Bardsley, John
LARGE-SCALE KALMAN FILTERING USING THE LIMITED MEMORY BFGS METHOD H. AUVINEN, J. M. BARDSLEY, H. HAARIO , AND T. KAURANNE. Abstract. The standard formulations of the Kalman filter (KF) and extended Kalman filter (EKF) require the storage and multiplication of matrices of size n × n, where n is the size
Crude Depletion Conditions for XKCM1 Arshad Desai
Mitchison, Tim
Crude Depletion Conditions for XKCM1 Arshad Desai 3/17/95 Problems: The main problem with immunodepletion of crude CSF extracts is that they activate during or soon after immunodepletion. Empirically well in crude). However, we have never been able to cycle a depleted crude - all assays were performed
Scalable Hierarchical Locking for Distributed Systems Nirmit Desai and Frank Mueller
Mueller, Frank
Scalable Hierarchical Locking for Distributed Systems Nirmit Desai and Frank Mueller Dept share computational resources in distributed environments, such as high-end clusters with ever larger requests in distributed systems. But concurrency protocols currently lack scalability. Adding
Carpick, Robert W.
Hydraulic Drivetrain and Regenerative Braking Team 13: Andrew Brown, Karan Desai, Andrew Mc Pressure Reservior Filter Variable Vane Pump Motor/Pump Hydraulic Accumulators Solenoid Valve Relief Valve Suction Line Since their development in 2006, hydraulic drivetrain systems have gained considerable
SG Biofuels | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDâ€Ž |Rippey Jump to:WY) JumpLand FocusSCSENDECO2 JumpSolarSG
SG BioFuels | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY Solutions Jump to: navigation,SEMASSSES CoSF-299SG
Advanced Security Acceleration Project for Smart Grid (ASAP-SG...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Security Acceleration Project for Smart Grid (ASAP-SG) June 12, 2013 Problem Statement: The goal of this project is to develop a set of computer and network security requirements...
T-651: Blue Coat ProxySG Discloses Potentially Sensitive Information in Core Files
Broader source: Energy.gov [DOE]
A vulnerability was reported in Blue Coat ProxySG. A local user can obtain potentially sensitive information
Tebo, Brad
, MnxG was overexpressed in Escherichia coli and used to generate polyclonal antibodies. Western blotAbstract Dormant spores of the marine Bacillus sp. strain SG-1 catalyze the oxidation of manganese Introduction Mature spores of the marine Bacillus sp. strain SG-1 oxi- dize soluble manganese [Mn(II)], thereby
Predicting Functional Regions of Objects Chaitanya Desai
Ramanan, Deva
regions. We compare "blind" approaches that ig- nore image data, bottom-up approaches that reason about). We benchmark a wide variety of algo- rithms for producing such outputs, including blind baselines- fords little use to an observer. The central thesis of this work is that functional regions
Banaji,. Murad
2008-01-01T23:59:59.000Z
Großmann, H., Schwabe, R. & Gilmour S.G. (2009). Some new designs for firstorder interactions in 2K). Optimal design of factorial paired comparison experiments in the presence of withinpair order effects threelevel response surface designs. Großmann, H. & Schwabe, R. (2007). The relationship between optimal
DIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR
steam turbine power block. As well as DSG, the ANU group is investigating energy conversion options conveyed the steam to our 50 kWe steam turbine; the new dish is oversized for the current engine, so someDIRECT STEAM GENERATION USING THE SG4 500m2 PARABOLOIDAL DISH CONCENTRATOR Greg Burgess 1 , Keith
Copy of FINAL SG Demo Project List 11 13 09-External.xls | Department of
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy Copy of FINAL SG Demo
Ecosystem Approaches for Fisheries Management 609 Alaska Sea Grant College Program AK-SG-99-01, 1999
Ecosystem Approaches for Fisheries Management 609 Alaska Sea Grant College Program · AK-SG-99-01, 1999 Ecosystem Considerations and the Limitations of Ecosystem Models in Fisheries Management: Insights for the implementation of ecosystem approaches. The major criticism of single- species models is that they cannot predict
Seismic Tomography Of Pg And Sg/lg And Its Use For Average Upper Crust Structure In Eurasia
Steck, Lee K [Los Alamos National Laboratory; Phillips, W Scott [Los Alamos National Laboratory; Rowe, C A [Los Alamos National Laboratory; Stead, R J [Los Alamos National Laboratory; Begnaud, M L [MSU
2008-01-01T23:59:59.000Z
Tomographic inversion oftravel times from first arriving compressional and shear waves for velocity structure has been applied with great success at all length scales, ranging from the laboratory bench-top to the entire Earth. Inversion of later arriving phases has seen a much more limited application. In this paper we present inversion results for regional Pg and Sg for the Eurasian continent to explore its use for understanding average upper crustal velocity structure. Inversion is performed using a damped, smoothed LSQR implementation that solves for site and event terms as well as for velocity along great circle paths between the source and receiver. Results are broadly consistent with published upper crustal velocities for the region. A spotcomparison of Vp/Vs from local and regional studies also compares well with the ratio of observed Pg to Sg velocities from our study where resolution is high. Resolution is determined through the use of checkerboard tests, and these suggest that in regions where data density is high we can resolve features down to at least 2 deg, with 4 deg possible over broader areas. RMS residual reductions are on the order of25% for Sg and 30% for Pg.
Seul, K.W.; Bang, Y.S.; Lee, S.; Kim, H.J. [Korea Inst. of Nuclear Safety, Taejon (Korea, Republic of)
1996-09-01T23:59:59.000Z
The objective of the present work is to identify the predictability of RELAP5/MOD3.1 regarding thermal-hydraulic behavior during a steam generator tube rupture (SGTR). To evaluate the computed results, LSTF SB-SG-06 test data simulating the SGTR that occurred at the Mihama Unit 2 in 1991 are used. Also, some sensitivity studies of the code change in RELAP5, the break simulation model, and the break valve discharge coefficient are performed. The calculation results indicate that the RELAP5/MOD3.1 code predicted well the sequence of events and the major phenomena during the transient, such as the asymmetric loop behavior, reactor coolant system (RCS) cooldown and heat transfer by natural circulation, the primary and secondary system depressurization by the pressurizer auxiliary spray and the steam dump using the intact loop steam generator (SG) relief valve, and so on. However, there are some differences from the experimental data in the number of the relief valve cycling in the affected SG, and the flow regime of the hot leg with the pressurizer, and the break flow rates. Finally, the calculation also indicates that the coolant in the core could remain in a subcooled state as a result of the heat transfer caused by the natural circulation flow even if the reactor coolant pumps (RCPs) turned off and that the affected SG could be properly isolated to minimize the radiological release after the SGTR.
Allen, Bruce D.
107 Lucas, S.G., Morgan, G.S. and Zeigler, K.E., eds., 2005, New Mexico's Ice Ages, New Mexico of the large, topographically closed basins in New Mexico during the last ice age (Fig. 1). Compli- mentary-age Southwest. A comprehensive review of the known distribution of latest Pleis- tocene lakes in New Mexico
Dunbar, Nelia W.
95 Lucas, S.G., Morgan, G.S. and Zeigler, K.E., eds., 2005, New Mexico's Ice Ages, New Mexico a significant role in the geological evolution of New Mexico during the Quaternary. The extensional tec- tonic setting of New Mexico, together with pre-existing, long-lived zones of crustal weakness, has allowed
Barber, James R.
2013-01-01T23:59:59.000Z
/PICJ/Vol00000/130325/APPFile/SG-PICJ130325.3d (PIC) [PREPRINTER stage] Original Article The use the detailed implementation of the contact and friction laws. The reduced stiffness matrix is also an essential loading. Keywords Contact problems, static reduction, shakedown, Coulomb friction, substructuring, finite
Reif, John H.
a distribution channel. His articles on these topics have appeared in top-tier academic journals of Duke's academic council and also serves on the Academic Committee on Online Education (ACOE). #12;
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913| Department of Energy PATRICIA
Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan; Zou, Shiyang [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Yang, Dong; Wang, Feng; Peng, Xiaoshi; Li, Zhichao; Li, Sanwei; Xu, Tao; Wei, Huiyue [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Liu, Zhanjun; Zheng, Chunyang, E-mail: zheng-chunyang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China)
2014-07-15T23:59:59.000Z
Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, is the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.
Regulating User Arrivals at a Mobile IP Home Maulik Desai Thyaga Nandagopal
Shepard, Kenneth
. They require new hardware, which increases the capex and opex of the network operators, in addition
Zhou, Yaoqi
A Systematic Analysis of Epigenetic Genes across Different Stages of Lung Adenocarcinoma Akshay across different stages of lung adenocarcinoma (LUAD). Method: An integrative system biology approach
Hybrid fiber reinforced Composite Phenolic foam Amit Desai, Steven R. Nutt
Southern California, University of
Composite Center Hybrid Composite Phenolic foams were reinforced with glass and aramid fibers in different the hybrid foams exhibited higher strength and modulus as compared to foams reinforced with only glass with only glass fibers of different length , the elastic properties of foam such as modulus and density do
Credibility and flexibility : political institutions and foreign direct investment
Zheng, Yu
2007-01-01T23:59:59.000Z
Desai, Mihir, Fritz Foley, and James Hines. 2004, ForeignDesai, Mihir, Fritz Foley, and James Hines. 2005. ForeignDesai, Mihir, Fritz Foley, and James Hines. 2006. Capital
Nonroutine tasks in international trade
Oldenski, Lindsay
2009-01-01T23:59:59.000Z
4269. Desai, Mihir, Fritz Foley and James Hines Jr. , 2001,Desai, Mihir, Fritz Foley, and James Hines Jr. , 2002,W9224. Desai, Mihir, Fritz Foley and James Hines Jr. , 2001,
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
on the secondary side. The primary coolant is then returned to the reactor core via the coolant pump and the cycle is repeated. Feedwater (secondary coolant) is pumped into the...
Chen, Christopher S.
, Sophia Chen and Christopher S. Chen versus collective cell migration Contact inhibition of locomotion, Sophia Chen1 and Christopher S. Chen1, 1 Department of Bioengineering, University of Pennsylvania
A Data Mining and CIDF Based Approach for Detecting Novel and Distributed Intrusions
Lee, Wenke
, Rahul A. Nimbalkar 1 , Kam K. Yee 1 , Sunil B. Patil 1 , Pragneshkumar H. Desai 1 , Thuan T. Tran 1
2012 SG Peer Review - Recovery Act: Secure Interoperable Open...
Broader source: Energy.gov (indexed) [DOE]
Project Objective Life-cycle Funding FY10 - FY13 45.4 m Technical Scope (Insert graphic here) 2 *Integrate Legacy and Smart Grid information systems *Integrate external...
2012 SG Peer Review - Recovery Act: Irvine Smart Grid Demonstration...
Broader source: Energy.gov (indexed) [DOE]
RD&D Needs Technical Challenges g Energy Smart Customer Devices * Impact of multiple Zero Net Energy technologies (grid and residential load) * PEV load management using...
Defect specific maintenance of SG tubes -- How safe is it?
Cizelj, L.; Mavko, B.; Dvorsek, T. [Jozef Stefan Institute, Ljubljana (Slovenia)
1997-02-01T23:59:59.000Z
The efficiency of the defect specific plugging criterion for outside diameter stress corrosion cracking at tube support plates is assessed. The efficiency is defined by three parameters: (1) number of plugged tubes, (2) probability of steam generator tube rupture and (3) predicted accidental leak rate through the defects. A probabilistic model is proposed to quantify the probability of tube rupture, while procedures available in literature were used to define the accidental leak rates. The defect specific plugging criterion was then compared to the performance of traditional (45%) plugging criterion using realistic data from Krsko nuclear power plant. Advantages of the defect specific approach over the traditional one are clearly shown. Some hints on the optimization of safe life of steam generator are also given.
Materials Data on VPO4 (SG:63) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd (SG:229) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VP (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BPO4 (SG:152) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge (SG:96) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge (SG:96) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UGe2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UGe2 (SG:65) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge (SG:69) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft Word - BBEE_BPA_in_template_SG__011013.doc
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
energy use and improve operating performance through building or equipment tune-ups and changes to O&M routines. Innovative Behavior-based Energy Efficiency Pilots -...
Materials Data on Nd (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
2012 SG Peer Review - Recovery Act: LADWP Smart Grid Regional...
Funding (K) FY1011 - FY1516 60,280K Match Grant Technical Scope *Integrate Electric Vehicles into the LADWP grid *Demonstrate integrated Demand Response operation and...
Materials Data on Tc (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er (SG:229) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YB2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La (SG:229) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb (SG:229) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy (SG:229) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YZn (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tm (SG:229) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Lu (SG:229) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
2012 SG Peer Review - Recovery Act: Pacific Northwest Smart Grid...
Broader source: Energy.gov (indexed) [DOE]
Management Approach 6 Metrics & Benefits Plan Conceptual Design Equipment Planning Data Collection and Reporting Asset System Non- Transactive Final Reporting & Operational...
Materials Data on B (SG:166) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe (SG:194) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YS (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KC10 (SG:204) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Se (SG:148) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPt2 (SG:71) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ga (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on S (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft PowerPoint - Create Business Case for SG Implement...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(IT) A CIS Upgrade to accommodate AMI and DR functionality & Outage Management Demand Response (DR) The aggregated sum of 104 MW of DR from Residential, Commercial, and...
Materials Data on UAl2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
SG Network System Requirements Specification- Interim Release 3 |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913| Department of Energy
Microsoft Word - SG_Roadmap_9-16.doc
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovemberi CONTENTS Executive U.S.and Geochemical3G-1Smart Grid
Microsoft Word - BBEE_BPA_in_template_SG__011013.doc
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8 3. March 3, 20155-12, 2010DayWhat
Corporate Governance and Taxation
Dyck, Alexander
2004-01-01T23:59:59.000Z
Accounting and Corporate Governance,” Journal of Accounting1997) “A Survey of Corporate Governance” Journal of FinanceCorporate Governance and Taxation Mihir A. Desai* Harvard
Orion: A Software Project Search Engine with Integrated Diverse Software Artifacts
Paris-Sud XI, Université de
@labri.fr, ferdianthung@smu.edu.sg, davidlo@smu.edu.sg, lxjiang@smu.edu.sg, reveillere@labri.fr Abstract
BLIND ITERATIVE RESTORATION OF IMAGES WITH SPATIALLY-VARYING BLUR
Bardsley, John
BLIND ITERATIVE RESTORATION OF IMAGES WITH SPATIALLY-VARYING BLUR John Bardsley Stuart Jefferies (PSF) by using a combination of methods including sectioning and phase diversity blind deconvolution whose PSFs are correlated and approximately spatially-invariant, and apply iterative blind deconvolution
Hierarchical regularization for edge-preserving reconstruction of PET images
Bardsley, John
Hierarchical regularization for edge-preserving reconstruction of PET images Johnathan M. Bardsley.somersalo@case.edu Abstract. The data in PET emission and transmission tomography and in low dose X-ray tomography, consists that the algorithm gives good quality reconstructions for both emission and transmission PET problems in an efficient
Hierarchical regularization for edge-preserving reconstruction of PET images
Bardsley, John
1 Hierarchical regularization for edge-preserving reconstruction of PET images Johnathan M. Bardsley , Daniela Calvetti, and Erkki Somersalo Abstract--The data in PET emission and transmission tomog for both emission and transmission PET problems at very low computational cost. Index Terms
UNIVERSITY OF UTAH BOARD OF TRUSTEES MINUTES
Tipple, Brett
. Anderson Phillip W. Clinger Lisa E. Eccles Clark D. Ivory (Chair) Michele Mattsson (Vice Chair) Neela Pack Anderson Associate Vice President, Budget and Planning James Bardsley Associate Vice President, Health Counsel Mary Parker Associate Vice President, Enrollment Management Thomas N. Parks Vice President
Desai, Narayan [ANL] [ANL
2011-10-12T23:59:59.000Z
Argonne National Lab's Narayan Desai on "Scaling MG-RAST to Terabases" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
Chapman, Edwin R.
with the ex- domains (Brose et al., 1992; Davletov and Sudhof, 1993; Desai et al., 2000; Fernandez et al and SNAP-25/syntaxin. (Bai et al., 2002; Brose et al., 1992), syt·syt oligomeriza- tion (Wu et al., 2003
UCR Physics Grad School Welcome to UC Riverside!
Mills, Allen P.
Kawakami Jeanie Lau Doug MacLaughlinAllen P. Mills Umar Mohideen Jing Shi Harry Tom Roya Zandi Chandra Clare Bipin Desai John Ellison Bill Gary Gail Hanson Owen Long Ernest Ma Rich Seto Steve Wimpenny Jose
FIELD WORK (TD 609) Palsunda Village
Sohoni, Milind
PRA, Household survey, Water Resources Survey, Road and Transport Survey, Energy Survey, Agriculture thank Prof. Puru Kulkarni, Prof. Milind Sohoni, Raj Desai Sir and Hemant for providing valuable inputs
Desai, Narayan [ANL
2013-01-22T23:59:59.000Z
Argonne National Lab's Narayan Desai on "Scaling MG-RAST to Terabases" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
Prescription Drug Monitoring Programs: Examining Limitations and Future Approaches
Griggs, Christopher A.; Weiner, Scott G.; Feldman, James A.
2015-01-01T23:59:59.000Z
Li G, Brady JE, Lang B, et al. Prescription drug monitoringand drug overdose mortality. Inj Epidemiol. 2014;1:1-9.EM, Desai HA. Prescription drug monitoring programs and
Materials Data on LaTl3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba3P4 (SG:43) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr3P4 (SG:43) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K3Sb (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Rb2Se (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
2012 SG Peer Review - Recovery Act: AEP Ohio gridSMART Demonstration...
Broader source: Energy.gov (indexed) [DOE]
national impact. Life-cycle Funding 2010 - 2013 73,660,317 Technical Scope (Insert graphic here) * 110,000 AMI meters and associated infrastructure * Consumer Managed Energy...
Satisfying Real-Time Constraints with Custom Instructions panyu@comp.nus.edu.sg
Mitra, Tulika
have become popular as they strike the right balance between challenging perfor- mance requirement to lists, requires prior specific permission and/or a fee. CODES+ISSS'05, Sept. 1921, 2005, Jersey City instructions help simple embedded processors achieve con- siderable performance and energy efficiency
Materials Data on EuB6 (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
U-068:Linux Kernel SG_IO ioctl Bug Lets Local Users Gain Elevated...
Broader source: Energy.gov (indexed) [DOE]
Linux Desktop (v. 6) Red Hat Enterprise Linux HPC Node (v. 6) Red Hat Enterprise Linux Server (v. 6) Red Hat Enterprise Linux Server AUS (v. 6.2) Red Hat Enterprise Linux Server...
Materials Data on LiCoPO4 (SG:62) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HfCr2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyNi (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThRe2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy2SO2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgPt (SG:198) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on FeClO (SG:59) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PuCo3 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe3(O2F)2 (SG:1) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on FeS2 (SG:58) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Co3S4 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mn2Nb (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er(NiGe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrO (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2FeReO6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al5Co2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho2SO2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TbIr2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on InN (SG:186) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ti5Sn3 (SG:193) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PuGe2 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2CoReO6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni3Sn (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mn3O4 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na2BHO3 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr3GaC (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USnPt (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CrO3 (SG:40) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pb(CO2)2 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er2C(NO)2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SnPd (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2ReNiO6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaBe12 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiCo2Sn (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HfAl2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2MgReO6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrSnRh (SG:190) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TbGaPd (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr2SO2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CsIO3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GdGe (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YCrO3 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Si2H2O3 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaTiO3 (SG:123) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2ZnReO6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pu2Co (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2SO2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Bi2O3 (SG:224) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Lu2SO2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CdO2 (SG:205) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaMn2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrNbO4 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2MnReO6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CrO (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GdNbO4 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ti2Be17 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeInAu2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U2Se3 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuB6 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ErNbO4 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na2O2 (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaSiIr (SG:198) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er2SO2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La2SiO5 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Yb2SO2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UH12C4N4O11 (SG:14) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg5Si6 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Hierarchical Dirichlet Processes Yee Whye Teh tehyw@comp.nus.edu.sg
Kaski, Samuel
University of New York at Buffalo, Buffalo NY 14260-2000, USA David M. Blei blei@eecs.berkeley.edu Department. Beal is Assistant Professor of Computer Science and Engineering, SUNY Buffalo, NY; and David M. Blei
Materials Data on AlPt3C (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Hierarchical Dirichlet Processes # Yee Whye Teh tehyw@comp.nus.edu.sg
Rattray, Magnus
, State University of New York at Buffalo, Buffalo NY 142602000, USA David M. Blei blei. Blei is Assistant Professor of Computer Science, Princeton University, NJ. Correspondences should
On the possible Uralic source for the gen. sg. a-stem desinence in Slavic
Greenberg, Marc L.
2003-01-01T23:59:59.000Z
The paper proposes that contact with Finnic languages led to reshaping of the genitive and possessive markers in Proto-Slavic.
Materials Data on AlPt3 (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GdGe (SG:63) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2MgReO6 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2ZnReO6 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb5(NiP)4 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3PN (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on EuKPSe4 (SG:11) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiZr2(PO4)3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCa(PO3)3 (SG:188) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaPF6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaPSe3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr(ZnP)3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoPSe (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P2W (SG:36) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr(CdP)3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrAgP (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NiMoP2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiZnP (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZnP2 (SG:96) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuPPt (SG:187) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiScP2O7 (SG:4) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr2Cu(PO4)2 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCdP (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cs(MnP)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg(P2Rh3)2 (SG:187) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P2W (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ErP (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sm(PRu)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg2Co12P7 (SG:174) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce(P3Ru)4 (SG:204) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3PS3O (SG:36) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaPSe3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(POs)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaErPO4F (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na2MgPO4F (SG:60) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mo3P (SG:121) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NpP (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KVP2S7 (SG:5) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrLiP (SG:187) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MoP4 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrP (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr(NiP)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuP (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni12P5 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiPRu (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ScNiP (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaYPO4F (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K4ZnP2 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrMoP (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba3P14 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(PIr)2 (SG:154) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P2Ir (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SmPPd (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er(PRu)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrSnP (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiMgP (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb5(PPd)4 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(PIr)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on FeP (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrP3 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiZnPS4 (SG:82) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaPAu (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaAg(PO3)3 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2CuP (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg(Co3P2)2 (SG:187) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaPN2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SmPPt (SG:187) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YbNa(PS3)2 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca2Co12P7 (SG:174) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca5P12Rh19 (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrPPd (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni2P (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiCrP (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3Sr3GaP4 (SG:186) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2Mg(PSe3)2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaPS3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaLiP (SG:187) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoH6(CO3)2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NdMg3 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCd3H8Cl7O4 (SG:11) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3H5(CO2)4 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on InH8C4NO10 (SG:180) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on H4Pb(CO3)2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc2PbS4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb3H12C4NCl9 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(ScS2)2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CsTiF4 (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PbSO4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuH3C2NO4 (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiH8C4NO10 (SG:181) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaH4C4NO8 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiH8C4NO10 (SG:180) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on H12W3C4NCl9 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrCu2GeSe4 (SG:40) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2ZrGe2O7 (SG:15) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CdGeP2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrLiGe2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(GeAu)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(GeRh)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge(Te2As)2 (SG:166) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2ZrGe2O7 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li(NiGe)6 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PuGe2 (SG:141) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiInGe (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaGe3Rh (SG:107) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ag6Ge2O7 (SG:4) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg(CoGe)6 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge(Te2As)2 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiGePd (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tm2Ge2O7 (SG:92) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaMgGe (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeGe3Rh (SG:107) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaCrGe3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZnAg2GeO4 (SG:7) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2Ge2O7 (SG:92) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge2Te5As2 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiNdGe (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeScGe (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiSmGe (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho2Ge2Os (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn3Ni2Ge (SG:227) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tm2Ge2O7 (SG:92) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Lu4Zn5Ge6 (SG:36) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrNi2Ge (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(GeIr)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrCaGe (SG:62) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaAlGeO4 (SG:14) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sm5Ge4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrGe2 (SG:62) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TmGe2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZnNi2Ge (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrMgGe (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Co2Ge (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZnAg2GeO4 (SG:7) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaZn(GeO3)2 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaCaGe (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrCaGe (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(GePd)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrCrGe3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2HgGe (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(GeAu)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrCu2GeSe4 (SG:40) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er(NiGe)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2ZnGe (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Np(GeRh)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni2Ge (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cu2GeS3 (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaZn(GeO3)2 (SG:15) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb5Ge4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeGe3Ir (SG:107) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NdCoGe3 (SG:107) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tm4Zn5Ge6 (SG:36) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiNiGe (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl2Ge2S5 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2GeO3 (SG:36) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CdGeO3 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na5GeAs3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2Ge2O7 (SG:92) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La3(GeRh)4 (SG:71) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaZnGe (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er(AlGe)2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GePt3 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrGe2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy(CrGe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaAlGeO4 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiNi2Ge (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThGe2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThGe2 (SG:65) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Np(GeRh)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on RbNa2Ge17 (SG:227) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge9Pd25 (SG:147) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho3Ge4 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrNiGe3 (SG:65) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2Ge (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd5Ge3 (SG:193) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho2InGe2 (SG:127) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er3Al3NiGe2 (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TmTiGe (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge2Te5As2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge2Pt (SG:58) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr3(Cu2Ge)2 (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on RbNa2Ge17 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaCdGe (SG:189) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb5Ge3 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaCdGe (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaCaGe (SG:62) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn3Ni2Ge (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoGe (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Lu4Zn5Ge6 (SG:36) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca7Ge6 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrNi3Ge2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge3Os2 (SG:60) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SmCrGe3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NdCrGe3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La3(GeRh)4 (SG:71) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiHoGe (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(GeIr)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li(NiGe)6 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2SnGe (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrGe3Rh (SG:107) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy(CrGe)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na5GeAs3 (SG:14) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl2Ge2S5 (SG:15) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tm4Zn5Ge6 (SG:36) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrCoGe3 (SG:107) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge3Os2 (SG:60) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
2012 SG Peer Review - Recovery Act: KCP&L Green Impact Zone Smart...
Broader source: Energy.gov (indexed) [DOE]
Framework and Standards to accelerate industry adoption *IEC 61850 (substation protection & automation) *IEC 61850 (substation - control center) *DNPIP (field device to...
Measurement of the 208Pb(52Cr, n)259Sg Excitation Function
Folden III, C.M.
2010-01-01T23:59:59.000Z
of other measured cold fusion excitation functions (see Fig.in agreement with other cold fusion excitation functions,+b I. INTRODUCTION “Cold” nuclear fusion reactions, using Pb
Materials Data on K2Ni2(SO4)3 (SG:198) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2Ca2(SO4)3 (SG:19) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2Ca2(SO4)3 (SG:198) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyTh (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cd3In (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlPt3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft PowerPoint - E_forum_2_SG Benefits and Challenges_APPROVED...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
natural disaster" Physical and cyber security built in from the ground up Reduces threat, vulnerability, consequences Deters, detects, mitigates, responds, and restores Less...
Materials Data on UB2Ir3 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb3Si (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThB2Ir3 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrTcO3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Rb4Tc6S13 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al12Tc (SG:204) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tc2P3 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaTc (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al6Tc (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiTc (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tc3P (SG:82) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HfTc (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SmCuSe2 (SG:14) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrCuSe2 (SG:14) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaCuSe2 (SG:14) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Field Enhancement of a Superconducting Helical Undulator with K. Flttmann, S.G. Wipf
. Geometry of a helical undulator with iron A helical field can be produced by a pair of conductors wound to form a double helix as sketched in Figure 1. The current in the two conductors is equal and of opposite of the coil ro= outer radius of the coil B = on axis field amplitude (1) A width of 1/3 is assumed
Materials Data on BaLaCuTe3 (SG:62) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoCd (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaYCuTe3 (SG:63) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Yb(SiAu)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y6Mn23 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Lu3InN (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuSi2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TmHg (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuIr (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TbSi2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Lu2O3 (SG:206) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er(PRu)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YbSbPd (SG:216) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaYAgTe3 (SG:63) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd(FeSb3)4 (SG:204) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YbTl (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La(SiAu)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ErCd2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoGa2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuZn (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sm(PRu)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TmCd2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoCd2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuN (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LuB6 (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YbO (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoPb3 (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sm(SiAu)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HoSi2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La(SiAg)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NdHg2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho5Ni19P12 (SG:189) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on EuZn (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyN (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YbSiAg (SG:189) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Yb(SiAg)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrO (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on V3Te4 (SG:12) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on InN (SG:186) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaGa2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAg2PS4 (SG:121) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sm(CoSi)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgS (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on As2Ir (SG:14) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgTe (SG:216) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on FeS2 (SG:58) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tm2CdSe4 (SG:227) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc3SnC (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZnSnO3 (SG:161) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrAl9Co2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La3Sn (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SnS (SG:63) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgSeO3 (SG:62) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlCrCu2 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiRhO2 (SG:166) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrPd3 (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TbPt3 (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cs2Pt3S4 (SG:69) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaO (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd(FeP3)4 (SG:204) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TaRu (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GdCuGe (SG:186) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrAl2B2O7 (SG:155) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ti3FeS6 (SG:163) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr(FeP3)4 (SG:204) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr2SO2 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ScS (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CaC2 (SG:15) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Lu2O3 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3N2 (SG:194) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ti2Te2P (SG:166) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaLiP (SG:194) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy2O3 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cu4O3 (SG:141) by Materials Project
Kristin Persson
2014-11-14T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaAl9Fe2 (SG:191) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl(TeMo)3 (SG:176) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PuAl3 (SG:194) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiAlAu2 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZnAgF3 (SG:221) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tm2O3 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YbAgO2 (SG:166) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca4Al6TeO12 (SG:217) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd3Ga5O12 (SG:230) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn(GaSe2)2 (SG:82) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr3(BO3)2 (SG:167) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La(P3Ru)4 (SG:204) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn4B6SeO12 (SG:217) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PrMgNi4 (SG:216) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho2O3 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgSe (SG:216) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on In6ReO12 (SG:148) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaSrP (SG:189) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MnTe (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlCrFe2 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrN (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SmO (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er2SO2 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(FeSb3)4 (SG:204) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2SO2 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiGeRh2 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr2MgIrO6 (SG:225) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3N2 (SG:164) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K(CoS)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaCuTeF (SG:129) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce(FeP3)4 (SG:204) by Materials Project
Kristin Persson
2014-11-02T23:59:59.000Z
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations