporting of NIC Level 1-2 milestones

120

Nondestructive assay and nondestructive examination of remote-handled transuranic waste at the ORNL waste handling and packaging plant  

SciTech Connect (OSTI)

The purpose of this investigation is to examine the use of an electron linear accelerator (LINAC) in the performance of nondestructive assay (NDA) and nondestructive examination (NDE) measurements of remote-handled transuranic wastes. The system will be used to perform waste characterization and certification activities at the Oak Ridge National Laboratory's proposed Waste Handling and Packaging Plant. The NDA and NDE technologies which were developed for contact-handled wastes are inadequate to perform such measurements on high gamma and neutron dose-rate wastes. A single LINAC will provide the interrogating fluxes required for both NDA and NDE measurements of the wastes. 11 refs., 6 figs.

Schultz, F.J.; Caldwell, J.T. (Oak Ridge National Lab., TN (USA); Pajarito Scientific Corp. (USA))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

air handling unit: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

case of fans, or indirectly, in the case of heat exchangers, which impose loads on the chiller and boiler plant. Air-handling units can comprise a myriad of subsystems (fans,...

122

air handling units: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

case of fans, or indirectly, in the case of heat exchangers, which impose loads on the chiller and boiler plant. Air-handling units can comprise a myriad of subsystems (fans,...

123

Centralized processing of contact-handled TRU waste feasibility analysis  

SciTech Connect (OSTI)

This report presents work for the feasibility study of central processing of contact-handled TRU waste. Discussion of scenarios, transportation options, summary of cost estimates, and institutional issues are a few of the subjects discussed. (JDL)

Not Available

1986-12-01T23:59:59.000Z

124

Uranium hexafluoride: A manual of good handling practices. Revision 7  

SciTech Connect (OSTI)

The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

NONE

1995-01-01T23:59:59.000Z

125

WIPP Remote Handled Waste Facility: Performance Dry Run Operations  

SciTech Connect (OSTI)

The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

2003-02-24T23:59:59.000Z

126

LM Records Handling System-Freedom of Information/Privacy Act...  

Energy Savers [EERE]

Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling System-Freedom of InformationPrivacy Act, Office of Legacy management LM Records Handling...

127

Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building  

SciTech Connect (OSTI)

The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

G. Wagenblast

2000-05-01T23:59:59.000Z

128

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect (OSTI)

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16T23:59:59.000Z

129

Arrival condition of spent fuel after storage, handling, and transportation  

SciTech Connect (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

130

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

131

Status of ITER neutral beam cell remote handling system  

E-Print Network [OSTI]

The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.

Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M

2013-01-01T23:59:59.000Z

132

Certification document for newly generated contact-handled transuranic waste  

SciTech Connect (OSTI)

The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

Box, W.D.; Setaro, J.

1984-01-01T23:59:59.000Z

133

Bulk Handling of Milk on Texas Dairy Farms.  

E-Print Network [OSTI]

areas dur- tem of handling milk. ing the spring and summer of 1957 on dairy - farms which have converted their operations to Dairymen interviewed in North Texas had tanks ranging from 150 gallons to 1,000 gallons, , the bulk system of producing... and handling milk. while tanks in the Corous Christi area raneDd Texas dairy farmers are operating larger from 200 gallons to 1,000 gallons. The average units, milking more cows, selling more milk and tank in North Texas had a capacity of 400 gal. generally...

Parker, Cecil A.; Stelly, Randall, Moore, Donald S.

1958-01-01T23:59:59.000Z

134

Technical Evaluations of Proposed Remote-Handled Transuranic Waste Characterization Requirements at WIPP  

SciTech Connect (OSTI)

Characterization, packaging, transport, handling and disposal of remotely handled transuranic (RH TRU) waste at WIPP will be different than similar operations with contact handled transuranic (CH TRU) waste. This paper presents results of technical evaluations associated with the planned disposal of remotely handled transuranic waste at the Waste Isolation Pilot Plant (WIPP).

Anastas, G.; Channell, J. K.

2002-02-26T23:59:59.000Z

135

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (Regular; Twelve and ledges and clean fixtures. Maintain building entrances according to conditions by removing snow and ice

Endres. William J.

136

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month, part according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

137

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month, full according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

138

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month, full and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying

139

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (Regular; Twelve according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

140

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12-month, full according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: BUILDING MECHANIC II (Pay, parking lots, elevators, snow conditions, HVAC equipment temperature control systems, pool systems, ice

142

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN/EVENT ASSOCIATE entrances according to conditions by removing snow and ice, applying sand and salt, and removing debris

143

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12-month, full and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying

144

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12 month, part according to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere

145

Student Internship Programs Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Student Internship Programs Program Description The objective of the Laboratory's student internship programs is to provide students with opportunities for meaningful hands- on...

146

INTO Colorado State University, Academic Advisor: Short Description Position Description  

E-Print Network [OSTI]

INTO Colorado State University, Academic Advisor: Short Description Position Description INTO Colorado State University (INTO CSU) seeks one full-time, 12-month academic advisor who will advise INTO CSU students. The primary responsibility of the academic advisor is to promote and facilitate

Stephens, Graeme L.

147

Ceramic corrosion/erosion project description  

SciTech Connect (OSTI)

As a part of the United States Department of Energy's High Temperature Turbine Technology Program, the Morgantown Energy Technology Center is participating in a Ceramics Corrosion/Erosion Materials Study. Objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating with a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two facilities are designed and installed to burn a varying low-Btu coal-derived gas in a controlled manner. This report contains the objectives and testing philosophy as well as the operating, specimen handling, and emergency procedures for the facilities. The facilities were checked out in August/September 1980. Testing is scheduled to begin in late 1980 with completion of 1000 hours of ceramic materials exposure to be completed by early 1981. Most of the enclosed is an update of two METC Information Releases (IR), i.e., IR 442 (1979) Test Plan for Ceramic Corrosion/Erosion Project, and IR 817 (1980) Ceramic Corrosion/Erosion Project Description.

Nakaishi, C.V.; Carpenter, L.K.

1981-02-01T23:59:59.000Z

148

Challenges of Handling Storm Water Runoff Through Municipal Sewer Systems  

E-Print Network [OSTI]

cleaned and retained as a Best Management Practice (BMP). Receives only non-industrial storm water on storm water are leading municipalities to change permitting practices. As a result, facilitiesChallenges of Handling Storm Water Runoff Through Municipal Sewer Systems A South Carolina Case

Illinois at Urbana-Champaign, University of

149

Calculations of the radiological environment for handling of ISOLDE targets  

E-Print Network [OSTI]

Vehicle (AGV): Fully autonomous vehicle Integrated robot arm Robot mounted vision system for precise robot control Control + battery Shielded transport box Robot arm Vision system 4th High Power Targetry Workshop, May 2-6 2011 #12;Current target handling system J. Vollaire5 Two robots mounted on rails (located

McDonald, Kirk

150

Method of preparing and handling chopped plant materials  

DOE Patents [OSTI]

The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

Bransby, David I. (2668 Wire Rd., Auburn, AL 36832)

2002-11-26T23:59:59.000Z

151

A Modal Calculus for Exception Handling Aleksandar Nanevski 1  

E-Print Network [OSTI]

= inl e let comp x = e1 in e2 def = case e1 of inl x e2 | inr y inr y The typing rules . raise : E A = e. inr e handle : A (E A) A = e. h. case e of inl v v | inr exn h (exn

Nanevski, Aleksandar

152

Breeder Spent Fuel Handling Program multipurpose cask design basis document  

SciTech Connect (OSTI)

The Breeder Spent Fuel Handling (BSFH) Program multipurpose cask Design Basis Document defines the performance requirements essential to the development of a legal weight truck cask to transport FFTF spent fuel from reactor to a reprocessing facility and the resultant High Level Waste (HLW) to a repository. 1 ref.

Duckett, A.J.; Sorenson, K.B.

1985-09-01T23:59:59.000Z

153

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses  

E-Print Network [OSTI]

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses Bertrand Le pipelined memory access controllers can be generated improving the pipeline access mode to RAM. We focus as unpredictable ones (dynamic address computations) in a pipeline way. 1 Introduction Actual researches

Paris-Sud XI, Université de

154

SOLIS Data Handling Christoph Keller, Steve Wampler, Carl Henney  

E-Print Network [OSTI]

SOLIS Data Handling Christoph Keller, Steve Wampler, Carl Henney National Solar Observatory #12;May, 2003 FASR Data System Workshop 3 Science What causes the solar cycle? How is energy stored and released in the solar atmosphere? How does the solar radiative and non- radiative output vary? Vector

155

Sample handling for kinetics and molecular assembly in flow cytometry  

SciTech Connect (OSTI)

Flow cytometry discriminates particle associated fluorescence from the fluorescence of the surrounding medium. It permits assemblies of macromolecular complexes on beads or cells to be detected in real-time with precision and specificity. The authors have investigated two types of robust sample handling systems which provide sub-second resolution and high throughput: (1) mixers which use stepper-motor driven syringes to initiate chemical reactions in msec time frames; and (2) flow injection controllers with valves and automated syringes used in chemical process control. In the former system, the authors used fast valves to overcome the disparity between mixing 100 {micro}ls of sample in 100 msecs and delivering sample to a flow cytometer at 1 {micro}l/sec. Particles were detected within 100 msec after mixing, but turbulence was created which lasted for 1 sec after injection of the sample into the flow cytometer. They used optical criteria to discriminate particles which were out of alignment due to the turbulent flow. Complex sample handling protocols involving multiple mixing steps and sample dilution have also been achieved. With the latter system they were able to automate sample handling and delivery with intervals of a few seconds. The authors used a fluidic approach to defeat turbulence caused by sample introduction. By controlling both sheath and sample with individual syringes, the period of turbulence was reduced to {approximately} 200 msecs. Automated sample handling and sub-second resolution should permit broad analytical and diagnostic applications of flow cytometry.

Sklar, L.A. [Los Alamos National Lab., NM (United States). National Flow Cytometry Resource]|[Univ. of New Mexico, Albuquerque, NM (United States). School of Medicine; Seamer, L.C.; Kuckuck, F.; Prossnitz, E.; Edwards, B. [Univ. of New Mexico, Albuquerque, NM (United States). School of Medicine; Posner, G. [Northern Arizona Univ., Flagstaff, AZ (United States). Dept. of Chemistry

1998-07-01T23:59:59.000Z

156

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER (IPAC12, WEPPD038) The target station a 15-20 T superconducting magnet. The target itself is a free mercury jet, moving at 20 m/s at an small angle to the magnetic axis, so as later to be collected in a mercury pool/beam dump. The replaceable

McDonald, Kirk

157

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER  

E-Print Network [OSTI]

MERCURY HANDLING FOR THE TARGET SYSTEM FOR A MUON COLLIDER Van Graves , ORNL, Oak Ridge, TN 37830 Factory is a free-stream mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton

McDonald, Kirk

158

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

159

STABILIZING LINEAR MPC WITH EFFICIENT PRIORITIZED INFEASIBILITY HANDLING  

E-Print Network [OSTI]

is illustrated on a simulated distillation column, and we present a novel stability result for this infeasibilitySTABILIZING LINEAR MPC WITH EFFICIENT PRIORITIZED INFEASIBILITY HANDLING Jostein Vada Olav predictive controller fails to compute a control input, all practical MPC implementations should havea means

Foss, Bjarne A.

160

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING  

E-Print Network [OSTI]

Microfluidic Facility, Harvard Medical School LIQUID NITROGEN TANK HANDLING HMS microfluidics/microfabrication facility has one high pressure liquid nitrogen tank which supplies the nitrogen for some equipment normal operation. In case the liquid nitrogen tank is malfunctioning and requires to be shut down or replaced make

Paulsson, Johan

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Description of the Scenario Machine  

E-Print Network [OSTI]

We present here an updated description of the "Scenario Machine" code. This tool is used to carry out a population synthesis of binary stars. Previous version of the description can be found at http://xray.sai.msu.ru/~mystery//articles/review/contents.html

V. M. Lipunov; K. A. Postnov; M. E. Prokhorov; A. I. Bogomazov

2007-04-11T23:59:59.000Z

162

Web Page Development Company Description  

E-Print Network [OSTI]

Web Page Development Company Description: Service Provider web site Short Project Name: Research support and networking. Company Description: Website Building Company. This company drives traffic to websites through search engines, and optimizes websites over time. Short Project Name: Site Build Project

Dahl, David B.

163

On description of quantum plasma  

E-Print Network [OSTI]

A plasma becomes quantum when the quantum nature of its particles significantly affects its macroscopic properties. To answer the question of when the collective quantum plasma effects are important, a proper description of such effects is necessary. We consider here the most common methods of description of quantum plasma, along with the related assumptions and applicability limits. In particular, we analyze in detail the hydrodynamic description of quantum plasma, as well as discuss some kinetic features of analytic properties of linear dielectric response function in quantum plasma. We point out the most important, in our view, fundamental problems occurring already in the linear approximation and requiring further investigation. (submitted to Physics-Uspekhi)

S. V. Vladimirov; Yu. O. Tyshetskiy

2011-01-21T23:59:59.000Z

164

Test plan for K-Basin fuel handling tools  

SciTech Connect (OSTI)

The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use.

Bridges, A.E.

1995-02-08T23:59:59.000Z

165

Health physics considerations in UF{sub 6} handling  

SciTech Connect (OSTI)

Uranium is a radioactive substance that emits alpha particles and very small amounts of gamma radiation. Its daughter products emit beta and gamma radiation. In uranium handling operations these are the radiations one must consider. This presentation will review the characteristics of the radiations, the isotopes from which they originate, the growth and decay of the uranium daughter products, and some specific health physics practices dictated by these factors.

Bailey, J.C. [Norway Assoicates, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

166

Implementation of the Laboratory Air Handling Unit Systems (LAHU)  

E-Print Network [OSTI]

Implementation of the Laboratory Air Handling Unit Systems (LAHU) Y. Cui Graduate Student Energy Systems Laboratory University of Nebraska-Lincoln Omaha, NE, USA M. Liu, Ph.D., P.E. Associate Professor Energy Systems Laboratory...-around coils [18, 19], the variable air volume (VAV) fume hoods [8-16] and the usage-based control devices (UBC) [17]. These measures have effectively reduced the cooling energy, preheat energy and fan power consumption, and sometime, improved indoor...

Cui, Y.; Liu, M.; Conger, K.

2003-01-01T23:59:59.000Z

167

Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

URS Consultants, Inc.

1992-06-01T23:59:59.000Z

168

West Valley facility spent fuel handling, storage, and shipping experience  

SciTech Connect (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

169

An analysis of repository waste-handling operations  

SciTech Connect (OSTI)

This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs.

Dennis, A.W.

1990-09-01T23:59:59.000Z

170

EIA - Annual Energy Outlook 2013 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of projections in the AEO2013 and AEO2012 Reference case, 2010-2040 2025 2035 2040 Energy and economic factors 2010 2011 AEO2013 AEO2012 AEO2013 AEO2012 AEO2013 Primary energy...

171

Description Plants ESIS ESD FSGD  

E-Print Network [OSTI]

Ecological Site Description Plants ESIS ESD FSGD ESI Forestland ESI Rangeland Data Access > Return CHARACTERISTICS Site Type: Rangeland Site Name: Red Sandy Loam 25-32" PZ Site ID: R082AY369TX Major Land Resource

172

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION Job Title: DIRECTOR Department: CENTER faculty in developing and assessing course goals in support of program and university learning goals for online and blended learning. Provide assistance in evaluating and implementing educational technologies

Endres. William J.

173

The Description of Large Systems  

E-Print Network [OSTI]

In this paper we discuss the problems associated with the description and manipulation of large systems when their sources are not maintained as single fields. We show why and how tools that address these issues, such ...

Pitman, Kent

1984-09-01T23:59:59.000Z

174

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN/EVENT ASSOCIATE to conditions by removing snow and ice, applying sand and salt, and removing debris. Adhere to current uniform

Endres. William J.

175

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12 month/40 and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying be exercised over seasonal/temporary university employees and student assistants. QUALIFICATION REQUIREMENTS

176

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12 month and ice, applying sand and salt, and removing debris. Adhere to current department uniform policy supervision may be exercised over seasonal/temporary university employees and student assistants

177

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (12 mos and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying be exercised over seasonal/temporary university employees and student assistants. QUALIFICATION REQUIREMENTS

178

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY CLASSIFICATION DESCRIPTION JOB TITLE: CUSTODIAN (9 month/20 hours and clean fixtures. Maintain building entrances according to conditions by removing snow and ice, applying be exercised over seasonal/temporary university employees and student assistants. QUALIFICATION REQUIREMENTS

179

Museum Educator Volunteer Job Description  

E-Print Network [OSTI]

Museum Educator Volunteer Job Description The Beaty Biodiversity Museum, a new museum housing UBC's rich biological collections, is dedicated to enhancing to the public. Volunteer Museum Educators play a vital role in the museum mission

Pulfrey, David L.

180

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

SciTech Connect (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The WARRP Core: Optoelectronic Implementation of Network Router Deadlock Handling Mechanisms  

E-Print Network [OSTI]

1 The WARRP Core: Optoelectronic Implementation of Network Router Deadlock Handling Mechanisms. Keywords: adaptive routing, deadlock handling, multiprocessor network router, optoelectronic smart pixel. #12;2 1. Introduction Emerging optoelectronic smart-pixel technology is of increasing interest

Pinkston, Timothy M.

182

NFS File Handle Security Avishay Traeger, Abhishek Rai, Charles P. Wright, and Erez Zadok  

E-Print Network [OSTI]

a file han- dle. When an NFS client performs an operation, it passes the file handle to the server, which decodes the file han- dle to determine what object the file handle refers to. Since NFS is a stateless

Zadok, Erez

183

Department of Industrial & Manufacturing Engineering Fall 2011 Mining Media Handling Project  

E-Print Network [OSTI]

Project Overview Metso wants to develop a media handling solution (machinery and/or process) to enhance that optimizes media discharge, recharge and liner maintenance procedures in accordance with the handling system

Demirel, Melik C.

184

Shippingport Spent Fuel Canister System Description  

SciTech Connect (OSTI)

In 1978 and 1979, a total of 72 blanket fuel assemblies (BFAs), irradiated during the operating cycles of the Shippingport Atomic Power Station's Pressurized Water Reactor (PWR) Core 2 from April 1965 to February 1974, were transferred to the Hanford Site and stored in underwater storage racks in Cell 2R at the 221-T Canyon (T-Plant). The initial objective was to recover the produced plutonium in the BFAs, but this never occurred and the fuel assemblies have remained within the water storage pool to the present time. The Shippingport Spent Fuel Canister (SSFC) is a confinement system that provides safe transport functions (in conjunction with the TN-WHC cask) and storage for the BFAs at the Canister Storage Building (CSB). The current plan is for these BFAs to be retrieved from wet storage and loaded into SSFCs for dry storage. The sealed SSFCs containing BFAs will be vacuum dried, internally backfilled with helium, and leak tested to provide suitable confinement for the BFAs during transport and storage. Following completion of the drying and inerting process, the SSFCs are to be delivered to the CSB for closure welding and long-term interim storage. The CSB will provide safe handling and dry storage for the SSFCs containing the BFAs. The purpose of this document is to describe the SSFC system and interface equipment, including the technical basis for the system, design descriptions, and operations requirements. It is intended that this document will be periodically updated as more equipment design and performance specification information becomes available.

JOHNSON, D.M.

2000-03-27T23:59:59.000Z

185

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect (OSTI)

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

186

Remote-handled transuranic system assessment. Volume 1  

SciTech Connect (OSTI)

This document identifies the necessary actions for addressing current questions concerning the safe and efficient disposal of remote-handled transuranic wastes that have been generated through Department of Energy activities. In addition, this document presents summaries of existing information and analyses regarding the potential alternatives for disposing of remote-handled (RH) transuranic (TRU) waste at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP). A further discussion of DOE`s approach for addressing RH-TRU issues is contained in the document, Waste Isolation Pilot Plant Remote-Handled Transuranic Waste Disposal Strategy, DOE/WIPP-95-1090 (DOE, 1995a). Of this stored and projected inventory, approximately 30% can be characterized with current technology and subsequently certified to meet the waste acceptance criteria for disposal at WIPP; characterization of the remaining 70% will require the use of alternative techniques. At most of the generator sites, characterization equipment and facilities need to be procured in order for the sites to certify waste for shipment either to WIPP or to an interim site. If surface dose rates are too high, the use of non-invasive techniques such as non-destructive examination (NDE) and non-destructive assay (NDA) may be precluded. Characterization methods using NDA can be effectively used on RH-TRU wastes with surface dose rates of less than 1.0 rem/hr (neutron); NDE methods are effective on waste with surface dose rates of less than 10 rem/hr (gamma). The ability to use current NDE technology on waste with surface dose rates above 10 rem/hr will need to be demonstrated. Alternate characterization techniques, such as examination within a hot cell, could be used for the remaining waste; however, such techniques are labor intensive and would require additional effort to gather assay data. Improvements in characterization capabilities are being pursued through future technology development initiatives.

NONE

1995-11-01T23:59:59.000Z

187

Fusion Potentials for G_k and Handle Squashing  

E-Print Network [OSTI]

Using Chern-Simons gauge theory, we show that the fusion ring of the conformal field theory G_k is isomorphic to P(u)/(\\del V), where V is a polynomial in u and (\\del V) is the ideal generated by the conditions \\del V=0. We also derive a residue-like formula for the correlation functions in the Chern-Simons theory thus providing a RCFT version of the residue formula for the TLG models. An operator that acts like the measure in the residue formula has the ionterpretation of a handle squashing operator and an explicit formula for this operator is given.

Michael Crescimanno

1991-10-22T23:59:59.000Z

188

Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings  

SciTech Connect (OSTI)

This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

Strunk, W.D.; Thornton, S.G. (eds.)

1988-01-01T23:59:59.000Z

189

Plutonium stabilization and handling quality assurance program plan  

SciTech Connect (OSTI)

This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM.

Weiss, E.V.

1998-04-22T23:59:59.000Z

190

Methods and Cost of Handling Texas Citrus, 1946-51.  

E-Print Network [OSTI]

Methods and Costs of Handling Texas Citrus TEXAS AGRICULTURAL EXPERIMENT STAT10 R. D. LEWIS. DIRECTOR, COLLEGE STATION. TEXAS DIGEST The citrus industry in Texas underwent considerable change during the 1946-51 period. 7 of production dropped... changes during this period although trends in the use of containers for fresh citrus showed the rise in popularity of consumer-size mesh bags. The increase in proportion of these bags was from 2 percent of the total to 13 percent for grapefruit and from...

Sorensen, H. B.; Baker, C. K.

1953-01-01T23:59:59.000Z

191

Process development for remote-handled mixed-waste treatment  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) is developing a treatment process for remote-handled (RH) liquid transuranic mixed waste governed by the concept of minimizing the volume of waste requiring disposal. This task is to be accomplished by decontaminating the bulk components so the process effluent can be disposed with less risk and expense. Practical processes have been demonstrated on the laboratory scale for removing cesium 137 and strontium 90 isotopes from the waste, generating a concentrated waste volume, and rendering the bulk of the waste nearly radiation free for downstream processing. The process is projected to give decontamination factors of 10{sup 4} for cesium and 10{sup 3} for strontium. Because of the extent of decontamination, downstream processing will be contact handled. The transuranic, radioactive fraction of the mixed waste stream will be solidified using a thin-film evaporator and/or microwave solidification system. Resultant solidified waste will be disposed at the Waste Isolation Pilot Plant (WIPP). 8 refs., 2 figs., 3 tabs.

Berry, J.B.; Campbell, D.O.; Lee, D.D.; White, T.L.

1990-01-01T23:59:59.000Z

192

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect (OSTI)

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

193

Handling Database Updates in Two-dimensional Temporal Logic  

E-Print Network [OSTI]

describing the history of the world, the database system can also execute temporal speci cations in the form a reference point or a reference time. If we apply these concepts to the description of databases, the history the history of the world (database), and action is to be executed upon the world in the present or future time

Finger, Marcelo

194

Sustainable Internet Architecture PROJECT DESCRIPTION  

E-Print Network [OSTI]

Sustainable Internet Architecture PROJECT DESCRIPTION 1 Introduction The Internet currently plays that the problems in the current Internet architecture stem from its lack of sustainability which impedes future de of challenges. Numerous research studies on a new Internet architecture (e.g., [16, 37, 48, 54, 55]) have

Kuzmanovic, Aleksandar

195

Project Description July 13, 2006  

E-Print Network [OSTI]

Project Description July 13, 2006 1 Results from Prior NSF Support The Department of Physics. The grant period started May 1, 1995 with a duration of twenty-four months. In this project video technology' learning of the fundamental ideas of Newtonian mechanics. With the use of low-cost video cameras

Gilfoyle, Jerry

196

Project Description Executive Summary Report  

E-Print Network [OSTI]

$Total Project Cost: 1,000,000Auxillary Enterprises Balances $ 9,400,000Revenue Financing System Bonds $ 1Project Description Executive Summary Report Project Information Project Budget Project Funding 302-680 Parking Structure Phase I This project consists of a 750 space parking garage of approximately 251

O'Toole, Alice J.

197

RF test bench automation Description  

E-Print Network [OSTI]

RF test bench automation Description: Callisto would like to implement automated RF test bench. Three RF test benches have to be studied and automated: LNA noise temperature test bench LNA gain phase of the test benches and an implementation of the automation phase. Tasks: Noise temperature

Dobigeon, Nicolas

198

THE UNIVERSITY OF CLASSIFICATION DESCRIPTION  

E-Print Network [OSTI]

1 THE UNIVERSITY OF ROCHESTER CLASSIFICATION DESCRIPTION TITLE: Web Specialist and Analyst DATE: 01 ­ Advancement Service and provide assistance in the development and management of web-based assets, direct solicitations support ­ webpages for print and e-mail marketing support, web development, Share

Portman, Douglas

199

ARCHITECTURE PROGRAMS AND COURSE DESCRIPTIONS  

E-Print Network [OSTI]

2009­2010 ARCHITECTURE PROGRAMS AND COURSE DESCRIPTIONS UNIVERSITY OF MICHIGAN #12;© 2008, degree options, and courses for the UM architecture program. This document is available for download from the Taubman College website at http://www.TaubmanCollege. umich.edu/architecture/bulletin/. If you

Kamat, Vineet R.

200

Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density, and Morphologyusing TD-DFT. |

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Test reports for K Basins vertical fuel handling tools  

SciTech Connect (OSTI)

The vertical fuel handling tools, for moving N Reactor fuel elements, were tested in the 305 Building Cold Test Facility (CTF) in the 300 Area. After fabrication was complete, the tools were functionally tested in the CTF using simulated N Reactor fuel rods (inner and outer elements). The tools were successful in picking up the simulated N Reactor fuel rods. These tools were also load tested using a 62 pound dummy to test the structural integrity of each assembly. The tools passed each of these tests, based on the performance objectives. Finally, the tools were subjected to an operations acceptance test where K Basins Operations personnel operated the tool to determine its durability and usefulness. Operations personnel were satisfied with the tools. Identified open items included the absence of a float during testing, and documentation required prior to actual use of the tools in the 100 K fuel storage basin.

Meling, T.A.

1995-02-01T23:59:59.000Z

202

The combustion and handling properties of several heavy bitumen emulsions  

SciTech Connect (OSTI)

A research program was undertaken by ACT/CANMET to compare the combustion and heat transfer characteristics of a number of bitumen-based water emulsions with those of heavy fuel oil. The addition of water gives some advantage in the areas of fuel handling, atomization and emissions. These studies showed that the emulsions burn and transfer heat in a manner similar to commercial heavy fuel oils and make excellent fuels for boiler and process combustors. However, if the heavy bitumen is partially upgraded, the emulsion made from these residues can sometimes give rise to combustion and emissions related concerns. Particular attention must be paid to the burner/atomization system in order to avoid combustion problems resulting in unacceptably high levels of soot deposition and emissions.

Whaley, H.; Wong, J.K.L.; Banks, G.N.; Lee, S.W.

1995-12-31T23:59:59.000Z

203

Automated cassette-to-cassette substrate handling system  

DOE Patents [OSTI]

An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

2014-03-18T23:59:59.000Z

204

GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.  

SciTech Connect (OSTI)

THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

2002-05-31T23:59:59.000Z

205

Nonconventional Liquid Fuels (released in AEO2006)  

Reports and Publications (EIA)

Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

2006-01-01T23:59:59.000Z

206

2017 Levelized Costs AEO 2012 Early Release  

U.S. Energy Information Administration (EIA) Indexed Site

in the other schedules of the Form EIA-861. These schedules include Schedule 2C Green Pricing and Schedule 2D Net Metering. It is also possible that, in the future, too...

207

State Appliance Standards (released in AEO2009)  

Reports and Publications (EIA)

State appliance standards have existed for decades, starting with Californias enforcement of minimum efficiency requirements for refrigerators and several other products in 1979. In 1987, recognizing that different efficiency standards for the same products in different states could create problems for manufacturers, Congress enacted the National Appliance Energy Conservation Act (NAECA), which initially covered 12 products. The Energy Policy Act of 1992 (EPACT92), EPACT2005, and EISA2007 added additional residential and commercial products to the 12 products originally specified under NAECA.

2009-01-01T23:59:59.000Z

208

CAFE Standards (released in AEO2010)  

Reports and Publications (EIA)

Pursuant to the Presidents announcement of a National Fuel Efficiency Policy, the National Highway Traffic Safety Administration (NHTSA) and the EPA have promulgated nationally coordinated standards for tailpipe Carbon Dioxide (CO2)-equivalent emissions and fuel economy for light-duty vehicles (LDVs), which includes both passenger cars and light-duty trucks. In the joint rulemaking, the Environmental Protection Agency is enacting CO2-equivalent emissions standards under the Clean Air Act (CAA), and NHTSA is enacting companion Corporate Average Fuel Economy standards under the Energy Policy and Conservation Act, as amended by the Energy Independence and Security Act of 2007.

2010-01-01T23:59:59.000Z

209

Comparing Efficiency Projections (released in AEO2010)  

Reports and Publications (EIA)

Realized improvements in energy efficiency generally rely on a combination of technology and economics. The figure below illustrates the role of technology assumptions in the Annual Energy Outlook 2010 projections for energy efficiency in the residential and commercial buildings sector. Projected energy consumption in the Reference case is compared with projections in the Best Available Technology, High Technology, and 2009 Technology cases and an estimate based on an assumption of no change in efficiency for building shells and equipment.

2010-01-01T23:59:59.000Z

210

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

2010-01-01T23:59:59.000Z

211

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

2007-01-01T23:59:59.000Z

212

CONTINATIONSHEETREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma& Records |

213

CONTINATIONSHEETREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma& Records |COTNUTO

214

2017 Levelized Costs AEO 2012 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (Thousands Dollars)Addendum

215

2017 Levelized Costs AEO 2012 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (Thousands

216

2017 Levelized Costs AEO 2012 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (ThousandsAbout the Oil and

217

2017 Levelized Costs AEO 2012 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (ThousandsAbout the Oil

218

AEO 2013 Liquid Fuels Markets Working Group  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (ThousandsAboutsite. IfHome

219

AEO2014 Renewables Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas SupplyFOR: John

220

AEO2015 Coal Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and GasPURPOSES. DO NOT

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AEO2015 Transportation Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and GasPURPOSES. DO5

222

Efficiency and Intensity in the AEO 2010  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary ReportingMTBE

223

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2 6 31

224

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2 6 315

225

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2 6

226

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2

227

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2 Market

228

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2 Market

229

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2 Market

230

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 2

231

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13

232

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market

233

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market

234

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market

235

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market

236

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market4

237

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market4

238

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market4

239

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market4

240

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market4

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13 Market44

242

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 13

243

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 134 1

244

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 134 1

245

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 134 1

246

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarch Value of the verb5 134 1Winter

247

Industrial Team Plans for AEO2015  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ithWellheadFeet) Year591,60930,24,

248

2017 Levelized Costs AEO 2012 Early Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next

249

AEO Early Release 2013 - LNG exports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEii ABSTRACT6AEU.S.

250

AEO Early Release 2013 - renewable generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEiiRenewables account

251

SocRob 2013 Team Description Paper  

E-Print Network [OSTI]

; and hardware developments in ball-handling/kicking devices. 1 Introduction The SocRob (Society of Robots that robot's low level control and sensor units, e.g, robot wheel controller and target detector (using

Instituto de Sistemas e Robotica

252

U-226: Linux Kernel SFC Driver TCP MSS Option Handling Denial...  

Broader source: Energy.gov (indexed) [DOE]

The vulnerability is caused due to an error in the Solarflare network driver (driversnetethernetsfctx.c) when handling TCP segments and can be exploited via a...

253

Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2010-10-01T23:59:59.000Z

254

ORIGINAL ARTICLE Approximate Truth and Descriptive Nesting  

E-Print Network [OSTI]

ORIGINAL ARTICLE Approximate Truth and Descriptive Nesting Jeffrey Alan Barrett Received: 7 July. This paper presents a notion of local probable approximate truth in terms of descriptive nesting relations

Barrett, Jeffrey A.

255

Proposal for Construction/Demonstration/Implementation of A Material Handling System  

SciTech Connect (OSTI)

Vortec Corporation, the United States Enrichment Corporation (USEC) and DOE/Paducah propose to complete the technology demonstration and the implementation of the Material Handling System developed under Contract Number DE-AC21-92MC29120. The demonstration testing and operational implementation will be done at the Paducah Gaseous Diffusion Plant. The scope of work, schedule and cost for the activities are included in this proposal. A description of the facility to be constructed and tested is provided in Exhibit 1, attached. The USEC proposal for implementation at Paducah is presented in Exhibit 2, and the commitment letters from the site are included in Exhibit 3. Under our agreements with USEC, Bechtel Jacobs Corporation and DOE/Paducah, Vortec will be responsible for the construction of the demonstration facility as documented in the engineering design package submitted under Phase 4 of this contract on August 9, 2001. USEC will have responsibility for the demonstration testing and commercial implementation of the plant. The demonstration testing and initial commercial implementation of the technology will be achieved by means of a USEC work authorization task with the Bechtel Jacobs Corporation. The initial processing activities will include the processing of approximately 4,250 drums of LLW. Subsequent processing of LLW and TSCA/LLW will be done under a separate contract or work authorization task. To meet the schedule for commercial implementation, it is important that the execution of the Phase 4 project option for construction of the demonstration system be executed as soon as possible. The schedule we have presented herein assumes initiation of the construction phase by the end of September 2001. Vortec proposes to complete construction of the demonstration test system for an estimated cost of $3,254,422. This price is based on the design submitted to DOE/NETL under the Phase 4 engineering design deliverable (9 august 2001). The cost is subject to the assumptions and conditions identified in Section 6 of this proposal.

Jim Jnatt

2001-08-24T23:59:59.000Z

256

SNF AGING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this system description document (SDD) is to establish requirements that drive the design of the spent nuclear fuel (SNF) aging system and associated bases, which will allow the design effort to proceed. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD follows the design with regard to the description of the system. The description provided in the SDD reflects the current results of the design process. Throughout this SDD, the term aging cask applies to vertical site-specific casks and to horizontal aging modules. The term overpack is a vertical site-specific cask that contains a dual-purpose canister (DPC) or a disposable canister. Functional and operational requirements applicable to this system were obtained from ''Project Functional and Operational Requirements'' (F&OR) (Curry 2004 [DIRS 170557]). Other requirements that support the design process were taken from documents such as ''Project Design Criteria Document'' (PDC) (BSC 2004 [DES 171599]), ''Site Fire Hazards Analyses'' (BSC 2005 [DIRS 172174]), and ''Nuclear Safety Design Bases for License Application'' (BSC 2005 [DIRS 171512]). The documents address requirements in the ''Project Requirements Document'' (PRD) (Canori and Leitner 2003 [DIRS 166275]). This SDD includes several appendices. Appendix A is a Glossary; Appendix B is a list of key system charts, diagrams, drawings, lists and additional supporting information; and Appendix C is a list of procedures that will be used to operate the system.

L.L. Swanson

2005-04-06T23:59:59.000Z

257

ELECTRICAL SUPPORT SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this revision of the System Design Description (SDD) is to establish requirements that drive the design of the electrical support system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience/users are design engineers. This type of SDD both ''leads'' and ''trails'' the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential in performing the design process. The SDD trails the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to electrical support systems are obtained from the ''Project Functional and Operational Requirements'' (F&OR) (Siddoway 2003). Other requirements to support the design process have been taken from higher-level requirements documents such as the ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), and fire hazards analyses. The above-mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canon and Leitner 2003) requirements. This SDD contains several appendices that include supporting information. Appendix B lists key system charts, diagrams, drawings, and lists, and Appendix C includes a list of system procedures.

S. Roy

2004-06-24T23:59:59.000Z

258

ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

M. Maniyar

2004-06-22T23:59:59.000Z

259

Descriptive Model of Generic WAMS  

SciTech Connect (OSTI)

The Department of Energy’s (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation’s electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.

Hauer, John F.; DeSteese, John G.

2007-06-01T23:59:59.000Z

260

Description of CBECS Building Types  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural2Description

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Urenco`s experience of UF{sub 6} handling  

SciTech Connect (OSTI)

Urenco operates enrichment plants at three sites, Almelo (Netherlands), Capenhurst (United Kingdom) and Gronau (Germany). Current installed separative work capacity is 2,500 tSWpa. Since 1971, when the first pilot plants were built, enrichment production has totalled 18,000 tSW. During this last 20 years over 3,500 48 containers of UF{sub 6} have been fed to the plants, over 3,700 30 containers have been filled with product and delivered successfully to Urenco`s customers worldwide and over 3,000 48 containers of depleted tails have been filled and have either been returned to customers or retained for long term storage on site. The paper gives a brief outline of Urenco`s experience in handling UF{sub 6}: the equipment and methods used in receiving, feeding, filling, blending, liquid sampling, storing, moving on site and despatching of UF{sub 6} containers. Some of the difficulties experienced with UF{sub 6} containers are appended.

Saelmans, F. [Urenco Almelo (Netherlands); Scane, C. [Urenco Capenhurst (United Kingdom); Christofzik, J. [Urenco Gronau (Germany)

1991-12-31T23:59:59.000Z

262

B cell remote-handled waste shipment cask alternatives study  

SciTech Connect (OSTI)

The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria.

RIDDELLE, J.G.

1999-05-26T23:59:59.000Z

263

Removable pellicle for lithographic mask protection and handling  

DOE Patents [OSTI]

A removable pellicle for a lithographic mask that provides active and robust particle protection, and which utilizes a traditional pellicle and two deployments of thermophoretic protection to keep particles off the mask. The removable pellicle is removably attached via a retaining structure to the mask substrate by magnetic attraction with either contacting or non-contacting magnetic capture mechanisms. The pellicle retaining structural is composed of an anchor piece secured to the mask substrate and a frame member containing a pellicle. The anchor piece and the frame member are in removable contact or non-contact by the magnetic capture or latching mechanism. In one embodiment, the frame member is retained in a floating (non-contact) relation to the anchor piece by magnetic levitation. The frame member and the anchor piece are provided with thermophoretic fins which are interdigitated to prevent particles from reaching the patterned area of the mask. Also, the anchor piece and mask are maintained at a higher temperature than the frame member and pellicle which also prevents particles from reaching the patterned mask area by thermophoresis. The pellicle can be positioned over the mask to provide particle protection during mask handling, inspection, and pumpdown, but which can be removed manually or robotically for lithographic use of the mask.

Klebanoff, Leonard E. (Dublin, CA); Rader, Daniel J. (Albuquerque, NM); Hector, Scott D. (Oakland, CA); Nguyen, Khanh B. (Sunnyvale, CA); Stulen, Richard H. (Livermore, CA)

2002-01-01T23:59:59.000Z

264

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

265

Integrated Project Management System description  

SciTech Connect (OSTI)

The Integrated Program Management System (IPMS) Description is a ``working`` document that describes the work processes of the Uranium Mill Tailings Remedial Action Project Office (UMTRA) and IPMS Group. This document has undergone many revisions since the UMTRA Project began; this revision not only updates the work processes but more clearly explains the relationships between the Project Office, contractors, and other participants. The work process flow style has been revised to better describe Project work and the relationships of participants. For each work process, more background and guidance on ``why`` and ``what is expected`` is given. For example, a description of activity data sheets has been added in the work organization and the Project performance and reporting processes, as well as additional detail about the federal budget process and funding management and improved flow charts and explanations of cost and schedule management. A chapter has been added describing the Cost Reduction/Productivity Improvement Program. The Change Control Board (CCB) procedures (Appendix A) have been updated. Project critical issues meeting (PCIM) procedures have been added as Appendix B. Budget risk assessment meeting procedures have been added as Appendix C. These appendices are written to act as stand-alone documentation for each process. As the procedures are improved and updated, the documentation can be updated separately.

NONE

1994-09-01T23:59:59.000Z

266

A New Aerodynamic Traction Principle for Handling Products on an Air Cushion  

E-Print Network [OSTI]

1 A New Aerodynamic Traction Principle for Handling Products on an Air Cushion Guillaume J. Laurent. The product is carried on a thin air cushion and transported along the system by induced air flows principle for handling delicate and clean products, such as silicon wafers, glass sheets or flat foodstuff

Paris-Sud XI, Université de

267

Extending a Deductive ObjectOriented Database System with Spatial Data Handling Facilities  

E-Print Network [OSTI]

Extending a Deductive Object­Oriented Database System with Spatial Data Handling Facilities Alvaro, 1998 Abstract This paper describes the integration of a spatial data handling component with the ROCK collection of spatial data types as primitive types whose operations have state­of­the­art computational

Fernandes, Alvaro A. A.

268

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use  

E-Print Network [OSTI]

Safety First Safety Last Safety Always Inspect rigging equipment for material handling before use. Rigging Equipment for Material Handling Safety Tip #19 At your job or at the plate, you can't get home on the reverse side of this safety tip sheet. Please refrain from reading the information verbatim

Minnesota, University of

269

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

270

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

271

GUIDELINES FOR DESIGN AND SAFE HANDLING OF CURVED I-SHAPED STEEL GIRDERS  

E-Print Network [OSTI]

0-5574-P1 GUIDELINES FOR DESIGN AND SAFE HANDLING OF CURVED I-SHAPED STEEL GIRDERS Authors: Jason FOR DESIGN AND SAFE HANDLING OF CURVED I-SHAPED STEEL GIRDERS PURPOSE: The purpose of this set of guidelines-sixth #12;2 (Eq. 6.10.2.2-2). However, TxDOT's Preferred Practices for Steel Bridge Design, Fabrication

Texas at Austin, University of

272

SPE SPE 160638 A Novel Approach to Handle Continuous Wettability Alteration during  

E-Print Network [OSTI]

SPE SPE 160638 A Novel Approach to Handle Continuous Wettability Alteration during Immiscible CO2 to investigate wettability alteration during CO2 flooding process. However, limited research on numerical and, a novel approach was developed to handle wettability alteration on continuous basis during immiscible CO2

Hossain, M. Enamul

273

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

274

From Modelica Models to Fault Diagnosis in Air Handling Units Raymond Sterling1  

E-Print Network [OSTI]

From Modelica Models to Fault Diagnosis in Air Handling Units Raymond Sterling1 , Peter Struss2 Handling Unit (AHU). This solution is derived from a general first-principle Modelica model and exploits 4 presents the modelica models and its calibration. In section 5 an example of the complete tool

Cengarle, María Victoria

275

Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.  

SciTech Connect (OSTI)

This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

2013-06-01T23:59:59.000Z

276

WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

N.D. Sudan

2000-06-22T23:59:59.000Z

277

Subject Description CURRICULAR SUBJECT LISTING BY SUBJECT NUMBER  

E-Print Network [OSTI]

Subject Description CURRICULAR SUBJECT LISTING BY SUBJECT NUMBER Subject Description Monday AND INSURANCE 242 ACTUARIAL SCIENCE 243 TRANSPORTATION AND PUBLIC UTILITIES 244 CLASSICS 250 COMMUNICATION ARTS Reporting #12;Subject Description CURRICULAR SUBJECT LISTING BY SUBJECT NUMBER Subject Description Monday

Wisconsin at Madison, University of

278

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-02-01T23:59:59.000Z

279

Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

Boyd D. Christensen

2010-05-01T23:59:59.000Z

280

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Machinist Pipeline/Apprentice Program Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

282

Electricity Delivery and Energy Reliability PROGRAM DESCRIPTION  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

32 Electricity Delivery and Energy Reliability PROGRAM DESCRIPTION The Office of Electricity Delivery and Energy Reliability (OE) leads national efforts to modernize the electric...

283

Phenomenological description of bidirectional surface reflection  

E-Print Network [OSTI]

Phenomenological description of bidirectional surface reflection Jan J. Koenderink and Andrea J satellites). In some cases one has (usually approximate, phenomenological) models, but in most cases one

O'Brien, James F.

284

Home energy rating systems: Program descriptions  

SciTech Connect (OSTI)

This report contains the descriptions of home energy rating and labelling programs (HERS) that were surveyed in January 1986 as part of a national evaluation of HERS.

Vine, E.; Barnes, B.K.; Ritschard, R.

1987-02-01T23:59:59.000Z

285

Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model  

E-Print Network [OSTI]

Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model

286

Development of an Outdoor Concentrating Photovoltaic Module Testbed, Module Handling and Testing Procedures, and Initial Energy Production Results  

SciTech Connect (OSTI)

This report addresses the various aspects of setting up a CPV testbed and procedures for handling and testing CPV modules.

Muller, M.

2009-09-01T23:59:59.000Z

287

ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2013  

SciTech Connect (OSTI)

This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the fourth quarter of 2013.

Kurtz, J.; Sprik, S.; Peters, M.

2014-06-01T23:59:59.000Z

288

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2014-06-01T23:59:59.000Z

289

A MICROFLUIDIC MAGNETIC HYBRID ACTUATOR FOR ADVANCED HANDLING FUNCTIONS AT CELL RESOLUTION  

E-Print Network [OSTI]

A MICROFLUIDIC MAGNETIC HYBRID ACTUATOR FOR ADVANCED HANDLING FUNCTIONS-CNRS, Toulouse, FRANCE 2 Université de Toulouse, Toulouse, FRANCE *email : mfouet@laas.fr In microfluidics are usually integrated. Coils were thus integrated to microfluidic chips

Paris-Sud XI, Université de

290

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-04-01T23:59:59.000Z

291

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2011-01-01T23:59:59.000Z

292

Using Product Specific Simulation Models in a Tool for Manual Commissioning of Air Handling Units  

E-Print Network [OSTI]

This short paper describes an outline of a tool for manual commissioning of air handling units. The prototype tool is implemented EES professional version that can generate standalone programs. The idea is to use the benefit of simulation models...

Eriksson, J.

2003-01-01T23:59:59.000Z

293

Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

Not Available

1992-09-01T23:59:59.000Z

294

Webinar February 17: Material Handling Fuel Cells for Building Electric Peak Shaving Applications  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications" on Tuesday, February 17, from 12 to 1 p.m. Eastern Standard Time.

295

ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2012  

SciTech Connect (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the second quarter of 2012.

Kurtz, J.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-10-01T23:59:59.000Z

296

Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System  

SciTech Connect (OSTI)

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

KESSLER, S.F.

2000-08-10T23:59:59.000Z

297

ARRA Material Handling Equipment Composite Data Products: Data Through Quarter 4 of 2012  

SciTech Connect (OSTI)

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment composite data products for data through the fourth quarter of 2012.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.; Ramsden, T.

2013-05-01T23:59:59.000Z

298

ARRA Material Handling Equipment Composite Data Products: Data through Quarter 2 of 2013  

SciTech Connect (OSTI)

This report includes 47 composite data products (CDPs) produced for American Recovery and Reinvestment Act (ARRA) fuel cell material handling equipment, with data through the second quarter of 2013.

Kurtz, J.; Sprik, S.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

2013-11-01T23:59:59.000Z

299

Handling Coordination in a Tree Adjoining Anoop Sarkar and Aravind Joshi  

E-Print Network [OSTI]

Handling Coordination in a Tree Adjoining Grammar Anoop Sarkar and Aravind Joshi Department,joshig@linc.cis.upenn.edu Draft of August 19, 1997 Longer version of (Sarkar and Joshi, 1996) Abstract In this paper we show

Sarkar, Anoop

300

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Remote-Handled Low-Level Waste Disposal Project Code of Record  

SciTech Connect (OSTI)

The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2012-06-01T23:59:59.000Z

302

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

Fuel oil and Turkey Based Biofuel Energy Rocovery 12,000 Industrial Waste $30,000 $500 $29,500 1500WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2006 WASTE TYPE DESCRIPTION DETAILS * Aerosol Can Disposal System Recycling 528 66 pounds of hazardous waste per unit $7

303

DESCRIPTIVE TEXT SEA WATER INORGANIC CARBON DATABASE  

E-Print Network [OSTI]

DESCRIPTIVE TEXT SEA WATER INORGANIC CARBON DATABASE for the CARBON DIOXIDE INFORMATION OF OCEANOGRAPHY (SIO) I. GENERAL DESCRIPTION The database consists of tables presenting oceanic inorganic carbon, titration (total) alkalinity (database abbreviation: "ALK"), and the 13 C / 12 C isotopic ratio

304

STUDENT LABOR POSITION DESCRIPTION Forestry Department  

E-Print Network [OSTI]

approved STUDENT LABOR POSITION DESCRIPTION Forestry Department Most Recently Updated 10/17/00 Position Title: Student Forestry Aid Must work 10 hrs/wk. I. Grade Level: 1­3 (includes full-time, summer and other holiday labor positions) II. Description: A. The following are the essential duties for a Forestry

Baltisberger, Jay H.

305

Internship Description Title: Stellar Solutions Engineering Internship  

E-Print Network [OSTI]

Internship Description Title: Stellar Solutions ­ Engineering Internship Job Description: The internship will be held at the Stellar National Reconnaissance Office in Washington, DC. Tasks will require a background in intelligence, and familiar with all-source analysis. This internship is flexible throughout

Virginia Tech

306

CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Plasma Descriptions I  

E-Print Network [OSTI]

CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Chapter 5 Plasma Descriptions I: Kinetic, Two-Fluid Descriptions of plasmas are obtained from extensions of the kinetic theory of gases of charged particles in the plasma, and because the electric and magnetic fields in the plasma must

Callen, James D.

307

World Oil Prices and Production Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

2010-01-01T23:59:59.000Z

308

Natural Gas and Crude Oil Prices in AEO (released in AEO2009)  

Reports and Publications (EIA)

If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

2009-01-01T23:59:59.000Z

309

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19  

SciTech Connect (OSTI)

Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

Schneider, K.J.

1982-09-01T23:59:59.000Z

310

Qualitatitive description : light in the urban environment  

E-Print Network [OSTI]

The quality of our built environment is difficult to describe and to regulate; using light as an example, this thesis develops a descriptive framework using elementary, dynamic and connective forms. The combination of these ...

Stuebing, Susan

1986-01-01T23:59:59.000Z

311

National Forest Inventory Description of attributes  

E-Print Network [OSTI]

National Forest Inventory Description of attributes Woodland_S: Woodland source (a) NFI base map have been mapped in accordance with the NFI mapping rules. National Forest Inventory #12;(f) 2010 AP

312

CHP R&D Project Descriptions  

Broader source: Energy.gov [DOE]

The CHP R&D project portfolio includes advanced reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, and demonstrations of these technologies. Project fact sheets and short project descriptions are provided below:

313

Project Manager, TBD Job Description Questionnaire (JDQ)  

E-Print Network [OSTI]

Project Manager, TBD Job Description Questionnaire (JDQ) Professional Staff Instructions What with a disability in regard to job application procedures, the hiring or discharge of employees, employee Below to Certify Approval or Disapproval: Approval Disapproval ( ) ( ) TBD, Project Manager

Barrash, Warren

314

Creation of Computer Animation from Story Descriptions  

E-Print Network [OSTI]

This report describes a computer system that creates simple computer animation in response to high-level, vague, and incomplete descriptions of films. It makes its films by collecting and evaluating suggestions from ...

Kahn, Kenneth Michael

1979-08-01T23:59:59.000Z

315

COURSE TITLES COURSE DESCRIPTIONS Organizational Behavior &  

E-Print Network [OSTI]

COURSE TITLES COURSE DESCRIPTIONS MGT 5371 Organizational Behavior & Organizational Design Examines management of individual, interpersonal, group and intergroup relations, organizational design and experiential learning to accelerate their development as authentic leaders. MGT 5373 Opportunity Creation

Rock, Chris

316

Building English Explanations from Function Descriptions  

E-Print Network [OSTI]

An explanatory component is an important ingredient in any complex AI system. A simple generative scheme to build descriptive phrases from Lisp function calls can produce respectable explanations if explanation generators ...

Roberts, Bruce

317

Don de MR H. BREUIL DESCRIPTION  

E-Print Network [OSTI]

Don de MR H. BREUIL DESCRIPTION D UN SQUELETTE HUMAIN PHEHISTOHIOUE U ['COU Y BUT A ANTHY, prÚs de O R R A Z ET Cio ITUT 3GIE 1U05 · . · r.6o. #12;DESCRIPTION · r SQUELETTE HUMAIN PR�HISTORIQUE à l'époque litcuslre. Voilà 1rs quelques renseignements qu'on m'a communiqués à ce sujet : En

Boyer, Edmond

318

The shape dynamics description of gravity  

E-Print Network [OSTI]

Classical gravity can be described as a relational dynamical system without ever appealing to spacetime or its geometry. This description is the so-called shape dynamics description of gravity. The existence of relational first principles from which the shape dynamics description of gravity can be derived is a motivation to consider shape dynamics (rather than GR) as the fundamental description of gravity. Adopting this point of view leads to the question: What is the role of spacetime in the shape dynamics description of gravity? This question contains many aspects: Compatibility of shape dynamics with the description of gravity in terms of spacetime geometry, the role of local Minkowski space, universality of spacetime geometry and the nature of quantum particles, which can no longer be assumed to be irreducible representations of the Poincare group. In this contribution I derive effective spacetime structures by considering how matter fluctuations evolve along with shape dynamics. This evolution reveals an "experienced spacetime geometry." This leads (in an idealized approximation) to local Minkowski space and causal relations. The small scale structure of the emergent geometric picture depends on the specific probes used to experience spacetime, which limits the applicability of effective spacetime to describe shape dynamics. I conclude with discussing the nature of quantum fluctuations (particles) in shape dynamics and how local Minkowski spacetime emerges from the evolution of quantum particles.

Tim Koslowski

2015-01-13T23:59:59.000Z

319

18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer  

SciTech Connect (OSTI)

In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

1991-12-31T23:59:59.000Z

320

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-06-01T23:59:59.000Z

322

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-03-01T23:59:59.000Z

323

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-04-01T23:59:59.000Z

324

Probing Emissions of Military Cargo Aircraft: Description of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Strategic Environmental Research and Probing Emissions of Military Cargo Aircraft: Description of a...

325

Alternative configurations for the waste-handling building at the Yucca Mountain Repository  

SciTech Connect (OSTI)

Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared.

NONE

1990-08-01T23:59:59.000Z

326

Training in Health Care: The Benefits of Context and Emergency Simulation on Patient Handling  

E-Print Network [OSTI]

In the United States, there is no standardized method for training nurses in manual patient handling, despite the high incidence of injury. The objective of this research was to evaluate several training protocols, including the use of simulated emergency situations and the use of realistic context during course delivery, to evaluate their impact on nurses ’ postures and compliance with trained procedures during post-training tests. The results show that training on body mechanics and proper use of equipment can significantly reduce the amount of torso flexion and rotation during patient handling and compliance with safe practices. Implications for health care training are provided.

Marc L. Resnick; Roderick Sanchez

327

Handbook for Handling, Storing, and Dispensing E85, July 2010, Energy Efficiency and Renewable Energy (EERE), Clean Cities (Brochure)  

SciTech Connect (OSTI)

Guidebook contains information about EPAct alternative fuels regulations for fleets, flexible fuel vehicles, E85 properties and specifications, and E85 handling and storage guidelines.

Not Available

2010-07-01T23:59:59.000Z

328

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

329

A plug and play framework for an HVAC air handling unit and temperature sensor auto recognition technique.  

E-Print Network [OSTI]

??A plug and play framework for an HVAC air handling unit control system is proposed in this study. This is the foundation and the first… (more)

Zhou, Xiaohui

2010-01-01T23:59:59.000Z

330

Radioactive Air Emission Notice of Construction for (NOC) Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling  

SciTech Connect (OSTI)

The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 IO) lists the requirements that must be addressed. Additionally, the following description, attachments, and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. An operations support trailer will be installed in the proximity of the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design.

JANSKY, M.T.

2000-03-01T23:59:59.000Z

331

Radioactive Air Emission Notice of Construction (NOC) for Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling  

SciTech Connect (OSTI)

The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Additionally, the following description, attachments, and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants''. The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design. For the activities covered under this NOC, the unabated and abated TEDE to the hypothetical MEI is 1.67 E-03 and 8.34 E-01 millirem per year, respectively.

JANSKY, M.T.

2000-05-01T23:59:59.000Z

332

SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

M.M. Ansari

2005-04-05T23:59:59.000Z

333

Missing Data Handling for Meter Data Management System Ru-Sen Jeng1  

E-Print Network [OSTI]

Missing Data Handling for Meter Data Management System Ru-Sen Jeng1 , Chien-Yu Kuo1 , Yao-hua Ho1, Academia Sinica ABSTRACT We study the meter data management systems (MDMS) with a fo- cus on missing data meter data manage- ment systems. Categories and Subject Descriptors H.4.2 [Information Systems

Chen, Ling-Jyh

334

A New Contactless Conveyor System for Handling Clean and Delicate Products Using Induced Air Flows  

E-Print Network [OSTI]

A New Contactless Conveyor System for Handling Clean and Delicate Products Using Induced Air Flows thanks to an air cushion and induced air flows. A model of the system is established or in semiconductor production processes. Furthermore, dry fric- tion forces are canceled, which enables accurate

Paris-Sud XI, Université de

335

November 28, 2006 Seismologists get handle on heat flow deep in earth  

E-Print Network [OSTI]

November 28, 2006 Seismologists get handle on heat flow deep in earth Earth's interior placid inner Earth as a dynamic environment filled with exotic materials and substances roiling under that has an impact on what happens on our planet's surface. The latest evidence of this dynamic inner Earth

Garnero, Ed

336

Automated control for coal handling operations at Bethlehem Steel, Burns Harbor Division  

SciTech Connect (OSTI)

The Burns Harbor coal handling operation processes 7,200 tons of coal per day to supply two 82 oven, six meter batteries. The operations in coal handling are subdivided into three separate sections: the coal field and stacker reclaimer operation, the crushing and storage of coal, and the coal blending operation. In 1996 a supervisory system was developed and installed to fully automate all the operations and equipment in the coal handling unit, add additional instrumentation and logic controls to prevent coal contamination, and improve data collection and logging. The supervisory system is operated from a computer based workstation and is based on a distributed control philosophy utilizing programmable logic controllers, set point controllers, and man-machine interface displays. The previous control system for the coal handling operation consisted of a switchboard from which an operator controller the set up and running of the conveyor systems and equipment to stack, reclaim, and blend coal. The new supervisory system was installed in parallel with the original control system to safeguard continued operation during the system installation and commissioning. The original system still exists and can be operated in even of failure of the supervisory system.

Zendzian, T.N. [Bethlehem Steel Corp., Chesterton, IN (United States). Burns Harbor Div.

1997-12-31T23:59:59.000Z

337

Plasma Power Handling Parameters and Issues May 1-3, 2000  

E-Print Network [OSTI]

Distribution · Divertor Heat Loads · Divertor Conceptual Design Outline #12;Power Distribution · Heating Power power distribution ­ Inner - 7 MW (3.4 each) ­ Outer - 27 MW (14 each) #12;Divertor Heat LoadsPlasma Power Handling Parameters and Issues May 1-3, 2000 M. Ulrickson Presented at the FIRE

338

LLaannggeerrhhaannss LLaabb PPrroottooccoollss Handling of Dead Fish at Yates Mill Facility  

E-Print Network [OSTI]

LLaannggeerrhhaannss LLaabb PPrroottooccoollss Handling of Dead Fish at Yates Mill Facility If a study fish is found dead, preserve it and return it to the lab for DRILL recording. If you are going to DCL shortly after finding the fish: 1. Put it in a plastic bag and bring it to DCL. 2. Put

Langerhans, Brian

339

IS THIS A SUB-RECIPIENT OR A VENDOR RELATIONSHIP AND WHICH OFFICE HANDLES EACH?  

E-Print Network [OSTI]

IS THIS A SUB-RECIPIENT OR A VENDOR RELATIONSHIP AND WHICH OFFICE HANDLES EACH? (For agreements AND CONTRACTING SERVICES Vendors/Consultants (If an entity fulfills the criteria for Vendor/Consultant below provider. Purchased Services (or PO): · Vendor is not providing substantive programmatic work

340

3.1.1.2 Feed Processing and Handling DL2 Final Report  

SciTech Connect (OSTI)

This milestone report is the deliverable for our Feed Processing and Handling project. It includes results of wet biomass feedstock analysis, slurry pumping information, fungal processing to produce a lignin-rich biorefinery residue and two subcontracted efforts to quantify the amount of wet biomass feedstocks currently available within the corn processing and paper processing industries.

Elliott, Douglas C.; Magnuson, Jon K.; Wend, Christopher F.

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING  

E-Print Network [OSTI]

RIS0-M-2294 HANDLING OF DEUTERIUM PELLETS FOR PLASMA REFUELLING P.s. Jensen and V. Andersen Association Euratom - Ris0 National Laboratory Abstract. The use of a guide tube technique to inject pellets in pellet-plasma experiments guide tube on the mass and (v ~ 150 m/s) is negligible. jectories

342

LPV/H controller for vehicle handling and stability enhancement M. DOUMIATI 1  

E-Print Network [OSTI]

LPV/H controller for vehicle handling and stability enhancement M. DOUMIATI 1 , O. SENAME 1 , J Laboratory, Computer and Automation Research Institute, Budapest, HUNGARY, e-mail: {gaspar, szabo, bokor with steering/braking coordination task, for automotive vehicle yaw control scheme. Because of the tire

Paris-Sud XI, Université de

343

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest and storage  

E-Print Network [OSTI]

Harvesting and StorageHarvesting and Storage Importance of safe food handling during harvest illness. Steps to take prior to harvest When washing and sanitizing surfaces, use the appropriate. Pressure washing is a good way to clean. Clean and sanitize harvesting tools such as knives, pruners

Liskiewicz, Maciej

344

HANDLING WHITE-MATTER ANISOTROPY IN BEM FOR THE EEG FORWARD PROBLEM  

E-Print Network [OSTI]

HANDLING WHITE-MATTER ANISOTROPY IN BEM FOR THE EEG FORWARD PROBLEM Emmanuel Olivi Th and EEG for- ward fields. Those tissues include white matter, whose con- ductivity is anisotropic because of its fiber structure. While white matter anisotropy can be measured thanks to Diffusion- Weighted MRI

Paris-Sud XI, Université de

345

DIMENSIONS: Why do we need a new Data Handling architecture for Sensor Networks?  

E-Print Network [OSTI]

DIMENSIONS: Why do we need a new Data Handling architecture for Sensor Networks? Deepak Ganesan incorporate their ex- treme resource constraints - energy, storage and processing - and spatio-temporal interpretation of the physical world in the design, cost model, and metrics of evaluation. We describe DIMENSIONS

Ganesan, Deepak

346

Handles Revisited: Optimising Performance and Memory Costs in a Real-Time Collector  

E-Print Network [OSTI]

Handles Revisited: Optimising Performance and Memory Costs in a Real-Time Collector Tomas Kalibera garbage collectors must update all references to ob- jects they move. Updating is a lengthy operation references have been updated which, in a real-time collector, must be done incrementally. One solution

Kent, University of

347

Animal carcasses must be handled properly to prevent harm to people, herds, flocks,  

E-Print Network [OSTI]

Animal carcasses must be handled properly to prevent harm to people, herds, flocks, water (Fig. 1): · Diseases can be spread to people and animals. · Carcass fluids can leach into and pollute, or rivers). · Obnoxious gases and odors can be emitted to the atmosphere. · The carcasses can attract

Mukhtar, Saqib

348

Feasibility Study of Developing a Virtual Chilled Water Flow Meter at Air Handling Unit Level  

E-Print Network [OSTI]

In this paper, a virtual Air handling unit (AHU) level water flow meter is explored by using a control valve as a measurement device. The flow through the valve is indirectly calculated using differential pressure over both the valve and its...

Song, L.; Swamy, A.; Shim, G.

2011-01-01T23:59:59.000Z

349

Siting Study for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

2010-10-01T23:59:59.000Z

350

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET  

E-Print Network [OSTI]

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET V.B. Graves , Oak is a free mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. Modifications

McDonald, Kirk

351

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET  

E-Print Network [OSTI]

DESIGN OF THE MERCURY HANDLING SYSTEM FOR A MUON COLLIDER/NEUTRINO FACTORY TARGET (IPAC13, THPFI092) The baseline target concept for a Muon Collider or Neutrino Factory is a free mercury jet within a 20-T magnetic field being impacted by an 8-GeV proton beam. A pool of mercury serves as a receiving reservoir

McDonald, Kirk

352

Cooling output optimization of an air handling unit Andrew Kusiak *, Mingyang Li  

E-Print Network [OSTI]

supply temperature and supply air temperature in response to the dynamic cooling load and changingCooling output optimization of an air handling unit Andrew Kusiak *, Mingyang Li Department mining Neural network Multi-objective optimization Evolutionary computation Dynamic modeling Cooling

Kusiak, Andrew

353

Description of the RDCDS Meteorological Component  

SciTech Connect (OSTI)

This report provides a detailed description of the Rapidly Deployable Chemical Defense System (RDCDS) Meteorological Component. The Meteorological Component includes four surface meteorological stations, miniSODAR, laptop computers, and communications equipment. This report describes the equipment that is used, explains the operation of the network, and gives instructions for setting up the Component and replacing defective parts. A detailed description of operation and use of the individual sensors, including the data loggers is not covered in the current document, and the interested reader should refer to the manufacturer’s documentation.

Pekour, Mikhail S.; Berg, Larry K.

2007-10-01T23:59:59.000Z

354

An internship in postharvest handling of vegetables and fruits at Valley Onions, McAllen, Texas: and an analysis of the postharvest handling system of onions  

E-Print Network [OSTI]

, McALLW, TEXAS ~ AN ANALYSIS OF THE POSTHARVEST HANDLING SYSTEM OF ONIONS A Professional Paper by Jose Ignacio Sanchez-Eamon Approved as to style and content by: Leonard M. Pike (Hort) Chairman, Advisory Committee James Benton Storey (Hort.... Am. Econ. Rev. 50:908-17. 19. Zusman, P. and A. Amiad. 1965. Simulation: A tool for farm planing under conditions of uncertainty. J. Farm. Econ. 47:574-95. 31 VITA NAME PERMANENT ADDRESS TELEPHONE Jose Ignacio Sanchez~os. Callejon de la Rosa...

Sanchez-Ramos, Jose Ignacio

1984-01-01T23:59:59.000Z

355

Subject Description CURRICULAR SUBJECT LISTING BY SUBJECT NUMBER  

E-Print Network [OSTI]

Subject Description CURRICULAR SUBJECT LISTING BY SUBJECT NUMBER Subject Description Monday, July AND INSURANCE 242 ACTUARIAL SCIENCE 243 TRANSPORTATION AND PUBLIC UTILITIES 244 CLASSICS 250 COMMUNICATION ARTS;Subject Description CURRICULAR SUBJECT LISTING BY SUBJECT NUMBER Subject Description Monday, July 14, 2014

Wisconsin at Madison, University of

356

Standard-C hydrogen monitoring system, system design description  

SciTech Connect (OSTI)

Standard-C cabinet arrangement system design description for the Standard Hydrogen Monitoring System.

Schneider, T.C., Westinghouse Hanford

1996-08-29T23:59:59.000Z

357

x.0 Handling of White SVT Cables (SVT Excess Cables) before and during Withdrawing of Endcap In general we (UC Santa Cruz) prefer to do all handling of the white SVT cables necessary to withdraw and reinsert  

E-Print Network [OSTI]

13 x.0 Handling of White SVT Cables (SVT Excess Cables) before and during Withdrawing of Endcap In general we (UC Santa Cruz) prefer to do all handling of the white SVT cables necessary to withdraw@scipp.ucsc.edu, office in SC: (831) 459­3337 , extn. at SLAC: 8561. The white SVT cables consist of two parts

California at Santa Cruz, University of

358

MATLAB Quick Guide Name Description Example  

E-Print Network [OSTI]

MATLAB Quick Guide Symbol/ Command Name Description Example help help Help menu for any command or symbol in MATLAB Help : Help sum % comment MATLAB comment symbol; MATLAB will skip any line beginning for multiplication a = 5 * 5 ; / divide Symbol for division b = 5 / 1 ; ; semi-colon (1) Tells MATLAB to suppress

Smith-Konter, Bridget

359

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission lives. Radioactive Waste generated through wet chemistry Waste Minimization 30 Mixed waste / Liquid

360

Network architecture functional description and design  

SciTech Connect (OSTI)

This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

1989-05-25T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

COMMUNITY ADVISOR JOB DESCRIPTION General Statement  

E-Print Network [OSTI]

COMMUNITY ADVISOR JOB DESCRIPTION General Statement Community Advisors are members for their area and the Head Resident. Community Advisors are responsible for meeting the needs of their woodframe is beyond a Community Advisor's level of comfort and competence and refer students to as many resources

Royer, Dana

362

Resident Advisor Position Description Occupational Summary  

E-Print Network [OSTI]

Resident Advisor Position Description Occupational Summary The Resident Advisor (RA) is assigned and Residence Hall policies. The Resident Advisor provides programming based on an assessment of the community and individual needs. The responsibilities of the Resident Advisor position are implemented under the supervision

Bogaerts, Steven

363

Community Advisor Position Description Occupational Summary  

E-Print Network [OSTI]

Community Advisor Position Description Occupational Summary The Community Advisor (CA) is a full success; personal growth; and responsible citizenship. Terms of Appointment The Community Advisor position Monday, May 12, 2014 (5:00pm). Eligibility The Community Advisor must be a full-time student

Bogaerts, Steven

364

FACULTY OF ENGINEERING MODULE DESCRIPTION FORM  

E-Print Network [OSTI]

FACULTY OF ENGINEERING MODULE DESCRIPTION FORM CODE CL508/906 Site Investigation & Risk Assessment-86017-578-2 CIRIA C557 Remedial engineering for closed landfill sites D L Barry, I M Summersgill, R G Gregory et al Module Registrar: Dr P Sentenac Taught To (Course): Civil Engineering Other Lecturers Involved: Credit

Mottram, Nigel

365

EGGN 100 -INTRODUCTION TO ENGINEERING COURSE DESCRIPTION  

E-Print Network [OSTI]

Engineering design project - Continued Week 13 Field Trip to an Engineering site Project reviews, demosEGGN 100 - INTRODUCTION TO ENGINEERING COURSE DESCRIPTION Introduction to engineering disciplines and their sub-fields, basic tools used in engineering practice, hands-on engineering projects. COURSE OBJECTIVE

de Lijser, Peter

366

Sustainable Energy Scheme Mentor Job description  

E-Print Network [OSTI]

1 Sustainable Energy Scheme Mentor Job description Department: Student Administration and Registry and agreement between the Sustainable Energy Scheme Mentor and the UK Student Recruitment and Outreach Team Sustainable Energy Scheme · To participate in both on and off campus mentoring activities throughout

Anderson, Jim

367

Fall 2013 Course Descriptions: For Education Majors  

E-Print Network [OSTI]

will examine how and why pre-modern people distinguished themselves from their neighbors, as Greek/Roman vs, science, and technology. 115 Pre-Modern Course Descriptions: 12053 HIST 115 01 Us vs. Them Constructing Identities in the Pre -Modern World TR 03:05 pm-04:20 pm Buchberger MYBK 302 How we define who we are

Young, Paul Thomas

368

Interns for Indiana (IFI) Project descriptions  

E-Print Network [OSTI]

with the company after graduation, which allows him to work on cutting edge projects, aid in company growthInterns for Indiana (IFI) Projects Project descriptions: · Software development, database design analysis Past student project Development of animated graphics for web portal and product demos -Kevin

369

Towards A Mathematical Services Description Olga Caprotti  

E-Print Network [OSTI]

Towards A Mathematical Services Description Language Olga Caprotti Wolfgang Schreiner Research Introduction In the recent years, mathematical software systems, i.e., computer algebra systems like Maple. There are numerous examples in the literature of scien- ti#12;c software needing access to computer algebra methods

370

RECENTER -ADVERSITY INTO TRANSFORMATION Course Description  

E-Print Network [OSTI]

Center" delivers power tools and real time strategies for creating performance transformation ­ no matter what and practical system for transforming your communication skills from the inside and outside. · Use real timeRECENTER - ADVERSITY INTO TRANSFORMATION Course Description: Knowing how to use adversity

Coles, William A.

371

EES 110: Earth Systems Course Description  

E-Print Network [OSTI]

of energy come from? The course includes laboratory exercises that cover map reading skills, rockEES 110: Earth Systems Course Description: This course examines some of the basic processes (held during normal laboratory meeting times): 1. Rocks & Minerals of Upstate SC: A chance to explore

372

Automatic TLI recognition system, general description  

SciTech Connect (OSTI)

This report is a general description of an automatic target recognition system developed at the Idaho National Engineering Laboratory for the Department of Energy. A user`s manual is a separate volume, Automatic TLI Recognition System, User`s Guide, and a programmer`s manual is Automatic TLI Recognition System, Programmer`s Guide. This system was designed as an automatic target recognition system for fast screening of large amounts of multi-sensor image data, based on low-cost parallel processors. This system naturally incorporates image data fusion, and it gives uncertainty estimates. It is relatively low cost, compact, and transportable. The software is easily enhanced to expand the system`s capabilities, and the hardware is easily expandable to increase the system`s speed. In addition to its primary function as a trainable target recognition system, this is also a versatile, general-purpose tool for image manipulation and analysis, which can be either keyboard-driven or script-driven. This report includes descriptions of three variants of the computer hardware, a description of the mathematical basis if the training process, and a description with examples of the system capabilities.

Lassahn, G.D.

1997-02-01T23:59:59.000Z

373

STUDENT LABOR POSITION DESCRIPTION Forestry Department  

E-Print Network [OSTI]

approved STUDENT LABOR POSITION DESCRIPTION Forestry Department Most Recently Updated 10/17/00 Position Title: Student Forestry Technician Must work 10 hrs/wk. or 15 hrs/wk (depending on grade). I. The following are the essential duties for a Forestry Technician in the Forestry Department: 1. Supervise other

Baltisberger, Jay H.

374

The Genetive and Ablative of Description  

E-Print Network [OSTI]

had not yet become a com­ mon descriptive case. The statistics for the nouns in Cicero are based on Merguet; those in Tacitus, on Gerber and Greef, Abl. Gen, Abl. Gen. Abl. Gen in in in in in in earlyearlyCfcc--Cic­ Tac­ Tac Latin ero ero itus...

Cressman, Edmund Dresser

1911-06-01T23:59:59.000Z

375

Business Development Associate -1493 Job Description  

E-Print Network [OSTI]

Business Development Associate - 1493 Job Description: BioTechnique is a contract manufacturing our Business Development efforts. This will offer a start-up environment, with hands-on opportunities with business development in our consulting, software and investments departments. These new graduates

Evans, Paul G.

376

Business of Fashion Concentration & Minor -Newark Description  

E-Print Network [OSTI]

Business of Fashion Concentration & Minor - Newark Description The Business of Fashion program was designed to bridge the gap between creativity and business acumen. It is for artistic individuals who want to solidify their understanding of business, as well as for business students who want to learn how to apply

Lin, Xiaodong

377

WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION  

E-Print Network [OSTI]

WARREN RESIDENTIAL LIFE RESIDENT ASSISTANT POSITION DESCRIPTION The position of Resident Assistant for students living within the Warren College residential community. Resident Assistant's (RA's) are principle members of the Warren Residential Life staff. In accordance with the University of California's Personnel

Russell, Lynn

378

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2004 WASTE TYPE Brake Cleaner Recycling System Mercury Utility Devices Substitution 60 Hazardous Waste $1,750 $2,500 $1 of one PCB spill and clean-up event. Organic Solvents Substitution 678 Hazardous Waste $1,355 $36,500 $26

379

The Ideal Transformer Description and Circuit Symbol  

E-Print Network [OSTI]

The Ideal Transformer Description and Circuit Symbol As with all the other circuit elements, there is a physical transformer commonly used in circuits whose behavior can be discussed in great detail. However, in many cases the practical transformer can be adequately approximated by the "ideal transformer," which

King, Roger

380

DESCRIPTION OF ACCIDENT MSU DRIVERS SIGNATURE  

E-Print Network [OSTI]

DESCRIPTION OF ACCIDENT MSU DRIVERS SIGNATURE Signature 2-9-108, MCA (Statutory Coverage, in lieu-90-(4-20). CERTIFICATE OF INSURANCE X Weather Conditions: ACCIDENT INFORMATION Location: Date: - - 20 Time: : .M. Driver and Risk Management ~ 1160 Research Drive Bozeman, MT 59718 ~ (406) 994-2711 Accident Form #12;OTHER

Dyer, Bill

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Position Description Website and Video Coordinator  

E-Print Network [OSTI]

, feature content that supports the School's mission and employs best practices (i.e. chunking content, short pages, bulleted list, etc.); follow best practices with search engine optimization; creating clearPosition Description Website and Video Coordinator School of Global Environmental Sustainability

Barnes, Elizabeth A.

382

System design description cone penetrometer system  

SciTech Connect (OSTI)

The system design description documents in detail the design of the cone penetrometer system. The systems includes the cone penetrometer physical package, raman spectroscopy package and moisture sensor package. Information pertinent to the system design, development, fabrication and testing is provided.

Seda, R.Y., Westinghouse Hanford

1996-08-12T23:59:59.000Z

383

Image description. Cover Image End of image description. NATIONAL CENTER FOR EDUCATION STATISTICS  

E-Print Network [OSTI]

a context for examining the data they submitted to IPEDS. Our goal is to produce a report that is useful University 2 #12;Image description. Bar chart with 10 groups with 2 items per group.Y scale titled Percent

Mohaghegh, Shahab

384

Handling and archiving of magnetic fusion data at DIII-D  

SciTech Connect (OSTI)

Recent modifications to the computer network at DIII-D enhance the collection and distribution of newly acquired and archived experimental data. Linked clients and servers route new data from diagnostic computers to centralized mass storage and distribute data on demand to local and remote workstations and computers. Capacity for data handling exceeds the upper limit of DIII-D Tokamak data production of about 4 GBytes per day. Network users have fast access to new data stored on line. An interactive program handles requests for restoration of data archived off line. Disk management procedures retain selected data on line in preference to other data. Redundancy of all components on the archiving path from the network to magnetic media has prevented loss of data. Older data are rearchived as dictated by limited media life.

VanderLaan, J.F.; Miller, S.; McHarg, B.B. Jr.; Henline, P.A.

1995-10-01T23:59:59.000Z

385

A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

386

TITLE III EVALUATION REPORT FOR THE MATERIAL AND PERSONNEL HANDLING SYSTEM  

SciTech Connect (OSTI)

This Title III Evaluation Report (TER) provides the results of an evaluation that was conducted on the Material and Personnel Handling System. This TER has been written in accordance with the ''Technical Document Preparation Plan for the Mined Geologic Disposal System Title III Evaluation Reports'' (BA0000000-01717-4600-00005 REV 03). The objective of this evaluation is to provide recommendations to ensure consistency between the technical baseline requirements, baseline design, and the as-constructed Material and Personnel Handling System. Recommendations for resolving discrepancies between the as-constructed system, the technical baseline requirements, and the baseline design are included in this report. Cost and Schedule estimates are provided for all recommended modifications.

T. A. Misiak

1998-05-21T23:59:59.000Z

387

Fault detection in an air-handling unit using residual and recursive parameter identification methods  

SciTech Connect (OSTI)

A scheme for detecting faults in an air-handling unit using residual and parameter identification methods is presented. Faults can be detected by comparing the normal or expected operating condition data with the abnormal, measured data using residuals. Faults can also be detected by examining unmeasurable parameter changes in a model of a controlled system using a system parameter identification technique. In this study, autoregressive moving average with exogenous input (ARMAX) and autoregressive with exogenous input (ARX) models with both single-input/single-output (SISO) and multi-input/single-output (MISO) structures are examined. Model parameters are determined using the Kalman filter recursive identification method. This approach is tested using experimental data from a laboratory`s variable-air-volume (VAV) air-handling unit operated with and without faults.

Lee, W.Y. [Korea Inst. of Energy Research, Taejon (Korea, Republic of); Park, C.; Kelly, G.E. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1996-11-01T23:59:59.000Z

388

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

389

Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer  

DOE Patents [OSTI]

This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

Chastgner, P.

1991-05-08T23:59:59.000Z

390

Analysis of postharvest handling and marketing systems for vegetable production in East and Central Texas  

E-Print Network [OSTI]

, and southern peas. Crops were harvested and sold an average of 5 months. Most farm operations included the participation of several family members and hired labor, and most used a variety of outlets to market their produce. A wide variety of postharvest... OF FIGURES INTRODUCTION AND REVIEW OF THE LITERATURE vi xiii Objectives of the Study Definition of Farming Systems Research Rationalization for Farming Systems Research Implications for a Study of Harvesting, Handling and Marketing Systems...

Vamosy, Margaret Laurain

1985-01-01T23:59:59.000Z

391

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect (OSTI)

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

392

Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems  

E-Print Network [OSTI]

SDCVP 67.380 $153.200 $41.800 $195.000 $2.89 measured energy consumption for each building. The horizontal axis is the ambient temperature. The venical axis is the average daily energy consumption in MMBtulhr. Figure 5 compares the predicted...REDUCING BUILDING ENERGY COSTS USING OPTIMIZED OPERATION STRATEGIES FOR CONSTANT VOLUME AIR HANDLING SYSTEMS Mingsheng Liu, her Atha, Agarni Reddy Ed White David Claridge and Jeff Haberl Department of Physical Plant Texas A&M University...

Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

1994-01-01T23:59:59.000Z

393

Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford  

SciTech Connect (OSTI)

This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).

Raymond, Rick E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Frederickson, James R. [AREVA, Avignon (France); Criddle, James [AREVA, Avignon (France); Hamilton, Dennis [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Johnson, Mike W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

2012-10-18T23:59:59.000Z

394

Algorithms and Automated Material Handling Systems Design for Stacking 3D Irregular Stone Pieces  

E-Print Network [OSTI]

ALGORITHMS AND AUTOMATED MATERIAL HANDLING SYSTEMS DESIGN FOR STACKING 3D IRREGULAR STONE PIECES A Thesis by MING-CHENG KO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Sheng-Jen (?Tony?) Hsieh Committee Members, Sai C...

Ko, Ming-Cheng

2011-10-21T23:59:59.000Z

395

Inductive Corrections of Action Descriptions Marcello Balduccini  

E-Print Network [OSTI]

description AD is a set of dynamic laws and state constraints1 . A recorded history up to step cT, Hc, its head holds. 1. h(L, T) s law(W), head(W, L), prec h(W, T). % If the preconditions hold and the action occurred, the head holds at the next step. 2. h(L, T + 1) d law(W), head(W, L), prec h(W, T

Zhang, Yuanlin

396

Property:Technology Description | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuelTechnology Description

397

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

398

METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY  

SciTech Connect (OSTI)

Pyrophoric reagents represent an important class of reactants because they can participate in many different types of reactions. They are very useful in organic synthesis and in industrial applications. The Occupational Safety and Health Administration (OSHA) and the National Fire Protection Association (NFPA) define Pyrophorics as substances that will self-ignite in air at temperatures of 130 F (54.4 C) or less. However, the U.S. Department of Transportation (DOT) uses criteria different from the auto-ignition temperature criterion. The DOT defines a pyrophoric material as a liquid or solid that, even in small quantities and without an external ignition source, can ignite within five minutes after coming in contact with air when tested according to the United Nations Manual of Tests and Criteria. The Environmental Protection Agency has adopted the DOT definition. Regardless of which definition is used, oxidation of the pyrophoric reagents by oxygen or exothermic reactions with moisture in the air (resulting in the generation of a flammable gas such as hydrogen) is so rapid that ignition occurs spontaneously. Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel. Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

2010-02-02T23:59:59.000Z

399

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

400

Design of globally optimal multiple description scalar quantizers  

E-Print Network [OSTI]

This thesis investigates the design of globally optimal multiple description scalar quantizers. The design of multiple description scalar quantizers is formulated as a combinatorial optimization problem due to the index assignment issue. The first...

Desilva, Buveneka Kanishka

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SY101 in situ viscometer instrument system design description  

SciTech Connect (OSTI)

This documents the design and description of the in situ viscometer, developed for the hydrogen mitigation project.

Pearce, K.L.; Stokes, T.I.; Vagelatos, N.

1994-08-18T23:59:59.000Z

402

STEP Energy Coach and Technical Consultant Job Descriptions  

Broader source: Energy.gov [DOE]

STEP Energy Coach and Technical Consultant Job Descriptions, from the Tool Kit Framework: Small Town University Energy Program (STEP).

403

Incremental Machine Descriptions for GCC Sameera Deshpande Uday P. Khedker  

E-Print Network [OSTI]

Incremental Machine Descriptions for GCC Sameera Deshpande Uday P. Khedker Indian Institute of Technology, Bombay {sameera,uday}@cse.iitb.ac.in Abstract The mechanism of providing machine descriptions a GCC port exists. However, this mechanism is quite ad hoc and the machine descriptions are dif- ficult

Khedker, Uday

404

On the Hamiltonian Description of Fluid Mechanics  

E-Print Network [OSTI]

We suggest the Hamiltonian approach for fluid mechanics based on the dynamics, formulated in terms of Lagrangian variables. The construction of the canonical variables of the fluid sheds a light of the origin of Clebsh variables, introduced in the previous century. The developed formalism permits to relate the circulation conservation (Tompson theorem) with the invariance of the theory with respect to special diffiomorphisms and establish also the new conservation laws. We discuss also the difference of the Eulerian and Lagrangian description, pointing out the incompleteness of the first. The constructed formalism is also applicable for ideal plasma. We conclude with several remarks on the quantization of the fluid.

I. Antoniou; G. P. Pronko

2002-03-14T23:59:59.000Z

405

Oak Ridge National Laboratory contact-handled Transuranic Waste Certification Program plan  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) is required by Department of Energy (DOE) Order 5820.2A to package its transuranic (TRU) waste to comply with waste acceptance criteria (WAC) for the Waste Isolation Pilot Plant (WIPP). TRU wastes are defined in DOE Order 5820.A as those radioactive wastes that are contaminated with alpha-emitting transuranium radionuclides having half-lives greater than 20 years and concentrations greater than 100 nCi/g at the time of the assay. In addition, ORNL handles U{sup 233}, Cm{sup 244}, and Cf{sup 252} as TRU waste radionuclides. The ORNL Transuranic Waste Certification Program was established to ensure that all TRU waste at ORNL is packaged to meet the required transportation and storage criteria for shipping to and storage at the WIPP. The objective of this document is to describe the methods that will be used at ORNL to package contact handled-transuranic (CH-TRU) waste to meet the criteria set forth in the WIPP certification requirements documents. This document addresses newly generated (NG) CH-TRU waste. Stored CH-TRU will be repackaged. This document is organized to provide a brief overview of waste generation operations at ORNL, along with details on data management for CH-TRU waste. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. Techniques used for waste data collection, records control, and data archiving are defined. Procedures for the procurement and handling of waste containers are also described along with related quality control methods. 11 refs., 3 figs.

Smith, J.H.; Smith, M.A.

1990-08-01T23:59:59.000Z

406

Robotics for mixed waste operations, demonstration description  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

Ward, C.R.

1993-11-01T23:59:59.000Z

407

Joint Working Group-39, Manufacturing Technology Subworking Group-F, remote handling and automation  

SciTech Connect (OSTI)

The terms of reference were reviewed and continue to encompass the scope of activities of the SUBWOG. No revisions to the terms of reference were proposed. The list of site contacts who should receive copies of SUBWOG correspondence and meeting minutes was reviewed and updated. Documents exchanged related to the meeting include: Minutes of the sixth SUBOG 39F meeting; transactions of the fifth topical meeting on robotics and remote handling; data on manipulators was forwarded to LLNL from the robotics group at AEA Harwell; and the specifications of the duct remediation robot from the Rocky Flats Plant.

Merrill, R.D.

1995-02-01T23:59:59.000Z

408

Overview of Remote Handling Equipment Used for the NPP A1 Decommissioning - 12141  

SciTech Connect (OSTI)

The first Czechoslovak NPP A1 was in operation from 1972 to 1977 and it was finally shutdown due to an accident (level 4 according to the INES). The presence of radioactive, toxic or hazardous materials limits personnel access to facilities and therefore it is necessary to use remote handling technologies for some most difficult characterization, retrieval, decontamination and dismantling tasks. The history of remote handling technologies utilization started in nineties when the spent nuclear fuel, including those fuel assemblies damaged during the accident, was prepared for the transport to Russia. Subsequent significant development of remote handling equipment continued during implementation of the NPP A1 decommissioning project - Stage I and ongoing Stage II. Company VUJE, Inc. is the general contractor for both mentioned stages of the decommissioning project. Various remote handling manipulators and robotics arms were developed and used. It includes remotely controlled vehicle manipulator MT-15 used for characterisation tasks in hostile and radioactive environment, special robust manipulator DENAR-41 used for the decontamination of underground storage tanks and multi-purposes robotics arms MT-80 and MT-80A developed for variety of decontamination and dismantling tasks. The heavy water evaporator facility dismantling is the current task performed remotely by robotics arm MT-80. The heavy water evaporator is located inside the main production building in the room No. 220 where loose surface contamination varies from 10 Bq/cm{sup 2} to 1x10{sup 3} Bq/cm{sup 2}, dose rate is up to 1.5 mGy/h and the feeding pipeline contained liquid RAW with high tritium content. Presented manipulators have been designed for broad range of decommissioning tasks. They are used for recognition, sampling, waste retrieval from large underground tanks, decontamination and dismantling of technological equipments. Each of the mentioned fields claims specific requirements on design of manipulator, their operation and control systems as well as tools of manipulators. Precise planning of decontamination and dismantling tasks is necessary for its successful performance by remotely controlled manipulator. The example of the heavy water evaporator demonstrates typical procedure for decommissioning of contaminated technological equipment by remotely controlled manipulators - planning of decommissioning tasks, preparatory tasks, modification of applied tools and design of specific supporting constructions for manipulator and finally decontamination and dismantling themselves. Due to the particularly demanding conditions in highly contaminated A1 NPP, a team of experts with special know-how in the field of decommissioning has grown up, and unique technological equipment enabling effective and safe work in environment with a high radiation level has been developed. (authors)

Kravarik, K.; Medved, J.; Pekar, A.; Stubna, M. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Michal, V. [IAEA, Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna (Austria); Vargovcik, L. [ZTS VVU Kosice, Inc., Juzna Trieda 95, 041 24 Kosice (Slovakia)

2012-07-01T23:59:59.000Z

409

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

410

Conceptual design report, plutonium stabilization and handling,project W-460  

SciTech Connect (OSTI)

Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

Weiss, E.V.

1997-03-06T23:59:59.000Z

411

HANDLING MISSING ATTRIBUTE VALUES IN DECISION TABLES USING VALUED TOLERANCE APPROACH  

E-Print Network [OSTI]

using the lower and upper approximations. The set that separates the lower and the upper approximation is the boundary region for the rough set. The main advantage of rough set theory is that it does not require any additional information about data... by the algorithm (MLEM2 or valued tolerance) and computes the error rate. Two rule checkers are used namely, ?srch? and ?chkrul?. The rule checker ?srch? is used to convert the rules according to the LERS format since it does not handle missing attribute values...

Vasudevan, Supriya

2008-01-01T23:59:59.000Z

412

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-05-01T23:59:59.000Z

413

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

414

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-10-01T23:59:59.000Z

415

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

416

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2009-10-01T23:59:59.000Z

417

A Globally Distributed System for Job, Data, and Information Handling for High Energy Physics  

SciTech Connect (OSTI)

The computing infrastructures of the modern high energy physics experiments need to address an unprecedented set of requirements. The collaborations consist of hundreds of members from dozens of institutions around the world and the computing power necessary to analyze the data produced surpasses already the capabilities of any single computing center. A software infrastructure capable of seamlessly integrating dozens of computing centers around the world, enabling computing for a large and dynamical group of users, is of fundamental importance for the production of scientific results. Such a computing infrastructure is called a computational grid. The SAM-Grid offers a solution to these problems for CDF and DZero, two of the largest high energy physics experiments in the world, running at Fermilab. The SAM-Grid integrates standard grid middleware, such as Condor-G and the Globus Toolkit, with software developed at Fermilab, organizing the system in three major components: data handling, job handling, and information management. This dissertation presents the challenges and the solutions provided in such a computing infrastructure.

Garzoglio, Gabriele; /DePaul U.; ,

2005-12-01T23:59:59.000Z

418

Update on intrusive characterization of mixed contact-handled transuranic waste at Argonne-West  

SciTech Connect (OSTI)

Argonne National Laboratory and Lockheed Martin Idaho Technologies Company have jointly participated in the Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Program since 1990. Intrusive examinations have been conducted in the Waste Characterization Area, located at Argonne-West in Idaho Falls, Idaho, on over 200 drums of mixed contact-handled transuranic waste. This is double the number of drums characterized since the last update at the 1995 Waste Management Conference. These examinations have provided waste characterization information that supports performance assessment of WIPP and that supports Lockheed`s compliance with the Resource Conservation and Recovery Act. Operating philosophies and corresponding regulatory permits have been broadened to provide greater flexibility and capability for waste characterization, such as the provision for minor treatments like absorption, neutralization, stabilization, and amalgamation. This paper provides an update on Argonne`s intrusive characterization permits, procedures, results, and lessons learned. Other DOE sites that must deal with mixed contact-handled transuranic waste have initiated detailed planning for characterization of their own waste. The information presented herein could aid these other storage and generator sites in further development of their characterization efforts.

Dwight, C.C.; Jensen, B.A.; Bryngelson, C.D.; Duncan, D.S.

1997-02-03T23:59:59.000Z

419

A review of polymer-based water conditioners for reduction of handling-related injury  

SciTech Connect (OSTI)

Fish are coated with an external layer of protective mucus. This layer serves as the primary barrier against infection or injury, reduces friction, and plays a role in ionic and osmotic regulation. However, the mucus layer is easily disturbed when fish are netted, handled, transported, stressed, or subjected to adverse water conditions. Water additives containing polyvinylpyrrolidone (PVP) or proprietary polymers have been used to prevent the deleterious effects of mucus layer disturbances in the commercial tropical fish industry, aquaculture, and for other fisheries management purposes. This paper reviews research on the effectiveness of water conditioners, and examines the contents and uses of a wide variety of commercially available water conditioners. Water conditioners containing polymers may reduce external damage to fish held in containers during scientific experimentation, including surgical implantation of electronic tags. However, there is a need to empirically test the effectiveness of water conditioners at preventing damage to and promoting healing of the mucus layer. A research agenda is provided to advance the science related to the use of water conditions to improve the condition of fish during handling and tagging.

Harnish, Ryan A.; Colotelo, Alison HA; Brown, Richard S.

2011-01-01T23:59:59.000Z

420

An Alternative to Performing Remote-Handled Transuranic Waste Container Headspace Gas Sampling and Analysis  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is operating under a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facility Permit (HWFP) for contact-handled (CH) transuranic (TRU) waste. The HWFP contains limitations on allowable emissions from waste disposed in the underground. This environmental performance standard imposed on the WIPP consists of limiting volatile organic compound (VOC) emissions from emplaced waste to ensure protection of human health and the environment. The standard is currently met by tracking individual waste container headspace gas concentrations, which are determined by headspace gas sampling and analysis of CH TRU waste containers. The WIPP is seeking a HWFP modification to allow the disposal of remote-handled (RH) TRU waste. Because RH TRU waste is limited to approximately 5% of the waste volume and is emplaced in the disposal room walls, it is possible to bound the potential RH TRU waste contribution to VOC emissions using conservative upper bounds. These conservative upper bounds were developed as an alternative to RH TRU waste canister headspace gas sampling and analysis. The methodology used to perform the calculations used to evaluate VOC emissions from emplaced RH TRU waste canisters applied the same equations as those used to evaluate VOC emissions in the original HWFP application.

Spangler, L. R.; Djordjevic, S. M.; Kehrman, R. F.; Most, W. A.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system  

DOE Patents [OSTI]

A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

Christiansen, David W. (Kennewick, WA); Smith, Bob G. (Kennewick, WA)

1982-01-01T23:59:59.000Z

422

Collective phase description of oscillatory convection  

SciTech Connect (OSTI)

We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

Kawamura, Yoji, E-mail: ykawamura@jamstec.go.jp [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001 (Japan)] [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001 (Japan); Nakao, Hiroya [Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, Tokyo 152-8552 (Japan)] [Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology, Tokyo 152-8552 (Japan)

2013-12-15T23:59:59.000Z

423

Wigner-function description of EPR experiment  

E-Print Network [OSTI]

We provide a detailed description of the EPR paradox (in the Bohm version) for a two qubit-state in the discrete Wigner function formalism. We compare the probability distributions for two qubit relevant to simultaneously-measurable observables (computed from the Wigner function) with the probability distributions representing two perfectly-correlated classic particles in a discrete phase-space. We write in both cases the updating formulae after a measure, thus obtaining a mathematical definition of \\textit{classic collapse} and \\textit{quantum collapse}. We study, with the EPR experiment, the joint probability distributions of Alice's and Bob's qubit before and after the measure, analyzing the non-local effects. In particular, we give a more precise definition of locality, which we call m-locality: we show that quantum systems may violate this kind of locality, thus preserving, in an EPR-like argument, the completeness of Quantum Mechanics.

Riccardo Franco

2007-01-12T23:59:59.000Z

424

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (CRWMS M&O 2000b) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) engineering design basis in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The engineering design basis documented in the PDD is to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the engineering design basis from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the engineering design basis captured in the SDDs and the design requirements captured in U.S. Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 2-1, the MGR Architecture (Section 4.1),the Engineering Design Bases (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2000-06-01T23:59:59.000Z

425

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

426

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (YMP 2000a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. M. Curry

2001-01-30T23:59:59.000Z

427

Remote Handled TRU Waste Status and Activities and Challenges at the Hanford Site  

SciTech Connect (OSTI)

A significant portion of the Department of Energy's forecast volume of remote-handled (RH) transuranic (TRU) waste will originate from the Hanford Site. The forecasted Hanford RH-TRU waste volume of over 2000 cubic meters may constitute over one-third of the forecast inventory of RH-TRU destined for disposal at the Waste Isolation Pilot Plant (WIPP). To date, the Hanford TRU waste program has focused on the retrieval, treatment and certification of the contact-handled transuranic (CH-TRU) wastes. This near-term focus on CH-TRU is consistent with the National TRU Program plans and capabilities. The first shipment of CH-TRU waste from Hanford to the WIPP is scheduled early in Calendar Year 2000. Shipments of RH-TRU from Hanford to the WIPP are scheduled to begin in Fiscal Year 2006 per the National TRU Waste Management Plan. This schedule has been incorporated into milestones within the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). These Tri-Party milestones (designated the ''M-91'' series of milestones) relate to development of project management plans, completion of design efforts, construction and contracting schedules, and initiation of process operations. The milestone allows for modification of an existing facility, construction of a new facility, and/or commercial contracting to provide the capabilities for processing and certification of RH-TRU wastes for disposal at the WIPP. The development of a Project Management Plan (PMP) for TRU waste is the first significant step in the development of a program for disposal of Hanford's RH-TRU waste. This PMP will address the path forward for disposition of waste streams that cannot be prepared for disposal in the Hanford Waste Receiving and Processing facility (a contact-handled, small container facility) or other Site facilities. The PMP development effort has been initiated, and the PMP will be provided to the regulators for their approval by June 30, 2000. This plan will detail the path forward for the Hanford RH-TRU program.

MCKENNEY, D.E.

2000-02-01T23:59:59.000Z

428

Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors  

SciTech Connect (OSTI)

Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This report includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.

David H. Meikrantz; Troy G. Garn; Jack D. Law; Lawrence L. Macaluso

2009-09-01T23:59:59.000Z

429

ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES  

SciTech Connect (OSTI)

Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

2011-06-07T23:59:59.000Z

430

Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team  

SciTech Connect (OSTI)

This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloading on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into ergonomic training that address the issues originally raised. This training includes intervention methods, ergonomic tools used, dam acquired, and effects of waste container handling techniques on lower back, shoulder, and wrists and methods to help proactively reduce injuries associated with this profession.

Zalk, D.M.; Tittiranonda, P.; Burastero, S.; Biggs, T.W.; Perry, C.M.; Tageson, R.; Barsnick, L.

2000-02-07T23:59:59.000Z

431

A STATE VARIABLE DESCRIPTION OF THE RHIC RF CONTROL LOOPS.  

SciTech Connect (OSTI)

The beam transfer function changes during the RHIC ramp. The response of the RF control loops changes as a result. A state-variable description of the beam and the RF control loops was developed. This description was used to generate a set of feedback matrices that keeps the response of the RF control loops constant during the ramp. This paper describes the state-variable description and its use in determining the K matrices.

SCHULTHEISS,C.; BRENNAN,J.M.

2002-06-02T23:59:59.000Z

432

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Includes Federal and State taxes while excluding county and local taxes. 8 Compressed natural gas used as a vehicle fuel. Includes estimated motor vehicle fuel taxes and...

433

Multi-Pollutant Legislation and Regulations (released in AEO2005)  

Reports and Publications (EIA)

The 108th Congress proposed and debated a variety of bills addressing pollution control at electric power plants but did not pass any of them into law. In addition, the Environmental Protection Agency (EPA) currently is preparing two regulations-a proposed Clean Air Interstate Rule (pCAIR) and a Clean Air Mercury Rule (CAMR)-to address emissions from coal-fired power plants. Several states also have taken legislative actions to limit pollutants from power plants in their jurisdictions. This section discusses three Congressional air pollution bills and the EPA's pCAIR and CAMR regulations.

2005-01-01T23:59:59.000Z

434

Economic Effects of High Oil Prices (released in AEO2006)  

Reports and Publications (EIA)

The Annual Energy Outlook 2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real gross domestic product (GDP) growth, inflation, employment, exports and imports, and interest rates.

2006-01-01T23:59:59.000Z

435

Changing Trends in the Refining Industry (released in AEO2006)  

Reports and Publications (EIA)

There have been some major changes in the U.S. refining industry recently, prompted in part by a significant decline in the quality of imported crude oil and by increasing restrictions on the quality of finished products. As a result, high-quality crudes, such as the West Texas Intermediate (WTI) crude that serves as a benchmark for oil futures on the New York Mercantile Exchange (NYMEX), have been trading at record premiums to the OPEC (Organization of the Petroleum Exporting Countries) Basket price.

2006-01-01T23:59:59.000Z

436

Alaskan Natural Gas Pipeline Developments (released in AEO2007)  

Reports and Publications (EIA)

The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

2007-01-01T23:59:59.000Z

437

World Oil Price Cases (released in AEO2005)  

Reports and Publications (EIA)

World oil prices in Annual Energy Outlook 2005 are set in an environment where the members of OPEC (Organization of the Petroleum Exporting Countries) are assumed to act as the dominant producers, with lower production costs than other supply regions or countries. Non-OPEC oil producers are assumed to behave competitively, producing as much oil as they can profitability extract at the market price for oil. As a result, the OPEC member countries will be able effectively to set the price of oil when they can act in concert by varying their aggregate production. Alternatively, OPEC members could target a fixed level of production and let the world market determine the price.

2005-01-01T23:59:59.000Z

438

Clean Air Interstate Rule (released in AEO2009)  

Reports and Publications (EIA)

Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

2009-01-01T23:59:59.000Z

439

Climate Stewardship Act of 2004 (released in AEO2005)  

Reports and Publications (EIA)

The Climate Stewardship Act of 2004 would establish a system of tradable allowances to reduce greenhouse gas emissions. The bill includes requirements for mandatory emissions reporting by covered entities and for voluntary reporting of emissions reduction activities by noncovered entities; a national greenhouse gas database and registry of reductions; and a research program on climate change and related activities.

2005-01-01T23:59:59.000Z

440

Clean Air Mercury Rule (released in AEO2009)  

Reports and Publications (EIA)

On February 8, 2008, a three-judge panel on the D.C. Circuit of the U.S. Court of Appeals issued a decision to vacate the Clean Air Mercury Rule (CAMR). In its ruling, the panel cited the history of hazardous air pollutant regulation under Section 112 of the Clean Air Act (CAA). Section 112, as written by Congress, listed emitted mercury as a hazardous air pollutant that must be subject to regulation unless it can be proved harmless to public welfare and the environment. In 2000, the Environmental Protection Agency ruled that mercury was indeed hazardous and must be regulated under Section 112 and, therefore, subjected to the best available control technology for mitigation.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Electricity Plant Cost Uncertainties (released in AEO2009)  

Reports and Publications (EIA)

Construction costs for new power plants have increased at an extraordinary rate over the past several years. One study, published in mid-2008, reported that construction costs had more than doubled since 2000, with most of the increase occurring since 2005. Construction costs have increased for plants of all types, including coal, nuclear, natural gas, and wind.

2009-01-01T23:59:59.000Z

442

Restricted Natural Gas Supply Case (released in AEO2005)  

Reports and Publications (EIA)

The restricted natural gas supply case provides an analysis of the energy-economic implications of a scenario in which future gas supply is significantly more constrained than assumed in the reference case. Future natural gas supply conditions could be constrained because of problems with the construction and operation of large new energy projects, and because the future rate of technological progress could be significantly lower than the historical rate. Although the restricted natural gas supply case represents a plausible set of constraints on future natural gas supply, it is not intended to represent what is likely to happen in the future.

2005-01-01T23:59:59.000Z

443

Liquefied Natural Gas: Global Challenges (released in AEO2008)  

Reports and Publications (EIA)

U.S. imports of liquefied natural gas (LNG) in 2007 were more than triple the 2000 total, and they are expected to grow in the long term as North Americas conventional natural gas production declines. With U.S. dependence on LNG imports increasing, competitive forces in the international markets for natural gas in general and LNG in particular will play a larger role in shaping the U.S. market for LNG. Key factors currently shaping the future of the global LNG market include the evolution of project economics, worldwide demand for natural gas, government policies that affect the development and use of natural resources in countries with LNG facilities, and changes in seasonal patterns of LNG trade.

2008-01-01T23:59:59.000Z

444

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

Federal Highway Administration, Highway Statistics 2008 (Washington, DC, April 2010); Oak Ridge National Laboratory, Transportation Energy Data Book: Edition 29 and Annual (Oak...

445

Liquid Fuels Taxes and Credits (released in AEO2010)  

Reports and Publications (EIA)

Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

2010-01-01T23:59:59.000Z

446

Energy Policy Act 2005 Summary (released in AEO2006)  

Reports and Publications (EIA)

The U.S. House of Representatives passed H.R. 6 EH, the Energy Policy Act of 2005, on April 21, 2005, and the Senate passed H.R. 6 EAS on June 28, 2005. A conference committee was convened to resolve differences between the two bills, and a report was approved and issued on July 27, 2005. The House approved the conference report on July 28, 2005, and the Senate followed on July 29, 2005. EPACT2005 was signed into law by President Bush on August 8, 2005, and became Public Law 109-058.

2006-01-01T23:59:59.000Z

447

Federal Air Emissions Regulations (released in AEO2006)  

Reports and Publications (EIA)

In 2005, the Environmental Protection Agency (EPA) finalized two regulations, the Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule CAMR, that would reduce emissions from coal-fired power plants in the United States. Both CAIR and CAMR are included in the Annual Energy Outlook 2006 reference case. The EPA has received 11 petitions for reconsideration of CAIR and has provided an opportunity for public comment on reconsidering certain aspects of CAIR. Public comments were accepted until January 13, 2006. The EPA has also received 14 petitions for reconsideration of CAMR and is willing to reconsider certain aspects of the rule. Public comments were accepted for 45 days after publication of the reconsideration notice in the Federal Register. Several states and organizations have filed lawsuits against CAMR. The ultimate decision of the courts will have a significant impact on the implementation of CAMR.

2006-01-01T23:59:59.000Z

448

EPACT2005 Loan Guarantee Program (released in AEO2008)  

Reports and Publications (EIA)

Title XVII of the Energy Policy Act 2005 (EPACT) authorized the Department of Energy (DOE) to issue loan guarantees for projects involving new or improved technologies to avoid, reduce, or sequester greenhouse gases (GHGs). The law specified that the amount of the guarantee would be up to 80% of a project's cost. EPACT2005 also specified that DOE must receive funds equal to the subsidy cost either through the federal appropriations process or from the firm receiving the guarantee. As discussed in Annual Energy Outlook 2007, this program, by lowering borrowing costs, can have a major impact on the economics of capital-intensive technologies.

2008-01-01T23:59:59.000Z

449

American Jobs Creation Act of 2004 (released in AEO2005)  

Reports and Publications (EIA)

The American Jobs Creation Act of 2004 was signed into law on October 22, 2004. Most of the 650 pages of the Act are related to tax legislation. Provisions pertaining to energy are detailed in this analysis.

2005-01-01T23:59:59.000Z

450

Mercury Emissions Control Technologies (released in AEO2006)  

Reports and Publications (EIA)

The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

2006-01-01T23:59:59.000Z

451

Distributed Generation in Buildings (released in AEO2005)  

Reports and Publications (EIA)

Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

2008-01-01T23:59:59.000Z

452

Electricity Prices in Transition (released in AEO2007)  

Reports and Publications (EIA)

The push by some states to restructure electricity markets progressed rapidly throughout the late 1990s. Although the energy crisis in California during 2000 and 2001 slowed the momentum, 19 states and the District of Columbia currently have some form of restructuring in place. In addition, Washington State, which has not restructured its electricity market, allows its largest industrial customers to choose their suppliers.

2007-01-01T23:59:59.000Z

453

Tax Credits and Renewable Generation (released in AEO2009)  

Reports and Publications (EIA)

Tax incentives have been an important factor in the growth of renewable generation over the past decade, and they could continue to be important in the future. The Energy Tax Act of 1978 (Public Law 95-618) established ITCs for wind, and EPACT92 established the Renewable Electricity Production Credit (more commonly called the PTC) as an incentive to promote certain kinds of renewable generation beyond wind on the basis of production levels. Specifically, the PTC provided an inflation-adjusted tax credit of 1.5 cents per kilowatthour for generation sold from qualifying facilities during the first 10 years of operation. The credit was available initially to wind plants and facilities that used closed-loop biomass fuels and were placed in service after passage of the Act and before June 1999.

2009-01-01T23:59:59.000Z

454

No Sunset and Extended Policies Cases (released in AEO2010)  

Reports and Publications (EIA)

The Annual Energy Outlook 2010 Reference case is best described as a current laws and regulations case, because it generally assumes that existing laws and fully promulgated regulations will remain unchanged throughout the projection period, unless the legislation establishing them specifically calls for them to end or change. The Reference case often serves as a starting point for the analysis of proposed legislative or regulatory changes, a task that would be difficult if the Reference case included projected legislative or regulatory changes.

2010-01-01T23:59:59.000Z

455

Clean Air Nonroad Diesel Rule (released in AEO2005)  

Reports and Publications (EIA)

On June 29, 2004, the Environmental Protection Agency issued a comprehensive final rule regulating emissions from nonroad diesel engines and sulfur content in nonroad diesel fuel. The nonroad fuel market makes up more than 18% of the total distillate pool. The rule applies to new equipment covering a broad range of engine sizes, power ratings, and equipment types. There are currently about 6 million pieces of nonroad equipment operating in the United States, and more than 650,000 new units are sold each year.

2005-01-01T23:59:59.000Z

456

New NHTSA CAFE Standards (released in AEO2009)  

Reports and Publications (EIA)

EISA2007 requires the National Highway Traffic Safety Administration (NHTSA) to raise the Corporate Average Fuel Economy (CAFE) standards for passenger cars and light trucks to ensure that the average tested fuel economy of the combined fleet of all new passenger cars and light trucks sold in the United States in model year (MY) 2020 equals or exceeds 35 mpg, 34% above the current fleet average of 26.4 mpg. Pursuant to this legislation, NHTSA recently proposed revised CAFE standards that substantially increase the minimum fuel economy requirements for passenger cars and light trucks for MY 2011 through MY 2015.

2009-01-01T23:59:59.000Z

457

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

. . . . . . . . . . . . . . 167.7 171.7 186.5 187.2 194.5 214.1 241.5 1.4% Combustion turbinediesel . . . . . . . . . . . . . . . . 133.1 134.8 141.7 145.3 154.9 162.6 167.4 0.9%...

458

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

waste coal. 2 These values represent the energy obtained from uranium when it is used in light water reactors. The total energy content of uranium is much larger, but alternative...

459

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

generators. 15 These values represent the energy obtained from uranium when it is used in light water reactors. The total energy content of uranium is much larger, but alternative...

460

Updated State Air Emissions Regulations (released in AEO2010)  

Reports and Publications (EIA)

The Regional Greenhouse Gas Initiative (RGGI) is a program that includes 10 Northeast states that have agreed to curtail and reverse growth in their carbon dioxide (CO2) emissions. The RGGI program includes all electricity generating units with a capacity of at least 25 megawatts and requires an allowance for each ton of CO2 emitted. The first year of mandatory compliance was in 2009.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

. . . . . . . . . . . . 223.0 224.6 216.2 214.9 213.6 213.1 211.4 -0.2% Delivered energy consumption by fuel Purchased electricity Space heating 1 . . . . . . . . . . . . . . . ....

462

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1.0% Personal computers and related equipment . 0.53 0.53 0.57 0.66 0.72 0.76 0.79 1.6% Furnace fans and boiler circulation pumps . . 0.42 0.42 0.42 0.43 0.44 0.44 0.44 0.2%...

463

Summary of Second AEO 2014 Electricity Working Group Meeting  

U.S. Energy Information Administration (EIA) Indexed Site

Lori (EIA OEA) Bredehoeft, Gwendolyn (EIA OEA) Crozat, Matthew P. (US DOE: Office of Nuclear Energy) Diefenderfer, Jim (EIA OEA) Eynon, Bob (EIA OEA) Fan, Cha-Chi (EIA OES)...

464

EIA - Annual Energy Outlook (AEO) 2013 Data Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Interactive Table Viewer Topics Source OilLiquids Natural Gas Coal Electricity RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand...

465

EIA - Annual Energy Outlook (AEO) 2011 Data Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Interactive Table Viewer Topics Source OilLiquids Natural Gas Coal Electricity RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand...

466

EIA - Annual Energy Outlook (AEO) 2012 Data Tables  

Gasoline and Diesel Fuel Update (EIA)

Interactive Table Viewer Topics Source OilLiquids Natural Gas Coal Electricity RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand...

467

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Gasoline and Diesel Fuel Update (EIA)

coal . . . . . . . . . . . . . . . . . . . . 2.99 2.93 3.26 3.30 3.38 3.50 3.62 0.8% Coal for liquids . . . . . . . . . . . . . . . . . . . . . . . . - - - - 1.25 2.03 2.11...

468

Mobile Source Air Toxics Rule (released in AEO2008)  

Reports and Publications (EIA)

On February 9, 2007, the Environmental Protection Agency (EPA) released its MSAT2 rule, which will establish controls on gasoline, passenger vehicles, and portable fuel containers. The controls are designed to reduce emissions of benzene and other hazardous air pollutants. Benzene is a known carcinogen, and the EPA estimates that mobile sources produced more than 70% of all benzene emissions in 1999. Other mobile source air toxics, including 1,3-butadiene, formaldehyde, acetaldehyde, acrolein, and naphthalene, also are thought to increase cancer rates or contribute to other serious health problems.

2008-01-01T23:59:59.000Z

469

Second AEO2014 Macro-Industrial Working Group Meeting Summary  

Gasoline and Diesel Fuel Update (EIA)

Peri Ulrey (Natural Gas Supply Association) Frances Wood (OnLocation) Presenters: Kay Smith, Elizabeth Sendich (Macro) Kelly Perl, Peter Gross, Susan Hicks, Paul Otis, Mark...

470

L:\\main\\pkc\\aeotabs\\aeo2012\\appa.wpd  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. . . . . . . . . . . . . . . . . . . . . 232.1 237.5 139.1 104.4 47.1 24.2 24.2 -8.7% Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.9 138.0 202.7 208.7...

471

AEO2014 - Legislation and Regulations articles - U.S. Energy...  

Gasoline and Diesel Fuel Update (EIA)

and diesel fuel sold. There are four interrelated requirements, for cellulosic biofuels, biomass-based diesel, advanced biofuels, and total renewable fuels. State renewable...

472

CONTINATION HEETIREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma& Records | Department

473

CONTINATION HEETIREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma& Records | Department

474

CONTINATION HEETIREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma& Records | DepartmentNO.

475

CONTINUATION S EFIIERENCE NO OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma& RecordsCONTINUATION S

476

CONTINUATON SHEETREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma&

477

CONTIUATIN SHET IREFERENCE NO. OF DOCUMENT BEING CONTINUED AEO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,PrinciplesPlasma&CONTIUATIN SHET IREFERENCE

478

Workshop on Biofuels Projections in AEO Attendance List  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWesternPipeline2Gasand

479

Workshop on Biofuels Projections in AEO Presenters Biographies  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWesternPipeline2GasandPresenters'

480

AEO2013 Early Release Base Overnight Project Technological Total Overnight  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerr g0@3 Early Release Base

Note: This page contains sample records for the topic "description aeo handling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Overview of Levelized Cost of Energy in the AEO  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 |Presented to the EIA Energy

482

Second AEO2014 Buildings Sector Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year JanC.9.3.Feet)September25,

483

Second AEO2014 Liquids Fuels Markets Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year

484

Second AEO2014 Macro-Industrial Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, 2013 MEMORANDUM FOR: JOHN

485

Second AEO2014 Oil and Gas Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, 2013 MEMORANDUM FOR: JOHN7

486

Second AEO2014 Transportation Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, 2013 MEMORANDUM FOR: JOHN7,

487

Second AEO2015 Macro-Industrial Workiing Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, 2013 MEMORANDUM FOR:

488

Summary of AEO2015 Renewable Electricity Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota (MillionState

489

Summary of First AEO2014 Electricity Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota (MillionState9, 2013

490

Summary of First AEO2015 Electricity Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota (MillionState9, 2013August 8,

491

Summary of Second AEO 2014 Electricity Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota (MillionState9, 2013August

492

Summary of Second AEO 2015 Working Group Meeting  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota (MillionState9,

493

AEO 2013 Liquid Fuels Markets Working Group 2  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (ThousandsAboutsite. IfHome2

494

AEO 2014 Renewable Electricity Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (ThousandsAboutsite.

495

AEO 2015 Electricity, Coal, Nuclear and Renewables Preliminary Results  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue

496

AEO2012 Preliminary Assumptions: Oil and Gas Supply  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply Working

497

AEO2014 Coal Working Group Meeting I Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply

498

AEO2015 Liquid Fuels Markets Working Group Presentation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and GasPURPOSES. DO

499

First AEO2014 Buildings Sector Working Group Meeting Summary  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5 Figure 2.Stocks 2009 20100,

500

First AEO2014 Macro-Industrial Working Group Meeting Summary  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5 Figure 2.Stocks 2009 20100,3