Powered by Deep Web Technologies
Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Architecture Considerations for Integration of Distributed Energy Resources (DER)  

Science Conference Proceedings (OSTI)

This report summarizes the March 2010 Smart Grid demonstration meeting panel session on approaches for integrating distributed energy resources (DER).

2010-05-04T23:59:59.000Z

2

Smart Grid Distributed Energy Resources (DER) Project Assessment  

Science Conference Proceedings (OSTI)

This report, Smart Grid Distributed Energy Resources (DER) Projects Assessment, develops a methodology and quantitative metrics to evaluate Smart Grid projects related to integrating distributed energy resources (DER) into the grid and market operations, including distributed generation, storage, demand response, and renewables. This project includes a Smart Grid project self-assessment spreadsheet that identifies characteristics important for Smart Grid projects to achieve integration of distributed res...

2009-04-28T23:59:59.000Z

3

Advanced Communication and Control Solutions of Distributed Energy Resources (DER)  

SciTech Connect

This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility need business model and an independent energy aggregator-business model. The approach of developing two group models of DER energy participation in the market is unique. The Detroit Edison (DECo, Utility)-led team includes: DTE Energy Technologies (Dtech, DER provider), Electrical Distribution Design (EDD, Virginia Tech company supporting EPRI’s Distribution Engineering Workstation, DEW), Systems Integration Specialists Company (SISCO, economic scheduling and real-time protocol integrator), and OSIsoft (PI software system for managing real-time information). This team is focused on developing the application engineering, including software systems necessary for DER’s integration, control and sale into the market place. Phase II Highlights Installed and tested an ICCP link with SSL (security) between DECo, the utility, and DTE Energy Technologies (DTECH), the aggregator, making DER data available to the utility for both monitoring and control. Installed and tested PI process book with circuit & DER operational models for DECo SOC/ROC operator’s use for monitoring of both utility circuit and customer DER parameters. The PI Process Book models also included DER control for the DECo SOC/ROC operators, which was tested and demonstrated control. The DER Tagging and Operating Procedures were developed, which allowed that control to be done in a safe manner, were modified for required MOC/MISO notification procedures. The Distribution Engineering Workstation (DEW) was modified to include temperature normalized load research statistics, using a 30 hour day-ahead weather feed. This allowed day-ahead forecasting of the customer load profile and the entire circuit to determine overload and low voltage problems. This forecast at the point of common coupling was passed to DTech DR SOC for use in their economic dispatch algorithm. Standard Work Instructions were developed for DER notification, sale, and operation into the MISO market. A software mechanism consisting of a suite of new and revised functionality was developed that integrated with the local ISO such that offe

Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

2007-01-10T23:59:59.000Z

4

Assessment of (mu)grid distributed energy resource potential using DER-CAM and GIS  

E-Print Network (OSTI)

of Customer Adoption of Distributed Energy Resources. ”Assessment of µGrid Distributed Energy Potential Using DER-Assessment of µGrid Distributed Energy Resource Potential

Edwards, Jennifer L.; Marnay, Chris; Bartholomew, Emily; Ouaglal, Boubekeur; Siddiqui, Afzal S.; LaCommare, Kristina S.H.

2002-01-01T23:59:59.000Z

5

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

1 2. Distributed Energy Resources Customer AdoptionPublic Utilities Commission DER Distributed Energy ResourcesDER-CAM Distributed Energy Resources Customer Adoption Model

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

6

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)  

E-Print Network (OSTI)

Solutions ??????????? Grants? FERC? iv ?Distributed Energy??????????????? ??????????(FERC) ????????????????????DER ????????????????????????????????FERC, the New York State Public

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

7

Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.  

SciTech Connect

The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

Poore, WP

2003-07-09T23:59:59.000Z

8

Role for Distributed Energy Resources (DER) in the Digital Economy  

SciTech Connect

A large, and growing, part of the Nation's economy either serves or depends upon the information technology industry. These high-tech or "digital" enterprises are characterized by a dependence on electronic devices, need for completely reliable power supply, and intolerance to any power quality problems. In some cases these enterprises are densely populated with electronic loads and have very high energy usage per square foot. Serving these enterprises presents both electric power and equipment cooling challenges. Traditional electric utilities are often hard-pressed to deliver power that meets the stringent requirements of digital customers, and the economic and social consequences of a service quality or reliability problem can be large. New energy delivery and control options must be developed to effectively serve a digital economy. This report explores how distributed energy resources, partnerships between utility and customer to share the responsibility for service quality, innovative facility designs, higher energy efficiencies and waste-heat utilization can be coupled to meet the needs of a growing digital economy.

Key, Thomas S [Electric Power Research Institute (EPRI)

2007-11-01T23:59:59.000Z

9

On the Law of Distribution of Energy in the Normal Spectrum Annalen der Physik, vol. 4, p. 553 ff (1901)  

E-Print Network (OSTI)

On the Law of Distribution of Energy in the Normal Spectrum Max Planck Annalen der Physik, vol. 4 at Kyoto University (ando@kuchem.kyoto-u.ac.jp). #12;On the Law of Distribution of Energy in the Normal confirmed an earlier result obtained by H. Beck- mann3 , show that the law of energy distribution

Moeck, Peter

10

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

establish a database of energy tariffs, DER technology costdata in the literature. Energy tariffs in Japan and the U.S.DER technologies, Japanese energy tariffs, and prototypical

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

11

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)  

DOE Green Energy (OSTI)

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

12

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)  

SciTech Connect

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

13

A Framework for Developing Collaborative DER Programs: Working Tools for Stakeholders: Report of the E2I Distributed Energy Resource s Public/Private Partnership  

Science Conference Proceedings (OSTI)

The electricity system of the future will have greater reliability, security, and customer flexibility thanks, in part, to distributed energy resources (DER) integrated throughout the system. DER in the form of innovative technologies for power generation, storage, and demand response will be located near the point of use to meet specific customer needs and support the electricity delivery system. While the vision of the future electricity infrastructure is broadly shared, the pathway to the future is no...

2004-08-19T23:59:59.000Z

14

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources and Combined Heat and Power Distributed energy resources (DER) and combined heat and power (CHP) systems help Federal agencies meet increased demand,...

15

Assessment of (mu)grid distributed energy resource potential using DER-CAM and GIS  

E-Print Network (OSTI)

DER may take the form of microgrids (µGrids), where multiplethe development of microgrids (µGrids), in which multiple

Edwards, Jennifer L.; Marnay, Chris; Bartholomew, Emily; Ouaglal, Boubekeur; Siddiqui, Afzal S.; LaCommare, Kristina S.H.

2002-01-01T23:59:59.000Z

16

Assessment of (mu)grid distributed energy resource potential using DER-CAM and GIS  

E-Print Network (OSTI)

6 p ($/kW) Regulated tariff for energy purchases during hourtariff customer charge for gas ($) Distributed Energyenergy- purchase scenarios: the SDG&E time-of-use (TOU) tariff

Edwards, Jennifer L.; Marnay, Chris; Bartholomew, Emily; Ouaglal, Boubekeur; Siddiqui, Afzal S.; LaCommare, Kristina S.H.

2002-01-01T23:59:59.000Z

17

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

SciTech Connect

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectivel

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

18

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

DOE Green Energy (OSTI)

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

19

Distributed Energy Resources Market Diffusion Model  

E-Print Network (OSTI)

8] Energy Efficiency Standards Group. (2005) Tariff Analysistariffs and DER technology cost and performance data to run the Distributed Energy

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui, Afzal S.

2006-01-01T23:59:59.000Z

20

Evaluation of Distribution Analysis Software for DER Applications  

DOE Green Energy (OSTI)

The term ''Distributed energy resources'' or DER refers to a variety of compact, mostly self-contained power-generating technologies that can be combined with energy management and storage systems and used to improve the operation of the electricity distribution system, whether or not those technologies are connected to an electricity grid. Implementing DER can be as simple as installing a small electric generator to provide backup power at an electricity consumer's site. Or it can be a more complex system, highly integrated with the electricity grid and consisting of electricity generation, energy storage, and power management systems. DER devices provide opportunities for greater local control of electricity delivery and consumption. They also enable more efficient utilization of waste heat in combined cooling, heating and power (CHP) applications--boosting efficiency and lowering emissions. CHP systems can provide electricity, heat and hot water for industrial processes, space heating and cooling, refrigeration, and humidity control to improve indoor air quality. DER technologies are playing an increasingly important role in the nation's energy portfolio. They can be used to meet base load power, peaking power, backup power, remote power, power quality, as well as cooling and heating needs. DER systems, ranging in size and capacity from a few kilowatts up to 50 MW, can include a number of technologies (e.g., supply-side and demand-side) that can be located at or near the location where the energy is used. Information pertaining to DER technologies, application solutions, successful installations, etc., can be found at the U.S. Department of Energy's DER Internet site [1]. Market forces in the restructured electricity markets are making DER, both more common and more active in the distribution systems throughout the US [2]. If DER devices can be made even more competitive with central generation sources this trend will become unstoppable. In response, energy providers will be forced to both fully acknowledge the trend and plan for accommodating DER [3]. With bureaucratic barriers [4], lack of time/resources, tariffs, etc. still seen in certain regions of the country, changes still need to be made. Given continued technical advances in DER, the time is fast approaching when the industry, nation-wide, must not only accept DER freely but also provide or review in-depth technical assessments of how DER should be integrated into and managed throughout the distribution system. Characterization studies are needed to fully understand how both the utility system and DER devices themselves will respond to all reasonable events (e.g., grid disturbances, faults, rapid growth, diverse and multiple DER systems, large reactive loads). Some of this work has already begun as it relates to operation and control of DER [5] and microturbine performance characterization [6,7]. One of the most urgently needed tools that can provide these types of analyses is a distribution network analysis program in combination with models for various DER. Together, they can be used for (1) analyzing DER placement in distribution networks and (2) helping to ensure that adequate transmission reliability is maintained. Surveys of the market show products that represent a partial match to these needs; specifically, software that has been developed to plan electrical distribution systems and analyze reliability (in a near total absence of DER). The first part of this study (Sections 2 and 3 of the report) looks at a number of these software programs and provides both summary descriptions and comparisons. The second part of this study (Section 4 of the report) considers the suitability of these analysis tools for DER studies. It considers steady state modeling and assessment work performed by ORNL using one commercially available tool on feeder data provided by a southern utility. Appendix A provides a technical report on the results of this modeling effort.

Staunton, RH

2003-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The urban design of distributed energy resources  

E-Print Network (OSTI)

Distributed energy resources (DERs) are a considerable research focus for cities to reach emissions reduction goals and meet growing energy demand. DERs, consisting of local power plants and distribution infrastructure, ...

Sheehan, Travis (Travis P.)

2012-01-01T23:59:59.000Z

22

2012 SG Peer Review - Enhanced DMS Capabilities Supporting Distribution Network DER - Tristan Glenwright, Boeing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DE-OE0000549: Enhanced Distribution Management System Capabilities Supporting Distribution Network Distributed Energy Resources Tristan E. Glenwright The Boeing Company June 8, 2012 Copyright © 2012 Boeing. All rights reserved. December 2008 DE-OE0000549 Enhanced Distribution Management System Capabilities Supporting Distribution Network Distributed Energy Resources Objective Life-cycle Funding Summary ($K) Technical Scope 1. Determine thresholds of Distributed Energy Resource (DER) penetration in distribution grids that drive significant impacts to network stability and reliability 2. Validate ability of Boeing Distribution Management System (BDMS) advanced controls to mitigate effects of increased DER and to leverage DER and DR for SAIDI and Load Factor

23

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

up by a DER system. Distributed Energy Resources at NavalFebruary 2003. “Distributed Energy Resources in Practice: ARyan. January 2004. “Distributed Energy Resources Customer

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

24

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

in Japanese Prototype Buildings: A DER-CAM AnalysisPolicy, Tariff Design, Building Energy Use, and Technologyin Japanese Prototype Buildings: English Version Preface

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

25

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

Hospital Hotel Retail Sports Figure 71: Total Annual EnergyHotel Retail Figure 67: 5,000 m 2 Building Total Annual Energy$) energy cost(k$) DER with CHP Office Hospital Hotel Retail

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

26

Environmental Energy Technologies Division An Evaluation Framework for DER  

E-Print Network (OSTI)

Commare research supported by the Distributed Energy Program of the U.S. Dept of Energy (and the California Energy1 Environmental Energy Technologies Division An Evaluation Framework for DER talk presented Commission) #12;2 Environmental Energy Technologies Division Outline I. Introduction II. Benefits Taxonomy

27

Benefits Quantification and Strategic Implications of Distributed Energy Resources to Distribution Companies: 2004 Update  

Science Conference Proceedings (OSTI)

Distributed energy resources (DER) have the potential to become a major factor in the evolving competitive electric power industry. Utilities need a plan and rationale to address DER. DER has the potential to lower electric distribution company revenue and profits, but, on the plus side, DER has the promise to be a more cost-effective way of serving some distribution system needs. Ideally, distribution companies would be able to develop business strategies that integrate DER into their overall business s...

2004-12-21T23:59:59.000Z

28

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

Incentives.23 3.5.1.1 CPUC . 23 3.5.1.2 New York State Funding for EnergyEnergy Regulatory Committee (FERC) regulations, individual states determine incentivesstate and local jurisdiction on incentives may include rebates on DER project costs, energy

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

29

DER-CAM  

NLE Websites -- All DOE Office Websites (Extended Search)

DER-CAM The Distributed Energy Resources Customer Adoption Model (DER-CAM) is a techno-economic model of customer DER adoption. Users input market information (fuel prices), system...

30

Definition: Distributed Energy Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Dictionary.png Distributed Energy Resource A device that produces electricity, and is connected to the electrical system, either "behind the meter" in the customer's premise, or on the utility's primary distribution system. A Distributed Energy Resource (DER) can utilize a variety of energy inputs including, but not limited to, liquid petroleum fuels, biofuels, natural gas, solar, wind, and geothermal. Electricity storage devices can also be classified as DERs.[1] Also Known As DER Related Terms energy, biofuels, electricity storage technologies, system, electricity generation References ↑ https://www.smartgrid.gov/category/technology/distributed_energy_resource [[Categ LikeLike UnlikeLike You like this.Sign Up to see what your friends like.

31

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Electricity generated by distributed energy resources (DER)Energy, Office of Distributed Energy of the US Department ofdefined names including distributed energy resources (DER),

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

32

Global Challenges Ringvorlesung Die Zukunft der Energie kologisch, konomische und  

E-Print Network (OSTI)

.t. Es spricht Herr Prof. Dr. W. Behmenburg Heinrich-Heine-Universität Düsseldorf über: " Erneuerbare Energie für eine Weltbevölkerung mit schnell wachsendem Energiebedarf. Die da- raus resultierenden, der Thema der diesjährigen Fach- sitzungen des Arbeitskreises Energie der Deutschen Physikalischen Ge

Reggelin, Michael

33

Agent-Based Control Framework for Distributed Energy Resources Microgrids  

Science Conference Proceedings (OSTI)

Distributed energy resources (DERs) provide many benefits for the electricity users and utilities. However, the electricity distribution system traditionally was not designed to accommodate active power generation and storage at the distribution level. ...

Zhenhua Jiang

2006-12-01T23:59:59.000Z

34

Architecture Reference Design for Distributed Energy Resource Integration  

Science Conference Proceedings (OSTI)

The integration of significant distributed energy resources (DER) highlights the complexities of the smart grid. A DER system encapsulates most of the operational issues of the larger grid but often with smaller timelines for action. In addition, as the level of DER grows in a system, opportunities for localized problems to escalate into larger system issues also increase. This effort develops guidelines for deploying technology and systems that meet emerging requirements for DER communication and contro...

2010-04-30T23:59:59.000Z

35

Ris Energy Report 4 Distributed generation 1 What is distributed generation?  

E-Print Network (OSTI)

Risø Energy Report 4 Distributed generation 1 5 What is distributed generation? Distributed as distributed energy resources (DERs). It appears that there is no consensus on precise defi- nitions of DG. Wind energy is presently the fastest growing and largest contributor to distributed genera- tion from

36

Distributed Energy Resources Market Diffusion Model  

SciTech Connect

Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase DER adoption, and thus, shift building energy consumption to a more efficient alternative.

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

2006-06-16T23:59:59.000Z

37

Distributed Energy Resources Market Diffusion Model  

SciTech Connect

Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase DER adoption, and thus, shift building energy consumption to a more efficient alternative.

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

2006-06-16T23:59:59.000Z

38

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

of investment New Power Generation/Distribution EnterprisesDG Distributed Generation Disco distribution company DOEof fuel) Electricity generation, transmission, distribution

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

39

Distributed Energy Resources at Naval Base Ventura County Building 1512  

E-Print Network (OSTI)

LBNL-55340 Distributed Energy Resources at Naval Base Ventura County Building 1512 Prepared, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Distributed Energy Resources and the Distributed Energy Program of DOE also provided prior funding to develop and validate the DER-CAM model

40

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

Potential for Distributed Generation in Japanese PrototypePotential for Distributed Generation in Japanese PrototypePotential for Distributed Generation in Japanese Prototype

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Creating Incentives for Electricity Providers to Integrate Distributed Energy Resources  

Science Conference Proceedings (OSTI)

Most distributed energy resources (DER) are customer owned in the United States, and, largely because of the lack of scaleable business models and/or regulatory drivers, utility interest in DER remains limited. This project created customer- as well as utility-owned business models and regulatory approaches to encourage DER integration, along with a set of economic calculators to test these models with various technologies.

2007-11-30T23:59:59.000Z

42

Distributed Energy Resources Emissions Survey and Technology Characterization  

Science Conference Proceedings (OSTI)

This report characterizes emissions of gaseous and particulate pollutants from distributed energy resources (DER) technologies. Emissions profiles are provided for currently available equipment as well as for equipment expected to be commercially available by the year 2030. These profiles can be used to compare and evaluate DER technologies and can be used to develop emissions inventories for air quality modeling.

2004-11-03T23:59:59.000Z

43

Distributed Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems. Distributed energy offers solutions to many of the nation's most pressing energy and electric power problems, including blackouts and brownouts, energy security concerns, power quality issues, tighter emissions standards, transmission bottlenecks, and the desire for greater control over energy costs.

44

LBNL -50132 Assessment of Grid Distributed Energy Resource Potential  

E-Print Network (OSTI)

LBNL -50132 Assessment of µGrid Distributed Energy Resource Potential Using DER-CAM and GIS of Energy under Contract No. DE-AC03-76SF00098. #12;#12;Assessment of µGrid Distributed Energy Potential Road, MS 90-4000 Berkeley CA 94720-8061 *Renewable and Appropriate Energy Laboratory University

45

Enterprise Integration Functions for Distributed Energy Resources: Phase 1  

Science Conference Proceedings (OSTI)

Since 2012, the Electric Power Research Institute (EPRI) has facilitated a focus group of industry experts working to develop standard functions for enterprise integration of distributed energy resources (DER). The activity is aimed at advancing industry efforts to bring inverter-connected distributed energy storage and generation into use as a grid resource. This report presents the results of the first phase of developments by this work group, addressing DER management in aggregate groups, ...

2013-12-23T23:59:59.000Z

46

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network (OSTI)

2003, Integration of Distributed Energy Resources: The CERTSUsing (DER): Distributed Energy Resources, paper presentedsmall-scale (distributed energy resources (DER) into

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

47

Best Practices Guidebook for Integration of Distributed Energy Resources Into Utility System Planning  

Science Conference Proceedings (OSTI)

DTE Energy's real-world experience in applying Distributed Energy Resources (DER) has yielded a number of important lessons, explained in greater detail in this guidebook. The guidebook is designed to help distribution organizations 1) evaluate DER as a potential solution to distribution system capacity shortfalls and 2) implement cost-effective DER installations that enhance system reliability and improve customer service. Following are key points of the lessons learned: Real management support is essen...

2006-02-13T23:59:59.000Z

48

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

Agency FC fuel cell FERC Federal Energy Regulatory CommitteeEnergy Regulatory Committee (FERC) regulations, individualorganizations contacted included FERC, the New York State

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

49

Smart Distribution Applications for Distributed Energy Resources: Distribution Management System Use Cases  

Science Conference Proceedings (OSTI)

Technology advancements in solar photovoltaic and battery storage have driven sharp increases in their deployment by utilities, consumers, and third parties. Distributed energy resources (DERs), such as solar photovoltaic and battery storage, are often connected to the grid with a smart inverter at the distribution level, and distribution operational require¬ments are being greatly impacted by their presence. Smart inverters have advanced message processing and fast power control ...

2013-12-22T23:59:59.000Z

50

Optimal investment and scheduling of distributed energy resources with  

NLE Websites -- All DOE Office Websites (Extended Search)

investment and scheduling of distributed energy resources with investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules Title Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules Publication Type Journal Article LBNL Report Number LBNL-6471E Year of Publication 2013 Authors Cardoso, Gonçalo, Michael Stadler, Mohammad Bozchalui, Ratnesh Sharma, Chris Marnay, Ana Barbosa-Póvoa, and Paulo Ferrão Journal Energy Date Published 10/2013 Abstract The large scale penetration of electric vehicles (EVs) will introduce technical challenges to the distribution grid, but also carries the potential for vehicle-to-grid services. Namely, if available in large enough numbers, EVs can be used as a distributed energy resource (DER) and their presence can influence optimal DER investment and scheduling decisions in microgrids. In this work, a novel EV fleet aggregator model is introduced in a stochastic formulation of DER-CAM [1], an optimization tool used to address DER investment and scheduling problems. This is used to assess the impact of EV interconnections on optimal DER solutions considering uncertainty in EV driving schedules. Optimization results indicate that EVs can have a significant impact on DER investments, particularly if considering short payback periods. Furthermore, results suggest that uncertainty in driving schedules carries little significance to total energy costs, which is corroborated by results obtained using the stochastic formulation of the problem.

51

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

21h-22h Summer months Electricity Rate Structure GuaranteedElectricity II Hour Electricity Rates Structure Energy22h 00h-08h, 22h-24h Electricity rates vary by season and by

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

52

Collaborative Broker for Distributed Energy Resources Joo Carlos Ferreira1  

E-Print Network (OSTI)

a system to support DER (Distributed Energy Resources) energy exchange, define local prices and coordinate and source (e.g., hydropower, wind power, photovoltaic, etc); (4) energy prices; and (5) weather information, weekly, monthly and annual energy expenses, price variation of electricity, charging periods, among

da Silva, Alberto Rodrigues

53

An Analysis of the DER Adoption Climate in Japan Using Optimization Results for Prototype Buildings with U.S. Comparisons  

E-Print Network (OSTI)

and M. Stadler, Distributed Energy Resources in Practice: AEnergy Reliability, Distributed Energy Program of the U.S.economically optimal distributed energy resource (DER)

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2006-01-01T23:59:59.000Z

54

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

that accompany different distributed energy resources (DER),is modeled by the Distributed Energy Resources Customerand valued for their distributed energy storage capabilities

Momber, Ilan

2010-01-01T23:59:59.000Z

55

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network (OSTI)

DA) tariff DER Install Tariffs Energy and Demand Gas pricesCapital cost O&M cost Tariff Energy charge ($/kWh) DemandTariff .53 iv Distributed Energy

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

56

Quantitative Assessment of Distributed Energy Resource Benefits  

Science Conference Proceedings (OSTI)

Distributed energy resources (DER) offer many benefits, some of which are readily quantified. Other benefits, however, are less easily quantifiable because they may require site-specific information about the DER project or analysis of the electrical system to which the DER is connected. The purpose of this study is to provide analytical insight into several of the more difficult calculations, using the PJM power pool as an example. This power pool contains most of Pennsylvania, New Jersey, Maryland, and Delaware. The techniques used here could be applied elsewhere, and the insights from this work may encourage various stakeholders to more actively pursue DER markets or to reduce obstacles that prevent the full realization of its benefits. This report describes methodologies used to quantify each of the benefits listed in Table ES-1. These methodologies include bulk power pool analyses, regional and national marginal cost evaluations, as well as a more traditional cost-benefit approach for DER owners. The methodologies cannot however determine which stakeholder will receive the benefits; that must be determined by regulators and legislators, and can vary from one location to another.

Hadley, S.W.

2003-05-22T23:59:59.000Z

57

2012 Grid Strategy: Distribution Management System (DMS) Advanced Applications for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

This report provides an overview of the management systems and the advanced applications that utilities in the Electric Power Research Institute’s (EPRI’s) multi-year Smart Grid Demonstration Initiative are using or plan to use to manage the distribution system and to monitor and control distributed energy resources (DER). The management systems covered in this report are the distribution management system (DMS), the distributed energy resource management system (DERMS), and the demand ...

2012-10-10T23:59:59.000Z

58

Using Aggregated Distributed Energy Resources for Economic Dispatch to an Independent System Operator  

Science Conference Proceedings (OSTI)

Utility distribution companies and other organizations have been interested in the potential of aggregating electricity generated by distributed energy resources (DER) and selling the power to the wholesale market during periods of peak system demand for a number of years. A few pilot projects have been undertaken, but this type of DER application is uncommon. This project is one of several underway in EPRI's program to help identify and quantify the potential value and business case of DER. Also work in...

2007-03-30T23:59:59.000Z

59

Using Aggregated Distributed Energy Resources for Economic Dispatch to an Independent System Operator 2007 Update  

Science Conference Proceedings (OSTI)

Utility distribution companies and other organizations are interested in the potential of aggregating electricity generated by distributed energy resources (DER) and selling the power to the wholesale market during periods of peak system demand for a number of years. A few pilot projects have been undertaken, but this type of DER application remains uncommon. This project is one of several underway in EPRI's program to help identify and quantify the potential value and business case of DER. This report u...

2008-02-28T23:59:59.000Z

60

A van der Waals free energy in electrolytes revisited  

E-Print Network (OSTI)

A system of three electrolytes separated by two parallel planes is considered. Each region is described by a dielectric constant and a Coulomb fluid in the Debye-H\\"uckel regime. In their book Dispersion Forces, Mahanty and Ninham have given the van der Waals free energy of this system. We rederive this free energy by a different method, using linear response theory and the electrostatic Maxwell stress tensor for obtaining the dispersion force.

B. Jancovici

2005-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Distributed Energy Resources Integration in the Smart Grid Demonstration Project  

Science Conference Proceedings (OSTI)

In an effort to answer some of the basic system architecture questions posed by members, EPRI undertook a survey to find, among members that have smart grid demonstration projects, what the basic system architecture strategy was and basic concerns that may have architectural implications for their Distributed Energy Resource (DER) deployments. To that end, a longitudinal survey was designed to determine the basic demographics of the community, e.g. number of DER devices being deployed, the basic ...

2012-11-14T23:59:59.000Z

62

Validated modeling of distributed energy resources at distribution voltages : LDRD project 38672.  

SciTech Connect

A significant barrier to the deployment of distributed energy resources (DER) onto the power grid is uncertainty on the part of utility engineers regarding impacts of DER on their distribution systems. Because of the many possible combinations of DER and local power system characteristics, these impacts can most effectively be studied by computer simulation. The goal of this LDRD project was to develop and experimentally validate models of transient and steady state source behavior for incorporation into utility distribution analysis tools. Development of these models had not been prioritized either by the distributed-generation industry or by the inverter industry. A functioning model of a selected inverter-based DER was developed in collaboration with both the manufacturer and industrial power systems analysts. The model was written in the PSCAD simulation language, a variant of the ElectroMagnetic Transients Program (EMTP), a code that is widely used and accepted by utilities. A stakeholder team was formed and a methodology was established to address the problem. A list of detailed DER/utility interaction concerns was developed and prioritized. The list indicated that the scope of the problem significantly exceeded resources available for this LDRD project. As this work progresses under separate funding, the model will be refined and experimentally validated. It will then be incorporated in utility distribution analysis tools and used to study a variety of DER issues. The key next step will be design of the validation experiments.

Ralph, Mark E.; Ginn, Jerry W.

2004-03-01T23:59:59.000Z

63

Evaluation Framework and Tools for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The Energy Information Administration's (EIA) 2002 Annual Energy Outlook (AEO) forecast anticipates the need for 375 MW of new generating capacity (or about one new power plant) per week for the next 20 years, most of which is forecast to be fueled by natural gas. The Distributed Energy and Electric Reliability Program (DEER) of the Department of Energy (DOE), has set a national goal for DER to capture 20 percent of new electric generation capacity additions by 2020 (Office of Energy Efficiency and Renewable Energy 2000). Cumulatively, this amounts to about 40 GW of DER capacity additions from 2000-2020. Figure ES-1 below compares the EIA forecast and DEER's assumed goal for new DER by 2020 while applying the same definition of DER to both. This figure illustrates that the EIA forecast is consistent with the overall DEER DER goal. For the purposes of this study, Berkeley Lab needed a target level of small-scale DER penetration upon which to hinge consideration of benefits and costs. Because the AEO2002 forecasted only 3.1 GW of cumulative additions from small-scale DER in the residential and commercial sectors, another approach was needed to estimate the small-scale DER target. The focus here is on small-scale DER technologies under 500 kW. The technology size limit is somewhat arbitrary, but the key results of interest are marginal additional costs and benefits around an assumed level of penetration that existing programs might achieve. Berkeley Lab assumes that small-scale DER has the same growth potential as large scale DER in AEO2002, about 38 GW. This assumption makes the small-scale goal equivalent to 380,000 DER units of average size 100 kW. This report lays out a framework whereby the consequences of meeting this goal might be estimated and tallied up. The framework is built around a list of major benefits and a set of tools that might be applied to estimate them. This study lists some of the major effects of an emerging paradigm shift away from central station power and towards a more dispersed and heterogeneous power system. Seventeen societal effects of small-scale DER are briefly summarized. Each effect is rated as high, medium or low, on three different scales that will help determine the optimal social investment. The three scales are: the magnitude of the economic benefit; the likelihood that the benefit can be monetized in efficient markets, i.e. internalized; and how tractable it might be to quantify each benefit analytically. Some of the modeling tools that may be used to estimate these effects are described in the Appendix.

Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay , Chris

2003-02-01T23:59:59.000Z

64

Cooperatives of distributed energy resources for efficient virtual power plants  

Science Conference Proceedings (OSTI)

The creation of Virtual Power Plants (VPPs) has been suggested in recent years as the means for achieving the cost-efficient integration of the many distributed energy resources (DERs) that are starting to emerge in the electricity network. In this work, ... Keywords: coalition formation, energy and emissions, incentives for cooperation, simulation

Georgios Chalkiadakis; Valentin Robu; Ramachandra Kota; Alex Rogers; Nicholas R. Jennings

2011-05-01T23:59:59.000Z

65

Assessment of Distributed Generation Potential in Japanese Buildings  

E-Print Network (OSTI)

RMFirestone@lbl.gov Keywords distributed energy resources,technologies into distributed energy resource (DER) sys-zation program, the Distributed Energy Resources Custom- er

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2005-01-01T23:59:59.000Z

66

The Effect of Distributed Energy Resource Competition with Central Generation  

Science Conference Proceedings (OSTI)

Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

Hadley, SW

2003-12-10T23:59:59.000Z

67

High Technology and Biotechnology Customers and Distributed Energy Resources: Can Energy Parks and Other Distributed Energy Resource s Services Meet Their Needs?  

Science Conference Proceedings (OSTI)

How to attract customers in the growth sectors of the economy? That's a question nearly all utilities face. This report examines how two sectors -- high technology and biotechnology (HBT) -- view energy, specifically distributed energy resources (DER) and the concept of energy parks.

2004-01-30T23:59:59.000Z

68

Networked control of distributed energy resources: application to solid oxide fuel cells  

Science Conference Proceedings (OSTI)

This paper presents a model-based networked control approach for managing Distributed Energy Resources (DERs) over communication networks. As a model system, we consider a solid oxide fuel cell (SOFC) plant that communicates with the central controller ...

Yulei Sun; Sathyendra Ghantasala; Nael H. El-Farra

2009-06-01T23:59:59.000Z

69

Advanced Communication and Control of Distributed Energy Resources at Detroit Edison  

DOE Green Energy (OSTI)

The project objective was to create the communication and control system, the process and the economic procedures that will allow owners (e.g., residential, commercial, industrial, manufacturing, etc.) of Distributed Energy Resources (DER) connected in parallel to the electric distribution to have their resources operated in a manner that protects the electric utility distribution network and personnel that may be working on the network. The Distribution Engineering Workstation (DEW) (a power flow and short circuit modeling tool) was modified to calculate the real-time characteristics of the distribution network based on the real-time electric distribution network information and provide DER operating suggestions to the Detroit Edison system operators so that regional electric stability is maintained. Part of the suggestion algorithm takes into account the operational availability of DER’s, which is known by the Energy Aggregator, DTE Energy Technologies. The availability information will be exchanged from DTE Energy Technologies to Detroit Edison. For the calculated suggestions to be used by the Detroit Edison operators, procedures were developed to allow an operator to operate a DER by requesting operation of the DER through DTE Energy Technologies. Prior to issuing control of a DER, the safety of the distribution network and personnel needs to be taken into account. This information will be exchanged from Detroit Edison to DTE Energy Technologies. Once it is safe to control the DER, DTE Energy Technologies will issue the control signal. The real-time monitoring of the DECo system will reflect the DER control. Multi-vendor DER technologies’ representing approximately 4 MW of capacity was monitored and controlled using a web-based communication path. The DER technologies included are a photovoltaic system, energy storage, fuel cells and natural gas/diesel internal combustion engine generators. This report documents Phase I result for the Detroit Edison (Utility) led team, which also includes: DTE Energy Technology (DER provider & Aggregator), Electrical Distribution Design (Virginia Tech company supporting DEW); Systems Integration Specialists Company (real-time protocol integrator); and OSIsoft (software system for managing real-time information). This work was performed in anticipation of being selected for Phase II of the Advanced Communication and Control of Distributed Energy Resources project.

Haukur Asgeirsson; Richard Seguin

2004-01-31T23:59:59.000Z

70

Integration of distributed energy resources. The CERTS Microgrid Concept  

DOE Green Energy (OSTI)

Evolutionary changes in the regulatory and operational climate of traditional electric utilities and the emergence of smaller generating systems such as microturbines have opened new opportunities for on-site power generation by electricity users. In this context, distributed energy resources (DER)--small power generators typically located at users' sites where the energy (both electric and thermal) they generate is used--have emerged as a promising option to meet growing customer needs for electric power with an emphasis on reliability and power quality. The portfolio of DER includes generators, energy storage, load control, and, for certain classes of systems, advanced power electronic interfaces between the generators and the bulk power provider. This white paper proposes that the significant potential of smaller DER to meet customers' and utilities' needs can be best captured by organizing these resources into MicroGrids.

Lasseter, Robert; Akhil, Abbas; Marnay, Chris; Stephens, John; Dagle, Jeff; Guttromsom, Ross; Meliopoulous, A. Sakis; Yinger, Robert; Eto, Joe

2002-04-01T23:59:59.000Z

71

Distributed Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

Distributed Energy Calculator Distributed Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Energy Calculator Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website: distributedenergycalculator.com/ OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. You can upload Green Button Data to compare your utility energy costs to

72

Distributed Energy Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

73

Integrating Distributed Energy Resources into Emerging Electricity Markets: Scoping Study: Report of the E2I Distributed Energy Reso urces Public/Private Partnership  

Science Conference Proceedings (OSTI)

Distributed energy resources (DER) have the potential to significantly transform the relationship of utilities and customers by introducing a much richer set of tools for providing not only power, but also reliability, security, flexibility, and power quality in energy systems. However, deployment of DER has lagged far behind expectations. One of the most significant barriers is the manner in which the electricity industry has been built and historically operated -- to suit customer needs under a heavily...

2004-08-10T23:59:59.000Z

74

Smart Distribution Applications for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

P180.014 Smart Distribution Applications for Distributed Energy Resources (070625)The factors listed below all support the proliferation of Distributed Generating (DG) units in electric utility systems. The growing rate of DG deployment suggests that alternative energy-based solutions play an increasingly important role in the smart grid and modern utility.Deregulation of the electric utility industry in some countriesEnvironmental ...

2013-08-16T23:59:59.000Z

75

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Resources and Combined Heat and Power to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resources and Combined Heat and Power on...

76

Federal Energy Management Program: Distributed Energy Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Basics to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resource Basics on Facebook Tweet about Federal Energy Management Program:...

77

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Distributed Generation with Heat Recovery and Storage ‡energy resources (DER), distributed generation (DG), andload of Figure 2. distributed generation of part or all of

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

78

Optimum Model-E-GAMS for Distributed Energy System by using GAMS Method  

E-Print Network (OSTI)

LBNL-57983 Optimum Model-E-GAMS for Distributed Energy System by using GAMS Method Yongwen Yang by the Office of Electricity Delivery and Energy Reliability, Distributed Energy Program of the U.S. Department Model DER-CAM GAMS 2GAMS GAMS 2 (general) (algebraic) (modeling system) FORTRAN DOfor for

79

Modeling of customer adoption of distributed energy resources  

SciTech Connect

This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible example California {mu}Grid for use in this study and in future work. The work performed during this year demonstrates the viability of DER-CAM and of our approach to analyzing adoption of DER.

Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

2001-08-01T23:59:59.000Z

80

Modeling of customer adoption of distributed energy resources  

SciTech Connect

This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible example California {mu}Grid for use in this study and in future work. The work performed during this year demonstrates the viability of DER-CAM and of our approach to analyzing adoption of DER.

Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Control and Protection of Multi-DER Microgrids.  

E-Print Network (OSTI)

??This dissertation proposes a power management and control strategy for islanded microgrids, which consist of multiple electronically-interfaced distributed energy resource (DER) units, to achieve a… (more)

Etemadi, Amir Hossein

2012-01-01T23:59:59.000Z

82

Tools, Methods, and Modeling for Dynamic Distribution Systems, Power Factor Guidelines: Power Control with Distributed Energy Resources  

Science Conference Proceedings (OSTI)

With the onset in the past few years of tax incentives, subsidies, and renewable portfolio standards for distributed energy resources (DER), utilities are experiencing increasing numbers of interconnection requests for both large, MW-class systems as well as small, residential-scale systems. As a result, utilities need methods for integrating DER without impacting system reliability or power quality for other customers, while also maintaining flexibility for future changes and minimizing ...

2013-12-19T23:59:59.000Z

83

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

and Energy Reliability, Distribution System Integrationand Energy Reliability, Distribution System Integration

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

84

2013 Grid Stategy: Operating the Grid with High Penetration of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

Operating the distribution grid with an increasing amount of distributed energy resources (DER) is an area of focus for the electric utility industry and especially for the utilities within the Electric Power Research Institute’s (EPRI’s) multi-year Smart Grid Demonstration Initiative. This report provides a summary of the challenges and methods to overcome these challenges in planning for and operating the grid as the amount of DER increase and changes over time. In order to better ...

2013-12-23T23:59:59.000Z

85

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

86

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Implementation to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resources and Combined Heat and Power Project Implementation on Facebook...

87

Federal Energy Management Program: Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources and Combined Heat and Power Contacts to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resources and Combined Heat and Power Contacts on...

88

Abstract--A scalable multi-agent paradigm is presented for control of distributed energy resources to achieve higher  

E-Print Network (OSTI)

1 Abstract-- A scalable multi-agent paradigm is presented for control of distributed energy these new distributed energy resources (DER) and providing new ancillary services that can improve or to reduce system operation costs. Power electronics have not only made grid connection of distributed energy

Tolbert, Leon M.

89

VAN DER WAALS DISPERSION FORCE CONTRIBUTION TO THE INTERFACIAL FREE ENERGY  

E-Print Network (OSTI)

VAN DER WAALS DISPERSION FORCE CONTRIBUTION TO THE INTERFACIAL FREE ENERGY OF NEMATIC LIQUID energy of a nematic liquid crystal and the interfacial free energy of a nematic on a glass substrate. Introduction. -- The surface free energy of a nematic liquid crystal and the interfacial free energy of nematic

Paris-Sud XI, Université de

90

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

2003. “Gas-Fired Distributed Energy Resource TechnologyATIONAL L ABORATORY Distributed Energy Resources for CarbonFirestone 5128 Distributed Energy Resources for Carbon

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

91

Distributed Energy Resources Market Diffusion Model  

E-Print Network (OSTI)

International Journal of Distributed Energy Resources, 1 (Gas-Fired Distributed Energy Resources Characterizations.Firestone, R. (2004) Distributed Energy Resources Customer

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui, Afzal S.

2006-01-01T23:59:59.000Z

92

Distributed Wind | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Distributed Wind Jump to: navigation, search Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations.[1] Resources Clean Energy States Alliance. (2010). State-Based Financing Tools to Support Distributed and Community Wind Projects. Accessed September 27, 2013. This guide reviews the financing role that states, and specifically state clean energy funds, have played and can play in supporting community and distributed wind projects. Clean Energy States Alliance. (May 2010). Supporting Onsite Distributed Wind Generation Projects. Accessed September 27, 2013.

93

Large Distributed Energy Resource Options to Alleviate Transmission Constraints  

Science Conference Proceedings (OSTI)

Utility transmission systems require extensive investment for infrastructure upkeep. In addition, load growth requires upgrades to guard against overloading or loss of load. In some situations, an investment in a traditional transmission system upgrade may not be the most economic option. It may be possible to defer the need for an upgrade using distributed energy resources (DER), and in doing so, reduce the economic impact to the utility and its ratepayers. Additional considerations, such as impact on s...

2006-02-15T23:59:59.000Z

94

Smart Grid Reference Guide to Integration of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The smart grid is a vital and comprehensive core element of the modernization of Americas electric delivery system for the 21st century. The EPRI Smart Grid Demonstration Initiative (SGDI) is a seven-year collaborative research effort focused on designing, implementing, and assessing field demonstrations that address prevalent challenges with integrating distributed energy resources (DER) into grid and market operations. With projects first beginning in 2009, 21 collaborating and host utilities have been...

2011-08-30T23:59:59.000Z

95

Energy Storage and Distributed Generation in the Smart Grid: Characterization and Value Analysis  

Science Conference Proceedings (OSTI)

Many utilities are investing in the smart grid. These activities include acquiring the information and enterprise control technology that can communicate, control, and manage end-user loads and distributed energy resources. Smart grid investments are also intended to enable improved use, management, aggregation, and control of distributed energy resource (DER) assets including distributed generation and energy storage systems. However, little research has been conducted to estimate the value and cost of ...

2009-12-03T23:59:59.000Z

96

AMO Industrial Distributed Energy: Information Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

97

Distributed Energy Resources: Current Landscape and a Roadmap for the Future  

Science Conference Proceedings (OSTI)

This white paper is designed to help utilities, regulators, legislators, vendors, and other interested parties understand the current landscape of distributed energy resources (DER) in the United States by providing a benchmark status on technology, markets, applications, and business models that are active in this area. The white paper benchmarks various DER options and provides perspectives on trends, gaps, and critical factors for achieving pathways that will enable contributions to the future electri...

2004-12-16T23:59:59.000Z

98

NREL: Learning - Distributed Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Basics Distributed Energy Basics Photo of transmission towers and lines extending for miles towards a pink sunset in the distance. Distributed energy technologies can relieve transmission bottlenecks by reducing the amount of electricity that must be sent long distances down high-voltage power lines. Distributed energy refers to a variety of small, modular power-generating technologies that can be combined with load management and energy storage systems to improve the quality and/or reliability of the electricity supply. They are "distributed" because they are placed at or near the point of energy consumption, unlike traditional "centralized" systems, where electricity is generated at a remotely located, large-scale power plant and then transmitted down power lines to the consumer.

99

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Firestone, R. (2004), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,”A.S. Siddiqui (2008b), “Distributed Energy Resources On-Site

Stadler, Michael

2010-01-01T23:59:59.000Z

100

Distributed Energy Resources at Naval Base Ventura County Building1512: A Sensitivity Analysis  

Science Conference Proceedings (OSTI)

This report is the second of a two-part study by BerkeleyLab of a DER (distributed energy resources) system at Navy Base VenturaCounty (NBVC). First, a preliminary assessment ofthe cost effectivenessof distributed energy resources at Naval Base Ventura County (NBVC)Building 1512 was conducted in response to the base s request for designassistance to the Federal Energy Management Program (Bailey and Marnay,2004). That report contains a detailed description of the site and theDER-CAM (Consumer Adoption Model) parameters used. This second reportcontains sensitivity analyses of key parameters in the DER system modelof Building 1512 at NBVC and additionally considers the potential forabsorption-powered refrigeration.The prior analysis found that under thecurrent tariffs, and given assumptions about the performance andstructure of building energy loads and available generating technologycharacteristics, installing a 600 kW DER system with absorption coolingand recovery heat capabilities could deliver cost savings of about 14percent, worth $55,000 per year. However, under current conditions, thisstudy also suggested that significant savings could be obtained ifBuilding 1512 changed from its current direct access contract to a SCETOU-8 (Southern California Edison time of use tariff number 8) ratewithout installing a DER system. Evaluated on this tariff, the potentialsavings from installation of a DER system would be about 4 percent of thetotal bill, or $16,000 per year.

Bailey, Owen C.; Marnay, Chris

2005-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Storage and Distributed Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

102

Building Distributed Energy Performance Optimization for China...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization...

103

AMO Industrial Distributed Energy: Clean Energy Application Centers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

104

Asymptotics of the dispersion interaction: analytic benchmarks for van der Waals energy functionals  

E-Print Network (OSTI)

We show that the usual sum of $R^{-6}$ contributions from elements separated by distance $R$ can give \\emph{qualitatively} wrong results for the electromagnetically non-retarded van der Waals interaction between non-overlapping bodies. This occurs for anisotropic nanostructures that have a zero electronic energy gap, such as nanowires, conducting nanotubes, and nano-layered systems including metals and graphene planes. In all these cases our analytic microscopic calculations give an interaction falling off with a power of separation different from the conventional value. We discuss implications for van der Waals energy functionals. The new nanotube interaction might be directly measurable at sub-micron separations.

John F. Dobson; Angela White; Angel Rubio

2005-07-07T23:59:59.000Z

105

Verband der Deutschen Biokraftstoffindustrie VDB | Open Energy Information  

Open Energy Info (EERE)

Verband der Deutschen Biokraftstoffindustrie VDB Verband der Deutschen Biokraftstoffindustrie VDB Jump to: navigation, search Name Verband der Deutschen Biokraftstoffindustrie (VDB) Place Berlin, Germany Zip 10117 Product The association currently represents the interests of 19 members, who have at their disposal almost the entire national biodiesel production capacity in Germany (approx. 1.2m tons in 2004). Coordinates 52.516074°, 13.376987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.516074,"lon":13.376987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Primer on Distributed Energy Resources for Distribution Planning  

Science Conference Proceedings (OSTI)

Many factors -- including restructuring of the electric utility industry and an increased demand for electricity -- are driving the adoption of distributed energy technologies. This primer outlines the potential impacts that distributed generation and energy storage technologies (collectively called distributed energy resources) may have on utility distribution company planning. The primer focuses on distributed generation technologies with a capacity of 500 kW to 5 MW as well as energy storage systems w...

2002-10-09T23:59:59.000Z

107

Efficient thermal energy distribution in commercial buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient thermal energy distribution in commercial buildings -- Final Report Title Efficient thermal energy distribution in commercial buildings -- Final Report Publication Type...

108

Distributed Wind Energy in Idaho  

SciTech Connect

Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

2009-01-31T23:59:59.000Z

109

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

than relying on central-station electricity generation and purchase of natural gas for heating and DER under uncertain electricity and natural gas prices · Section 5 summarizes the findings Control of Distributed Energy Resources and Demand Response under Uncertainty 3 · FPt: wholesale natural

110

Status of the IEEE P1547 Draft Interconnection Standard and Distributed Energy Resources R&D: Preprint  

DOE Green Energy (OSTI)

The Department of Energy (DOE) Distributed Power Program (DPP) is conducting work to complete, validate in the field, and support the development of a national interconnection standard for distributed energy resources (DER), and to address the institutional and regulatory barriers slowing the commercial adoption of DER systems. This work includes support for the IEEE standards, including P1547 Standard for Interconnecting Distributed Resources with Electric Power Systems, P1589 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems, and the P1608 Application Guide. Work is also in progress on system integration research and development (R&D) on the interface and control of DER with local energy systems. Additional efforts are supporting high-reliability power for industry, evaluating innovative concepts for DER applications, and exploring plug-and-play interface and control technologies for intelligent autonomous interconnection systems. This paper summarizes (1) the current status of the IEEE interconnection standards and application guides in support of DER, and (2) the R&D in progress at the National Renewable Energy Laboratory (NREL) for interconnection and system integration and application of distributed energy resources.

Thomas, H. P.; Basso, T. S.; Kroposki, B.

2002-05-01T23:59:59.000Z

111

Distributed Power Program DER Pilot Test at the Nevada Test Site  

SciTech Connect

The DOE Distributed Power Program conducted a pilot test of interconnection test procedures November 12-16, 2001 at Area 25 of the Nevada Test Site (NTS). The objective of this pilot test was to respond to Congressional direction in the Energy and Water Development Appropriations Act of 2001 to complete a distributed power demonstration at the Nevada Test Site and validated interconnection tests in the field. The demonstration consisted of field verification of tests in IEEE P1547 (Draft 7) that are required for interconnection of distributed generation equipment to electrical power systems. Some of the testing has been conducted in a laboratory setting, but the Nevada Test Site provided a location to verify the interconnection tests in the field. The testing also provided valuable information for evaluating the potential for the Nevada Test Site to host future field-testing activities in support of Distributed Energy Resources System Integration R&D.

Kroposki, B.; DeBlasio, R.; Galdo, J.

2002-05-01T23:59:59.000Z

112

Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids  

Science Conference Proceedings (OSTI)

The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

2011-10-10T23:59:59.000Z

113

AMO Industrial Distributed Energy: About Industrial Distributed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

potential to reduce greenhouse gas (GHG) emissions through energy efficiency and fossil fuel displacement by using alternative fuels and capturing waste energy streams Providing...

114

A Universe with a Ghost Dark Energy and van der Waals fluid interacting with a Fluid  

E-Print Network (OSTI)

We consider a model of a Universe with Ghost Dark Energy and van der Waals fluid interacting with a fluid which was born as a result of interaction between original fluid and some other fluid existing in Universe. We suppose that Ghost Dark energy has its contribution to the model by an interaction term $Q$ and we suppose that $Q=3Hb(\\rho_{\\small{tot}}-\\rho_{GDe})$.

Martiros Khurshudyan

2013-01-26T23:59:59.000Z

115

Distributed Energy Resources for Carbon Emissions Mitigation  

DOE Green Energy (OSTI)

The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

116

LBNL -52753 Distributed Energy Resources in Practice  

E-Print Network (OSTI)

LBNL -52753 Distributed Energy Resources in Practice: A Case Study Analysis and Validation of LBNL Energy, Distributed Energy and Electric Reliability Program of the U.S. Department of Energy under-52753 Distributed Energy Resources in Practice: A Case Study Analysis and Validation of LBNL's Customer

117

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

and Renewable Energy, Distributed Energy and ElectricPrepared for the Distributed Energy and Electric Reliabilityand Renewable Energy, Distributed Energy and Electric

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

118

Security issues in distributed energy resources (DER) in smart grid.  

E-Print Network (OSTI)

??One of the main goals of smart grid is to create a decentralized and consumer controlled power system which can increase efficiency, reliability and reduce… (more)

Vyas, Mruga

2011-01-01T23:59:59.000Z

119

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

N. Zhou (2007), “Distributed Generation with Heat RecoveryCO 2 emissions, distributed generation, energy management,1]. Although thermal distributed generation (DG) units are

Stadler, Michael

2010-01-01T23:59:59.000Z

120

Enhanced distributed energy resource system  

DOE Patents (OSTI)

A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

Atcitty, Stanley (Albuquerque, NM); Clark, Nancy H. (Corrales, NM); Boyes, John D. (Albuquerque, NM); Ranade, Satishkumar J. (Las Cruces, NM)

2007-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimum model-E-GAMS for Distributed Energy System by Using GAMSMethod  

DOE Green Energy (OSTI)

DER-CAM Developed by the Lawrence Berkeley National Laboratory (LBNL), is an optimization tool for DER technology selection. However it can not be simply applied to the Japanese case because of the different climate and the utility tariff. This research aims to develop an optimization tool for distributed energy for Japanese buildings using GAMS, a high-level modeling system for mathematical programming and optimization. This paper describes how we apply and demonstrate the tool to the energy center at Kitakyushu Research city, where has installed a fuel cell and a gas engine. An analysis has also been conducted to see how the utility tarriff and the equipment efficiency can affect the operation of the DER system.

Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Zhou, Nan; Xuan, Ji; Marnay, Chris

2005-05-31T23:59:59.000Z

122

LBNL-60590 JART Distributed energy resources market  

E-Print Network (OSTI)

LBNL-60590 JART Distributed energy resources market diffusion model Karl Magnus Maribua , Ryan M by the Office of Electricity Delivery and Energy Reliability, Distributed Energy Program of the U.S. Department Policy 35 (2007) 4471­4484 Distributed energy resources market diffusion model Karl Magnus Maribua

123

Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory  

Science Conference Proceedings (OSTI)

The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

Kingston, Tim [Gas Technology Institute; Kelly, John [Endurant Energy LLC

2008-08-01T23:59:59.000Z

124

Ancillary Services Provided from DER  

SciTech Connect

Distributed energy resources (DER) are quickly making their way to industry primarily as backup generation. They are effective at starting and then producing full-load power within a few seconds. The distribution system is aging and transmission system development has not kept up with the growth in load and generation. The nation's transmission system is stressed with heavy power flows over long distances, and many areas are experiencing problems in providing the power quality needed to satisfy customers. Thus, a new market for DER is beginning to emerge. DER can alleviate the burden on the distribution system by providing ancillary services while providing a cost adjustment for the DER owner. This report describes 10 types of ancillary services that distributed generation (DG) can provide to the distribution system. Of these 10 services the feasibility, control strategy, effectiveness, and cost benefits are all analyzed as in the context of a future utility-power market. In this market, services will be provided at a local level that will benefit the customer, the distribution utility, and the transmission company.

Campbell, J.B.

2005-12-21T23:59:59.000Z

125

Ancillary Services Provided from DER  

DOE Green Energy (OSTI)

Distributed energy resources (DER) are quickly making their way to industry primarily as backup generation. They are effective at starting and then producing full-load power within a few seconds. The distribution system is aging and transmission system development has not kept up with the growth in load and generation. The nation's transmission system is stressed with heavy power flows over long distances, and many areas are experiencing problems in providing the power quality needed to satisfy customers. Thus, a new market for DER is beginning to emerge. DER can alleviate the burden on the distribution system by providing ancillary services while providing a cost adjustment for the DER owner. This report describes 10 types of ancillary services that distributed generation (DG) can provide to the distribution system. Of these 10 services the feasibility, control strategy, effectiveness, and cost benefits are all analyzed as in the context of a future utility-power market. In this market, services will be provided at a local level that will benefit the customer, the distribution utility, and the transmission company.

Campbell, J.B.

2005-12-21T23:59:59.000Z

126

Flexible DER Utility Interface System: Final Report, September 2004--May 2006  

DOE Green Energy (OSTI)

In an effort to accelerate deployment of Distributed Energy Resources (DER) such as wind, solar, and conventional backup generators to our nation's electrical grid, Northern Power Systems (NPS), the California Energy Commission (CEC), and the National Renewable Energy Laboratory (NREL) collaborated to create a prototype universal interconnect device called the DER Switch.

Lynch, J.; John, V.; Danial, S. M.; Benedict, E.; Vihinen, I.; Kroposki, B.; Pink, C.

2006-08-01T23:59:59.000Z

127

Distributed Energy System Validation, Commissioning and  

E-Print Network (OSTI)

Distributed Energy System Validation, Commissioning and Qualification Test Report Prepared Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Subtask for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative

128

Distributed Sensor Coordination for Advanced Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Sensor Coordination for Advanced Energy Systems Background As advanced energy systems grow in size, they require an increasing number of pressure, temperature, and...

129

Energy Distribution of a Charged Regular  

E-Print Network (OSTI)

We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and Mřller.

Black Hole; I. Radinschi

2000-01-01T23:59:59.000Z

130

Federal Energy Management Program: Distributed-scale Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed-scale Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) to someone by E-mail Share Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Facebook Tweet about Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Twitter Bookmark Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Google Bookmark Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Delicious Rank Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on Digg Find More places to share Federal Energy Management Program: Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) on

131

Renewable Energy andRenewable Energy and Distributed PowerDistributed Power  

E-Print Network (OSTI)

Government Intervention, Use of Renewable Energyof Renewable Energy #12;Brief US History of Electric PowerBrief US HistoryRenewable Energy andRenewable Energy and Distributed PowerDistributed Power GenerationGeneration PHistorical Perspectives DG FundamentalsDG Fundamentals Renewable Energy and DistributedRenewable Energy and Distributed

132

Approximations to the Distributed Activation Energy Model  

E-Print Network (OSTI)

Approximations to the Distributed Activation Energy Model for Pyrolysis C.P. Please, 1 M.J. Mc, then resubmitted after minor revisions in September 2002. Abstract The Distributed Activation Energy Model (DAEM effective method for estimating kinetic parameters and the distribution of activation energies. Comparison

McGuinness, Mark

133

EIS Distribution | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS Distribution EIS Distribution This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a...

134

Assessment of Distributed Energy Adoption in Commercial Buildings: Part 1: An Analysis of Policy, Building Loads, Tariff Design, and Technology Development  

E-Print Network (OSTI)

DER technologies, Japanese energy tariffs, and prototypicalon DER project costs, energy tariff reductions, or utilitypower, building energy efficiency, tariff, building loads,

Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

2005-01-01T23:59:59.000Z

135

Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model  

SciTech Connect

This report describes a Berkeley Lab effort to model the economics and operation of small-scale (<500 kW) on-site electricity generators based on real-world installations at several example customer sites. This work builds upon the previous development of the Distributed Energy Resource Customer Adoption Model (DER-CAM), a tool designed to find the optimal combination of installed equipment, and idealized operating schedule, that would minimize the site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a historic test period, usually a recent year. This study offered the first opportunity to apply DER-CAM in a real-world setting and evaluate its modeling results. DER-CAM has three possible applications: first, it can be used to guide choices of equipment at specific sites, or provide general solutions for example sites and propose good choices for sites with similar circumstances; second, it can additionally provide the basis for the operations of installed on-site generation; and third, it can be used to assess the market potential of technologies by anticipating which kinds of customers might find various technologies attractive. A list of approximately 90 DER candidate sites was compiled and each site's DER characteristics and their willingness to volunteer information was assessed, producing detailed information on about 15 sites of which five sites were analyzed in depth. The five sites were not intended to provide a random sample, rather they were chosen to provide some diversity of business activity, geography, and technology. More importantly, they were chosen in the hope of finding examples of true business decisions made based on somewhat sophisticated analyses, and pilot or demonstration projects were avoided. Information on the benefits and pitfalls of implementing a DER system was also presented from an additional ten sites including agriculture, education, health care, airport, and manufacturing facilities.

Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

2003-02-01T23:59:59.000Z

136

Distributed Energy Systems Corp | Open Energy Information  

Open Energy Info (EERE)

Systems Corp Systems Corp Jump to: navigation, search Name Distributed Energy Systems Corp Place Wallingford, Connecticut Zip CT 06492 Product The former holding company of Proton Energy Systems and Northern Power Systems that ceased to operate upon the sale of both subsidiaries. Coordinates 43.473755°, -72.976925° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.473755,"lon":-72.976925,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Solution Procedure for SDP Energy Prices We use electricityLondon for assistance with energy price modeling. Siddiquiof DER under uncertain energy prices with demand response

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

138

Integrating Smart Distributed Energy Resources with Distribution Management Systems  

Science Conference Proceedings (OSTI)

No portion of the electric power grid has been impacted more by grid modernization (that is, the “smart grid”) than the electric distribution system. A central part of this transformation is the distribution management system (DMS), which integrates numerous remote monitoring and central control facilities with enterprise-level systems to optimize distribution system performance and accomplish a variety of business goals. At the same time, distributed energy resources are often connected ...

2012-09-21T23:59:59.000Z

139

Distributed Energy Resource Optimization Using a Software as...  

NLE Websites -- All DOE Office Websites (Extended Search)

also conducted with the week-ahead DER- CAM to assess the CO 2 emissions reductions and energy cost savings from rescheduling electrical loads. Figure 1 shows an example result...

140

Tips: Booklet Distribution | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 11, 2012 - 8:54am Addthis Tips: Booklet Distribution There are many ways to obtain Energy Savers-Tips for Saving Money and Energy at Home You can access Energy Savers, as...

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Protection and Control of Active Distribution Networks and Microgrids.  

E-Print Network (OSTI)

??This thesis is mainly focused on (i) modeling and control of Electronically Coupled Distributed Energy Resources (EC-DERs) under severe network imbalances and transient incidents, and… (more)

Zamani, Mohammad Amin

2012-01-01T23:59:59.000Z

142

Energy Distribution in Melvin's Magnetic Universe  

E-Print Network (OSTI)

We use the energy-momentum complexes of Landau and Lifshitz and Papapetrou to obtain the energy distribution in Melvin's magnetic universe. For this space-time we find that these definitions of energy give the same and convincing results. The energy distribution obtained here is the same as we obtained earlier for the same space-time using the energy-momentum complex of Einstein. These results uphold the usefulness of the energy-momentum complexes.

S. S. Xulu

1999-12-22T23:59:59.000Z

143

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-05-24T23:59:59.000Z

144

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-08-07T23:59:59.000Z

145

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-12-17T23:59:59.000Z

146

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-06-22T23:59:59.000Z

147

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-10-08T23:59:59.000Z

148

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-03-20T23:59:59.000Z

149

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-07-31T23:59:59.000Z

150

Evaluation Framework and Tools for Distributed Energy Resources  

E-Print Network (OSTI)

of Customer Adoption of Distributed Energy Resources." LBNL-Strategic Plan for Distributed Energy Resources." U.S.3. Effects of Distributed Energy Resources Deployment

Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay, Chris

2003-01-01T23:59:59.000Z

151

Integration of distributed energy resources. The CERTS Microgrid Concept  

E-Print Network (OSTI)

2001. Integration of Distributed Energy Resources - The C Enew Integration of Distributed Energy Resources - The C E Ron Integration of Distributed Energy Resources The CERTS

2002-01-01T23:59:59.000Z

152

Modeling of customer adoption of distributed energy resources  

E-Print Network (OSTI)

Customer Adoption of Distributed Energy Resources Ozbek, A.Customer Adoption of Distributed Energy Resources Figure 39.Customer Adoption of Distributed Energy Resources REFERENCES

2001-01-01T23:59:59.000Z

153

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

154

A Protocol for Quantum Energy Distribution  

E-Print Network (OSTI)

A new protocol, quantum energy distribution (QED), is proposed in which multiple parties can simultaneously extract positive energy from spin chains by common secret keys shared by an energy supplier. QED is robust against impersonation; an adversary, who does not have a common secret key and attempts to get energy, will instead give energy to the spin chains. The total amount of energy transfer gives a lower bound of the residual energy of any local cooling process by the energy supplier.

Masahiro Hotta

2008-03-11T23:59:59.000Z

155

Circuit Functionality and Requirements for Future Grid Integration of Distributed Renewable Generation  

Science Conference Proceedings (OSTI)

Distributed Energy Resources (DER) is an emerging technology that offers the potential to improve power system reliability, increase generation diversity, and provide greater flexibility to help match the growing energy needs. Small, modular DER plants have shorter implementation and commissioning timelines and can be brought on-line faster. However, utilities are concerned with the adverse impact of DER on the operation and management of distribution systems. The concern with potential impacts of DER on...

2010-12-31T23:59:59.000Z

156

Assessment of Distributed Energy Adoption in Commercial Buildings  

E-Print Network (OSTI)

Energy Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO preliminary analysis on CHP investment climate in the U.S. and Japan. DER technologies, energy prices typical U.S. rates. The rate for buildings with cogeneration has an around 0.0306 $/kWh energy charge

157

AMO Industrial Distributed Energy: Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency by 2020. The Industrial Energy EfficiencyCombined Heat & Power Working Group is developing a number of resources. News Energy Department Invests in...

158

A Smart Grid Reference Guide to Integration of Distributed Energy Resources: 2012 Version  

Science Conference Proceedings (OSTI)

The smart grid is a vital and comprehensive core element of the modernization of America’s electric delivery system for the 21st century. The EPRI Smart Grid Demonstration Initiative (SGDI) is a seven-year collaborative research effort focused on designing, implementing, and assessing field demonstrations that address prevalent challenges with integrating distributed energy resources (DER) into grid and market operations. With projects first beginning in 2009, 24 collaborating and host ...

2012-12-08T23:59:59.000Z

159

Distributed Energy Resources Market Diffusion Model  

E-Print Network (OSTI)

of Electricity Delivery and Energy Reliability, Distributed Energy Program of the U.S. Department of Energy under regions are chosen to represent the diversity in U.S. climate and energy rates: Atlanta, Boston, Chicago, with the use of the building energy simulation program DOE-2, specific to various representative U.S. locations

160

Distributed Energy Storage Systems: Deployments and Learnings  

Science Conference Proceedings (OSTI)

Distributed Energy Storage Systems (DESS) or so-called “edge-of-grid” systems are small scale energy storage systems that are positioned at the edge of the distribution grid, downstream of the distribution transformer, on the utility side of the meter. These systems have the potential to significantly improve power quality for the consumer, while also having the capability to provide distribution system support. Several field trials of these systems are presently underway or are being ...

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Economic Costs and Benefits of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The goal of this technical update is to provide an objective quantitative analysis of the current costs and benefits of DER, and thereby identify the factors that have the greatest impact on DER's cost-effectiveness. For the purposes of this analysis, DER as defined herein, are small generation units (1kW to 50MW), typically sited on the local T&D system and operated in parallel with the utility system. Energy storage technologies are not included in this technical update but may be considered in future ...

2004-12-27T23:59:59.000Z

162

Tips: Booklet Distribution | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Booklet Distribution Tips: Booklet Distribution Tips: Booklet Distribution April 11, 2012 - 8:54am Addthis Tips: Booklet Distribution There are many ways to obtain Energy Savers-Tips for Saving Money and Energy at Home! You can access Energy Savers, as well as the Spanish-language Energy Savers, in the following ways. Order booklets in bulk quantities through the Energy Savers Partnership. Order now! Organizations can order booklet copies in bulk, for distribution to your customers, members, or employees. The Energy Savers booklet and the Spanish Energy Savers booklet are available for ordering. Booklet ordering is available for a limited time, at low cost to you. Please place your orders directly with the printer through the online web site. Order today for delivery before the winter heating season!

163

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

164

Distributed Energy Systems Integration Group (Fact Sheet)  

Science Conference Proceedings (OSTI)

Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

Not Available

2009-10-01T23:59:59.000Z

165

Optimal Control of Distributed Energy Resources using Model Predictive Control  

Science Conference Proceedings (OSTI)

In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.

Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen

2012-07-22T23:59:59.000Z

166

Status of State Regulatory Policies Affecting DER Market Development  

Science Conference Proceedings (OSTI)

Distributed energy resources (DER) have the potential to significantly transform the relationship of utilities and customers, and to introduce a much richer set of tools for providing not only power, but also reliability, security, flexibility and power quality in energy systems. However, the deployment of DER has lagged far behind the expectations. One of the most significant barriers is the manner in which the electricity industry has been built and historically operated -- to suit customer needs under...

2004-01-19T23:59:59.000Z

167

ENERGY DISTRIBUTION OF A STRINGY CHARGED BLACK  

E-Print Network (OSTI)

Abstract. The energy distribution associated with a stringy charged black hole is studied using Mřller’s energy-momentum complex. Our result is reasonable and it differs from that known in literature using Einstein’s energymomentum complex. 1.

Ragab M. Gad

2003-01-01T23:59:59.000Z

168

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

169

Subventionierung von erneuerbarer Energie : eine industrieökonomische Analyse des strategischen Wettbewerbs in der Erneuerbaren-Energieindustrie bei unterschiedlichen staatlichen Regulierungen.  

E-Print Network (OSTI)

??In der vorliegenden Arbeit werden ausgewählte Probleme, die im Zusammenhang mit der Subventionierung von erneuerbarer Energien stehen, in finanztheoretischen und industrieökonomischen Modellen formal analysiert. Der… (more)

Schaller, Markus

2005-01-01T23:59:59.000Z

170

Distributed Systems for Energy Management  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings-to-grid, responsive loads, on-line monitoring of efficiency programs, microgrids, and other forms of distributed resource management. A key challenge will be the...

171

The Localized Energy Distribution of Dark Energy Star Solutions  

E-Print Network (OSTI)

We examine the question of energy localization for an exact solution of Einstein's equations with a scalar field corresponding to the phantom energy interpretation of dark energy. We apply three different energy-momentum complexes, the Einstein, Papapetrou and M{\\o}ller prescriptions, to the exterior metric and determine the energy distribution for each. Comparing the results, we find that the three prescriptions yield identical energy distributions.

Paul Halpern; Michael Pecorino

2013-03-05T23:59:59.000Z

172

The Localized Energy Distribution of Dark Energy Star Solutions  

E-Print Network (OSTI)

We examine the question of energy localization for an exact solution of Einstein's equations with a scalar field corresponding to the phantom energy interpretation of dark energy. We apply three different energy-momentum complexes, the Einstein, Papapetrou and M{\\o}ller prescriptions, to the exterior metric and determine the energy distribution for each. Comparing the results, we find that the three prescriptions yield identical energy distributions.

Halpern, Paul

2013-01-01T23:59:59.000Z

173

IPCC Data Distribution Centre | Open Energy Information  

Open Energy Info (EERE)

IPCC Data Distribution Centre IPCC Data Distribution Centre Jump to: navigation, search Tool Summary Name: IPCC Data Distribution Centre Agency/Company /Organization: World Meteorological Organization, United Nations Environment Programme Sector: Energy, Land Topics: Baseline projection, GHG inventory, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, Pathways analysis Resource Type: Dataset Website: www.ipcc-data.org/ References: IPCC Data Distribution Centre [1] " The DDC provides climate, socio-economic and environmental data, both from the past and also in scenarios projected into the future. Technical guidelines on the selection and use of different types of data and scenarios in research and assessment are also provided." References ↑ "IPCC Data Distribution Centre"

174

PMC*Erza U.S. DER-sARTAIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMC*Erza PMC*Erza U.S. DER-sARTAIENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DF TERI\ TTNATION RECIPIENF:Coastal Resources Management Council STATE: RI PROJECT TITLE : Rhode Island Ocean Area Management Plan (Ocean Samp) Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number CDP EE0000293 GF0-10-031 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

175

NREL: Electric Infrastructure Systems Research - Distributed Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resources Test Facility Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test Facility and an adjacent solar photovoltaic array. The Distributed Energy Resources Test Facility is located at the National Wind Technology Center near Boulder, Colorado. Take a virtual tour of the DERTF. Researchers at the facility can vary equipment configurations and introduce common electrical disturbances such as sags, swells, and harmonic issues on

176

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

Science Conference Proceedings (OSTI)

We take the perspective of a microgrid that has installed distribution energy resources (DER) in the form of distributed generation with combined heat and power applications. Given uncertain electricity and fuel prices, the microgrid minimizes its expected annual energy bill for various capacity sizes. In almost all cases, there is an economic and environmental advantage to using DER in conjunction with demand response (DR): the expected annualized energy bill is reduced by 9percent while CO2 emissions decline by 25percent. Furthermore, the microgrid's risk is diminished as DER may be deployed depending on prevailing market conditions and local demand. In order to test a policy measure that would place a weight on CO2 emissions, we use a multi-criteria objective function that minimizes a weighted average of expected costs and emissions. We find that greater emphasis on CO2 emissions has a beneficial environmental impact only if DR is available and enough reserve generation capacity exists. Finally, greater uncertainty results in higher expected costs and risk exposure, the effects of which may be mitigated by selecting a larger capacity.

Siddiqui, Afzal; Stadler, Michael; Marnay, Chris; Lai, Judy

2010-06-01T23:59:59.000Z

177

Distributed Energy Resources and Management of Future Distribution  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Smart Grid demonstration initiative is a collaborative research effort focused on the design, implementation, and assessment of field demonstrations to address challenges with integrated distributed resources in grid and market operations as well as system planning. The main objective of this study is to identify approaches to interoperability and integration that can be used on a systemwide scale to help standardize the use of distributed energy resources...

2010-03-25T23:59:59.000Z

178

Simulating Price Responsive Distributed Resources  

SciTech Connect

Distributed energy resources (DER) include distributed generation, storage, and responsive demand. The integration of DER into the power system control framework is part of the evolutinary advances that allow these resources to actively particpate in the energy balance equation. Price can provide a powerful signal for independent decision-making in distributed control strategies. To study the impact of price responsive DER on the electric power system requires generation and load models that can capture the dynamic coupling between the energy market and the physical operation of the power system in appropriate time frames. This paper presents modeling approaches for simulating electricity market price responsive DER, and introduces a statistical mechanics approach to modeling the aggregated response of a transformed electric system of pervasive, transacting DER.

Lu, Ning; Chassin, David P.; Widergren, Steven E.

2004-10-15T23:59:59.000Z

179

Energy supply network design optimization for distributed energy systems  

Science Conference Proceedings (OSTI)

Based on the fluctuations in power and heat demand of the consumers in a region, this paper presents a bi-level programming model for the regional DES (distributed energy system) network planning. The model aims to minimize the total cost of the regional ... Keywords: Bi-level programming, Distributed energy system, Energy supply network, Hybrid algorithm

Ming Dong; Fenglan He; Hairui Wei

2012-11-01T23:59:59.000Z

180

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network (OSTI)

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon measure and analyze the impact of distributed programming abstractions on application energy consumption future efforts in creating energy efficient distributed programming abstractions. Keywords: energy

Ryder, Barbara G.

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Distributed Energy Resource Optimization Using a Software as Service (SaaS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus Title Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus Publication Type Report Year of Publication 2011 Authors Stadler, Michael, Chris Marnay, Jonathan Donadee, Judy Lai, Olivier MĂ©gel, Prajesh Bhattacharya, and Afzal S. Siddiqui Pagination 51 Date Published 02/2011 Publisher LBNL City Berkeley Keywords building optimization, distributed energy resources (der), electricity markets and policy group, energy analysis and environmental impacts department Abstract Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versions of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two distinct analyses of value to UCD are possible using this approach. First, optimal investment choices for buildings under the two alternative objectives can be derived. Second, a week-ahead building operations forecaster has been written that executes DER-CAM to find an optimal operating schedule for buildings given their expected building energy services requirements, electricity prices, and local weather. As part of its matching contribution, OSIsoft provided a full implementation of PI and a server to install it on at Berkeley Lab. Using the PItoPI protocol, this gives Berkeley Lab researchers direct access to UCD's PI data base. However, this arrangement is in itself inadequate for performing optimizations. Additional data not included in UCD's PI database would be needed and the campus was not able to provide this information. This report details the process, results, and lessons learned of this commercialization project.

182

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

183

Distributed Generation Standard Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

184

Energy Efficiency Standards for Distribution Transformers: The...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Distribution Transformers: The Importance of the Load Factor Assessment from an Energy Saving Point of View. Speaker(s): Norma Anglani Date: April 10, 2001 - 12:00pm...

185

Assessment of Distributed Generation Potential in JapaneseBuildings  

Science Conference Proceedings (OSTI)

To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

2005-05-25T23:59:59.000Z

186

Efficient Communication Interfaces for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The IEC 61850 standard originally was developed for the substation automation. During the past years it was adapted for the integration of distributed energy resources into communication networks, however, with specific requirements. Many small and midsize ... Keywords: Client-Server, Data Modeling, Distributed Systems, Information and Communication Technologies, Networks

Heinz Frank; Sidonia Mesentean

2010-04-01T23:59:59.000Z

187

ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY  

SciTech Connect

Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

LANDI, J.T.; PLIVELICH, R.F.

2006-04-30T23:59:59.000Z

188

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings  

E-Print Network (OSTI)

Firestone 2004, EPRI-DOE Handbook 2003, Mechanical Cost Datahttp://der.lbl.gov) EPRI-DOE Handbook of Energy Storage for

Stadler, Michael

2010-01-01T23:59:59.000Z

189

U.S. DER-s,RTMENT OF ENERGY SERE PROJECT MANAGEMENT CENTER NEPA DE TERD, [(NATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DER-s,RTMENT OF ENERGY U.S. DER-s,RTMENT OF ENERGY SERE PROJECT MANAGEMENT CENTER NEPA DE TERD, [(NATION PVIC*EF2a RECIPIENT:General Electric Global Research Center STATE: NY PROJECT TITLE : Recovery Act: Wind Turbine Manufacturing Process Monitoring Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-PS36-09G099009 DE-EE0001367 GEO-10-011 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

190

Distribution Drive | Open Energy Information  

Open Energy Info (EERE)

Drive Drive Jump to: navigation, search Name Distribution Drive Place Dallas, Texas Zip 75205 Product Biodiesel fuel distributor. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Energy Distribution of Black Plane Solutions  

E-Print Network (OSTI)

We use the Einstein energy-momentum complex to calculate the energy distribution of static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. This solution is expressed in terms of three parameters: the mass, electric charge and cosmological constant. We compare the energy distribution to that of the Reissner-Nordstrom-anti-de Sitter solution, pointing to qualitative differences between the models. Finally, we examine these results within the context of the Cooperstock hypothesis.

Paul Halpern

2005-05-11T23:59:59.000Z

192

Distributed Renewable Energy Finance and Policy Toolkit | Open Energy  

Open Energy Info (EERE)

Distributed Renewable Energy Finance and Policy Toolkit Distributed Renewable Energy Finance and Policy Toolkit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Renewable Energy Finance and Policy Toolkit Agency/Company /Organization: Clean Energy States Alliance (CESA) Partner: Charles Kubert and Mark Sinclair Sector: Energy Focus Area: People and Policy, Economic Development Phase: Evaluate Options, Develop Goals, Develop Finance and Implement Projects Topics: Best Practices Resource Type: Guide/manual User Interface: Other Website: www.cleanenergystates.org/Publications/cesa-financial_Toolkit_Dec2009. Cost: Free Equivalent URI: cleanenergysolutions.org/content/distributed-renewable-energy-finance- Language: English Policies: "Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property.

193

Integrating Renewable Energy into the Transmission and Distribution...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of...

194

Multi-building microgrids for a distributed energy future in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-building microgrids for a distributed energy future in Portugal Title Multi-building microgrids for a distributed energy future in Portugal Publication Type Conference...

195

Distributed Energy Resource Optimization Using a Software as...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus Title Distributed Energy Resource Optimization...

196

South Korea-ANL Distributed Energy Resources and Demand Side...  

Open Energy Info (EERE)

Korea-ANL Distributed Energy Resources and Demand Side Management Jump to: navigation, search Name Distributed Energy Resources and Demand Side Management in South Korea Agency...

197

Distributed Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

Energy Association Energy Association Address PO Box 1861 Place Flagstaff, AZ Zip 86002 Phone number 928-255-0214 Website http://www.distributedwind.org Coordinates 35.1978341°, -111.6464261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1978341,"lon":-111.6464261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications  

E-Print Network (OSTI)

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples of Tables Table 1-A. Analyses of biomass materials found in the State of Hawaii

199

Energy distribution of Kerr spacetime using Moller energy momentum complex  

E-Print Network (OSTI)

Using the energy momentum complex given by M{\\o}ller in 1978 based on the absolute parallelism, the energy distribution in Kerr spacetime is evaluated. The energy with this spacetime is found to be the same as it was earlier evaluated using different definitions mainly based on the metric tensor.

Gamal G. L. Nashed

2005-07-12T23:59:59.000Z

200

DAVIC - Distributed Energy Automation via Implicit Communication  

NLE Websites -- All DOE Office Websites (Extended Search)

DAVIC - Distributed Energy Automation via Implicit Communication DAVIC - Distributed Energy Automation via Implicit Communication Speaker(s): Peter Palensky Date: January 22, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Peng Xu The electricity grid is seen as a wide-area distributed process, determined by its sub-processes - in our case the loads and distributed generation. Network-based coordination needs to be done very carefully and properly timed to avoid instabilities. Luckily, every point of the grid has the same grid frequency and the same time. Integrating these two trivial things (implicit communication) into one consistent communication model might complement a low-quality (explicit) best-effort communication channel (e.g. Internet, GPRS) for real time applications. A simulation shall clarify how

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

202

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

203

Instantaneous Active and Nonactive Power Control of Distributed Energy Resources with Current Limiter  

SciTech Connect

Abstract -- Distributed energy resources (DER) with a power electronics inverter interface can provide both active power and nonactive power simultaneously and independently. A decoupled control algorithm of active power and nonactive power is developed based on the instantaneous active power and nonactive power theory. A current limiter is combined to the control algorithm, and it ensures that the inverter is not overloaded. During the normal system operation, the active power has higher priority over the nonactive power so that the energy from a DER can be fully transferred to the grid. Within the inverter s capability, nonactive power is provided to the grid as required. With this control algorithm, the inverter s capabilities are taken full advantage at all times, both in terms of functionality as well as making use of its full KVA rating. Through the algorithm, the inverter s active power and nonactive power are controlled directly, simultaneously, and independently. Several experimental results fully demonstrate the validity and effectiveness of this new control algorithm. As evidenced by the fast dynamic response that results, a DER system with the control algorithm can provide full services to the grid in both steady state and during transient events.

Xu, Yan [ORNL; Li, Huijuan [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Kueck, John D [ORNL

2010-01-01T23:59:59.000Z

204

An Australian Perspective On Distributed Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

An Australian Perspective On Distributed Energy Resources An Australian Perspective On Distributed Energy Resources Speaker(s): Hugh Outhred Date: December 11, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare The seminar will describe and critique the Australian approach to incorporating distributed energy resources into its restructured electricity industry, which consists of the National Electricity Market (a wholesale electricity market), retail electricity markets, network regulation and environmental regulation. These arrangements continue to evolve and recent developments will be discussed. Hugh Outhred is in the School of Electrical Engineering & Telecommunications at the University of New South Wales, Sydney, Australia. He is also a member of the National Electricity Tribunal ( a quasi-judicial appeal body associated with

205

Energy Distribution in f(R) Gravity  

E-Print Network (OSTI)

The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.

Sharif, M

2009-01-01T23:59:59.000Z

206

Energy Distribution in f(R) Gravity  

E-Print Network (OSTI)

The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.

M. Sharif; M. Farasat Shamir

2009-12-18T23:59:59.000Z

207

Definition: Distribution Management System | Open Energy Information  

Open Energy Info (EERE)

Management System Management System Jump to: navigation, search Dictionary.png Distribution Management System A Distribution Management System (DMS) is a utility IT system capable of collecting, organizing, displaying and analyzing real-time or near real-time electric distribution system information. A DMS can also allow operators to plan and execute complex distribution system operations in order to increase system efficiency, optimize power flows, and prevent overloads. A DMS can interface with other operations applications such as geographic information systems (GIS), outage management systems (OMS), and customer information systems (CIS) to create an integrated view of distribution operations.[1] View on Wikipedia Wikipedia Definition In the recent years, utilization of electrical energy increased

208

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

of Microgrid Distributed Energy Resource Potential Usingon Integration of Distributed Energy Resources: The CERTSof Customer Adoption of Distributed Energy Resources. ”

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

209

Distributed Energy Storage Product Reference Guide  

Science Conference Proceedings (OSTI)

Distribution-scale energy storage deployments have increased significantly in the last few years. These deployments have resulted in several lessons learned, and have pointed out the need for standardization and development of common industry agreed approaches to grid-scale energy storage deployments. This report documents the progress in many of these deployments and summarizes the lessons learned. In addition, the report presents a brief update on a PNNL/Sandia-lead multi stakeholder pre-standard ...

2013-12-17T23:59:59.000Z

210

Distributed energy resources customer adoption modeling with combined heat and power applications  

SciTech Connect

In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-07-01T23:59:59.000Z

211

Ermittlung der Energieeffizienz in der Tierhaltung am Beispiel der Milchviehhaltung.  

E-Print Network (OSTI)

??Die steigende Verknappung der Ressourcen bei stetigem Bevölkerungswachstum und der sich vollziehende Klimawandel erfordern Nachhaltigkeit in allen Ebenen der landwirtschaftlichen Produktion. Ziel dieser Arbeit war… (more)

Kraatz, Simone

2009-01-01T23:59:59.000Z

212

Evaluation Framework and Tools for Distributed Energy Resources  

E-Print Network (OSTI)

Glossary Executive Summary Introduction Total Societal Impact Framework i iii v vii Effects of Distributed Energy

Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay, Chris

2003-01-01T23:59:59.000Z

213

U.S. Energy Information Administration | Annual Coal Distribution...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration | Annual Coal Distribution Report 2011 By Coal Destination State ...

214

Assessment of Distributed Energy Adoption in Commercial Buildings:Part 1: An Analysis of Policy, Building Loads, Tariff Design, andTechnology Development  

Science Conference Proceedings (OSTI)

Rapidly growing electricity demand brings into question theability of traditional grids to expand correspondingly while providingreliable service. An alternative path is the wider application ofdistributed energy resource (DER) that apply combined heat and power(CHP). It can potentially shave peak loads and satiate its growing thirstfor electricity demand, improve overall energy efficiency, and lowercarbon and other pollutant emissions. This research investigates a methodof choosing economically optimal DER, expanding on prior studies at theBerkeley Lab using the DER design optimization program, the DistributedEnergy Resources Customer Adoption Model (DER-CAM). DER-CAM finds theoptimal combination of installed equipment from available DERtechnologies, given prevailing utility tariffs, site electrical andthermal loads, and a menu of available equipment. It provides a globaloptimization, albeit idealized, that shows how the site energy loads canbe served at minimum cost by selection and operation of on-sitegeneration, heat recovery, and cooling. Utility electricity and gastariffs are key factors determining the economic benefit of a CHPinstallation, however often be neglected. This paper describespreliminary analysis on CHP investment climate in the U.S. and Japan. DERtechnologies, energy prices, and incentive measures has beeninvestigated.

Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

2005-12-31T23:59:59.000Z

215

Distribution Categories: Magnetic Fusion Energy (UC-20)  

E-Print Network (OSTI)

Distribution Categories: Magnetic Fusion Energy (UC-20) MFE--Plasma Systems (UC-20a) MFE Temperature Response 4-7 4.6 Thermal Storage Requirements 4-16 4.6.1 Pressurized Water/Steam System 4-19 4

Harilal, S. S.

216

Federal Energy Management Program: Market Studies for Distributed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Resources and Combined Heat and Power to someone by E-mail Share Federal Energy Management Program: Market Studies for Distributed Energy Resources and Combined...

217

Angular Energy Distribution of Collapsar-Jets  

E-Print Network (OSTI)

Collapsars are fast-spinning, massive stars, whose core collapse liberates an energy, that can be channeled in the form of ultrarelativistic jets. These jets transport the energy from the collapsed core to large distances, where it is dissipated in the form of long-duration gamma-ray bursts. In this paper we study the dynamics of ultrarelativistic jets produced in collapsars. Also we extrapolate our results to infer the angular energy distribution of the produced outflows in the afterglow phase. Our main focus is to look for global energetical properties which can be imprinted by the different structure of different progenitor stars. Thus, we employ a number of pre-supernova, stellar models (with distinct masses and metallicities), and inject in all of them jets with fixed initial conditions. We assume that at the injection nozzle, the jet is mildly relativistic (Lorentz factor $\\sim 5$), has a finite half-opening angle ($5^\\circ$), and carries a power of $10^{51} $erg s$^{-1}$. These jets arrive intact to the stellar surface and break out of it. A large Lorentz factor region $\\Gamma\\simmore 100$ develops well before the jet reaches the surface of the star, in the unshocked part of the beam, located between the injection nozzle and the first recollimation shock. These high values of $\\Gamma$ are possible because the finite opening angle of the jet allows for free expansion towards the radial direction. We find a strong correlation between the angular energy distribution of the jet, after its eruption from the progenitor surface, and the mass of the progenitors. The angular energy distribution of the jets from light progenitor models is steeper than that of the jets injected in more massive progenitor stars. This trend is also imprinted in the angular distribution of isotropic equivalent energy.

Akira Mizuta; Miguel A. Aloy

2008-12-28T23:59:59.000Z

218

Energy Storage and Distributed Energy Generation Project, Final Project Report  

Science Conference Proceedings (OSTI)

This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

2008-03-31T23:59:59.000Z

219

Energieleitbild Neben dem direkten Energieeinsatz fr den Betrieb der eige-  

E-Print Network (OSTI)

erneuerbare Energie an der ETH» eingeladen, an der Erneuerung des Energieleitbilds mit- zuarbeiten. Diese-Präsident Ralph Eichler die Mitglieder der Studierenden- gruppe «Arbeitsgruppe für erneuerbare Energie an der ETH- parent gefällt und kommuniziert werden.» Claudio Beretta, Gruppe «Arbeitsgruppe für erneuerbare Energie

220

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy-Momentum Distribution in Weyl Metrics  

E-Print Network (OSTI)

In this paper, we evaluate energy and momentum density distributions for the Weyl metric by using the well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and M$\\ddot{o}$ller. The metric under consideration is the static axisymmetric vacuum solution to the Einstein field equations and one of the field equations represents the Laplace equation. Curzon metric is the special case of this spacetime. We find that the energy density is different for each prescription. However, momentum turns out to be constant in each case.

M. Sharif; Tasnim Fatima

2005-07-16T23:59:59.000Z

222

Hhere Effizienz im Umgang mit Ressourcen bei gleichzeitiger Produktivittssteigerung ABB ist in der Schweiz auf diesem Weg mit weltweit fhrenden energiesparenden Lsungen dabei. Erfahren Sie mehr ber ABB und ihre Energie-und Automatisierungs-Technologien  

E-Print Network (OSTI)

;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;AGROLA setzt auf Erneuerbare Energie AGROLA folgt dem Weg der Sie mehr über ABB und ihre Energie- und Automatisierungs-Technologien unter www.abb.ch © 2007 ABB #12 Erneuer- baren Energie aus Biomasse mit �berzeugung und so ist die Einführung der beiden neuen

223

ENERGY DISTRIBUTION OF FAST NEUTRON BEAM  

DOE Green Energy (OSTI)

Experimental techniques are described for the spectral measurement of a collimated fast-neutron beam. A H/sub 2-/ filled cloud chamber, proton-recording nuclear plates, and threshold fission foils were used as neutron detectors in the measurements. As an application of these techniques, the energy distribution and absolute flux of the fast neutron beam emerging from the Los Alamos fast reactor was measured from 0.1 to 18 Mev. (D.E.B.)

Nereson, N.; Allison, E.; Carlson, J.; Norwood, P.; Squires, D.

1951-02-15T23:59:59.000Z

224

Integrated Distributed Generation and Energy Storage Concepts  

Science Conference Proceedings (OSTI)

Distributed generation (DG) can provide users with versatile and cost effective solutions for many of their energy requirements. However, as these devices have begun to proliferate, there have been a number of load and power system compatibility concerns that have been identified. To better understand and address DG product improvement opportunities, this report details the capabilities and limitations of existing DG applications from the perspective of critical load starting and power quality support. I...

2003-01-20T23:59:59.000Z

225

Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report  

Science Conference Proceedings (OSTI)

The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at an aggregated scale of more than 1 MW, to provide grid support. Actual performance data with respect to each specified function above is to be collected during the Phase II field demonstration. At a minimum, the Phase II demonstration shall span one year of field operations. The demonstration performance will need to be validated by the target customer(s) for acceptance and subsequent implementation. An ISO must be involved in demonstration planning and execution. As part of the Phase II work, BPL Global shall develop a roadmap to commercialization that identifies and quantifies the potential markets for the integrated, aggregated DER systems and for the communication and control technologies demonstrated in Phase I. In addition, the roadmap must identify strategies and actions, as well as the regional and national markets where the aggregated DER systems with communication and control solutions will be introduced, along with a timeline projected for introduction into each identified market. In Phase I of this project, we developed a proof-of-concept ACCP system and architecture and began to test its functionality at real-world sites. These sites had just over 10 MW of DERs and allowed us to identify what needed to be done to commercialize this concept. As a result, we started Phase II by looking at our existing platform and identified its strengths and weaknesses as well as how it would need to evolve for commercialization. During this process, we worked with different stakeholders in the market including: Independent System Operators, DER owners and operators, and electric utility companies to fully understand the issues from all of the different perspectives. Once we had an understanding of the commercialized ACCP system, we began to document and prepare detailed designs of the different system components. The components of the system with the most significant design improvements were: the on-site remote terminal unit, the communication technology between the remote site and the data center, and the scalability and reliability of the data center application.

BPL Global

2008-09-30T23:59:59.000Z

226

Der Besuch  

E-Print Network (OSTI)

Souvenirs. (Ihsan arbeitet in seinem Garten. Eyal kommtvorbei. ) EYAL: Schöner Garten. IHSAN: Du trittst auf dieEYAL: Wie groß ist der Garten? IHSAN: Verkauf ich nicht!

Mican, Hakan Sava?

2012-01-01T23:59:59.000Z

227

NREL: Energy Analysis - Distributed Generation Energy Technology Capital  

NLE Websites -- All DOE Office Websites (Extended Search)

Capital Costs Capital Costs Transparent Cost Database Button The following charts indicate recent capital cost estimates for distributed generation (DG) renewable energy technologies. The estimates are shown in dollars per installed kilowatt of generating capacity or thermal energy capacity for thermal technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology capital cost estimates, please visit the Transparent Cost Database website for NREL's information

228

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.Microgrids for a Distributed Energy Future in Portugal

Mendes, Goncalo

2013-01-01T23:59:59.000Z

229

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Optimal Control of Distributed Energy Resources and DemandRenewable Energy, former Distributed Energy Program of theOptimal Control of Distributed Energy Resources and Demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

230

Energy Efficiency of Distributed Environmental Control Systems  

SciTech Connect

In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant’s thermal dissatisfaction below a given threshold. The DECS energy usage was calculated using the simplified thermal model. OSFA control; providing a uniform temperature to the entire building, and occupant-selected HIYW control with a thermostat at each workstation were implemented for 3 cities representing 3 different climatic regions and control scenarios. It is shown that optimization allows DECS to deliver a higher level of individual and population thermal comfort while achieving annual energy savings between 14 and 26% compared to OSFA. The optimization model also allowed us to study the influence of the partitions’ thermal resistance and the variability of internal loads at each office. These influences didn’t make significant changes in the optimized energy consumption relative to OSFA. The results show that it is possible to provide thermal comfort for each occupant while saving energy compared to OSFA Furthermore, to simplify the implementation of this approach, a fuzzy logic system has been developed to generalize the overall optimization strategy. Its performance was almost as good as the gradient system. The fuzzy system provided thermal comfort to each occupant and saved energy compared to OSFA. The energy savings of the fuzzy system were not as high as for the gradient-optimized system, but the fuzzy system avoided complete connectivity, and the optimization did not have to be repeated for each population. 3. We employed a detailed CFD model of adjacent occupied cubicles to extend the thermal-circuit model in three significant ways: (a) relax the “office wall” requirement by allowing energy to flow between zones via advection as well as conduction, (b) improve the comfort model to account both for radiation as well as convection heat transfer, and (c) support ventilation systems in which the temperature is stratified, such as in underfloor air distribution systems. Initially, three-dimensional CFD simulations of several cubicle configurations, with an adjoining corridor, were performed both to understand the advection between cubicles and the

Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

2011-02-23T23:59:59.000Z

231

Optimal selection and sizing of distributed energy resources for distributed power systems  

Science Conference Proceedings (OSTI)

Optimal selection and sizing of distributed energy resources is an important research problem in the development of distributed power systems. This paper presents a methodology for optimal selection and sizing of distributed energy resources in integrated microgrids using the evolutionary strategy. Integrated microgrid is an innovative architecture in distributed power systems

Thillainathan Logenthiran; Dipti Srinivasan

2012-01-01T23:59:59.000Z

232

Das Pendel-Problem. Wir betrachten die Hamilton-Funktion: Die Abbildung 1 zeigt die Energie H entlang der numerischen Lsungen (exp. Euler, Mittel-  

E-Print Network (OSTI)

2250 2300 -2 0 2 x 10 -3 Energy error Abbildung 3: Sonnensystem. Das N-Körper-Problem. Die Abbildung 3Kapitel I Das Pendel-Problem. Wir betrachten die Hamilton-Funktion: H(p, q) = 1 2 p2 - cos(q). Die Abbildung 1 zeigt die Energie H entlang der numerischen Lösungen (exp. Euler, Mittel- punktsregel, symp

Cohen, David

233

Energy Efficiency/Demand Response/Smart Grid/Distribution ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Energy Efficiency/Demand Response/Smart Grid/Distribution ...

234

Energy Distribution of a Charged Regular Black Hole  

E-Print Network (OSTI)

We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\\o}ller.

Irina Radinschi

2000-11-20T23:59:59.000Z

235

System Support for Distributed Energy Management in Modular Operating Systems.  

E-Print Network (OSTI)

??This thesis proposes a novel approach for managing energy in modular operating systems. Our approach enables energy awareness if the resource-management subsystem is distributed among… (more)

Stöß, Jan

2010-01-01T23:59:59.000Z

236

Dynamic Voltage Regulation Using Distributed Energy Resources  

Science Conference Proceedings (OSTI)

Many distributed energy resources (DE) are near load centres and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide ancillary services such as voltage regulation, nonactive power compensation, and power factor correction. A synchronous condenser and a microturbine with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Voltage control schemes of the inverter and the synchronous condenser are developed. The experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously, while the dynamic response of the inverter is faster than the synchronous condenser; and that integrated voltage regulation (multiple DE perform voltage regulation) can increase the voltage regulation capability, increase the lifetime of the equipment, and reduce the capital and operation costs.

Xu, Yan [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Kueck, John D [ORNL

2007-01-01T23:59:59.000Z

237

Distributed Energy Communications & Controls, Lab Activities - Summary  

Science Conference Proceedings (OSTI)

The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

Rizy, D Tom [ORNL

2010-01-01T23:59:59.000Z

238

Der Alte und der Neue Sden Axel Borsdorf DER ALTE UND DER NEUE SDEN.  

E-Print Network (OSTI)

solarthermische Kraftwerke dabei sogar doppelt soviel Energie bereitstellen. 5 Die Investition in Spanien 3 Die Investition in Spanien Auszeichnung der Andasol-Kraftwerke mit dem Energy Globe Award im. Solarfeldverrohrung Die Investition in Spanien #12;16 Die ersten Parabolrinnen-Kraftwerke Europas ­ die grössten

Borsdorf, Axel

239

Strategic Intelligence Update - Energy Storage & Distributed Generation: December 2010  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-12-14T23:59:59.000Z

240

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-10-15T23:59:59.000Z

242

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller scale distributed energy storage, on the order of a ...

2010-04-01T23:59:59.000Z

243

Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources  

SciTech Connect

This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

Keller, J.; Kroposki, B.

2010-01-01T23:59:59.000Z

244

NREL: Energy Analysis - Distributed Generation Energy Technology Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations and Maintenance Costs Operations and Maintenance Costs Transparent Cost Database Button The following charts indicate recent operations and maintenance (O&M) cost estimates for distributed generation (DG) renewable energy technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology operations and maintenance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation.

245

The Impact of Angular Energy Distribution on Spatial Correlation  

E-Print Network (OSTI)

The Impact of Angular Energy Distribution on Spatial Correlation R. Michael Buehrer Mobile approximation for spatial correlation for three very different angular energy distributions: a Gaussian angle for spatial correlation when the angular energy distribution is bi-modal. These generalized equations

Buehrer, R. Michael

246

Supporting Energy-driven Adaptations in Distributed Environments  

E-Print Network (OSTI)

Supporting Energy-driven Adaptations in Distributed Environments Adel Noureddine, Romain Rouvoy of energy techniques and in different contexts. The distributed nature of our approach fits in a ubiquitous Middleware, Energy awareness, Distributed Environments 1. INTRODUCTION With the increase in the usage

Paris-Sud XI, Université de

247

A Smart Energy System: Distributed Resource Management, Control and Optimization  

E-Print Network (OSTI)

A Smart Energy System: Distributed Resource Management, Control and Optimization Yong Ding, Student of distributed energy resource and consumption management, which proposes to design a networked and embedded and energy data can be acquired and processed in a distributed manner in real time. In order to improve

Beigl, Michael

248

Asymptotic Approximations to the Distributed Activation Energy Model  

E-Print Network (OSTI)

Asymptotic Approximations to the Distributed Activation Energy Model M.J.McGuinness1 , E. Donskoi2 by a continuum distribution in activation energy of individual re- actions. An individual reaction is characterised by a pre-exponential coefficient and an activation energy. The distribution, usually Gaussian

McGuinness, Mark

249

Medium energy pitch angle distribution during substorm injected electron clouds  

E-Print Network (OSTI)

Medium energy pitch angle distribution during substorm injected electron clouds A. A° snes,1 J, N. �stgaard, and M. Thomsen (2005), Medium energy pitch angle distribution during substorm injected to obtain pitch angle resolved electron distribution data for measurements at energies 10 eV to 47 keV. [3

Bergen, Universitetet i

250

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks  

E-Print Network (OSTI)

Distributed Energy-Efficient Hierarchical Clustering for Wireless Sensor Networks Ping Ding, Jo important. In this paper, we propose a distributed weight-based energy-efficient hierarchical clustering of the network topology. Younis and Fahmy [4] propose a Hybrid Energy-Efficient Distributed clustering (HEED

Holliday, JoAnne

251

Energy-efficient distributed spectrum sensing with convex optimization  

E-Print Network (OSTI)

Energy-efficient distributed spectrum sensing with convex optimization Sina Maleki, Ashish paid to schemes that are energy-efficient. It is known that although distributed detection schemes with the number of cognitive radios. An energy-efficient distributed sensing scheme was pro- posed in [7], based

Leus, Geert

252

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

ENVIRONMENTAL IMPACTS OF ALTERNATIVE ENERGY TECHNOLOGIES FOROF DISTRIBUTIVE ENERGY TECHNOLOGY. INTRODUCTION. OverviewDISTRIBUTED ENERGY TECHNOLOGIES . . . . . . . iv Table of

Balderston, F.

2010-01-01T23:59:59.000Z

253

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

U.S. Commercial Distributed Generation Adoption”. LawrenceN. Zhou, 2007. “Distributed Generation with Heat Recovery

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

254

An Analysis of the DER Adoption Climate in Japan Using Optimization Results for Prototype Buildings with U.S. Comparisons  

E-Print Network (OSTI)

DER technologies, Japanese energy tariffs, and prototypicalon DER project costs, energy tariff reductions, or utilitygas tariffs, and hourly site end-use energy requirements,

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2006-01-01T23:59:59.000Z

255

IDEA: integrated distributed energy awareness for wireless sensor networks  

Science Conference Proceedings (OSTI)

Energy in sensor networks is a distributed, non-transferable resource. Over time, differences in energy availability are likely to arise. Protocols like routing trees may concentrate energy usage at certain nodes. Differences in energy harvesting arising ... Keywords: optimization, resource distribution, resource management, wireless sensor networks

Geoffrey Werner Challen; Jason Waterman; Matt Welsh

2010-06-01T23:59:59.000Z

256

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network (OSTI)

426–435. LBNL. (2012). Distributed Energy Resources CustomerATIONAL L ABORATORY Building Distributed Energy Performanceemployer. Building Distributed Energy Performance

Feng, Wei

2013-01-01T23:59:59.000Z

257

Category:Energy Distribution Organizations | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Energy Distribution Organizations Jump to: navigation, search Add a new Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

258

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network (OSTI)

the building energy load profiles, organized by end-uses (an aggregate single load profile; however, the buildingthe specific DER-CAM load profiles used in this work. A

Mendes, Goncalo

2013-01-01T23:59:59.000Z

259

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

and Demand Response under Uncertainty • F P t : wholesale natural gasdemand response and DER under uncertain electricity and natural gasand Demand Response under Uncertainty Energy Price Models We assume that the logarithms of the deseasonalized electricity and natural gas

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

260

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

the affects of energy prices and tariff structures on energythe default SCE tariff, total energy bills for Building 1512$0.1097. This tariff Distributed Energy Resources at Naval

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Distribution of a Stringy Charged Black Hole  

E-Print Network (OSTI)

The energy distribution associated with a stringy charged black hole is studied using M{\\o}ller's energy-momentum complex. Our result is reasonable and it differs from that known in literature using Einstein's energy-momentum complex.

Ragab M. Gad

2003-06-22T23:59:59.000Z

262

Optimized renewable energy forecasting in local distribution networks  

Science Conference Proceedings (OSTI)

The integration of renewable energy sources (RES) into local energy distribution networks becomes increasingly important. Renewable energy highly depends on weather conditions, making it difficult to maintain stability in such networks. To still enable ...

Robert Ulbricht; Ulrike Fischer; Wolfgang Lehner; Hilko Donker

2013-03-01T23:59:59.000Z

263

50 kW Power Block for Distributed Energy Applications  

Distributed energy (DE) systems have begun to make a significant impact on energy supply and will certainly affect energy needs in the future. These systems include, but are not limited to, photovoltaics (PV), wind turbines, micro-turbines, fuel ...

264

Using DER in Transmission-Constrained Urban Load Pockets  

Science Conference Proceedings (OSTI)

Urban load centers are characterized by their dense population, environmental constraints, as well as transmission-constrained electricity delivery. They also have potentially high infrastructure investment costs for distribution system investments to meet peak load growth. This report looks at seven areas in the United States that have been identified as transmission-constrained load pockets, focusing on opportunities for using distributed energy resources (DER).

2007-12-17T23:59:59.000Z

265

Advanced Distributed Energy Resource Compliant Distribution Circuits for High Reliability  

Science Conference Proceedings (OSTI)

Electric power distribution systems and their designs have not advanced much over the past 50 years. Industry restructuring has caused many utilities to defer infrastructure investments, and implement business as usual and conservative distribution system expansion plans. Many drivers are now causing utilities to rethink how the infrastructure of the future should be built out and how best to incorporate new technology. Drivers include higher demand for reliability, the ability to better manage loads, in...

2005-12-14T23:59:59.000Z

266

Strategic Intelligence Update: Energy Storage & Distributed Generation, November 2012  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2012-11-28T23:59:59.000Z

267

Strategic Intelligence Update: Energy Storage and Distributed Generation, June 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades.  Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2013-06-28T23:59:59.000Z

268

Strategic Intelligence Update: Distributed Generation & Energy Storage, 1st Newsletter  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2008-06-11T23:59:59.000Z

269

Distributed Wind - Economical, Clean Energy for Industrial Facilities  

E-Print Network (OSTI)

Distributed wind energy works for industrial clients. Corporations and other organizations are choosing to add Distributed Wind energy to their corporate goals for a numerous reasons: economic, environmental, marketing, values, and attracting new employees to name a few. The energy and economic impact of these projects can vary widely and be difficult to demonstrate. This paper and presentation will explore the appropriate application and bottom line economics of distributed wind energy through the review of two case studies.

Trapanese, A.; James, F.

2011-01-01T23:59:59.000Z

270

Strategic Intelligence Update: Energy Storage & Distributed Generation, December 2011  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-12-14T23:59:59.000Z

271

Strategic Intelligence Update: Energy Storage & Distributed Generation — March 2011  

Science Conference Proceedings (OSTI)

Energy Storage and Distributed Generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-03-22T23:59:59.000Z

272

Strategic Intelligence Update: Energy Storage & Distributed Generation— May 2011  

Science Conference Proceedings (OSTI)

Energy Storage and Distributed Generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-05-26T23:59:59.000Z

273

Strategic Intelligence Update: Energy Storage & Distributed Generation, September 2011  

Science Conference Proceedings (OSTI)

Energy storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-10-03T23:59:59.000Z

274

Strategic Intelligence Update: Energy Storage & Distributed Generation, September 2012  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades.  Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2012-09-27T23:59:59.000Z

275

Strategic Intelligence Update: Distributed Generation & Energy Storage, December 2008  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2008-12-12T23:59:59.000Z

276

Strategic Intelligence Update: Energy Storage and Distributed Generation, September 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2013-09-27T23:59:59.000Z

277

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-08-08T23:59:59.000Z

278

Strategic Intelligence Update: Energy Storage and Distributed Generation, November 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage ...

2013-11-25T23:59:59.000Z

279

Spectral energy distribution for GJ406  

E-Print Network (OSTI)

We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).

Pavlenko, Ya V; Lyubchik, Y; Tennyson, J; Pinfield, D J; Pavlenko, Ya. V.; Lyubchik, Yu.

2005-01-01T23:59:59.000Z

280

Spectral energy distribution for GJ406  

E-Print Network (OSTI)

We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).

Ya. V. Pavlenko; H. R. A. Jones; Yu. Lyubchik; J. Tennyson; D. J. Pinfield

2005-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings  

E-Print Network (OSTI)

J.L. Edwards, (2003), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations,”of a CO2 Pricing Scheme on Distributed Energy Resources in

Stadler, Michael

2010-01-01T23:59:59.000Z

282

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

283

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

DOCU[viENTS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUPIMPLICATIONS OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES .the development of distributed energy systems. technologies.

Authors, Various

2010-01-01T23:59:59.000Z

284

Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model  

E-Print Network (OSTI)

BD Biosciences Pharmingen Distributed Energy Resources inin many regions. Distributed Energy Resources in PracticeAssessment of µGrid Distributed Energy Resource Potential

Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

2003-01-01T23:59:59.000Z

285

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network (OSTI)

February 2003. “Distributed Energy Resources in Practice: ARyan. January 2004. “Distributed Energy Resources Customer2003. “Gas-Fired Distributed Energy Resource Technology

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

286

Federal Energy Management Program: Best Management Practice: Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

Distribution System Audits, Leak Detection, and Repair to someone Distribution System Audits, Leak Detection, and Repair to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Google Bookmark Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Delicious Rank Federal Energy Management Program: Best Management Practice: Distribution System Audits, Leak Detection, and Repair on Digg Find More places to share Federal Energy Management Program: Best

287

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

the Systems Integration Office California Energy ResourcesŁ Systems Integration Requi-rements for Decentralized Energy

Kahn, E.

2011-01-01T23:59:59.000Z

288

Partitioning the electrostatic interaction energy between two charge distributions  

E-Print Network (OSTI)

Partitioning the electrostatic interaction energy between two charge distributions B. Jayaram*, A of the electrostatic interaction energy and examine its consequences with some prototypical charge distributions the interaction between two charge distributions as a joint venture, we explore here the possibility

Jayaram, Bhyravabotla

289

DAVIC - Distributed Energy Automation via Implicit Communication  

NLE Websites -- All DOE Office Websites (Extended Search)

distributed process, determined by its sub-processes - in our case the loads and distributed generation. Network-based coordination needs to be done very carefully and...

290

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

291

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of ...

292

Confined energy distribution for charged particle beams  

SciTech Connect

A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

Jason, Andrew J. (Los Alamos, NM); Blind, Barbara (Los Alamos, NM)

1990-01-01T23:59:59.000Z

293

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

L ABORATORY Distributed Generation with Heat Recovery andequal opportunity employer. Distributed Generation with Heatenergy resources (DER), distributed generation (DG), and

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

294

Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) Distributed-scale Renewable Energy Projects (Smaller than 10 MWs) October 7, 2013 - 9:33am Addthis Training Available Learn more about project planning and implementation: Project Planning: Determining the Best Renewable Energy Project for Your Site Federal Renewable Energy Project Implementation: From RFP to Project Closeout See more renewable energy training options. Most Federal distributed-scale renewable energy projects (smaller than 10 MWs) can be broken down into nine steps. The first two fall within the planning phase, while the remaining seven are part of the implementation phase. Many steps will be familiar to energy/facility managers already versed in conventional energy projects. Step 1: Facility/Energy Characteristics

295

An Analysis of the DER Adoption Climate in Japan UsingOptimization Results for Prototype Buildings with U.S. Comparisons  

SciTech Connect

This research demonstrates economically optimal distributedenergy resource (DER) system choice using the DER choice and operationsoptimization program, the Distributed Energy Resources Customer AdoptionModel (DER-CAM). DER-CAM finds the optimal combination of installedequipment given prevailing utility tariffs and fuel prices, siteelectrical and thermal loads (including absorption cooling), and a menuof available equipment. It provides a global optimization, albeitidealized, that shows how site useful energy loads can be served atminimum cost. Five prototype Japanese commercial buildings are examinedand DER-CAM is applied to select the economically optimal DER system foreach. Based on the optimization results, energy and emission reductionsare evaluated. Significant decreases in fuel consumption, carbonemissions, and energy costs were seen in the DER-CAM results. Savingswere most noticeable in the prototype sports facility, followed by thehospital, hotel, and office building. Results show that DER with combinedheat and power equipment is a promising efficiency and carbon mitigationstrategy, but that precise system design is necessary. Furthermore, aJapan-U.S. comparison study of policy, technology, and utility tariffsrelevant to DER installation is presented.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

2006-06-16T23:59:59.000Z

296

Annual Coal Distribution Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

current Coal Distribution Report current Coal Distribution Report Annual Coal Distribution Report Release Date: November 7, 2012 | Next Release Date: November 2013 | full report Archive Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin Foreign distribution of U.S. coal by major coal-exporting States and destination Domestic distribution of U.S. coal by origin State, consumer, destination and method of transportation1 Domestic distribution of U.S. coal by destination State, consumer, destination and method of transportation1

297

Distributional and Efficiency Impacts of Clean and Renewable Energy Standards  

E-Print Network (OSTI)

Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity on recycled paper #12;Distributional and Efficiency Impacts of Clean and Renewable Energy Standards Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two

298

Energy Distribution Control in Wireless Sensor Networks Through Range Optimization  

E-Print Network (OSTI)

Energy Distribution Control in Wireless Sensor Networks Through Range Optimization M.Sarper Gokturk a location-based routing framework to control the energy distribution in a network where transmission ranges--A major objective in wireless sensor networks is to find optimum routing strategies for energy efficient

Yanikoglu, Berrin

299

Equilibrium surface distributions for constant energy ensembles B. I. Henry  

E-Print Network (OSTI)

Equilibrium surface distributions for constant energy ensembles B. I. Henry Department of Applied distributions are seen [11,12]. In this paper we shall discuss how one calculates the constant energy energy en­ semble are discussed. An equilibrium surface density is introduced and used to calculate

Henry, Bruce Ian

300

Distributed Energy Resources Market Diffusion Model  

E-Print Network (OSTI)

regional differences in energy markets and climates, as welldiverse climates and energy markets. These differences areanalyze the effect of other energy market policies in future

Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui, Afzal S.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus  

E-Print Network (OSTI)

Irrigation Management Information Systems Distributed EnergyResources Distributed Energy Resources Customer Adoptionprogram, the Distributed Energy Resources Customer Adoption

Michael, Stadler

2011-01-01T23:59:59.000Z

302

A Radical Distributed Architecture for Local Energy Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar HostPoint...

303

Cooperative Energy Network Optimization for Distributed Microgrids: Game Theoretic Approach  

E-Print Network (OSTI)

Cooperative Energy Network Optimization for Distributed Microgrids: Game Theoretic Approach Y. Wasa. 1 5) 6, 7) 8) 6, 9) 10) 7) Receding Horizon Fig. 1: Distributed Microgrids4) 2 2.1 n V := {1

304

Distributed Intelligent Agents for Decision Making at Local Distributed  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Intelligent Agents for Decision Making at Local Distributed Distributed Intelligent Agents for Decision Making at Local Distributed Energy Resource (DER) Levels Speaker(s): David Cohen Date: June 3, 2005 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Peng Xu Our goals are to develop and commercialize a system of adaptive, intelligent software components which run at distributed locations (DER-level) on the energy network to improve the reliability, efficiency, and security of the U.S. electrical distribution network. We are developing GridAgents, an enabling software technology framework and platform using a distributed multi-agent systems approach for advanced communications and control capabilities (large- scale automated demand response, distribution automation control, and Microgrid control applications). For more

305

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

s end-use energy loads, energy tariff structures and fuelEnergy costs are calculated using a detailed representation of utility tariffTariffs, Berkeley Lab Report LBNL-55680. http://tariffs.lbl.gov EIA [Energy

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

306

Annual Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report Annual Coal Distribution Report Release Date: December 19, 2013 | Next Release Date: November 2014 | full report | Revision/Correction The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for 2012 are final, and this report supersedes the 2012 quarterly coal distribution reports. Highlights for 2012: Total coal distributions for 2012 were 1,003.1 million short tons (mmst), a decrease of 7.9% compared to 2011. Distributions to domestic destinations were 877.3 mmst, a decrease of 104.1 mmst (i.e. 10.6% decrease) compared to 2011. Distributions to

307

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

308

Definition: Interchange Distribution Calculator | Open Energy Information  

Open Energy Info (EERE)

Distribution Calculator Distribution Calculator Jump to: navigation, search Dictionary.png Interchange Distribution Calculator The mechanism used by Reliability Coordinators in the Eastern Interconnection to calculate the distribution of Interchange Transactions over specific Flowgates. It includes a database of all Interchange Transactions and a matrix of the Distribution Factors for the Eastern Interconnection.[1] Related Terms Reliability Coordinator, Interchange Transaction References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interchange_Distribution_Calculator&oldid=480261" Categories: Definitions

309

Gas-Fired Distributed Energy Resource Technology Characterizations  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

310

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1....

311

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and...

312

Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.  

E-Print Network (OSTI)

??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong… (more)

Beck, Osmer DeVon

2010-01-01T23:59:59.000Z

313

Definition: Distribution Factor | Open Energy Information  

Open Energy Info (EERE)

Also Known As Transfer Distribution Factor Related Terms Interchange Transaction, transmission lines, facility, Interchange, transmission line, flowgate, smart grid...

314

Optimum model-E-GAMS for Distributed Energy System by Using GAMS Method  

E-Print Network (OSTI)

Marnay?LBNL ?????? ? ? Distributed Energy Resources Customermodel-E-GAMS for distributed energy system by using GAMS

Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Zhou, Nan; Xuan, Ji; Marnay, Chris

2005-01-01T23:59:59.000Z

315

Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function  

E-Print Network (OSTI)

Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function Ken relaxation length, v sat ø h''i (¸ 0:05¯m), the energy distribution function is not well described calculation of impact ionization coefficient requires the use of a high energy distribution function because

Dunham, Scott

316

Modeling of customer adoption of distributed energy resources  

E-Print Network (OSTI)

energy revenue neutrality International Fuel Cell market analysis and informationenergy market) price during hour h, type of day t, and month m ($/kWh) Distributed Energy Resource Technologies Information

2001-01-01T23:59:59.000Z

317

Game Theoretic Distributed Energy Control in Sensor Networks  

Science Conference Proceedings (OSTI)

Standard wireless sensor networks models emphasize energy efficiency and distributed decision- making by considering unattended sensors. Wireless sensor networks are confronted with the challenges of performance and energy consumption. To prolong the ...

Jia Zeng; Chundi Mu; Min Jiang

2007-10-01T23:59:59.000Z

318

Distributed energy-efficient hierarchical clustering for wireless sensor networks  

Science Conference Proceedings (OSTI)

Since nodes in a sensor network have limited energy, prolonging the network lifetime and improving scalability become important. In this paper, we propose a distributed weight-based energy-efficient hierarchical clustering protocol (DWEHC). Each node ...

Ping Ding; JoAnne Holliday; Aslihan Celik

2005-06-01T23:59:59.000Z

319

The State of Distributed Energy Storage Technology and the Stem...  

NLE Websites -- All DOE Office Websites (Extended Search)

State of Distributed Energy Storage Technology and the Stem Energy System Speaker(s): Ben Kearns David Erhart Date: March 1, 2013 - 12:00pm Location: 90-3122 Seminar HostPoint of...

320

Steigerung des Wirkungsgrads und der Ausnutzung von Norm-Asynchronmotoren mit Kurzschlusskäfig.  

E-Print Network (OSTI)

??Die allgemeine Energiesituation am Ende des 20. Jahrhunderts zwingt die Menschheit zum bewussteren Umgang mit der Energie. Weiterhin sorgt ein weltweites Umdenken in der Umweltpolitik… (more)

Knopik, Thomas

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessment of Distributed Energy Adoption in Commercial Buildings: Part 1: An Analysis of Policy, Building Loads, Tariff Design, and Technology Development  

E-Print Network (OSTI)

Energy Regulatory Committee (FERC) regulations, individual states determine incentivesstate and local jurisdiction on incentives may include rebates on DER project costs, energy

Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

2005-01-01T23:59:59.000Z

322

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

Cogeneration Geothermal Hydro Wind Energy (10 12 Btu) (l09Geothermal Hydro Central Station Energy (1012 Btu ) kWh)hydro is represented by its turbine capacity and energy An

Kahn, E.

2011-01-01T23:59:59.000Z

323

EPRI Pre-Conference Workshop: Active Distribution System Management for Integration of Distributed Resources Research, Development a nd Demonstration Needs  

Science Conference Proceedings (OSTI)

This report documents the proceedings of the EPRI Pre-Conference Workshop: Active Distribution System Management for Integration of Distributed ResourcesResearch, Development and Demonstration Needs, held December 9, 2008. This workshop presented over 20 projects related to active distribution management for distributed energy resource (DER) integration.

2009-04-27T23:59:59.000Z

324

Photovoltaic DER System Could Save USPS $25,000 per Year in Marina del Rey, California  

DOE Green Energy (OSTI)

In numerous projects, government agencies are demonstrating the economic and environmental value of using distributed energy resources (DER) to provide reliable electricity for Federal facilities. These projects also show how renewable DER systems such as photovoltaics (PV) can be effectively integrated into utility power grids to provide added power during peak demand periods in populous regions and states. This four-page case study describes a recent project in which the United States Postal Service (USPS) worked with the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), a national laboratory, the local utility, and a private company to install a PV DER system at the USPS Marina Processing and Distribution Center in Inglewood, California. This system is expected to shave 10% off the facility's 1.2-megawatt peak power demand and save more $25,000 per year in utility costs.

Not Available

2002-11-01T23:59:59.000Z

325

Heat Distribution Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distribution Systems Distribution Systems Heat Distribution Systems May 16, 2013 - 5:26pm Addthis Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves two heat distribution systems -- steam radiators and hot water radiators. Steam Radiators Steam heating is one of the oldest heating technologies, but the process of boiling and condensing water is inherently less efficient than more modern systems, plus it typically suffers from significant lag times between the

326

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Distribution Report Quarterly Coal Distribution Report Release Date: October 01, 2013 | Next Release Date: January 3, 2014 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the second quarter 2013: Total domestic coal distribution was an estimated 205.8 million short tons (mmst) in the second quarter 2013. This value is 0.7 mmst (i.e. 0.3 percent) higher than the previous quarter and 6.3 mmst (i.e. 3.1 percent) higher than the second quarter of 2012 estimates.

327

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

328

Integrating Renewable Energy into the Transmission and Distribution System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrating Renewable Energy into the Transmission and Distribution Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands Integrating Renewable Energy into the Transmission and Distribution System of the U.S. Virgin Islands This report describes one area in which islands may lead: integrating a high percentage of renewable energy resources into an isolated grid. In addition, it explores the challenges, feasibility, and potential benefits of interconnecting the USVI grids with the much larger Puerto Rican grid. 51294.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands

329

Mail and Distribution | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Facility Operations Food Services Graphics Mail and Distribution Parking and Garage Photography Printing Recycling Safety and Health Shuttle Bus and Couriers Supply...

330

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:en.openei.orgw...

331

Distributed Wind Power Generation - National Renewable Energy ...  

Technology breakthrough in roof-top distributed wind power generation Multi-billion $ market opportunity in next 10 years – recent venture capital investments

332

Definition: Distribution Provider | Open Energy Information  

Open Energy Info (EERE)

but rather as performing the Distribution function at any voltage.1 Related Terms transmission lines, transmission line References Glossary of Terms Used in Reliability...

333

Quarterly Coal Distribution Report - Energy Information ...  

U.S. Energy Information Administration (EIA)

The Quarterly Coal Distribution Report ... Electric Utilities and Independent Power Producers received approximately 92.2 percent of the total distrib ...

334

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

and deal only with solar cogeneration units that are assumedand Distributed. cogeneration). These provide just underparameters. as conventional cogeneration units. technologies

Kahn, E.

2011-01-01T23:59:59.000Z

335

DISTRIBUTED COGNITIVE MAC FOR ENERGY-CONSTRAINED OPPORTUNISTIC SPECTRUM ACCESS  

E-Print Network (OSTI)

DISTRIBUTED COGNITIVE MAC FOR ENERGY-CONSTRAINED OPPORTUNISTIC SPECTRUM ACCESS Yunxia Chen, Qing@arl.army.mil ABSTRACT We address the design of distributed cognitive medium ac- cess control (MAC) protocols for opportunistic spectrum access (OSA) under an energy constraint on the secondary users. The objective

Islam, M. Saif

336

Simplified Application of the IEC 61850 for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The IEC 61850 standard originally was developed for the substation automation. During the last years it was adapted for the integration of distributed energy resources into communication networks. There are however specific requirements in this new field ... Keywords: distributed energy resources, communication, IEC 61850

Heinz Frank; Sidonia Mesentean; Friederich Kupzog

2009-07-01T23:59:59.000Z

337

Effects of Distributed Energy Resources on Conservation Voltage Reduction (CVR)  

SciTech Connect

Conservation Voltage Reduction (CVR) is one of the cheapest technologies which can be intelligently leveraged to provide considerable energy savings. The addition of renewables in the form of distributed resources can affect the entire power system, but more importantly, affects the traditional substation control schemes at the distribution level. This paper looks at the effect on energy consumption, peak load reduction, and voltage profile changes due to the addition of distributed generation in a distribution feeder using combinations of volt var control. An IEEE 13-node system is used to simulate the various cases. Energy savings and peak load reduction for different simulation scenarios are compared.

Singh, Ruchi; Tuffner, Francis K.; Fuller, Jason C.; Schneider, Kevin P.

2011-10-10T23:59:59.000Z

338

Distributed Energy Storage Systems Testing and Evaluation 2010 Interim Results  

Science Conference Proceedings (OSTI)

Distributed Energy Storage Systems (DESS) are fully integrated AC storage devices which can be located within the distribution system, at substation locations, off distribution feeders, near end-of-line pad mounted transformers, or on customer side of the meter locations. Many new and emerging storage systems are being developed for grid support, outage mitigation, power quality and peak load energy management. However there is limited operational data on performance, grid comparability, durability, reli...

2010-12-20T23:59:59.000Z

339

Definition: Automated Distribution Circuit Switches | Open Energy  

Open Energy Info (EERE)

Circuit Switches Circuit Switches Jump to: navigation, search Dictionary.png Automated Distribution Circuit Switches Distribution circuit switches that can be operated automatically in response to control signals from local sensors, distribution automation systems, or grid control systems. Such switches can be installed as automated devices or existing equipment can be retrofitted with controls and communications. The degree of automation depends on the controls and communications system implemented. These switches can be opened or closed to isolate portions of a distribution circuit that has experienced a short circuit (fault), or must be taken out of service for maintenance or other operations. When used in combination, these switches can reroute power from other substations or nearby distribution circuits.[1]

340

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006 1 Distributed Control Agents Approach to Energy a new scheme for an energy management system in the form of distributed control agents. The control and a minimum amount of communication. A case study using the distributed agents within a multilayer system

Lai, Hong-jian

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Two jet energy and rapidity distributions  

SciTech Connect

The D0 detector has been recording data at the Tevatron [bar p]p Collider since May 1992. Because the D0 calorimeter is hermetic and has large acceptance it is well suited for semi-exclusive final state jet studies. We present a primary measurement of the distribution d[sup 3]N/dE[sub t1]/d[eta][sub 1]/d[eta][sub 2] at [radical]s TeV over a large range of [eta]. The sensitivity of this cross-section to parton momentum distributions and the ability of D0 to discriminate between possible parton distributions is discussed.

Blazey, G.C.

1992-11-01T23:59:59.000Z

342

Distributed Energy Storage Systems for Padmounted or Pole Mount Transformers  

Science Conference Proceedings (OSTI)

The goal of this project is to define the specifications for distributed energy storage systems in a neighborhood or a community setting also known as a distributed energy storage (DES) system, where they can be co-located with pad-mounted transformers. In 2009, the program collaborated with a utility stakeholder interest group to further enhance functional specifications developed by AEP for such energy storage systems. Initial technology mapping, screening and cost and value analysis have also been con...

2009-12-10T23:59:59.000Z

343

Market Driven Distributed Energy Storage Requirements for Load Management Applications  

Science Conference Proceedings (OSTI)

Electric energy storage systems are an enabling technology that could help meet the needs of electric utility by managing peak energy demands, helping shift the peak loads to off peak hours and improving the load factor of the electric distribution system. Applications of distributed energy storage systems (DESS) could also provide power quality and reliability benefits to customers and to the electric system. EPRI collaborated with several investor owned utilities to conduct a study to understand the te...

2007-04-18T23:59:59.000Z

344

Definition: Distribution Automation Communications Network | Open Energy  

Open Energy Info (EERE)

Automation Communications Network Automation Communications Network Jump to: navigation, search Dictionary.png Distribution Automation Communications Network A communications network or networks designed to deliver control signals and information between distribution automation devices, and between these devices and utility grid control systems. These networks can utilize wired or wireless connections, and can be utility-owned or provided as services by a third party.[1] Related Terms distribution automation References ↑ https://www.smartgrid.gov/category/technology/distribution_automation_communications_network [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from

345

Generation, distribution and utilization of electrical energy  

SciTech Connect

An up-to-date account of electric power generation and distribution (including coverage of the use of computers in various components of the power system). Describes conventional and unconventional methods of electricity generation and its economics, distribution methods, substation location, electric drives, high frequency power for induction and heating, illumination engineering, and electric traction. Each chapter contains illustrative worked problems, exercises (some with answers), and a bibliography.

Wadhwa, C.L.

1989-01-01T23:59:59.000Z

346

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

IMPACTS OF ALTERNATIVE ENERGY TECHNOLOGIES FOR CALIFORNIAOF DISTRIBUTIVE ENERGY TECHNOLOGY INTRODUCTI ON OverviewOF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES . SCALING UP TO

Authors, Various

2010-01-01T23:59:59.000Z

347

Distributed Energy Harvesting for Energy Neutral Sensor Networks  

E-Print Network (OSTI)

adja@cs.berkeley.edu Energy Harvesting Projects EDITOR’Sdevices that combine energy harvesting and data acquisition.kinetic and ther- mal energy harvesting from human users’

Kansal, Aman; Srivastava, Mani B.

2005-01-01T23:59:59.000Z

348

Distributed Energy Harvesting for Energy Neutral Sensor Networks  

E-Print Network (OSTI)

to exploit to develop piezoelectric energy harvesters. Manyenergy. Current piezoelectric energy harvest- ing researchwill improve piezoelectric energy harvesting technology’s

Kansal, Aman; Srivastava, Mani B.

2005-01-01T23:59:59.000Z

349

The Energy Distribution of Gamma-Ray Bursts  

E-Print Network (OSTI)

The distribution of the apparent total energy emitted by a gamma-ray burst reflects not only the distribution of the energy actually released by the burst engine, but also the distribution of beaming angles. Using the observed energy fluences, the detection thresholds and burst redshifts for three burst samples, I calculate the best-fit parameters for lognormal and power-law distributions of the apparent total energy. Two of the samples include a small number of bursts with spectroscopic redshifts, while the third sample has 220 bursts with redshifts determined by the proposed variability-luminosity correlation. I find different sets of parameter values for the three burst samples. The Bayesian odds ratio cannot distinguish between the two model distribution functions for the two smaller burst samples with spectroscopic redshifts, but does favor the lognormal distribution for the larger sample with variability-derived redshifts. The data do not rule out a distribution with a low energy tail which is currently unobservable. I find that neglecting the burst detection threshold biases the fitted distribution to be narrower with a higher average value than the true distribution; this demonstrates the importance of determining and reporting the effective detection threshold for bursts in a sample.

David L. Band

2001-05-15T23:59:59.000Z

350

Evaluation of Potential Bulk System Reliability Impacts of Distributed Resources  

Science Conference Proceedings (OSTI)

In recent years, distributed energy resources (DER) penetration has increased, but projections for penetration over the next 10 years show dramatic increases. Much of this is made up of distributed solar photovoltaic (PV) power, which is estimated to expand significantly in the United States in coming years. This project describes how methods to assess bulk system reliability might need to be altered to account for increasing levels of DER, particularly PV. It also aims to produce mitigating strategies t...

2011-12-21T23:59:59.000Z

351

Assessment of (mu)grid distributed energy resource potential using DER-CAM and GIS  

E-Print Network (OSTI)

technology i Operating cost per kWh electric produced ($/cost of technology i ($/kWh) Maximum number of hours per

Edwards, Jennifer L.; Marnay, Chris; Bartholomew, Emily; Ouaglal, Boubekeur; Siddiqui, Afzal S.; LaCommare, Kristina S.H.

2002-01-01T23:59:59.000Z

352

Assessment of (mu)grid distributed energy resource potential using DER-CAM and GIS  

E-Print Network (OSTI)

is the total annual electricity bill divided by the totalis the total annual electricity bill divided by total annualelectricity use where the electricity bill is a function of

Edwards, Jennifer L.; Marnay, Chris; Bartholomew, Emily; Ouaglal, Boubekeur; Siddiqui, Afzal S.; LaCommare, Kristina S.H.

2002-01-01T23:59:59.000Z

353

Optimal Model of Distributed Energy System by Using GAMS and Case Study  

E-Print Network (OSTI)

Optimal Model of Distributed Energy System by Using GAMS andEnergy Reliability, Distributed Energy Program of the U.S.Optimal Model of Distributed Energy System by Using GAMS and

Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Xuan, Ji; Zhou, Nan; Marnay, Chris

2005-01-01T23:59:59.000Z

354

Optimal Combination of Distributed Energy System in an Eco-Campus of Japan  

E-Print Network (OSTI)

Optimal Combination of Distributed Energy System in an Eco-and Renewable Energy, Distributed Energy Program of the U.S.OPTIMAL COMBINATION OF DISTRIBUTED ENERGY SYSTEM IN AN ECO-

Yang, Yongwen; Gao, Weijun; Zhou, Nan; Marnay, Chris

2006-01-01T23:59:59.000Z

355

A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database over TCP/IP Network  

E-Print Network (OSTI)

4 8 A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database processing to allow the adequate information integration and resource control in the energy distribution the energy distribution enterprise information. Reading the electronic energy meters is made through

Borissova, Daniela

356

Free energy and size distributions of micelles in solution  

Science Conference Proceedings (OSTI)

This paper presents a new derivation of the free energy of micellar solutions. From this free energy a micelle size distribution can be calculated. By using a density functional model for the bulk contribution to the free energy and a simple approximation for the micelle (proper) contribution

P. S. Christopher; David W. Oxtoby

2003-01-01T23:59:59.000Z

357

AMO Industrial Distributed Energy: Funding Opportunities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Incentives for Renewables & Efficiency (DSIRE). News Energy Department Invests in Next Generation Efficient Lighting June 19, 2013 More News Subscribe to News Updates Events...

358

Advanced Manufacturing Office: Industrial Distributed Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. Access the CHP Project Profiles database....

359

AMO Industrial Distributed Energy: Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reciprocating engine systems (ARES), packaged CHP systems, high-value applications, fuel-flexible CHP, waste energy recovery systems, and demonstrations of these technologies....

360

RELIABILITY PLANNING IN DISTRIBUTED ELECTRIC ENERGY SYSTEMS  

E-Print Network (OSTI)

applied to the case of hydroelectric facilities with large3. For comparison, the hydroelectric system in California asas droughts which reduce hydroelectric energy availability,

Kahn, E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nord Distribution Solaire | Open Energy Information  

Open Energy Info (EERE)

Nord Distribution Solaire Nord Distribution Solaire Jump to: navigation, search Name Nord Distribution Solaire Place Roubaix, France Zip 59100 Sector Solar Product An installation company for solar passive and PV system in the North of France. Coordinates 50.691705°, 3.1752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.691705,"lon":3.1752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Definition: Distribution Automation | Open Energy Information  

Open Energy Info (EERE)

Automation Automation Jump to: navigation, search Dictionary.png Distribution Automation DA is a family of technologies including sensors, processors, communication networks, and switches that can perform a number of distribution system functions depending on how they are implemented. Over the last 20 years, utilities have been applying DA to improve reliability, service quality and operational efficiency. More recently, DA is being applied to perform automatic switching, reactive power compensation coordination, or other feeder operations/control.[1] Related Terms sustainability, smart grid References ↑ https://www.smartgrid.gov/category/technology/distribution_automation [[Ca LikeLike UnlikeLike You and one other like this.One person likes this. Sign Up to see what your friends like.

363

DistributionDrive | Open Energy Information  

Open Energy Info (EERE)

DistributionDrive DistributionDrive Jump to: navigation, search Name DistributionDrive Place Addison, Texas Zip 75001 Product Supplier of Biodiesel, Straight Vegetable Oil (SVO), Recycled Vegetable Oil (WVO) and Engine Conversion Kits to use this fuels. Coordinates 38.477365°, -80.412149° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.477365,"lon":-80.412149,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Distributed Generation and Renewable Energy in  

E-Print Network (OSTI)

-Logan Cherry Point, NC (Propane) P 1st Rochdale CG New York, NY First Energy, OH A P #12;Co-op Renewables;#12;Co-op Basics Customer owned Serve 35 million people in 47 states 75 percent of nation's area 2 (Propane) Chugach EA Anchorage, AK Flint Energies Reynolds, GA Delaware County EC Delhi, NY (Propane) TVA

365

1 Grundlagen der Wirtschaftsjournalistik - Springer  

Science Conference Proceedings (OSTI)

die weitgehende Kongruenz des Gegenstands der Wirtschaftsberichterstat- tung mit einer entwickelten wissenschaftlichen Disziplin, mit der Wirt-.

366

Picking up the PACE : a new tool for financing energy efficiency and distributed renewable energy  

E-Print Network (OSTI)

This thesis describes the potential of new legislation in Louisiana to provide municipal financing for energy efficient building retrofits and distributed renewable energy. First, the thesis identifies how energy efficiency ...

Dadakis, Jacquelyn (Jacquelyn MacKenzie)

2010-01-01T23:59:59.000Z

367

Building Distributed Energy Performance Optimization for China - a Regional  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Energy Performance Optimization for China - a Regional Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Title Building Distributed Energy Performance Optimization for China - a Regional Analysis of Building Energy Costs and CO2 Emissions Publication Type Conference Proceedings Refereed Designation Refereed LBNL Report Number LBNL-81770 Year of Publication 2012 Authors Feng, Wei, Nan Zhou, Chris Marnay, Michael Stadler, and Judy Lai Conference Name 2012 ACEEE Summer Study on Energy Efficiency in Buildings, August 12-17, 2012 Date Published 08/2012 Conference Location Pacific Grove, California ISBN Number 0-918249-XX-X Notes LBNL - XXXXX Refereed Designation Refereed Attachment Size PDF 5 MB Google Scholar BibTex RIS RTF XML Alternate URL: http://eetd.lbl.gov/node/52998

368

Resilient Networked Control of Distributed Energy Resources  

E-Print Network (OSTI)

://www.nik.no/ Open Source Software for the Smartgrid: Challenges for Software Safety and Evolution Tosin Daniel, Trondheim, Norway. Abstract The growing Smartgrid behind today's electricity supply introduces many domains (generation, transmission, distribution and consumption) and nodes of the Smartgrid network

Hadjicostis, Christoforos

369

Optimal Siting and Sizing of Distributed Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimal Siting and Sizing of Distributed Energy Resources Optimal Siting and Sizing of Distributed Energy Resources Speaker(s): Johan Driesen Date: February 15, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay Ongoing changes in the operation of distribution grids call for a new way to plan grid modifications. This presentation gives an overview of possible methods of long-term planning for the deployment of Distributed Energy Resources (distributed generation, storage and controllable loads) in a given grid. The placement and sizing of the units have to be considered, making this a complex optimization problem with discrete and continuous variables. In the optimization problem, multiple objectives are often conflicting, e.g. minimal grid losses, maximal use of the resources and voltage stability. An evolutionary algorithm (genetic algorithms) is used

370

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

of three possible electricity tariffs is applied. Monthlythe structure of the electricity tariff and the ability toTOU-8 DER direct access Electricity Tariff Public Works flat

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

371

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

recovery through absorption chillers, space heating: loadsresidual heat in the absorption chiller and CHP system; theheat from DER and absorption chiller equipment could meet

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

372

Challenges in distributed energy adaptive computing  

Science Conference Proceedings (OSTI)

Fueled by burgeoning online services, energy consumption in information technology (IT) equipment is becoming a major concern from a variety of perspectives including the continuation of Moore's Law for hardware design, enabling sophisticated mobile ...

Krishna Kant

2010-01-01T23:59:59.000Z

373

AMO Industrial Distributed Energy: Legislative Initiatives  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1, Issue 2 PDF Fall 2009 - Volume 1, Issue 1 PDF News Energy Department Invests in Next Generation Efficient Lighting June 19, 2013 More News Subscribe to News Updates Events...

374

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

,to provide cooling. Solar technologies: Photovoltaics provide renewable electricity. Solar thermal collectors type in each location. City-specific weather,energy costs,and electric grid carbon-intensity values

375

Interconnection Standards Guide Integration of Distributed Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Across the United States, energy circles are buzzing about the promise of the smart grid-the digital electric power system that holds the potential to reduce greenhouse...

376

Energy Storage and Distributed Generation Technology Assessment  

Science Conference Proceedings (OSTI)

Energy storage continues to hold a great deal of interest to utilities and other stakeholders in the electric power enterprise. Storage can be used to shift load or energy from one time to another, to provide ancillary services and grid support, and is an enabling technology for smart grid technologies. This report investigates the current state of the art of advanced lead-acid batteries and zinc-air batteries, specifically where pertinent to stationary applications. It focuses on those developments and ...

2009-12-22T23:59:59.000Z

377

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

the prices of electricity and gas, that might make PV costprices increase by 10% Distributed Energy Resources at Naval Base Ventura Country Building 1512 over current Public Works levels, then PV

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

378

The 2010 Shanghai World Expo: The Challenge for Distributed Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The 2010 Shanghai World Expo: The Challenge for Distributed Energy Speaker(s): Weijun Gao Date: May 22, 2006 - 12:00pm Location: Bldg. 90 The economy of China is expected continue...

379

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

8: Air Distribution 8: Air Distribution Systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

380

On False Data Injection Attacks against Distributed Energy Routing in Smart Grid  

Science Conference Proceedings (OSTI)

Smart Grid is a new type of energy-based cyber physical system (CPS) that will provide reliable, secure, and efficient energy transmission and distribution. The way to secure the distributed energy routing process that efficiently utilizes the distributed ... Keywords: Smart grid, Distributed energy routing, False data injection attacks, Energy distribution

Jie Lin; Wei Yu; Xinyu Yang; Guobin Xu; Wei Zhao

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Distributed Renewable Energy Generation Impacts on Microgrid Operation and Reliability  

Science Conference Proceedings (OSTI)

Microgrids incorporating distributed generation, and particularly those incorporating renewable energy technologies, have the potential to improve electric power system efficiency and reliability while providing novel benefits to their owners, operators, and the system as a whole. This report focuses on the impact of renewable energy technologies on microgrids and on the larger question of the impact of distributed generation and microgrids on the electric power system.

2002-02-06T23:59:59.000Z

383

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributes Energy-Saving Tools to Help Manufacturers Save Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

384

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Distributes Energy-Saving Tools to Help Manufacturers Save DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

385

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

2009, Special Issue on Microgrids and Energy Management 3.of Commercial-Building Microgrids,” IEEE Transactions on2009, Special Issue on Microgrids and Energy Management 15.

Stadler, Michael

2010-01-01T23:59:59.000Z

386

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

a Microgrid,” Journal of Energy Engineering 131(1): 2-25. Toand Storage,” Journal of Energy Engineering 133(3): 181-210.

Stadler, Michael

2010-01-01T23:59:59.000Z

387

Resilient Networked Control of Distributed Energy Resources  

E-Print Network (OSTI)

of the ICT-driven SmartGrid. In this paper we discuss a design and simulation environment which provides throughout the developed world are investing in modernization of their energy grids. The SmartGrid footprint on our environment. Designing such ICT-driven SmartGrids imposes major challenges concerning

Hadjicostis, Christoforos

388

Jahresbericht der Universitt Bayreuth 2004  

E-Print Network (OSTI)

solarthermische Kraftwerke dabei sogar doppelt soviel Energie bereitstellen. 5 Die Investition in Spanien 3 Die Investition in Spanien Auszeichnung der Andasol-Kraftwerke mit dem Energy Globe Award im. Solarfeldverrohrung Die Investition in Spanien #12;16 Die ersten Parabolrinnen-Kraftwerke Europas ­ die grössten

Schmidt, Matthias

389

Common Language for Distributed Storage Integration  

Science Conference Proceedings (OSTI)

This technical update regards utility communication with community/pad-mounted scale battery storage systems. Six utilities implementing distributed energy storage systems have cooperated with EPRI to evaluate their functional requirements against a new Distributed Network Protocol 3 (DNP3) communication standard for distributed energy resources (DER). These utility projects are at various stages of development: some are at the conceptual stage while others are fully defined and have complete functional ...

2011-07-31T23:59:59.000Z

390

Energy Scaling Laws for Distributed Inference in Random Networks  

E-Print Network (OSTI)

The energy scaling laws of multihop data fusion networks for distributed inference are considered. The fusion network consists of randomly located sensors independently distributed according to a general spatial distribution in an expanding region. Among the class of data fusion schemes that enable optimal inference at the fusion center for Markov random field hypotheses, the minimum per-sensor energy cost is bounded below by a minimum spanning tree data fusion and above by a suboptimal scheme referred to as Data Fusion for Markov Random Field (DFMRF). Scaling laws are derived for the optimal and suboptimal fusion policies.

Animashree Anandkumar; Joseph E. Yukich; Lang Tong; Ananthram Swami

2008-01-01T23:59:59.000Z

391

Distributed Energy Communications & Controls, Lab Activities - Synopsis  

Science Conference Proceedings (OSTI)

Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is occurring in part because modern air-conditioner and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip than older motors. These motors can stall in less than three cycles (0.05 s) when a fault, for example, on the sub-transmission system, causes voltage on the distribution system to sag to 70% or less of nominal. We completed a new test system for A/C compressor motor stall testing at the DECC Lab. The A/C Stall test system is being used to characterize when and how compressor motors stall under low voltage and high compressor pressure conditions. However, instead of using air conditioners, we are using high efficiency heat pumps. We have gathered A/C stall characterization data for both sustained and momentary voltage sags of the test heat pump. At low enough voltage, the heat pump stalls (compressor motor stops and draws 5-6 times normal current in trying to restart) due to low inertia and low torque of the motor. For the momentary sag, we are using a fast acting contactor/switch to quickly switch from nominal to the sagged voltage in cycles.

Rizy, D Tom [ORNL

2010-01-01T23:59:59.000Z

392

Distributed Energy Resources: Issues and Challenges Badrul H. Chowdhury  

E-Print Network (OSTI)

for publication. Each paper was reviewed externally by at least two leading researchers in the field. The topics; · Storage aspects of DER; · Microgrids; · Economic and operational aspects of DER; · Impact on power quality. DGs will make these systems more like the loop system, thereby providing higher reliability of service

Tseng, Chung-Li

393

Electricity, Resources, & Building Systems Integration Distributed Energy Publications  

E-Print Network (OSTI)

Consulting Services, LLC; Brett Oakleaf, Xcel Energy; Kenneth Wolf, Minnesota Public Utilities CommissionElectricity, Resources, & Building Systems Integration Center Distributed Energy Publications 2005 for a single phase high frequency AC microgrid, S. Chakraborty, M.D. Weiss and M.G. Simoes, IEEE Transaction

394

Energy Distribution of a Gödel-Type Space-Time  

E-Print Network (OSTI)

We calculate the energy and momentum distributions associated with a G\\"{o}del-type space-time, using the well-known energy-momentum complexes of Landau and Lifshitz and M{\\o}ller. We show that the definitions of Landau and Lifshitz and M{\\o}ller do not furnish a consistent result.

Ragab M. Gad

2004-01-10T23:59:59.000Z

395

The Energy Distribution of the Bianchi Type I Universe  

E-Print Network (OSTI)

We calculate the energy distribution of an anisotropic model of universe, based on the Bianchi type I metric, in the Tolman's prescription. The energy due to the matter plus gravitational field is equal to zero. This result agrees with the results of Banerjee and Sen and Xulu. Also, our result supports the viewpoint of Tryon and Rosen.

I. Radinschi

2000-08-15T23:59:59.000Z

396

Integration of Distributed Energy The CERTS MicroGrid Concept  

E-Print Network (OSTI)

Integration of Distributed Energy Resources The CERTS MicroGrid Concept CALIFORNIA ENERGY Resources The CERTS MicroGrid Concept Prepared for Transmission Reliability Program Office of Power ­ The CERTS MicroGrid Concept ii Table of Contents 1. Introduction...................................................................................................

397

Integration of Distributed Energy The CERTS MicroGrid Concept  

E-Print Network (OSTI)

Integration of Distributed Energy Resources The CERTS MicroGrid Concept CALIFORNIA ENERGY Resources The MicroGrid Concept Appendices Prepared for Transmission Reliability Program Office of Power Program, under Work for Others Contract No. BG 99-39. #12;2 APPENDIX A. MicroGrid Technologies Many small

398

Renewable Energy Co-Location of Distribution Facilities (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Co-Location of Distribution Facilities (Virginia) Co-Location of Distribution Facilities (Virginia) Renewable Energy Co-Location of Distribution Facilities (Virginia) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity generated at its

399

Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms of plate tectonics  

E-Print Network (OSTI)

Global pattern of earthquakes and seismic energy distributions: Insights for the mechanisms October 2011 Keywords: Global seismicity Declustered catalogue Earthquake energy distribution Plate tectonics In this paper, we analyse the distributions of number of events (N) and seismic energy (E

Doglioni, Carlo

400

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES . . . . . . .DISTRIBUTED ENERGY SYSTEMS I~N CALIF RNIA/S FUTURE: UU-6831Ur'l1E:i\\i-fS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUP

Balderston, F.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

Hotel – Rio de Janeiro, Brazil Optimal Control of Distributed EnergyHotel – Rio de Janeiro, Brazil Optimal Control of Distributed EnergyHotel – Rio de Janeiro, Brazil Optimal Control of Distributed Energy

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

402

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

404

Energy distribution in the dyadosphere of a charged black hole  

E-Print Network (OSTI)

The event horizon of a charged black hole is, according to Ruffini\\cite{Ruffini} and Preparata \\emph{et al.}\\cite{PreparataEtAl}, surrounded by a special region called the \\emph{dyadosphere} where the electromagnetic field exceeds the Euler-Heisenberg critical value for electron-positron pair production. We obtain the energy distribution in the dyadosphere region for a Reissner-Nordstr\\"{o}m black hole. We find that the energy-momentum prescriptions of Einstein, Landau-Lifshitz, Papapetrou, and Weinberg give the same and acceptable energy distribution.

S. S. Xulu

2003-04-22T23:59:59.000Z

405

A Radical Distributed Architecture for Local Energy Generation,  

NLE Websites -- All DOE Office Websites (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The LoCal Project is developing Information Age solutions to the limiting resource of this century: energy. One hundred fifty years ago, humanity was transformed by harnessing energy for machinery and work. Toil by hand became routinely mechanized, inconceivable constructions became reality, and powered transport shrunk the world. A century later, computers brought an equally profound transformation, replacing mundane bookkeeping and obviating libraries, simulating the imperceptible, and placing knowledge at our fingertips. Information processing has sustained a 50-100% annualized

406

Energy Efficiency Standards for Distribution Transformers: The Importance  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Standards for Distribution Transformers: The Importance Energy Efficiency Standards for Distribution Transformers: The Importance of the Load Factor Assessment from an Energy Saving Point of View. Speaker(s): Norma Anglani Date: April 10, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare The energy saving assessment for each chosen transformer is a very important issue in the rule-making process, not only because of the obvious environmental consequences but also considering the economic impact of the standards. The life cycle cost equation, which is a keystone feature, is also affected by the correct definition of the savings achieved by improving the efficiency of each class of transformers. Setting up efficiency standards by looking at what is offered in the current distribution transformers market doesn't necessarily entail an improvement

407

GridLab Power Distribution System Simulation | Open Energy Information  

Open Energy Info (EERE)

GridLab Power Distribution System Simulation GridLab Power Distribution System Simulation Jump to: navigation, search Tool Summary Name: GridLab Power Distribution System Simulation Agency/Company /Organization: Pacific Northwest National Laboratory Sector: Energy Focus Area: Grid Assessment and Integration Phase: Evaluate Options Topics: Pathways analysis User Interface: Desktop Application Website: www.gridlabd.org/ Cost: Free OpenEI Keyword(s): EERE tool Language: English References: GridLAB-D Simulation Software[1] Examine in detail the interplay of every part of a distribution system with every other part of the system. GridLAB-D(tm) is a new power distribution system simulation and analysis tool that provides valuable information to users who design and operate distribution systems, and to utilities that wish to take advantage of the

408

Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory  

Science Conference Proceedings (OSTI)

Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

2005-12-01T23:59:59.000Z

409

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings Title The Influence of a CO2 Pricing Scheme on Distributed Energy...

410

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

2009-08-10T23:59:59.000Z

411

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus  

Science Conference Proceedings (OSTI)

Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versions of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two distinct analyses of value to UCD are possible using this approach. First, optimal investment choices for buildings under the two alternative objectives can be derived. Second, a week-ahead building operations forecaster has been written that executes DER-CAM to find an optimal operating schedule for buildings given their expected building energy services requirements, electricity prices, and local weather. As part of its matching contribution, OSIsoft provided a full implementation of PI and a server to install it on at Berkeley Lab. Using the PItoPI protocol, this gives Berkeley Lab researchers direct access to UCD's PI data base. However, this arrangement is in itself inadequate for performing optimizations. Additional data not included in UCD's PI database would be needed and the campus was not able to provide this information. This report details the process, results, and lessons learned of this commercialization project.

Michael, Stadler; Marnay, Chris; Donadee, Jon; Lai, Judy; M& #233; gel, Olivier; Bhattacharya, Prajesh; Siddiqui, Afzal

2011-02-06T23:59:59.000Z

412

Distributed Sensor Coordination for Advanced Energy Systems  

Science Conference Proceedings (OSTI)

The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards “what to observe” rather than “how to observe” in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using “sensor teams,” system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

Tumer, Kagan

2013-07-31T23:59:59.000Z

413

Measurement of parallel ion energy distribution function in PISCES plasma  

DOE Green Energy (OSTI)

The PISCES facility is used to conduct controlled plasma-surface interaction experiments. Plasma parameters typical of those found in the edge plasmas of major fusion confinement experiments are produced. In this work, the energy distribution of the ion flux incident on a material surface is measured using a gridded energy analyzer in place of a material sample. The full width at half maximum energy distribution of the ion flux is found to vary from 10 eV to 30 eV both hydrogen and deuterium plasmas. Helium plasmas have a much lower FWHM energy spread than hydrogen and deuterium plasmas. The FWHM ion energy spread is found to be linearly related to the electron temperature. The most probable ion energy is found to be linearly related to the bias applied to the energy analyzer. Other plasma parameters have a weak influence upon the energy distribution of the ion flux. Two possible physical mechanisms for producing the observed results are introduced and suggestions for further work are made. The impact of the reported measurements on the materials experiments conducted in the PISCES facility are discussed and recommendations for future experiments are made. 11 refs., 13 figs.

Tynan, G.R.; Goebel, D.M.; Conn, R.W.

1987-08-01T23:59:59.000Z

414

AMO Industrial Distributed Energy: Clean Energy Application Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

this topic. DOE's Regional Clean Energy Application Centers (CEACs), formerly called the Combined Heat and Power (CHP) Regional Application Centers (RACs), promote and assist in...

415

Nonuniversality of the dispersion interaction: analytic benchmarks for van der Waals energy functionals  

E-Print Network (OSTI)

We highlight the non-universality of the asymptotic behavior of dispersion forces, such that a sum of inverse sixth power contributions is often inadequate. We analytically evaluate the cross-correlation energy Ec between two pi-conjugated layers separated by a large distance D within the electromagnetically non-retarded Random Phase Approximation, via a tight-binding model. For two perfect semimetallic graphene sheets at T=0K we find Ec = C D^{-3}, in contrast to the "insulating" D^{-4} dependence predicted by currently accepted approximations. We also treat the case where one graphene layer is replaced by a thin metal, a model relevant to the exfoliation of graphite. Our general considerations also apply to nanotubes, nanowires and layered metals.

John F. Dobson; Angel Rubio

2005-02-17T23:59:59.000Z

416

Picking up the PACE : a new tool for financing energy efficiency and distributed renewable energy; Picking up the Property Assessed Clean Energy; New tool for financing energy efficiency and distributed renewable energy.  

E-Print Network (OSTI)

??This thesis describes the potential of new legislation in Louisiana to provide municipal financing for energy efficient building retrofits and distributed renewable energy. First, the… (more)

Dadakis, Jacquelyn (Jacquelyn MacKenzie)

2010-01-01T23:59:59.000Z

417

Distributed Wind Site Analysis Tool (DSAT) | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Site Analysis Tool (DSAT) Distributed Wind Site Analysis Tool (DSAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Site Analysis Tool (DSAT) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: dsat.cadmusgroup.com/Default.aspx Equivalent URI: cleanenergysolutions.org/content/distributed-wind-site-analysis-tool-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Distributed Wind Site Analysis Tool (DSAT) is a powerful online tool for conducting detailed site assessments for single turbine projects, from residential to community scale. The tool offers users the ability to analyse potential wind turbine installment projects based on the type of turbine being installed, the terrain of the installment site, and the

418

Distributed Wind Policy Comparison Tool | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Policy Comparison Tool Distributed Wind Policy Comparison Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Policy Comparison Tool Focus Area: Renewable Energy Topics: Policy Impacts Website: www.eformativeoptions.com/distributed-wind-policy-comparison-tool-news Equivalent URI: cleanenergysolutions.org/content/distributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Feed-in Tariffs This Web-based tool allows users to identify policies that have had the most (and least) impact on improving the bottom line economics of wind

419

Property:EIA/861/ActivityDistribution | Open Energy Information  

Open Energy Info (EERE)

ActivityDistribution ActivityDistribution Jump to: navigation, search This is a property of type Boolean. Description: Activity Distribution Entity engages in power distribution activity (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityDistribution" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn + true + A A & N Electric Coop (Virginia) + true + AEP Texas Central Company + true + AEP Texas North Company + true + AGC Division of APG Inc + true + Access Energy Coop + true + Adams Electric Coop + true + Adams Electric Cooperative Inc + true + Adams Rural Electric Coop, Inc + true + Adams-Columbia Electric Coop + true + Adrian Public Utilities Comm + true +

420

Energy Storage and Distributed Energy Generation Project, Final Project Report  

DOE Green Energy (OSTI)

tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings  

E-Print Network (OSTI)

Heat and Power Adoption by a Microgrid,” Journal of EnergyStorage and Reliability on Microgrid Viability: A Study ofa cost- or CO 2 - minimizing microgrid that is able to adopt

Stadler, Michael

2010-01-01T23:59:59.000Z

422

A Bio-Based Fuel Cell for Distributed Energy Generation  

DOE Green Energy (OSTI)

The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

Anthony Terrinoni; Sean Gifford

2008-06-30T23:59:59.000Z

423

Distributed Generation with Heat Recovery and Storage  

DOE Green Energy (OSTI)

Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-07-29T23:59:59.000Z

424

Distributed Generation with Heat Recovery and Storage  

SciTech Connect

Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2006-06-16T23:59:59.000Z

425

What`s new in building energy research: Thermal distribution technology. DOE looks at cutting energy losses in a building`s heating and cooling distribution system  

SciTech Connect

The Department of Energy takes a look at cutting energy losses in a building`s heating and cooling distribution system.

1995-11-01T23:59:59.000Z

426

Novel concept for pulse compression via structured spatial energy distribution  

E-Print Network (OSTI)

We present a novel concept for pulse compression scheme applicable at RF, microwave and possibly to optical frequencies based on structured energy distribution in cavities supporting degenerate band-edge (DBE) modes. For such modes a significant fraction of energy resides in a small fraction of the cavity length. Such energy concentration provides a basis for superior performance for applications in microwave pulse compression devices (MPC) when compared to conventional cavities. The novel design features: far larger loaded quality factor of the cavity and stored energy compared to conventional designs, energy feeding and extraction at the cavity center, substantial reduction of the cavity size by use of equivalent lumped circuits for low energy sections of the cavity, controlled pulse shaping via engineered extraction techniques. The presented concepts are general, in terms of equivalent transmission lines, and can be applied to a variety of realistic guiding structures.

Tamma, Venkata Ananth; Capolino, Filippo

2013-01-01T23:59:59.000Z

427

Optimal Model of Distributed Energy System by Using GAMS and Case Study  

E-Print Network (OSTI)

market follows: information (gas price and electricity price, etc) and 1) The benefit of distributed energy

Yang, Yongwen; Gao, Weijun; Ruan, Yingjun; Xuan, Ji; Zhou, Nan; Marnay, Chris

2005-01-01T23:59:59.000Z

428

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system  

E-Print Network (OSTI)

Studies of switching field and thermal energy barrier distributions in a FePt nanoparticle system X dependence of the thermal stability factor, the width of the thermal energy barrier distribution- ropy energy distribution and the interaction and the thermal energy barrier distribution determined

Laughlin, David E.

429

Role of Distributed Generation in U.S. Energy Markets, The  

Reports and Publications (EIA)

Presentation on EIA's projections of energy markets with particular focus on distributed generation.

Information Center

2002-04-01T23:59:59.000Z

430

Energy Distribution of Nanoflares in Three-Dimensional Simulations of  

E-Print Network (OSTI)

1, Liwei Lin2 1Geophysical Institute, University of Alaska Fairbanks 2Space Science Center of the energy distribution of solar flares, there have not been many results based on large-scale three of the solar corona and Parker's model for coronal heating. · Introduction to numerical simulation model

Ng, Chung-Sang

431

Energy Distribution of Nanoflares in Three-Dimensional Simulations of  

E-Print Network (OSTI)

1, Liwei Lin2 1Geophysical Institute, University of Alaska Fairbanks 2Space Science Center]. While there have been many observations of the energy distribution of solar flares, there have not been. #12;Outline · Introduction to the Parker's model for the heating problem of the solar corona and our

Ng, Chung-Sang

432

Dust and the ultraviolet energy distribution of quasars  

E-Print Network (OSTI)

The ultraviolet energy distribution of quasars shows a sharp steepening of the continuum shortward of 1000 A (rest-frame). We describe how we came to consider the possibility that this continuum break might be the result of absorption by carbon crystallite dust grains.

Luc Binette; Christophe Morisset; Sinhue Haro-Corzo

2005-09-24T23:59:59.000Z

433

The far-UV break in quasar energy distributions: dust?  

E-Print Network (OSTI)

A prominent continuum steepening is observed in quasar energy distributions near 1100A. We review possible interpretations for the origin of the so-called far-UV break, putting emphasis on those that favor the emergence of an upturn in the extreme-UV.

L. Binette; Y. Krongold; S. Haro-Corzo; A. Andersen

2006-11-01T23:59:59.000Z

434

Technology Review and Assessment of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The investigators reviewed, benchmarked and assessed the current status of emerging battery technologies for distributed energy storage (DES) as it applies to market applications addressing residential, commercial, and light-industrial buildings, and the prospects for significant market impacts with in the electric utility sector over the next 5-7 years.

2006-02-06T23:59:59.000Z

435

Automated Energy Distribution and Reliability System (AEDR): Final Report  

Science Conference Proceedings (OSTI)

This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

Buche, D. L.

2008-07-01T23:59:59.000Z

436

Automated Energy Distribution and Reliability System Status Report  

Science Conference Proceedings (OSTI)

This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

Buche, D. L.; Perry, S.

2007-10-01T23:59:59.000Z

437

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

438

Application of an Energy Management System to a Distribution Center  

E-Print Network (OSTI)

Capital outlays for energy management must be economically attractive to warrant an expenditure. An energy management system has one of the most economic returns for an investment decision, if applied effectively. The Quaker Oats Company installed such a System in its Dallas Distribution Center. In one year the electric bills were reduced by a total of $17,668.91. Electric consumption (KWH) was reduced by thirty-one percent, electrical demand (KW) was reduced by thirty-six percent while plant operations expanded. This paper discusses the control strategies employed by the energy management system and provided the resultant savings that was obtained from the first year of operation.

Warnick, T.

1984-01-01T23:59:59.000Z

439

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

surrounding a wind energy conversion system may be the bestEnergy System Grouping of Technical Options for Formulation of Distributed Energy Systems Biomass Conversion .

Balderston, F.

2010-01-01T23:59:59.000Z

440

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network (OSTI)

CHP (PX and Tariff case) Distributed Energy Resources42 Figure 10. Energy Consumption Breakdown - 1999 (TariffFigure 10. Energy Consumption Breakdown - 1999 (Tariff Case)

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

DISTRIBUTED TECHNOLOGY ENERGY SUPPLY INDUSTRIES INTRODUCTIONenter an emerging energy supply industry based on the use oftechnology based energy supply industry since they possess

Balderston, F.

2010-01-01T23:59:59.000Z

442

Energy Dependence of High Moments for Net-proton Distributions  

Science Conference Proceedings (OSTI)

High moments of multiplicity distributions of conserved quantities are predicted to be sensitive to critical fluctuations. To understand the effect of the non-critical physics backgrounds on the proposed observable, we have studied various moments of net-proton distributions with AMPT, Hijing, Therminator and UrQMD models, in which no QCD critical point physics is implemented. It is found that the centrality evolution of various moments of net-proton distributions can be uniformly described by a superposition of emission sources. In addition, in the absence of critical phenomena, some moment products of net-proton distributions, related to the baryon number susceptibilities in Lattice QCD calculations, are predicted to be constant as a function of the collision centrality. We argue that a non-monotonic dependence of the moment products as a function of the beam energy may be used to locate the QCD critical point.

Luo, Xiaofeng; Mohanty, Bedangadas; Ritter, Hans Georg; Xu, Nu

2010-07-07T23:59:59.000Z

443

Umweltmedizinische Gesichtspunkte der regenerativen Energierzeugung am Beispiel deutscher Krankenhäuser.  

E-Print Network (OSTI)

??In wie weit kommt and deutschen Krankenhäusern aus regenerativen Energiequellen (Wasser, Sonne und Wind) gewonnene Energie zum Einsatz? Dies ist die Kernfrage, mit der sich… (more)

Waschnewski, Ralf

2007-01-01T23:59:59.000Z

444

The 2010 Shanghai World Expo: The Challenge for Distributed Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The 2010 Shanghai World Expo: The Challenge for Distributed Energy The 2010 Shanghai World Expo: The Challenge for Distributed Energy Speaker(s): Weijun Gao Date: May 22, 2006 - 12:00pm Location: Bldg. 90 The economy of China is expected continue its breakneck expansion. Beijing will host the summer Olympics in 2008, and Shanghai will be the site of the World Expo in 2010. The entire world is afraid Mothership Earth cannot endure the environmental load caused by China's 13 billion people. Over the past century, the average temperature in Shanghai has increased by 1.5C, more than three times of the global average. The temperature increase in the recent decade was a very rapid 0.11C, and this tendency will continue at least for a few years. The main culprit of such dramatic climate change is directly connected with the increase of energy consumption. For more

445

Vibrational-Rotational Energy Distributions in the Reaction O-+ D2 f OD + D-  

E-Print Network (OSTI)

Vibrational-Rotational Energy Distributions in the Reaction O- + D2 f OD + D- Yue Li, Li Liu with a bimodal rotational energy distribution. At the higher collision energy, both V ) 0 and 1 products energy range up to 10 eV. By measuring the kinetic energy distribution of the detached electrons

Farrar, James M.

446

Expected Muon Energy Spectra and Zenithal Distributions Deep Underwater  

E-Print Network (OSTI)

Energy spectra and zenith angle distributions of atmospheric muons are calculated for the depths of operation of large underwater neutrino telescopes. The estimation of the prompt muon contribution is performed with three approaches to charm hadroproduction: recombination quark-parton model, quark-gluon string model, and perturbative QCD based models. Calculations show that the larger are zenith angles and water thickness above the detector, the lower is the energy at which the prompt muon flux becomes equal to conventional one (``crossing energy'') . For instance, for the depth of the Baikal Neutrino Telescope and for zenith angle of 78 degrees the crossing energy is about 300 TeV, whereas it is only 8 TeV for the NESTOR depth. Nevertheless, the muon flux of the crossing energy at NESTOR depth is in order of magnitude lower in comparison with the Baikal depth.

A. Misaki; V. A. Naumov; T. S. Sinegovskaya; S. I. Sinegovsky; N. Takahashi

1999-05-19T23:59:59.000Z

447

A FUEL?CELL DISTRIBUTED ENERGY RESOURCE WITH INTEGRATED ENERGY STORAGE  

Science Conference Proceedings (OSTI)

This paper presents a fuel?cell distributed energy resource with integrated energy storage. A compatible power electronic interface to couple the fuel?cell with the grid and/or a local load is introduced. Details of the energy storage module

Hassan Nikkhajoei

2009-01-01T23:59:59.000Z

448

Actual trends of decentralized CHP integration -- The Californian investment subsidy system and its implication for the energy efficiency directive (Aktuelle Trends in der dezentralen KWK Technologie Integration -- Das kalifornische Fordermodell und dessen Implikation fur die Endenergieeffizienzrichtlinie)  

E-Print Network (OSTI)

sein (Stadler, 2003). Aktuelle Trends in der dezentralen KWKsich auf 3375€/kW. Aktuelle Trends in der dezentralen KWKdes gesamten Aktuelle Trends in der dezentralen KWK

Stadler, Michael; Lipman, Tim; Marnay, Chris

2008-01-01T23:59:59.000Z

449

Modeling the Panchromatic Spectral Energy Distributions of Galaxies  

E-Print Network (OSTI)

The spectral energy distributions (SEDs) of galaxies are shaped by nearly every physical property of the system, including the star formation history, metal content, abundance pattern, dust mass, grain size distribution, star-dust geometry, and interstellar radiation field. The principal goal of stellar population synthesis (SPS) is to extract these variables from observed SEDs. In this review I provide an overview of the SPS technique and discuss what can be reliably measured from galaxy SEDs. Topics include stellar masses, star formation rates and histories, metallicities and abundance patterns, dust properties, and the stellar initial mass function.

Conroy, Charlie

2013-01-01T23:59:59.000Z

450

Steam distribution and energy delivery optimization using wireless sensors  

Science Conference Proceedings (OSTI)

The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Sukumar, Sreenivas R [ORNL; Djouadi, Seddik M [ORNL; Lake, Joe E [ORNL

2011-01-01T23:59:59.000Z

451

Laboratory tests of IEC DER object models for grid applications.  

Science Conference Proceedings (OSTI)

This report describes a Cooperative Research and Development Agreement (CRADA) between Salt River Project Agricultural Improvement and Power District (SRP) and Sandia National Laboratories to jointly develop advanced methods of controlling distributed energy resources (DERs) that may be located within SRP distribution systems. The controls must provide a standardized interface to allow plug-and-play capability and should allow utilities to take advantage of advanced capabilities of DERs to provide a value beyond offsetting load power. To do this, Sandia and SRP field-tested the IEC 61850-7-420 DER object model (OM) in a grid environment, with the goal of validating whether the model is robust enough to be used in common utility applications. The diesel generator OM tested was successfully used to accomplish basic genset control and monitoring. However, as presently constituted it does not enable plug-and-play functionality. Suggestions are made of aspects of the standard that need further development and testing. These problems are far from insurmountable and do not imply anything fundamentally unsound or unworkable in the standard.

Blevins, John D. (PE Salt River Project, Phoenix, AZ); Menicucci, David F.; Byrd, Thomas, Jr. (,; .); Gonzalez, Sigifredo; Ginn, Jerry W.; Ortiz-Moyet, Juan (Primecore, Inc.)

2007-02-01T23:59:59.000Z

452

Model Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition. In particular we find that an increasing iron content in silicates mainly causes an increase of the dust absorption effiency and thus increases the dust reemission continuum. Furthermore, the influence of the sp 2 /sp 3 hybridization

Sebastian Wolf; Lynne A. Hillenbr

2003-01-01T23:59:59.000Z

453

Spectral Energy Distributions of Circumstellar Debris Disks I. Analytic Disk Density Distributions  

E-Print Network (OSTI)

We present results of a study aimed at deriving fundamental properties of circumstellar debris disks from observed infrared to submillimeter spectral energy distributions. This investigation is motivated by increasing telescope/detector sensitivity, in particular the expected availability of the Space Infrared Telescope Facility (SIRTF) followed by the Stratospheric Observatory for Infrared Astronomy (SOFIA), which will enable detailed studies with large source samples of late stage circumstellar disk and planetary system evolution. We base our study on an analytic model of the disk density distribution and geometry, taking into account existing constraints from observations and results of theoretical investigations of debris disks. We also outline the effects of the most profound characteristics of circumstellar dust including the grain size distribution and dust chemical composition.

Sebastian Wolf; Lynne Hillenbrand

2003-06-23T23:59:59.000Z

454

Mass-resolved retarding field energy analyzer and its measurement of ion energy distribution in helicon plasma  

E-Print Network (OSTI)

Mass-resolved retarding field energy analyzer and its measurement of ion energy distribution) are measured at rf power of 1000 W. The results show that the fairly broad energy distributions of different analyzer; Ion energy distribution; Helicon plasma 1. Introduction It is well recognized that ion

Zexian, Cao

455

Energy distributions and effective temperatures in the packing of elastic sheets  

E-Print Network (OSTI)

OFFPRINT Energy distributions and effective temperatures in the packing of elastic sheets S) 24002 www.epljournal.org doi: 10.1209/0295-5075/85/24002 Energy distributions and effective temperatures-section are broadly distributed. We find distributions of energy with exponential tails. This setup naturally divides

Boudaoud, Arezki

456

Energy distributions and effective temperatures in the packing of elastic sheets  

E-Print Network (OSTI)

Energy distributions and effective temperatures in the packing of elastic sheets S. Deboeuf, M of the branches forming the cross-section are broadly distributed. We find distributions of energy and within the bulk. While the geometrical properties of the sub-systems differ, their energy distributions

Paris-Sud XI, Université de

457

Fitting of Weibull distribution to study wind energy potential in Kuala Terengganu, Malaysia  

Science Conference Proceedings (OSTI)

A feasibility study on the wind energy potential of Kuala Terengganu, Malaysia was carried out. The most commonly used distribution to fit wind speed data is the Weibull distribution. This distribution was applied to wind speed data for the year 2008. ... Keywords: beaufort scale, weibull distribution, wind data, wind distribution pattern, wind energy potential

A. M. Razali; M. S. Sapuan; K. Ibrahim; A. R. Ismail; A. Zaharim; K. Sopian

2009-12-01T23:59:59.000Z

458

Category:Smart Grid Projects - Electric Distributions Systems | Open Energy  

Open Energy Info (EERE)

Distributions Systems category. Distributions Systems category. Pages in category "Smart Grid Projects - Electric Distributions Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C Consolidated Edison Company of New York, Inc. Smart Grid Project E El Paso Electric Smart Grid Project H Hawaii Electric Co. Inc. Smart Grid Project M Memphis Light, Gas and Water Division Smart Grid Project Municipal Electric Authority of Georgia Smart Grid Project N Northern Virginia Electric Cooperative Smart Grid Project NSTAR Electric Company Smart Grid Project P Powder River Energy Corporation Smart Grid Project P cont. PPL Electric Utilities Corp. Smart Grid Project S Snohomish County Public Utilities District Smart Grid Project

459

A deployed multi-agent framework for distributed energy applications  

Science Conference Proceedings (OSTI)

In this paper, we describe the adaptation of an open-source multi-agent platform for distributed energy applications and the trial deployment of resource-controller agents. The platform provides real-time, two-way communication and decision making between ... Keywords: applications of autonomous agents and multi-agent systems, collective and emergent agent behavior, frameworks, infrastructures and environments for agent systems

Geoff James; Dave Cohen; Robert Dodier; Glenn Platt; Doug Palmer

2006-05-01T23:59:59.000Z

460

Handbook of Energy Storage for Transmission or Distribution Applications  

Science Conference Proceedings (OSTI)

As a result of a recent increase of interest in and deployment of energy storage options for transmission and distribution (T&D) applications, a large body of information has accumulated, but it is often not readily available to utility engineers in a single, succinct document. Facts on technology description, status, cost and performance information, and lessons learned are often dispersed among multiple vendors and users of prototype and developmental hardware. "Apple to apple" comparative data is virt...

2002-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NAS Battery Distributed Energy Storage System Best Practices  

Science Conference Proceedings (OSTI)

Utility transmission and distribution (T&D) systems require extensive investment for upkeep. In addition, load growth over time increases the possibility of overload conditions, or loss of load, which may require upgrades to guard against these contingency events. In some situations, installation of sodium-sulfur (NAS) energy storage systems may solve a capacity shortfall and defer the need for an upgrade. Such installations can improve system reliability and customer service, while reducing the economic...

2008-12-04T23:59:59.000Z

462

An autonomy-oriented computing mechanism for modeling the formation of energy distribution networks: crude oil distribution in U.S. and Canada  

Science Conference Proceedings (OSTI)

An efficient, economical, as well as reliable energy distribution system plays important roles in distributing energy resources from energy suppliers to energy consumers in different regions. In this paper, we present a decentralized self-organized mechanism ...

Benyun Shi; Jiming Liu

2010-09-01T23:59:59.000Z

463

Distributed energy resources at naval base ventura county building 1512  

E-Print Network (OSTI)

Adoption Model distributed generation building energycosts of the DG (distributed generation) equipment, alongcapability: DG (distributed generation, electricity only);

Bailey, Owen C.; Marnay, Chris

2004-01-01T23:59:59.000Z

464

Energy distribution and flux of fast neutrals and residual ions extracted from a neutral beam source  

E-Print Network (OSTI)

Energy distribution and flux of fast neutrals and residual ions extracted from a neutral beam-4004 Received 21 April 2006; accepted 6 July 2006; published 7 August 2006 The energy distribution and flux into fast neutrals. The neutral energy distribution was always shifted to lower energies compared

Economou, Demetre J.

465

Distributed Energy Resources at Federal Facilities. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet  

DOE Green Energy (OSTI)

This two-page overview describes how the use of distributed energy resources at Federal facilities is being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

Pitchford, P.

2001-07-16T23:59:59.000Z

466

Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet  

DOE Green Energy (OSTI)

This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

Pitchford, P.; Brown, T.

2001-07-16T23:59:59.000Z

467

An investigation of emergent collaboration under uncertainty and minimal information in energy domains  

Science Conference Proceedings (OSTI)

We study the phenomenon of evolution of cooperation in the electricity domain, where self-interested agents representing distributed energy resources (DERs) strategize for maximizing payoff. From the system's viewpoint cooperation represents a solution ...

Radu-Casian Mihailescu; Matteo Vasirani; Sascha Ossowski

2011-11-01T23:59:59.000Z

468

Compatpm: Enabling energy efficient multimedia workloads for distributed mobile platforms  

E-Print Network (OSTI)

The computation and communication abilities of modern platforms are enabling increasingly capable cooperative distributed mobile systems. An example is distributed multimedia processing of sensor data in robots deployed for search and rescue, where a system manager can exploit the application’s cooperative nature to optimize the distribution of roles and tasks in order to successfully accomplish the mission. Because of limited battery capacities, a critical task a manager must perform is online energy management. While support for power management has become common for the components that populate mobile platforms, what is lacking is integration and explicit coordination across the different management actions performed in a variety of system layers. This papers develops an integration approach for distributed multimedia applications, where a global manager specifies both a power operating point and a workload for a node to execute. Surprisingly, when jointly considering power and QoS, experimental evaluations show that using a simple deadline-driven approach to assigning frequencies can be non-optimal. These trends are further affected by certain characteristics of underlying power management mechanisms, which in our research, are identified as groupings that classify component power management as “compatible ” (VFC) or “incompatible ” (VFI) with voltage and frequency scaling. We build on these findings to develop CompatPM, a vertically integrated control strategy for power management in distributed mobile systems. Experimental evaluations of CompatPM indicate average energy improvements of 8 % when platform resources are managed jointly rather than independently, demonstrating that previous attempts to maximize battery life by simply minimizing frequency are inappropriate from a platform-level perspective.

Ripal Nathuji; Keith J. O’hara; Karsten Schwan; Tucker Balch

2007-01-01T23:59:59.000Z

469

The Spectral Energy Distribution of HH30 IRS: Constraining The Circumstellar Dust Size Distribution  

E-Print Network (OSTI)

We present spectral energy distribution (SED) models for the edge-on classical T Tauri star HH30 IRS that indicate dust grains have grown to larger than 50 microns within its circumstellar disk. The disk geometry and inclination are known from previous modeling of multiwavelength Hubble Space Telescope images and we use the SED to constrain the dust size distribution. Model spectra are shown for different circumstellar dust models: a standard ISM mixture and larger grain models. As compared to ISM grains, the larger dust grain models have a shallower wavelength dependent opacity. Models with the larger dust grains provide a good match to the currently available data, but mid and far-IR observations are required to more tightly constrain the dust size distribution. The accretion luminosity in our models is L_accdistributions that are simple power-law extensions (i.e., no exponential cutoff) yield acceptable fits to the optical/near-IR but too much emission at mm wavelengths and require larger disk masses. Such a simple size distribution would not be expected in an environment such as the disk of HH30 IRS, particularly over such a large range in grain sizes. However, its ability to adequately characterize the grain populations may be determined from more complete observational sampling of the SED in the mid to far-IR.

Kenneth Wood; Michael J. Wolff; J. E. Bjorkman; Barbara Whitney

2001-09-04T23:59:59.000Z

470

Iowa Distributed Wind Generation Project | Open Energy Information  

Open Energy Info (EERE)

Generation Project Generation Project Jump to: navigation, search Name Iowa Distributed Wind Generation Project Facility Iowa Distributed Wind Generation Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Consortium -- Cedar Falls leads with 2/3 ownership Developer Iowa Distributed Wind Generation Project Energy Purchaser Consortium -- Cedar Falls leads with 2/3 ownership Location Algona IA Coordinates 43.0691°, -94.2255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0691,"lon":-94.2255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Distributed Wind Policy Comparison Tool Website | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Distributed Wind Policy Comparison Tool Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Policy Comparison Tool Website Focus Area: Renewable Energy Topics: Security & Reliability Website: www.eformativeoptions.com/dwpolicytool/ Equivalent URI: cleanenergysolutions.org/content/distributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: "Utility/Electricity Service Costs,Feed-in Tariffs,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

472

Assessment of Distributed Energy Adoption in Commercial Buildings: Part 1: An Analysis of Policy, Building Loads, Tariff Design, and Technology Development  

E-Print Network (OSTI)

Assessment of Distributed Energy Adoption in Commercialand Renewable Energy, Distributed Energy Program of the U.S.Assessment of Distributed Energy Adoption in Commercial

Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

2005-01-01T23:59:59.000Z

473

Evaluation Framework and Tools for Distributed Energy Resources  

E-Print Network (OSTI)

Office of Energy Efficiency and Renewable Energy. 2000. "Secretary of Energy Efficiency and Renewable Energy, OfficeSecretary for Energy Efficiency and Renewable Energy U.S.

Gumerman, Etan Z.; Bharvirkar, Ranjit R.; LaCommare, Kristina Hamachi; Marnay, Chris

2003-01-01T23:59:59.000Z

474

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network (OSTI)

None of the dual-typologies microgrids has purchased switch2010, Special Issue on Microgrids and Energy Management,ABORATORY Multi-Building Microgrids for a Distributed Energy

Mendes, Goncalo

2013-01-01T23:59:59.000Z

475

Modeling of Inverter Control with Distribution Management System for Distributed Energy Resources  

Science Conference Proceedings (OSTI)

A distribution energy resource management system (DERMS) has been added as an external control to the OpenDSS software. This report discusses that control and provides case studies illustrating the feeder response. The visual interpretation of the feeder in the external control is similar to that of an operator’s control interface.The DERMS uses meters on a feeder to provide power flow data. This data is processed and used to update the control of the inverter-based generation. The ...

2013-12-20T23:59:59.000Z

476

Energy Distribution of a Schwarzschild Black Hole in a Magnetic Universe  

E-Print Network (OSTI)

We obtain the energy distribution of a Schwarzschild black hole in a magnetic universe in the Tolman prescription.

Irina Radinschi

2000-10-25T23:59:59.000Z

477

Strategic Intelligence Update: Energy Storage & Distributed Generation, May-June 2010  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-05-28T23:59:59.000Z

478

Field Verification of Distributed Renewable Generation, Volume 1: Renewable Energy Field Test Concepts  

Science Conference Proceedings (OSTI)

This report describes field verification of distributed renewable generation and focuses on renewable energy field test concepts.

2003-03-25T23:59:59.000Z

479

GA based energy loss minimization approach for optimal sizing & placement of distributed generation  

Science Conference Proceedings (OSTI)

Distributed Generators (DG) provide the lowest cost solution to handle low voltage or overload problems. In conjunction with such problems, a technique of energy saving is introduced by placement of distributed generation (DG) in distribution systems. ... Keywords: Distributed generation (DG), energy saving, genetic algorithms (GA), optimal sizing and placement

Deependra Singh; Devender Singh; K. S. Verma

2008-04-01T23:59:59.000Z

480

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Commission (CEC) * International District Energy Association (IDEA) * National Energy Technology Laboratory (NETL) * New York State Energy Research and Development...

Note: This page contains sample records for the topic "der distributed energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.