Powered by Deep Web Technologies
Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model  

SciTech Connect

If electrode kinetics are fast and concentration gradients can be ignored, the reaction in a battery electrode is confined to a narrow zone, which moves through the electrode as the battery is discharged. During this process, the ohmic resistance increases, and the cutoff potential may signal the end of the discharge. It is desirable to have a matching of the capacity of the electrode (and hence its thickness) with the time t[sub d] of discharge. Assuming that there is a certain specified separator thickness and that the electrolyte of the separator is the same as that permeating the positive electrode, it is possible to obtain the optimum porosity as a compromise between the desire to have active material present and the necessity to have a conduction path through the pores of the electrode. For a system with a foil negative electrode and an open-circuit potential which is independent of state of charge, this optimum value depends on one principal parameter T = U[kappa]t/q[sub +]L[sup 2], one which involves the time of discharge, the open-circuit potential U, the conductivity [kappa], and thickness L of the separator, and the capacity q[sub +] per unit volume of solids in the positive electrode. There is one other parameter: the ratio of the cutoff potential to the open-circuit potential. Other parameters are introduced to account for a more complex structure of the battery.

Newman, J. (Lawrence Berkeley Lab., CA (United States). Energy and Environment Division Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering)

1995-01-01T23:59:59.000Z

2

Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.  

SciTech Connect

At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Tellier, L. L. (Larry L.); Ho, Cheng,

2002-01-01T23:59:59.000Z

3

Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal  

Science Conference Proceedings (OSTI)

Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for ...

Yuekui Yang; Alexander Marshak; J. Christine Chiu; Warren J. Wiscombe; Stephen P. Palm; Anthony B. Davis; Douglas A. Spangenberg; Louis Nguyen; James D. Spinhirne; Patrick Minnis

2008-11-01T23:59:59.000Z

4

Microparticles with hierarchical porosity  

SciTech Connect

The present disclosure provides oxide microparticles with engineered hierarchical porosity and methods of manufacturing the same. Also described are structures that are formed by templating, impregnating, and/or precipitating the oxide microparticles and method for forming the same. Suitable applications include catalysts, electrocatalysts, electrocatalysts support materials, capacitors, drug delivery systems, sensors and chromatography.

Petsev, Dimiter N; Atanassov, Plamen; Pylypenko, Svitlana; Carroll, Nick; Olson, Tim

2012-12-18T23:59:59.000Z

5

Processing and characterization of high porosity aerogel films  

SciTech Connect

Aerogels are highly porous solids having unique morphology among materials because both the pores and particles making up the material have sizes less than wavelengths of visible light. Such a unique morphology modifies the normal molecular transport mechanisms within the material, resulting in exceptional thermal, acoustical, mechanical, and electrical properties. For example, aerogels have the lowest measured thermal conductivity and dielectric constant for any solid material. Special methods are required to make aerogel films with high porosity. In this paper, we discuss the special conditions needed to fabricate aerogel films having porosities greater than 75% and we describe methods of processing inorganic aerogel films having controllable thicknesses in the range 0.5 to 200 micrometers. We report methods and results of characterizing the films including thickness, refractive index, density (porosity), and dielectric constant. We also discuss results of metallization and patterning on the aerogel films for applications involving microminiature electronics and thermal detectors.

Hrubesh, L.W.; Poco, J.F.

1994-11-22T23:59:59.000Z

6

Porosity in Cast Equiaxed Alloy 718  

Science Conference Proceedings (OSTI)

techniques and the total percentage of porosity across each lmm wide band through ... Figure 3 shows the average percentage porosity as a function of position ...

7

Secondary porosity in immature Late Cretaceous and Tertiary sandstones, northeast Alaska and northwest Canada  

Science Conference Proceedings (OSTI)

Petrographic and scanning electron microscope analysis of Upper Cretaceous to lower Eocene sandstone from outcrops west of the Mackenzie delta and in the central Arctic National Wildlife Refuge (ANWR) reveals secondary porosity. Recognizing this secondary porosity is important for oil and gas exploration because early diagenesis has eliminated most primary porosity in these immature litharenites. The litharenites are dominated by grains of quartz, cherty argillite, chert, volcanic rock fragments, variable amounts of feldspar, and minor amounts of metamorphic rock fragments. Because of the abundance of ductile grains all deep burial (probable burial to depths in excess of 3,000 m), these sandstones have suffered the loss of most primary porosity. Additional reduction of primary porosity has occurred due to the formation of minor amount of precompaction rim cement (carbonate, chlorite, and illite/smectite) and syncompaction quartz overgrowths. Dissolution of framework grains and, to a lesser degree, matrix has resulted in secondary porosities of up to 8% in outcrop samples. Framework grains commonly dissolved include volcanic rock fragments, feldspar, chert, cherty argillite, argillite, and quartz. Two processes are responsible for the dissolution. The first process is the direct dissolution of grains. The second process involves two steps in which grains and matrix are initially replaced by carbonate cement followed by dissolution of the cement and creation of secondary porosity. Secondary porosity is reported to exceed 20% in subsurface samples in northwest Canada.

Myers, M.D. (Univ. of Alaska, Fairbanks (USA)); Smith, T.N. (State Div. of Oil and Gas, Anchorage, AK (USA))

1990-05-01T23:59:59.000Z

8

Correlating Spatial Heterogeneities in Porosity and Permeability...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference...

9

Fabrication of dual porosity electrode structure  

DOE Patents (OSTI)

A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

Smith, J.L.; Kucera, E.H.

1991-02-12T23:59:59.000Z

10

Fabrication of dual porosity electrode structure  

DOE Patents (OSTI)

A substantially entirely fibrous ceramic which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers.

Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

1991-01-01T23:59:59.000Z

11

Method of using in situ porosity measurements to place an upper bound on geothermal reservoir compaction  

DOE Green Energy (OSTI)

Placing an upper bound on reservoir compaction requires placing a lower bound on the reservoir effective compaction modulus. Porosity-depth data can be used to find that lower-bound modulus in a young sedimentary basin. Well-log and sample porosity data from a geothermal field in the Imperial Valley, CA, give a lower-bound modulus of 7.7 x 10{sup 3} psi. This modulus is used with pressure drops calculated for a reservoir to determine an upper bound on reservoir compaction. The effects of partial reinjection and aquifer leakage on upper-bound subsidence estimated from the compaction are illustrated for a hypothetical reservoir and well array.

Schatz, J.F.; Kasameyer, P.W.; Cheney, J.A.

1979-01-03T23:59:59.000Z

12

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

1993-07-06T23:59:59.000Z

13

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (P.O. Box 763, Cedar Crest, NM 87008); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Doughty, Daniel H. (11724 Woodmar La., NE., Albuquerque, NM 87111); Bein, Thomas (1114 Princeton Dr., NE., Albuquerque, NM 87106); Moller, Karin (1114 Princeton Dr., NE., Albuquerque, NM 87106)

1993-01-01T23:59:59.000Z

14

Coatings with controlled porosity and chemical properties  

DOE Patents (OSTI)

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (Bernalillo County, NM); Brinker, C. Jeffrey (Albuquerque, NM); Doughty, Daniel H. (Albuquerque, NM); Bein, Thomas (Albuquerque, NM); Moller, Karin (Albuquerque, NM)

1996-01-01T23:59:59.000Z

15

Synthesis of high porosity, monolithic alumina aerogels  

Science Conference Proceedings (OSTI)

Many non-silica aerogels are notably weak and fragile in monolithic form. Particularly, few monolithic aerogels with densities less than 50kg/m3 have any significant strength. It is especially difficult to prepare uncracked monoliths of pure alumina aerogels that are robust and moisture stable. In this paper, we discuss the synthesis of strong, stable, monolithic, high porosity (>98% porous) alumina aerogels, using a two-step sol-gel process. The alumina aerogels have a polycrystalline morphology that results in enhanced physical properties. Most of the measured physical properties of the alumina aerogels are superior to those for silica aerogels for equivalent densities.

Poco, J F; Satcher, J H; Hrubesh, L W

2000-09-20T23:59:59.000Z

16

Boiling radial flow in fractures of varying wall porosity  

DOE Green Energy (OSTI)

The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

Barnitt, Robb Allan

2000-06-01T23:59:59.000Z

17

W-86: Porosity Characterization of Surrogates for Oxide Nuclear Fuels  

Science Conference Proceedings (OSTI)

W-118: Titania Based One-Dimensional Nanomaterials for Lithium Ion Batteries .... W-86: Porosity Characterization of Surrogates for Oxide Nuclear Fuels: A ...

18

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...  

Open Energy Info (EERE)

to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic...

19

Casting Porosity-Free Grain Refined Magnesium Alloys  

SciTech Connect

The objective of this project was to identify the root causes for micro-porosity in magnesium alloy castings and recommend remedies that can be implemented in production. The findings confirm the key role played by utilizing optimal gating and risering practices in minimizing porosity in magnesium castings.?

Schwam, David [Case Western Reserve University] [Case Western Reserve University

2013-08-12T23:59:59.000Z

20

Poisson's ratio and porosity at Coso geothermal area, California | Open  

Open Energy Info (EERE)

Poisson's ratio and porosity at Coso geothermal area, California Poisson's ratio and porosity at Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Poisson's ratio and porosity at Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: High-resolution, three-dimensional, compressional and shear wave velocity models, derived from microearthquake traveltimes, are used to map the distribution of Poisson's ratio and porosity at Coso Geothermal Area, Inyo County, California. Spatial resolution of the three-dimensional Poisson's ratio and porosity distributions is estimated to be 0.5 km horizontally and 0.8 km vertically. Model uncertainties, + or -1% in the interior and + or -2.3% around the edge of the model, are estimated by a jackknife method. We use perturbations of r = V p /V s ratio and Psi = V p

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Porosity level estimation in polymer composites using microwaves  

Science Conference Proceedings (OSTI)

The ability of microwaves to monitor variations in porosity level of composite samples is studied. Measurements of several carefully prepared samples with different air volume fractions are performed at the frequency range of 8.2--18 GHz. The measurement results indicated that there is an excellent sensitivity to small differences in porosity level. A two-phase mixing model used for predicting the dielectric properties as a function of porosity level shows good agreement with the measured results. This model may be used to closely predict the amount of air content from measured dielectric properties. Changes in clustered (local) porosity are studied experimentally as well. Microwave scan of specially prepared samples with about 5% change in air content (local porosity variation) are also presented.

Gray, S.; Ganchev, S.; Qaddoumi, N.; Beauregard, G.; Radford, D. [Colorado State Univ., Fort Collins, CO (United States); Zoughi, R.

1995-03-01T23:59:59.000Z

22

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

23

A Prognostic Relationship for Entrainment Zone Thickness  

Science Conference Proceedings (OSTI)

The thickness of the entrainment zone at the top of the atmospheric mixed layer is analyzed using measurements made with a ground-based lidar during the BLX83 and CIRCE field programs. When the entrainment-zone depth normalized by mixed-layer ...

Eric Nelson; Roland Stull; Edwin Eloranta

1989-09-01T23:59:59.000Z

24

THOR—Cloud Thickness from Offbeam Lidar Returns  

Science Conference Proceedings (OSTI)

Conventional wisdom is that lidar pulses do not significantly penetrate clouds having an optical thickness exceeding about ? = 2, and that no returns are detectible from more than a shallow skin depth. Yet optically thicker clouds of ? ? 2 ...

Robert F. Cahalan; Matthew McGill; John Kolasinski; Tamás Várnai; Ken Yetzer

2005-06-01T23:59:59.000Z

25

A Permeability-Porosity Relationship for Surface Deposition  

DOE Green Energy (OSTI)

The changes to porosity and permeability resulting from surface deposition and early dissolution in an initial rhombohedral array of uniform spheres are calculated. Very rapid decreases of permeability result from early deposition, with 48% reduction predicted in permeability from 8% reduction in porosity. After deposition has caused about a 1% increase in the radii of the spherical array, relative permeability reductions vary approximately as the square of relative changes in porosity. These theoretical results are matched with experimental data of Ioti et al. and shown to be satisfactory in some cases, but for others, a more complex model of the porous medium is needed.

Weir, G.J.; White, S.P.

1995-01-01T23:59:59.000Z

26

Characterization of porosity in support of mechanical property analysis  

SciTech Connect

Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results.

Price, R.H. [Sandia National Labs., Albuquerque, NM (United States); Martin, R.J. III; Boyd, P.J. [New England Research, Inc., White River Junction, VT (United States)

1992-12-31T23:59:59.000Z

27

Properties of Bulk Sintered Silver As a Function of Porosity  

SciTech Connect

This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity, thermal conductivity, elastic modulus, Poisson's ratio, and yield stress all depended on the porosity content in bulk-sintered silver. The only investigated property that was independent of porosity in that range was coefficient of thermal expansion.

Wereszczak, Andrew A [ORNL; Vuono, Daniel J [ORNL; Wang, Hsin [ORNL; Ferber, Mattison K [ORNL; Liang, Zhenxian [ORNL

2012-06-01T23:59:59.000Z

28

Thick film hydrogen sensor  

DOE Green Energy (OSTI)

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

29

Porosity and surface area evolution during weathering of two igneous rocks  

SciTech Connect

During weathering, rocks release nutrients and storewater vital for growth ofmicrobial and plant life. Thus, the growth of porosity as weathering advances into bedrock is a life-sustaining process for terrestrial ecosystems. Here, we use small-angle and ultra small-angle neutron scattering to show how porosity develops during initial weathering under tropical conditions of two igneous rock compositions, basaltic andesite and quartz diorite. The quartz diorite weathers spheroidally while the basaltic andesite does not. The weathering advance rates of the two systems also differ, perhaps due to this difference in mechanism, from 0.24 to 100 mm kyr1, respectively. The scattering data document how surfaces inside the feldspar-dominated rocks change as weathering advances into the protolith. In the unaltered rocks, neutrons scatter fromtwo types of featureswhose dimensions vary from6 nmto 40 lm: pores and bumps on pore grain surfaces. These features result in scattering data for both unaltered rocks that document multi-fractal behavior: scattering is best described by amass fractal dimension (Dm) and a surface fractal dimension (Ds) for features of length scales greater than and less than 1 lm, respectively. In the basaltic andesite, Dm is approximately 2.9 and Ds is approximately 2.7. The mechanism of solute transport during weathering of this rock is diffusion. Porosity and surface area increase from 1.5%to 8.5%and 3 to 23 m2 g1 respectively in a relatively consistent trend across themm-thick plagioclase reaction front. Across this front, both fractal dimensions decrease, consistentwith development of amoremonodisperse pore networkwith smoother pore surfaces. Both changes are consistent largely with increasing connectivity of pores without significant surface roughening, as expected for transport-limited weathering. In contrast, porosity and surface area increase from 1.3% to 9.5% and 1.5 to 13 m2 g1 respectively across a many cm-thick reaction front in the spheroidally weathering quartz diorite. In that rock, Dm is approximately 2.8 andDs is approximately 2.5 prior to weathering. These two fractals transform during weathering to multiple surface fractals as micro-cracking reduces the size of diffusion-limited subzones of thematrix.Across the reaction front of plagioclase in the quartz diorite, the specific surface area and porosity change very little until the pointwhere the rock disaggregates into saprolite. The different patterns in porosity development of the two rocks are attributed to advective infiltration plus diffusion in the rock that spheroidally fractures versus diffusion-only in the rock that does not. Fracturing apparently diminishes the size of the diffusion-limited parts of the spheroidally weathering rock system to promote infiltration of meteoric fluids, thereforeexplaining the faster weathering advance rate into that rock.

Navarre-Sitchler, Alexis [Colorado School of Mines, Golden; Cole, David [Ohio State University; Rother, Gernot [ORNL; Jin, Lixin [University of Texas, El Paso; Buss, Heather [University of Bristol, UK; Brantley, S. L. [Pennsylvania State University, University Park, PA

2013-01-01T23:59:59.000Z

30

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2009-09-27T23:59:59.000Z

31

Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures  

SciTech Connect

Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

2011-02-14T23:59:59.000Z

32

from the project evaluation indicated that the porosity, void space  

NLE Websites -- All DOE Office Websites (Extended Search)

the project evaluation indicated that the porosity, void space, the project evaluation indicated that the porosity, void space, and permeability of the target formations were lower than expected, and that the pressure in the formations increased with low injection rates. These results confirm the complex nature of the formations and demonstrate the importance of extensive drilling, formation evaluation, and testing to characterize and identify appropriate formations for CO 2 storage within the Appalachian Basin prior to injection. In addition to providing a significant geologic understanding of the formation, the project also provided several "lessons learned," ranging from practices

33

3D porosity prediction from seismic inversion and neural networks  

Science Conference Proceedings (OSTI)

In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack ... Keywords: Feed-forward neural network, Matlab, Reservoir characterization, Seismic inversion

Emilson Pereira Leite; Alexandre Campane Vidal

2011-08-01T23:59:59.000Z

34

POROSITY AND PERMEABILITY EVOLUTION ACCOMPANYING HOT FLUID INJECTION  

E-Print Network (OSTI)

. Additionally, funding was provided by the SUPRI-A Industrial Affiliates and the President's Fund of Stanford to the setup used by Koh et al. (1996), but it allows for measurement of porosity by CT scanning. A Blue-M oven to the oven set- point temperature. System pressure is elevated by a back-pressure regulator and injection

35

Depth profiling of tritium by neutron time-of-flight  

SciTech Connect

A method was developed to measure the depth profile of tritium implanted or absorbed in materials. The sample to be analyzed is bombarded with a pulsed proton beam and the energy of neutrons produced by the T(p,n) reaction is measured by the time-of-flight technique. From the neutron energy the depth in the target of the T atoms may be inferred. A sensitivity of 0.1 at. percent T or greater is possible. The technique is non-destructive and may be used with thick or radioactive host materials. Samples up to 20 $mu$m in thickness may be profiled with resolution limited by straggling of the proton beam for depths greater than 1 $mu$m. Deuterium depth profiling has been demonstrated using the D(d,n) reaction. The technique has been used to observe the behavior of an implantation spike of T produced by a 400 keV T$sup +$ beam stopping at a depth of 3 $mu$m in 11 $mu$m thick layers of Ti and TiH. The presence of H in the Ti lattice is observed to inhibit the diffusion of T through the lattice. Effects of the total hydrogen concentration (H + T) being forced above stoichiometry at the implantation site are suggested by the shapes of the implanation spikes. (auth)

Davis, J.C.; Anderson, J.D.; Lefevre, H.W.

1975-01-01T23:59:59.000Z

36

Correlating Spatial Heterogeneities in Porosity and Permeability with Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference Room 137-226 Presented by Darius Morris, Stanford Synchrotron Radiation Lightsource Fluid catalytic cracking (FCC) is a refining process for converting large and/or heavy molecules of oil feedstock into smaller and lighter hydrocarbons such as gasoline. During the cracking process, metal contaminants from the oil feedstock deactivate and restrict access into the catalyst particle, thus reducing the yield of gasoline byproducts. Full-field transmission X-ray microscopy (TXM) has been used to determine the 3D composition and structure of an equilibrated (spent) FCC particle in

37

Development of a new graded-porosity FeAl alloy by elemental reactive synthesis  

SciTech Connect

A new graded-porosity FeAl alloy can be fabricated through Fe and Al elemental reactive synthesis. FeAl alloy with large connecting open pores and permeability were used as porous supports. The coating was obtained by spraying slurries consisting of mixtures of Fe powder and Al powder with 3 5 m diameter onto porous FeAl support and then sintered at 1100 C. The performances of the coating were compared in terms of thickness, pore diameter and permeability. With an increase in the coating thickness up to 200 m, the changes of maximum pore size decreased from 23.6 m to 5.9 m and the permeability decreased from 184.2 m3m 2kPa 1h 1 to 76.2 m3m 2kPa 1h 1, respectively, for a sintering temperature equal to 1100 C. The composite membranes have potential application for excellent filters in severe environments.

Shen, P Z [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China; He, Y H [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China; Gao, H Y [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China; Zou, J [School of Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, QLD; Xu, N P [Membrane Science and Technology Research Center, Nanjing University of Technology, Nanjing 210009, C; Jiang, Y [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China; Huang, B [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China; Lui, C T [Oak Ridge National Laboratory (ORNL)

2009-01-01T23:59:59.000Z

38

Zeolite with trimodal porosity by desilication of zeolite nanocrystals aggregate  

SciTech Connect

Zeolite with trimodal porosity can be synthesized by desilication of zeolite nanocrystal aggregate. In the desilication process, the originally existed intercrystalline mesopores of zeolite nanocrystal aggregate were enlarged into large mesopore, and the new small intracrystalline mesopore channel was created, thus the Zeolite with trimodal porosity was formed. The structure of resulted zeolite, both on aggregate and mesopore level can be fine tuned by the desilication degree. - Graphical abstract: The Si from the edges and boundary of nanocrystals was first removed resulted the surface roughness and enlarges of the originally existed intercrystalline mesopores. As the degree of alkali-treatment increasing, the Si species inside zeolite nanocrystals was also removed, leading to further enlarges the intercrystalline mesopores and the formation of small intracrystalline mesopores. In case the alkali-treatment is serve enough to completely dissolve the bridges between zeolite nanocrystals, zeolite nanocrystals were exfoliated from the aggregate. Highlights: Black-Right-Pointing-Pointer Zeolite with trimodal porosity by desilication of zeolite nanocrystals aggregate. Black-Right-Pointing-Pointer The original intercrystalline mesopores were enlarged into large mesopore. Black-Right-Pointing-Pointer The new intracrystalline mesopores were created as the inside Si extracted out. Black-Right-Pointing-Pointer The aggregate structure, crystallinity and acidity of parent zeolite remained. Black-Right-Pointing-Pointer Desilication is start on the edges then in the inner part of zeolite.

Wang Yuxin; Liu Kaituo [Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese academy of Sciences, 189 Songling road, Qingdao 266101 (China) [Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese academy of Sciences, 189 Songling road, Qingdao 266101 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); He Tao; Wu Jinhu [Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese academy of Sciences, 189 Songling road, Qingdao 266101 (China)] [Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese academy of Sciences, 189 Songling road, Qingdao 266101 (China); Fang Yunming, E-mail: fangym@qibebt.ac.cn [Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese academy of Sciences, 189 Songling road, Qingdao 266101 (China)

2012-10-15T23:59:59.000Z

39

On the influence of porosity on the Portevin-Le Chatelier effect in sintered iron  

Science Conference Proceedings (OSTI)

Sintered irons of four different porosities were strained in tension at temperatures between 295 (room temperature) and 873 K. Serrated stress-strain curves and high work hardening in the temperature range from 333 to 693 K, for all porosities, were characteristic of dynamic strain aging. The activation energy for the onset of serration was {+-}0.82 eV and was independent of porosity. On the contrary, the parameter {beta} from the relation for dislocation density increased with increasing porosity.

Palma, E.S. [UFMG, Belo Horizonte, Minas Gerais (Brazil). Dept. de Engenharia Mecanica

1996-10-01T23:59:59.000Z

40

On Rayleigh Optical Depth Calculations  

Science Conference Proceedings (OSTI)

Many different techniques are used for the calculation of Rayleigh optical depth in the atmosphere. In some cases differences among these techniques can be important, especially in the UV region of the spectrum and under clean atmospheric ...

Barry A. Bodhaine; Norman B. Wood; Ellsworth G. Dutton; James R. Slusser

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Process of making porous ceramic materials with controlled porosity  

DOE Patents (OSTI)

A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.

Anderson, Marc A. (Madison, WI); Ku, Qunyin (Madison, WI)

1993-01-01T23:59:59.000Z

42

Measurement of Porosity in Dilute Acid Pretreated Corn Stover  

Science Conference Proceedings (OSTI)

The conclusions of this report are: (1) pretreated corn stover appeared to have more accessible pore volume than raw corn stover; (2) solute exclusion method--differences in the pore volume were not detectable due to the high variability of the measurements; (3) thermoporosimetry--differences in pore volume between pretreated samples were not observed despite the low variability of the measurement and a good correction was found between unfrozen water at 240K and xylan content; and (4) porosity measurements showed no correlation between ethanol yields and the volume accessible to an enzyme size probe, for this sample set.

Ishizawa, C.; Davis, M. F.; Johnson, D. K.

2005-01-01T23:59:59.000Z

43

ARM - Measurement - Cloud optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

optical depth optical depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud optical depth Amount of light cloud droplets or ice particles prevent from passing through a column of atmosphere. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments GOES : Geostationary Operational Environmental Satellites Field Campaign Instruments EC-CONVAIR580-BULK : Environment Canada Convair 580 Bulk Parameters GOES : Geostationary Operational Environmental Satellites

44

ARM - Measurement - Aerosol optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

45

Laser Detection Of Material Thickness  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection Of Material Thickness Detection Of Material Thickness Laser Detection Of Material Thickness There is provided a method for measuring material thickness. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Detection Of Material Thickness There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of

46

The Role of Finite Mixed-Layer Thickness in the Structure of the Ventilated Thermocline  

Science Conference Proceedings (OSTI)

A model of the ventilated thermocline consisting of three adiabatic layers surmounted by a mixed layer of finite thickness is presented. The mixed-layer depth density increase continuously northward, and these attributes of the mixed layer are ...

Joseph Pedlosky; Paul Robbins

1991-07-01T23:59:59.000Z

47

Tuning the porosity of bimetallic nanostructures by a soft templating approach  

E-Print Network (OSTI)

We use hexagonal mesophases made of oil-swollen surfactant-stabilized tubes arranged on a triangular lattice in water and doped with metallic salts as templates for the radiolytic synthesis of nanostructures. The nanostructures formed in this type of soft matrix are bimetallic palladium-platinum porous nanoballs composed of 3D-connected nanowires, of typical thickness 2.5 nm, forming hexagonal cells. We demonstrate using electron microscopy and small-angle X-ray scattering that the pore size of the nanoballs is directly determined by the diameter of the oil tube of the doped mesophases, which we have varied in a controlled fashion from 10 to 55 nm. Bimetallic nanostructures comprising various proportions of palladium and platinum can be synthesized. Their alloy structure was evidenced by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and high-angular dark field scanning transmission electron microscopy experiments. Our templating approach allows therefore the synthesis of bimetallic nanoballs of tunable porosity and composition.

Anaďs Lehoux; Laurence Ramos; Patricia Beaunier; Daniel Bahena Uribe; Philippe Dieudonné; Fabrice Audonnet; Arnaud Etcheberry; Miguel José-Yacaman; Hynd Remita

2012-12-05T23:59:59.000Z

48

A dual-porosity reservoir model with a nonlinear coupling term  

DOE Green Energy (OSTI)

Since their introduction by Barenblatt et al. (1960), double-porosity models have been widely used for simulating flow in fractured reservoirs, such as geothermal reservoirs. In a dual-porosity system, the matrix blocks provide most of the storage of the reservoir, whereas the fractures provide the global transmissivity. Initially, most work on dual-porosity models emphasized the development of analytical solutions to idealized reservoir problems. Increasingly, the dual-porosity approach is being implemented by numerical reservoir simulators. Accurate numerical simulation of a dual-porosity problem often requires a prohibitively large number of computational cells in order to resolve the transient pressure gradients in the matrix blocks. We discuss a new dual-porosity model that utilizes a nonlinear differential equation to approximate the fracture/matrix interactions, When implemented into a numerical simulator, it eliminates the need to discretize the matrix blocks, and thereby allows more efficient simulation of reservoir problems.

Zimmerman, R.W.; Chen, G.; Hadgu, T.; Bodvarsson, G.S.

1992-09-01T23:59:59.000Z

49

Matrix-fracture interactions in dual porosity simulation  

DOE Green Energy (OSTI)

A new method for simulating flow in fractured media is presented which uses a truncated version of the analytical solution to resolve pressure transients in the rock matrix. The point at which the series solution may be truncated is a known function of the problem, and may therefore be readily determined. Furthermore, the functional form of the method is essentially dimension-independent, and implementation of the method requires only minimal modification to an existing dual porosity simulator. Three test cases are presented comparing results from fine grid simulations, Warren and Root simulations, and the new formulation. In each of the three cases presented, excellent agreement with the fine grid simulations is obtained using the new method. The W&R formulation exhibits excessive error throughout the simulated time, first underpredicting outflow rates, and then overpredicting rates. The error using the W&R formulation is largest for 3-D fracture networks, but is large for all cases tested.

Shook, G.M.

1996-01-01T23:59:59.000Z

50

Porosity and permeability of Eastern Devonian gas shale  

SciTech Connect

High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

Soeder, D.J.

1988-03-01T23:59:59.000Z

51

Porosity and permeability of eastern Devonian gas shale  

Science Conference Proceedings (OSTI)

High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

Soeder, D.J.

1986-01-01T23:59:59.000Z

52

The Effect of Slag CapThickness on the Pool Depth in Electroslag ...  

Science Conference Proceedings (OSTI)

Direct Numerical Simulation of Inclusion Turbulent Deposition at Liquid ... Flow and Shrinkage Pipe Formation on Macrosegregation of Investment Cast -TiAl Alloys ... Numerical Modeling of the Interaction between a Foreign Particle an ...

53

Target preparations and thickness measurements  

SciTech Connect

A wide variety of isotope target preparative methods have been used, including rolling of metals, vapor deposition, electrodeposition, chemical vapor deposition, and sputtering, to obtain thin and thick films of most elements or compounds of elements in the Periodic Table. Most thin films prepared for use in self-supported form as well as those deposited on substrates require thickness measurement (atom count and distribution) and/or thickness uniformity determination before being used in nuclear research. Preparative methods are described together with thickness and uniformity determination procedures applicable to samples being prepared (in situ) and to completed samples. Only nondestructive methods are considered applicable to target samples prepared by the ORNL Solid State Division, Isotope Research Materials Laboratory. Thickness or areal density measurements of sufficient sophistication to yield errors of less than +-1 percent have been achieved with regularity. A statistical analysis procedure is applied which avoids error caused by balance zero-point drift in direct weight measurement methods. (auth)

Adair, H.L.; Kobisk, E.H.

1975-01-01T23:59:59.000Z

54

Effects of Pyrolysis Temperature on Characteristics of Porosity in Biomass Chars  

Science Conference Proceedings (OSTI)

In this study, the influence of pyrolysis temperature (T) in the range of 200-900oC on the characteristics of porosity in biomass chars was investigated. The samples were characterized by N2 isothermal adsorption/desorption method and scanning electron ... Keywords: biomass, pyrolysis, porosity

Peng Fu; Song Hu; Jun Xinag; Lushi Sun; Tao Yang; Anchao Zhang; Yi Wang; Gang Chen

2009-10-01T23:59:59.000Z

55

Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study  

Science Conference Proceedings (OSTI)

In wells with limited log and core data, porosity, a fundamental and essential property to characterize reservoirs, is challenging to estimate by conventional statistical methods from offset well log and core data in heterogeneous formations. Beyond ... Keywords: Core data, Log data, Neural networks, Porosity estimation, Support vector machines

A. F. Al-Anazi; I. D. Gates

2010-12-01T23:59:59.000Z

56

Assessing the Radiative Impact of Clouds of Low Optical Depth  

NLE Websites -- All DOE Office Websites (Extended Search)

the Radiative Impact of Clouds of the Radiative Impact of Clouds of Low Optical Depth W. O'Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California C. Gautier Department of Geography and Institute for Computational Earth System Science University of California Santa Barbara, California Introduction Analysis from the International Satellite Cloud Climatology Project (ISCCP) reveals that the global mean cloud optical depth is surprisingly low (i.e., Ď„ = 3.8). While this value is probably dominated by extensive fields of cirrus, the average for liquid water clouds is also likely smaller than expected. It is in this regime (Ď„ <10) where remote measurements of cloud optical thickness or liquid water path (LWP)

57

System for measuring film thickness  

DOE Patents (OSTI)

A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

Batishko, Charles R. (West Richland, WA); Kirihara, Leslie J. (Richland, WA); Peters, Timothy J. (Richland, WA); Rasmussen, Donald E. (Richland, WA)

1990-01-01T23:59:59.000Z

58

Tube wall thickness measurement apparatus  

DOE Patents (OSTI)

An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

Lagasse, Paul R. (Santa Fe, NM)

1987-01-01T23:59:59.000Z

59

Tube wall thickness measurement apparatus  

DOE Patents (OSTI)

An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

Lagasse, P.R.

1985-06-21T23:59:59.000Z

60

Human activities recognition using depth images  

Science Conference Proceedings (OSTI)

We present a new method to classify human activities by leveraging on the cues available from depth images alone. Towards this end, we propose a descriptor which couples depth and spatial information of the segmented body to describe a human pose. Unique ... Keywords: depth image segmentation, human activity detection

Raj Gupta; Alex Yong-Sang Chia; Deepu Rajan

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fermion localization on thick branes  

Science Conference Proceedings (OSTI)

We consider chiral fermion confinement in scalar thick branes, which are known to localize gravity, coupled through a Yukawa term. The conditions for the confinement and their behavior in the thin-wall limit are found for various different BPS branes, including double walls and branes interpolating between different AdS{sub 5} spacetimes. We show that only one massless chiral mode is localized in all these walls, whenever the wall thickness is keep finite. We also show that, independently of wall's thickness, chiral fermionic modes cannot be localized in dS{sub 4} walls embedded in a M{sub 5} spacetime. Finally, massive fermions in double wall spacetimes are also investigated. We find that, besides the massless chiral mode localization, these double walls support quasilocalized massive modes of both chiralities.

Melfo, Alejandra; Pantoja, Nelson [Centro de Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela); Tempo, Jose David [Centro de Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela); Centro de Estudios Cientificos CECS, Casilla 1469, Valdivia (Chile)

2006-02-15T23:59:59.000Z

62

Uterine caliper and depth gauge  

DOE Patents (OSTI)

A uterine caliper and sound consisting of an elongated body having outwardly biased resilient caliper wings and a spring-loaded slidable cervical stop. A slide on the body is operatively connected to the wings by a monofilament and operates with respect to a first scale on the body as a width indicator. A rod extending longitudinally on the body is connected to the cervical stop and cooperates with a second scale on the body as a depth indicator. The instrument can be positioned to measure the distance from the outer cervical ostium to the fundus, as read on said second scale. The wings may be allowed to open by moving the slide, and when the wings engage the utero-tubal junctions, the width may be read on said first scale. By adjustment of the caliper wings the instrument may be retracted until the resistance of the inner ostium of the cervix is felt, enabling the length of the cervical canal to be read directly by the position of the longitudinal indicator rod with respect to said second scale. The instrument may be employed to measure the width of the uterine cavity at any position between the inner ostium of the cervix and the fundus.

King, Loyd L. (Benton City, WA); Wheeler, Robert G. (Richland, WA); Fish, Thomas M. (Kennewick, WA)

1977-01-01T23:59:59.000Z

63

Thick-thin battery jar  

Science Conference Proceedings (OSTI)

A battery jar is described comprised of side, end and bottom walls wherein the side and end walls are divided into upper, middle and lower sections with the wall thickness in each section being T, T1 and T2, respectively, wherein T2 is greater than T1 and less than T.

Hardigg, J.S.

1988-03-22T23:59:59.000Z

64

Optimal Porosity Distribution for Minimized Ohmic Drop across a Porous Electrode  

E-Print Network (OSTI)

This paper considers the design of spatially varying porosity profiles in next-generation electrodes based on simultaneous optimization of a porous-electrode model. Model-based optimal design (not including the solid-phase ...

Braatz, Richard D.

65

Mapping the Interior of Nanocrystals in Depth  

NLE Websites -- All DOE Office Websites (Extended Search)

of Nanocrystals in Depth Complex, three-dimensional images of the interior of a nanocrystal have, for the first time, been obtained by researchers employing a new technique:...

66

Extending Depth of Field via Multifocus Fusion.  

E-Print Network (OSTI)

??In digital imaging systems, due to the nature of the optics involved, the depth of field is constricted in the field of view. Parts of… (more)

Hariharan, Harishwaran

2011-01-01T23:59:59.000Z

67

A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs  

E-Print Network (OSTI)

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control flow capacity. However, recent extensive microscopic studies reveal that there exist massive micro- and nano- pore systems in shale matrices. Because of this, the actual flow mechanisms in shale reservoirs are considerably more complex than can be simulated by the conventional dual porosity models and Darcy’s Law. Therefore, a model capturing multiple pore scales and flow can provide a better understanding of complex flow mechanisms occurring in these reservoirs. Through the use of a unique simulator, this research work establishes a micro-scale multiple-porosity model for fluid flow in shale reservoirs by capturing the dynamics occurring in three separate porosity systems: organic matter (mainly kerogen); inorganic matter; and natural fractures. Inorganic and organic portions of shale matrix are treated as sub-blocks with different attributes, such as wettability and pore structures. In the organic matter or kerogen, gas desorption and diffusion are the dominant physics. Since the flow regimes are sensitive to pore size, the effects of smaller pores (mainly nanopores and picopores) and larger pores (mainly micropores and nanopores) in kerogen are incorporated in the simulator. The separate inorganic sub-blocks mainly contribute to the ability to better model dynamic water behavior. The multiple porosity model is built upon a unique tool for simulating general multiple porosity systems in which several porosity systems may be tied to each other through arbitrary transfer functions and connectivities. This new model will allow us to better understand complex flow mechanisms and in turn to extend simulation to the reservoir scale including hydraulic fractures through upscaling techniques

Yan, Bicheng

2013-08-01T23:59:59.000Z

68

Recommended Practice: Defense-in-Depth  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report # INL/EXT-06-11478 Report # INL/EXT-06-11478 Control Systems Cyber Security: Defense in Depth Strategies May 2006 Prepared by Idaho National Laboratory Recommended Best Practice: Defense in Depth 2 Table of Contents Keywords............................................................................................................................. 3 Introduction......................................................................................................................... 3 Background ......................................................................................................................... 3 Overview of Contemporary Control System Architectures................................................. 4 Security Challenges in Control Systems .............................................................................

69

Self-Assembling Sup-porosity: The Effect On Fluid Flow And Seismic Wave Propagation  

SciTech Connect

Fractures and joints in the field often contain debris within the void spaces. Debris originates from many different mechanisms: organic and/or inorganic chemical reactions/mineralization, sediment transport, formation of a fracture, mechanical weathering or combinations of these processes. In many cases, the presence of debris forms a â??sub-porosityâ?ť within the fracture void space. This sub-porosity often is composed of material that differs from the fracture walls in mineralogy and morphology. The â??sub-porosityâ?ť may partially fill voids that are on the order of hundreds of microns and thereby reduce the local porosity to lengths scales on the order of sub-microns to tens of microns. It is quite clear that a sub-porosity affects fracture porosity, permeability and storativity. What is not known is how the existence/formation of a sub-porosity affects seismic wave propagation and consequently our ability to probe changes in the subsurface caused by the formation or alteration of a sub-porosity. If seismic techniques are to be developed to monitor the injection and containment of phases in sequestration reservoirs or the propping of hydraulically induced fracture to enhance oil & gas production, it is important to understand how a sub-porosity within a fracture affects macroscopic seismic and hydraulic measurements. A sub-porosity will directly affect the interrelationship between the seismic and hydraulic properties of a fracture. This reports contains the results of the three main topics of research that were performed (1) to determine the effect of a sub-porosity composed of spherical grains on seismic wave propagation across fractures, (2) to determine the effect of biofilm growth in pores and between grains on seismic wave propagation in sediment, and (3) to determine the effect of the scale of observation (field-of-view) on monitoring alteration the pore space within a fracture caused by reactive flow. A brief summary of the results for each topic is contained in the report and the full details of the research and approach are contained in the publications found in the Attachment section of this report. A list of presentation and publications of all work associated with this grant is also provided.

Pyrak-Nolte, Laura J. [Purdue University

2013-04-27T23:59:59.000Z

70

Rock compressibility, compaction, and subsidence in a high-porosity Chalk Reservoir  

SciTech Connect

A case study of the North Sea Valhall chalk reservoir demonstrates the significant impact that rock compressibility can have on field performance. Porosity reduction, reservoir interval compaction, and seabed subsidence have been observed in conjunction with reservoir pressure depletion. Full-diameter samples from a recently cut core of the unconsolidated high-porosity chalk were subjected to a series of uniaxial-strain experiments to determine compaction and PV compressibility. The laboratory measurements were corrected to field stress rates and pressure, and porosity-dependent rock-compressibility curves were developed. The uniaxial compaction data were used both in a reservoir model to recognize the significant additional reservoir energy resulting from the lithic drive of large-scale rock compaction and in a subsidence model to predict the impact of reservoir depletion on seabed displacements.

Ruddy, I. (Amoco Norway Oil Co. (US)); Andersen, M.A.; Pattillo, P.D.; Bishiawi, M. (Amoco Production Co., Tulsa, OK (USA)); Foged, N. (Danish Geotechnical Inst. (US))

1989-07-01T23:59:59.000Z

71

Causal Factors of Weld Porosity in Gas Tungsten Arc Welding of Powder Metallurgy Produced Titanium Alloys  

Science Conference Proceedings (OSTI)

ORNL undertook an investigation using gas tungsten arc (GTA) welding on consolidated powder metallurgy (PM) titanium (Ti) plate, to identify the causal factors behind observed porosity in fusion welding. Tramp element compounds of sodium and magnesium, residual from the metallothermic reduction of titanium chloride used to produce the titanium, were remnant in the starting powder and were identified as gas forming species. PM-titanium made from revert scrap where sodium and magnesium were absent, showed fusion weld porosity, although to a lesser degree. We show that porosity was attributable to hydrogen from adsorbed water on the surface of the powders prior to consolidation. The removal / minimization of both adsorbed water on the surface of titanium powder and the residues from the reduction process prior to consolidation of titanium powders, are critical to achieve equivalent fusion welding success similar to that seen in wrought titanium produced via the Kroll process.

Muth, Thomas R [ORNL; Yamamoto, Yukinori [ORNL; Frederick, David Alan [ORNL; Contescu, Cristian I [ORNL; Chen, Wei [ORNL; Lim, Yong Chae [ORNL; Peter, William H [ORNL; Feng, Zhili [ORNL

2013-01-01T23:59:59.000Z

72

Facies development and porosity relationships in Dundee Limestone of Gladwin County, Michigan  

SciTech Connect

The Devonian of the Michigan basin was a time of transgressive seas and extensive carbonate deposition, including coral and stromatoporoid buildups. Deposited during the Middle Devonian, the Dundee Limestone represents deposition in subtidal, intertidal, and restricted environments. The Buckeye oil field, located in south-central Gladwin County, is a combined stratigraphic and structural carbonate trap that produces from a series of intertonguing patch reefs, fringing sand bodies, and intertidal island fenestral zones. The major reef-building organisms include stromatoporoids, corals, calcareous algae, brachiopods, and crinoids, with the stromatoporoids providing the major framework. The patch-reef facies is composed of massive stromatoporoid boundstones that contain primary intraparticle porosity. The fringing grainstone sands are composed of coarse crinoid and brachiopod skeletal debris that have interparticle porosity. The intertidal island zone found in the North Buckeye field is represented by a pelletal packstone that has abundant fenestral porosity.

Montgomery, E.L.

1986-08-01T23:59:59.000Z

73

Revisiting the Thermocline Depth in the Equatorial Pacific  

Science Conference Proceedings (OSTI)

The thermocline depth is defined as the depth of the maximum vertical temperature gradient. In the equatorial Pacific, the depth of 20°C isotherm is widely used to represent the thermocline depth. This work proposes that under the circumstance of ...

Haijun Yang; Fuyao Wang

2009-07-01T23:59:59.000Z

74

Gas transport of oil: It`s impact on sealing and the development of secondary porosity. Annual report, July 1994-June 1995  

Science Conference Proceedings (OSTI)

Laboratory experiments were completed that show gas capillary sealing can produce completely impermeable zones in strata with multiple sand-shale interfaces. Evidence has been assembled that indicates gas-capillary phenomena are responsible for sealing in the offshore Louisiana Gulf Coast and that these seals exert a fundamental and predictable control on basin fluid flow. The pressure transition zone contains a sufficient number of sand-shale interfaces to explain the sealing by gas-capillary effects. Calculations show that methane streaming past the stacked Block 330 reservoirs could produce the observed vertical chemical zoning. Gas-oil ratios inferred from oil production reported in header logs in the offshore Louisiana Gulf Coast show the increase in gas exolution from the oil at greater depths, and therefore allows deeper sealing. Techniques to model inorganic seal alteration and hydrocarbon chemical zoning caused by venting through a seal were developed. Intra- and sub-seal porosity relations were documented in the SEI Block 330 area that can test models that predict higher sand porosities will be found in these zones if seal migration is inhibited.

Cathles, L.M.

1996-04-01T23:59:59.000Z

75

Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123  

Science Conference Proceedings (OSTI)

An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

Diabira, I.; Castanier, L.M.; Kovscek, A.R.

2001-04-19T23:59:59.000Z

76

Knudsen-Hydrodynamic Crossover in Liquid 3He in High Porosity Aerogel  

E-Print Network (OSTI)

We present a combined experimental and theoretical study of the drag force acting on a high porosity aerogel immersed in liquid ${}^3$He and its effect on sound propagation. The drag force is characterized by the Knudsen number, which is defined as the ratio of the quasiparticle mean free path to the radius of an aerogel strand. Evidence of the Knudsen-hydrodynamic crossover is clearly demonstrated by a drastic change in the temperature dependence of ultrasound attenuation in 98% porosity aerogel. Our theoretical analysis shows that the frictional sound damping caused by the drag force is governed by distinct laws in the two regimes, providing excellent agreement with the experimental observation.

Takeuchi, H; Nagai, K; Choi, H C; Moon, B H; Masuhara, N; Meisel, M W; Lee, Y; Mulders, N

2012-01-01T23:59:59.000Z

77

Thick-Shell Nanocrystal Quantum Dots  

NLE Websites -- All DOE Office Websites (Extended Search)

Thick-Shell Nanocrystal Quantum Dots Thick-Shell Nanocrystal Quantum Dots Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm...

78

Analysis of porosity in lower Ismay phylloid algal packstone using high-resolution computed x-ray tomography  

SciTech Connect

Three-dimensional images of porosity were created using high- resolution computed tomographic (CT) analysis as part of a larger study of phylloid algal packstone from bioherms in the lower Ismay (Des Moinesian, Paradox Formation). The sample imaged was collected at Eight Foot Rapids along the San Juan River in southeastern Utah 40 km west of the Aneth field. The larger study includes analysis of lithofacies, diagenesis, and quantitative analysis of porosity. Our goal is to predictively model porosity in phylloid algal reservoirs. Field observations suggest a relationship between porosity and lithology. Porosity is best established in phylloid algal packstone such as the one chosen for three-dimensional imaging. Locally, porosity is also associated with fractures and stylolitization. Petrographic observations suggest that formation of moldic and vuggy porosity in this sample was controlled by multiple episodes of dissolution and infill of blocky calcite. Porosity in thin section (5.94%) was measured using NIH Image (public domain) on a Macintosh desktop computer. High-resolution CT radiography of a 2.3 cm diameters cm high, cylindrical sample generated a series of 110 images at 0.1 mm intervals. Three-dimensional isosurface images of porosity reveal the degree of interconnection, pore size (up to 12 mm long and from 0.5 mm to 7 mm wide), and their highly irregular shape. These images can also be used to create animations of scans through the rock and three-dimensional, rotating images of the pores.

Beall, J.L., Gordon, I.T.; Gournay, J.P. (Univ. of Texas, Austin, TX (United States)) (and others)

1996-01-01T23:59:59.000Z

79

Clean Cast Steel Technology: Effect of Micro-porosity on Tensile and Charpy Properties of Four Cast Steels  

SciTech Connect

The effect of these large shrink cavities on mechanical properties could be easily calculated using well established engineering formulas. Over the years, increases in computational and metallurgical resources have allowed the modeler to improve accuracy and increase the complexity of numerical predictors. An accurate prediction of micro-porosity, not observable using conventional radiographic techniques, and an engineering understanding of the effect on mechanical properties would give a designer confidence in using a more efficient casting design and a lower safety factor. This will give castings an additional design advantage. The goal of this project is to provide current and future modelers/designers with a tensile and Charpy property dataset for validation of micro-porosity predictors. The response of ultimate strength, elongation, and reduction in area to micro-porosity was very similar in all four alloys. Ultimate strength was largely unaffected by tensile fracture surface porosity until values of about 25% were reached and decreased linearly with increasing values. Elongation and reduction in area decreased sharply after less than 5% fracture surface porosity. Niyama values of about 0.7 were produced sound material and acceptable tensile properties. Ultrasonic velocities of 0.233 in/usec and higher produced acceptable tensile properties. Metallographic examination revealed a ratio of 4-6 to 1 in fracture surface porosity to metallographic porosity. Charpy impact properties were largely unaffected by the microporosity concentrations examined in this study and did not correlate to either Niyama values, fracture surface porosity, or metallographic porosity.

Griffin, John, A.; Bates, Charles, E.

2005-09-19T23:59:59.000Z

80

Practical Conversion of Pressure to Depth  

Science Conference Proceedings (OSTI)

A conversion formula between pressure and depth is obtained employing the recently adopted equation of state for seawater (Millero et al., 1980). Assuming the ocean of uniform salinity 35 NSU and temperature 0°C the following equation is proposed,...

Peter M. Saunders

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Underway Conductivity–Temperature–Depth Instrument  

Science Conference Proceedings (OSTI)

The development of the Underway Conductivity–Temperature–Depth (UCTD) instrument is motivated by the desire for inexpensive profiles of temperature and salinity from underway vessels, including volunteer observing ships (VOSs) and research ...

Daniel L. Rudnick; Jochen Klinke

2007-11-01T23:59:59.000Z

82

A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors  

SciTech Connect

This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

Nguyen, Q.H.

1994-09-12T23:59:59.000Z

83

Completion methods in thick, multilayered tight gas sands  

E-Print Network (OSTI)

Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs are usually low due to poor permeability. As such, state-of-the-art technology must be used to economically develop the resource. TGS formations need to be hydraulically fractured in order to enhance the gas production rates. A majority of these reservoirs can be described as thick, multilayered gas systems. Many reservoirs are hundreds of feet thick and some are thousands of feet thick. The technology used to complete and stimulate thick, tight gas reservoirs is quite complex. It is often difficult to determine the optimum completion and stimulating techniques in thick reservoirs. The optimum methods are functions of many parameters, such as depth, pressure, temperature, in-situ stress and the number of layers. In multilayered reservoirs, it is important to include several sand layers in a single completion. The petroleum literature contains information on the various diversion techniques involved in the completion of these multilayered reservoirs. In this research, we have deduced and evaluated eight possible techniques that have been used in the oil and gas industry to divert multilayered fracture treatments in layered reservoirs. We have developed decision charts, economic analyses and computer programs that will assist completion engineers in determining which of the diversion methods are feasible for a given well stimulation. Our computer programs have been tested using case histories from the petroleum literature with results expressed in this thesis. A limited entry design program has also being developed from this research to calculate the fluid distribution into different layers when fracture treating multilayered tight gas reservoirs using the limited entry technique. The research is aimed at providing decision tools which will eventually be input into an expert advisor for well completions in tight gas reservoirs worldwide.

Ogueri, Obinna Stavely

2007-12-01T23:59:59.000Z

84

Fusion Engineering and Design 81 (2006) 455460 Breeder foam: an innovative low porosity solid breeder material  

E-Print Network (OSTI)

Fusion Engineering and Design 81 (2006) 455­460 Breeder foam: an innovative low porosity solid@ucla.edu (S. Sharafat). breeder pebble beds remains a field of intense R&D for fusion power reactor B.V. All rights reserved. doi:10.1016/j.fusengdes.2005.06.374 #12;456 S. Sharafat et al. / Fusion

Ghoniem, Nasr M.

85

Simple and inexpensive method of wood pellets macro-porosity measurement  

Science Conference Proceedings (OSTI)

A novel simplified stereometric measurement method for determining the macro-porosity of wood pellets through geometrical approach was successfully developed and tested. The irregular ends of pellets of circular cross-section were sanded flat so that their geometry becomes cylinder and their volumes evaluated using mensuration formula. Such formed cylindrical pellets were loose or tap filled to selected volumes to evaluate the macro-porosity and the constant specific weight. The method was extended to evaluate actual wood pellets properties. Overall macro-porosity of actual wood pellets was determined as 41.0 2.5% and 35.5 2.7%, mean bulk density as and, and classified as Class-3:Medium and Class-3&4:Medium to Low for loose and tapped fills, respectively. Hausner ratio and Carr s compressibility index classify wood pellets as freely flowing. The developed stereometric method can be used as a handy inexpensive laboratory procedure to estimate the macro-porosity of different types and makes of wood pellets and other similar packaged materials.

Igathinathane, C. [North Dakota State University; Tumuluru, J.S. [Idaho National Laboratory (INL); Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Lim, C. Jim [University of British Columbia, Vancouver; Melin, Staffan [University of British Columbia, Vancouver; Mohammad, E. [University of British Columbia, Vancouver

2010-01-01T23:59:59.000Z

86

Ultrasonic thickness measuring imaging system and method  

DOE Patents (OSTI)

This invention is comprised of an ultrasonic thickness measuring and imaging system in which an ultrasonic probe for measuring thickness of an object, such as a wall of tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area of the tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.

Bylenok, P.J.; Patmos, W.M.; Wagner, T.A.; Martin, F.H.

1990-01-01T23:59:59.000Z

87

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

Science Conference Proceedings (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale water O2interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in ourfield study.

Jin, Lixin [University of Texas at El Paso; Ryan, Mathur [Juniata College, Huntingdon; Rother, Gernot [ORNL; Cole, David [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University; Alex, Carone [Pennsylvania State University; Brantley, S. L. [Pennsylvania State University, University Park, PA

2013-01-01T23:59:59.000Z

88

Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering  

Science Conference Proceedings (OSTI)

Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale-water-O2 interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in our field study.

Jin, Lixin [ORNL; Mathur, Ryan [Juniata College, Huntingdon; Rother, Gernot [ORNL; Cole, David [Ohio State University; Bazilevskaya, Ekaterina [Pennsylvania State University, University Park, PA; Williams, Jennifer [Pennsylvania State University; Carone, Alex [Pennsylvania State University, University Park, PA; Brantley, Susan L [ORNL

2013-01-01T23:59:59.000Z

89

Interferometric measurement of melt depth in silicon using femtosecond infrared Cr:forsterite laser  

SciTech Connect

Interferometric microscopy technique combined with high power infrared Cr:forsterite laser system was applied to investigate femtosecond laser induced melting of silicon. Optically polished wafer of single crystalline silicon of 400 {mu}m thickness was irradiated with 100 fs pump pulses at second harmonic wavelength of 620 nm. We used infrared probe pulses at main wavelength of 1240 nm, whose photon energy was less than the band gap width E{sub g} = 1.12eV of silicon, and the penetration depth of probe essentially exceeded the sample thickness. Unlike many previous experiments with Ti:sapphire lasers it allowed us to probe the heated area from the rear side of the sample and obtain the data on melt depth after laser irradiation.

Ashitkov, Sergey I.; Ovchinnikov, Andrey V.; Agranat, Mikhail B. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412 (Russian Federation)

2012-07-30T23:59:59.000Z

90

jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections  

Science Conference Proceedings (OSTI)

A fast and effective method has been developed to measure total optical porosity (TOP) of blue resin-impregnated thin sections. This utilises a macro file (jPOR.txt) for ImageJ, which can be used on digital photomicrographs of thin sections. The method ... Keywords: Image analysis, Image processing, Operator error, Petrology, Point count, Porosity

Clayton Grove; Dougal A. Jerram

2011-11-01T23:59:59.000Z

91

A New Definition on Fractal Porous Rock Damage Variable and Study on Evolution Characteristics of Porosity-permeability  

Science Conference Proceedings (OSTI)

Considered the fractal characteristic of rock with porosity structure, a rock damage variable which describes rock damage of the reservoir of fractal structure with hydraulic fracturing is defined, and this damage variable that describes the state of ... Keywords: hydraulic fracturing, damage variable, fractal, porosity pore structure, permeability evolving

Zhaowan Chun; Wang Tingting; Ai Chi; Sun Chengyan

2010-05-01T23:59:59.000Z

92

Localizing gravity on exotic thick 3-branes  

Science Conference Proceedings (OSTI)

We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z{sub 2} symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS{sub 5} spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes.

Castillo-Felisola, Oscar [Centro de Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela); International Centre for Theoretical Physics, 34100 Trieste (Italy); Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba [Centro de Fisica Fundamental, Universidad de Los Andes, Merida (Venezuela)

2004-11-15T23:59:59.000Z

93

Snow Depth on Arctic Sea Ice  

Science Conference Proceedings (OSTI)

Snow depth and density were measured at Soviet drifting stations on multiyear Arctic sea ice. Measurements were made daily at fixed stakes at the weather station and once- or thrice-monthly at 10-m intervals on a line beginning about 500 m from ...

Stephen G. Warren; Ignatius G. Rigor; Norbert Untersteiner; Vladimir F. Radionov; Nikolay N. Bryazgin; Yevgeniy I. Aleksandrov; Roger Colony

1999-06-01T23:59:59.000Z

94

Depth estimation for ranking query optimization  

Science Conference Proceedings (OSTI)

A relational ranking query uses a scoring function to limit the results of a conventional query to a small number of the most relevant answers. The increasing popularity of this query paradigm has led to the introduction of specialized rank join operators ... Keywords: DEEP, Data statistics, Depth estimation, Query optimization, Relational ranking query, Top-k

Karl Schnaitter; Joshua Spiegel; Neoklis Polyzotis

2009-04-01T23:59:59.000Z

95

Prevention of Porosity Formation and Other Effects of Gaseous Elements in Iron Castings  

SciTech Connect

Iron foundries have observed porosity primarily as interdendritic porosity in large freezing range alloys such as Ni-Hard I and hypoeutectic high Cr alloys or pinholes and fissure defects in gray and ductile irons. For most iron foundries, porosity problems occur sporadically, but even occasional outbreaks can be costly since even a very small amount of porosity can significantly reduce the mechanical properties of the castings. As a result when porosity is detected, the castings are scrapped and remelted, or when the porosity is undetected, defective parts are shipped to the consumer. Neither case is desirable. This project was designed to examine various factors contributing to the porosity formation in iron castings. Factors such as solubility of gases in liquid and solid iron alloys, surface tension of liquid iron alloys, and permeability of dendritic structures were investigated in terms of their effect on the porosity formation. A method was developed to predict how much nitrogen the molten alloy picks up from air after a given amount of holding time for a given melting practice. It was shown that small batches of iron melts in an induction furnace can end up with very high concentration of nitrogen (near solubility limit). Surface tension of liquid iron alloys was measured as a function of temperature. Effect of minor additions of S, Ti, and Al on the surface tension of liquid iron alloys was investigated. Up to 18% change in surface tension was detected by minor element additions. This translates to the same amount of change in gas pressure required in a bubble of a given size to keep the bubble stable. A new method was developed to measure the permeability of dendritic structures in situ. The innovative aspect of these experiments, with respect to previous interdendritic permeability measurements, was the fact that the dendritic structure was allowed to form in situ and was not cooled and re-heated for permeability tests. A permeability model was developed and tested using the results of the permeability experiments. The permeability model for flow parallel to the columnar dendrites predicted the experimental permeability results closely when the liquid volume fraction data from equilibrium calculations were used. The permeability gradient model was constructed in order to test the impact of interdendritic channel constriction on the flow of liquid through the mushy zone of a casting. The model examines two different regimes: (i) Dendritic solidification regime where the permeability is dominated by changes in liquid volume fraction and dendrite arm spacing, and (ii) Eutectic solidification regime where the permeability is dominated by changes in viscosity of eutectic mixture. It is assumed that the eutectic mixture behaves like a slurry whose viscosity increases with increasing solid fraction. It is envisioned that this model can be developed into a tool that can be very useful for metal casters.

Albany Research Center

2005-04-01T23:59:59.000Z

96

Method for making surfactant-templated, high-porosity thin films  

DOE Patents (OSTI)

An evaporation-induced self-assembly method to prepare a surfactant-templated thin film by mixing a silica sol, a surfactant, and a hydrophobic polymer and then evaporating a portion of the solvent during coating onto a substrate and then heating to form a liquid-phase, thin film material with a porosity greater than approximately 50 percent. The high porosity thin films can have dielectric constants less than 2 to be suitable for applications requiring low-dielectric constants. An interstitial compound can be added to the mixture, with the interstitial compound either covalently bonded to the pores or physically entrapped within the porous structure. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

2001-01-01T23:59:59.000Z

97

Evaluating the presence of porosity in Brazilian archaeological pottery associating x-radiography and PIXE  

SciTech Connect

X-Radiography technique has been used effectively for decades to evaluate and identify differences in homogeneities in samples. It is a simple, fast and non-destructive technique that provides a view of internal structure helping investigating manufacturing details of archaeological ceramics. Characteristics of the paste used in the matrix composition can be derived using PIXE technique through the determination of the major elemental composition allowing the calculation of its expected density. Combining this information with x-ray images is possible to check for differences in the average density of material indicating the presence of homogeneously distributed porosity or temper. The present work evaluates the porosity in a set of native Brazilian pottery sherds that were collected in the Aldeia Lalima archaeological site, located at Mato Grosso do Sul State.

Curado, J. F.; Added, N.; Rizzutto, M. A. [Instituto de Fisica, Universidade de Sao Paulo, Postal 66318, Sao Paulo, SP (Brazil)

2013-05-06T23:59:59.000Z

98

Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization  

SciTech Connect

Graphene-based electrodes have recently gained popularity due to their superior electrochemical properties. However, the exact mechanisms of electrochemical activity are not yet understood. Here, we present data from NADH oxidation and ferri/ferrocyanide redox probe experiments to demonstrate that both (i) the porosity of the graphene electrodes, as effected by the packing morphology, and (ii) the functional group and the lattice defect concentration play a significant role on their electrochemical performance.

Punckt, Christian; Pope, Michael A.; Liu, Jun; Lin, Yuehe; Aksay, Ilhan A.

2010-12-01T23:59:59.000Z

99

Gulf of Mexico Proved Reserves By Water Depth, 2008  

U.S. Energy Information Administration (EIA)

Gulf of Mexico Proved Reserves and Production by Water Depth 1 Gulf of Mexico Proved Reserves and Production by Water Depth, 2008 . The Gulf of Mexico Federal ...

100

Microsoft Word - defense_in_depth_fanning.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Engineering and Systems Analysis What is Defense in Depth? Defense in Depth is a safety philosophy that guides the design, construction, inspection, operation, and...

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity  

SciTech Connect

Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

Wang, Guohui; Um, Wooyong

2012-11-23T23:59:59.000Z

102

Mobile Variable Depth Sampling System Design Study  

Science Conference Proceedings (OSTI)

A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study.

BOGER, R.M.

2000-08-25T23:59:59.000Z

103

Hydraulic frac sets Rockies depth record  

SciTech Connect

A depth record for massive hydraulic fracture in the Rocky Mt. region was set April 22 with the treatment of a central Wyoming gas well. The No. 1-29 Moneta Hills Well was treated through perforations at 19,838 to 19,874 ft and 20,064 to 20,100 ft. Soon after, another well in the Madden Deep Field was subject to hydraulic fracture through perforations a

Not Available

1980-06-01T23:59:59.000Z

104

Property:Depth(m) | Open Energy Information  

Open Energy Info (EERE)

Depth(m) Depth(m) Jump to: navigation, search This is a property of type String. Pages using the property "Depth(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft Wave Flume Facility + 0.9 + 10-ft Wave Flume Facility + 1.5 + 11-ft Wave Flume Facility + 1.8 + 2 2-ft Flume Facility + 1.8 + 3 3-ft Wave Flume Facility + 0.9 + 5 5-ft Wave Flume Facility + 1.5 + 6 6-ft Wave Flume Facility + 1.8 + A Alden Large Flume + 3.0 + Alden Small Flume + 1.8 + Alden Tow Tank + 1.2 + Alden Wave Basin + 1.2 + B Breakwater Research Facility + 0.8 + Bucknell Hydraulic Flume + 0.6 + C Carderock 2-ft Variable Pressure Cavitation Water Tunnel + 0.6 + Carderock 3-ft Variable Pressure Cavitation Water Tunnel + 0.7 + Carderock Circulating Water Channel + 2.7 +

105

Stress intensity magnification factors for fully circumferential cracks in valve bodies (thick cylinders)  

SciTech Connect

The stress intensity solutions presented herein were obtained using an energy method in conjunction with a two-dimensional finite element program in order to explicitly account for curvature effect for fully circumferential cracks. The magnification factors for a specific crack depth were calculated by successively loading the crack surface by a uniform, linear, quadratic, and a cubic loading distribution. The magnification factors can be used to calculate the stress intensity factors by superposition method. The functions for each load condition in terms of radius to thickness ratio (R/t) and a fractional distance in terms of crack depth to thickness ratio (a/t) were developed. The validity of these functions is R/t = 1.5 to 10.0 and for 0.0125 {le} a/t {le} 0.8125. The functions agree to within 1% of the finite elements solutions for most magnification factors.

Toor, P.M.

1998-11-01T23:59:59.000Z

106

Thick-Shell Nanocrystal Quantum Dots  

NLE Websites -- All DOE Office Websites (Extended Search)

Thick-Shell Nanocrystal Quantum Dots Thick-Shell Nanocrystal Quantum Dots Thick-Shell Nanocrystal Quantum Dots Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes. Available for thumbnail of Feynman Center (505) 665-9090 Email Thick-Shell Nanocrystal Quantum Dots Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous

107

Cloud Optical Thickness Estimation from Irradiance Measurements  

Science Conference Proceedings (OSTI)

Radiative transfer algorithms are developed to estimate the optical thickness of clouds using an irradiance detector located above, deep within, and beneath a cloud. Both monodirectional and diffuse illumination cases are considered. For each ...

H. C. Yi; N. J. McCormick; R. Sanchez

1990-11-01T23:59:59.000Z

108

An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar  

Science Conference Proceedings (OSTI)

The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

Lo, C; Comstock, JM; Flynn, C

2006-10-01T23:59:59.000Z

109

Acoustic logging through casing to detect hydrocarbons and determine porosity in the Wilmington Field, CA  

SciTech Connect

The Wilmington Field, located in the Los Angeles Basin, CA, is composed of relatively unconsolidated turbiditic sands waterflooded for more than 40 years. As is common in this and other oil fields in California and elsewhere, considerable bypassed oil remains in place. The water-oil ratio from one well selectively completed in high-oil saturation sands is significantly lower than the water-oil ratio in adjacent wells. We have begun a 2-year test program to identify sands with high remaining oil saturations by logging old cased wells using a high power low frequency acoustic logging tool as part of a project co-funded by the Department of Energy (DOE PON PS22-94BC14972). Formation compressional-wave velocity is obtained from monopole data. Formation shear-wave velocity is obtained by analyzing dipole wave modes. In some wells, however, problems associated with poor cement-casing and cement-formation bond, casing eccentricity in the well, and tool eccentricity in the casing make it difficult to detect the dipole mode. Where good data has been obtained, compressional-wave velocities determined in the same cased hole from logs recorded by two different companies agree quite well, as do open- and cased-hole compressional and shear-wave velocities. Porosities determined through casing using shear-wave velocities match conventional open-hole log values. Saturations determined from the velocities and their ratio are similar to those calculated using Archie's Law. Relationships between porosities, saturations, and velocities are consistent with theoretical expectations. The results indicate that it is possible to determine porosity and saturation through casing using acoustic methods even in relatively unconsolidated sands such as those found in the Wilmington Field, provided sufficiently good monopole and dipole waveforms can be obtained.

Moos, D. (Stanford Univ., CA (United States)); Hooks, A. (MPI, Houston, TX (United States)); Walker, S. (Tidelands Oil Production Co., Long Beach, CA (United States))

1996-01-01T23:59:59.000Z

110

Effect of porosity on resistance of epoxy coatings to cold-wall blistering  

Science Conference Proceedings (OSTI)

Electric utilities use polymer coatings for corrosion protection in a variety of locations, such as cooling towers, water boxes, and tubesheets. In some cases, these coatings are vulnerable to failure in areas where a temperature gradient exists between a cold substrate and relatively warm fluid (cold-wall blistering). Six epoxy-based coating systems were tested for their resistance to degradation in the form of cold wall blistering. The coatings were applied to type 1010 steel substrates and exposed to heated water for up to 10 months in Atlas test cells as a modified version of NACE Standard TM0174. The performance of the coatings was measured by the exposure time for the coatings to start blistering, the time for the corrosion potential of the coating substrates to shift toward active values, and the delamination rate of the coatings. Good cold-wall blistering resistance was observed for two polyamine-cured epoxy coating systems with porosity levels 1 vol%. Poor cold-wall blistering resistance was shown by a polyamide epoxy system, an amine adduct epoxy system, and an amido-amine epoxy system, all of which had porosity levels > 1 vol%. Most of the coating samples exhibited linear blistering rates, which indicated that the kinetics of cold-wall blistering were diffusion controlled. The two coating systems that showed the best resistance to cold-wall blistering also showed the lowest blistering rates, indicating that these coatings may have had lower permeabilities and/or better adherences than the poorer performing coatings, probably as a result of their lower porosity levels and similar compositions.

Kosek, J.R.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

1995-11-01T23:59:59.000Z

111

Porosity in millimeter-scale welds of stainless steel : three-dimensional characterization.  

SciTech Connect

A variety of edge joints utilizing a continuous wave Nd:YAG laser have been produced and examined in a 304-L stainless steel to advance fundamental understanding of the linkage between processing and resultant microstructure in high-rate solidification events. Acquisition of three-dimensional reconstructions via micro-computed tomography combined with traditional metallography has allowed for qualitative and quantitative characterization of weld joints in a material system of wide use and broad applicability. The presence, variability and distribution of porosity, has been examined for average values, spatial distributions and morphology and then related back to fundamental processing parameters such as weld speed, weld power and laser focal length.

Aagesen, Larry K. (University of Michigan, Ann Arbor, MI); Madison, Jonathan D.

2012-05-01T23:59:59.000Z

112

Electrical properties of geothermal reservoir rocks as indicators of porosity distribution  

DOE Green Energy (OSTI)

Measurements of the electrical resistivity of metashales from borehole SB-15-D in The Geyers geothermal area at a variety of conditions in the laboratory provide information regarding the distribution of porosity as interpreted from observations of boiling as downstream pore pressure. Electrical resistivity measurements on core,with and without pore pressure control, to confining pressures up to 100 bars and temperatures between 20 and 150 C allow assessment of the separate and combined effects of confining pressure, pore pressure and temperature for rocks from this borehole.

Duba, A.; Roberts, J.; Bonner, B.

1997-03-01T23:59:59.000Z

113

Accurate hydrogen depth profiling by reflection elastic recoil detection analysis  

DOE Green Energy (OSTI)

A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

Verda, R. D. (Raymond D.); Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W. (Robert W.)

2001-01-01T23:59:59.000Z

114

Deepwater Gulf of Mexico turbidites -- Compaction effects on porosity and permeability  

SciTech Connect

The deepwater Gulf of Mexico is now a major area of activity for the US oil industry. Compaction causes particular concern because most prospective deepwater reservoirs are highly geo-pressured and many have limited aquifer support; water injection may also be problematic. To address some of the issues associated with compaction, the authors initiated a special core-analysis program to study compaction effects on turbidite sand porosity and permeability specifically. This program also addressed a number of subsidiary but no less important issues, such as sample characterization and quality, sample preparation, and test procedures. These issues are particularly pertinent, because Gulf of Mexico turbidites are generally unconsolidated, loose sands, and are thus susceptible to a whole array of potentially serious core-disturbing processes. One key result of the special core analysis program is that turbidite compressibilities exhibit large variations in both magnitude and stress dependence. These variations correlate with creep response in the laboratory measurements. The effects of compaction on permeability are significant. To eliminate complicating effects caused by fines movement, the authors made oil flow measurements at initial water saturation. The measurements indicate compaction reduces permeability four to five times more than porosity on a relative basis.

Ostermeier, R.M.

1995-06-01T23:59:59.000Z

115

Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques  

Science Conference Proceedings (OSTI)

Two Pennsylvanian coal samples (Spr326 and Spr879-IN1) and two Upper Devonian-Mississippian shale samples (MM1 and MM3) from the Illinois Basin were studied with regard to their porosity and pore accessibility. Shale samples are early mature stage as indicated by vitrinite reflectance (R{sub o}) values of 0.55% for MM1 and 0.62% for MM3. The coal samples studied are of comparable maturity to the shale samples, having vitrinite reflectance of 0.52% (Spr326) and 0.62% (Spr879-IN1). Gas (N{sub 2} and CO{sub 2}) adsorption and small-angle and ultrasmall-angle neutron scattering techniques (SANS/USANS) were used to understand differences in the porosity characteristics of the samples. The results demonstrate that there is a major difference in mesopore (2-50 nm) size distribution between the coal and shale samples, while there was a close similarity in micropore (coal is pore-size specific and can vary significantly between coal samples; also, higher accessibility corresponds to higher adsorption capacity. Accessibility of pores in shale samples is low.

Mastalerz, Maria [Indiana Geological Survey; He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Rupp, John A [ORNL

2012-01-01T23:59:59.000Z

116

Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design  

E-Print Network (OSTI)

Micro Porosity Sintered wick is made from metal injection molding processes, which provides a wick density with micro scale. It can keep more than 53 % working fluid inside the wick structure, and presents good pumping ability on working fluid transmission by fine infiltrated effect. Capillary pumping ability is the important factor in heat pipe design, and those general applications on wick structure are manufactured with groove type or screen type. Gravity affects capillary of these two types more than a sintered wick structure does, and mass heat transfer through vaporized working fluid determines the thermal performance of a vapor chamber. First of all, high density of porous wick supports high transmission ability of working fluid. The wick porosity is sintered in micro scale, which limits the bubble size while working fluid vaporizing on vapor section. Maximum heat transfer capacity increases dramatically as thermal resistance of wick decreases. This study on permeability design of wick structure is 0.5 - 0.7, especially permeability (R) = 0.5 can have the best performance, and its heat conductivity is 20 times to a heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows thermal performance increases over 33 %.

C. S. Yu; W. C. Wei; S. W. Kang

2008-01-07T23:59:59.000Z

117

Surface hardening of titanium alloys with melting depth controlled by heat sink  

DOE Patents (OSTI)

A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR)

1995-01-01T23:59:59.000Z

118

Electronic equilibrium as a function of depth in tissue from Cobalt-60 point source exposures  

E-Print Network (OSTI)

The Nuclear Regulatory Commission has set the basic criteria for assessing skin dose stemming from hot particle contaminations. Compliance with IO CFR 20. 1 01 requires that exposure to the skin be evaluated over a I CM2 area at a depth of 0.007 cm. Skin exposure can arise from both the beta and gamma components of radioactive particles and gamma radiation can contribute significantly to skin doses. The gamma component of dose increases dramatically when layers of protective clothing are interposed between the hot particle source and the skin, and in cases where the hot particle is large in comparison to the range of beta particles. Once the protective clothing layer is thicker than the maximum range of the beta particles, skin dose is due solely to gamma radiation. Charged particle equilibrium is not established at shallow depths. The degree of electronic equilibrium establishment must be assessed for shallow doses to prevent the overassessment of skin dose because conventional fluence-to-dose conversion factors are not applicable. To assess the effect of electronic equilibrium, selected thicknesses of tissue equivalent material were interposed between radiochromic dye film and a 6OCo hot particle source and dose was measured as a function of depth. These measured values were then compared to models which are used to calculate charged particle equilibrium. The Miller-Reece model was found to agree closely with the experimental data while the Lantz-Lambert model overestimated dose at shallow depths.

Myrick, Jo Ann

1994-01-01T23:59:59.000Z

119

Defence-In-Depth: Application firewalls in a defence-in-depth design  

Science Conference Proceedings (OSTI)

It is well known and accepted by most security professionals that defence-in-depth is an important security principle: the age-old saying of ''don't put all your eggs in one basket'' applies just as much here as elsewhere. The wise assume that any part ...

Paul Byrne

2006-09-01T23:59:59.000Z

120

Gas turbine bucket wall thickness control  

DOE Patents (OSTI)

A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Glue Film Thickness Measurements by Spectral Reflectance  

SciTech Connect

Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 ?m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

B. R. Marshall

2010-09-20T23:59:59.000Z

122

Gulf of Mexico Proved Reserves By Water Depth, 2009  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM...

123

Distillate in Depth – The Supply, Demand, and Price Picture  

U.S. Energy Information Administration (EIA)

Distillate in Depth – The Supply, Demand, and Price Picture John Hackworth Joanne Shore Energy Information Administration ... In Response to Price, ...

124

Observation and analysis of a pronounced permeability and porosity scale-effect in unsaturated fractured tuff  

SciTech Connect

Over 270 single-hole (Guzman et d., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-Role tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nonind support scale of about 1 m. The corresponding log permeability data exhibit. spatial behavior characteristic of a random fractal and yield a kriged estimate (Fig. 1) of how these 1-m scale log permeabilities vary in three-dimemional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a thee-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure 1n:ccirds from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach mounts to three-tlimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume (Fig.2). These tomographic images are compwable to those obtained by the kriging of 1-rn scale log permeability data from single-hole tests (Fig. 1). The results reveal a highly pronounced scale effect in permeability and porosity at the ALRS. We analyze the scaling of permeability at the site on ihe basis of a recent theory, which is consistent with our representation of the rack as a random fractal.

Illman, W. A. (Walter A.); Hyun, Y. (Yunjung); Neuman, S. P.; Di Federico, V. (Vittorio); Tartakovsky, D. M. (Daniel M.); Vesselinov, V. V. (Velimir V.)

2001-01-01T23:59:59.000Z

125

Free Energy of thick Center Vortices  

E-Print Network (OSTI)

The free energy of thick center vortices is calculated in continuum Yang-Mills theory in one-loop approximation using the proper time regularization. The vortices are represented by Abelian gauge field configurations on the torus which satisfy twisted boundary conditions.

Ch. Korn; H. Reinhardt; T. Tok

2004-12-20T23:59:59.000Z

126

Estimating local thickness for finite element analysis  

Science Conference Proceedings (OSTI)

Within the development of motor vehicles, crash safety is one of the most important attributes. To comply with the ever increasing requirements of shorter cycle times and costs reduction, car manufacturers keep intensifying the use of virtual development ... Keywords: FEA mesh, automotive crash simulations, ray tracing, structural modelling, thickness estimation

Vânio Ferreira; Luís Paulo Santos; Ricardo Simoes; Markus Franzen; Omar O. Ghouati

2010-11-01T23:59:59.000Z

127

The center conjecture for thick spherical buildings  

E-Print Network (OSTI)

We prove that a convex subcomplex of a spherical building of type E7 or E8 is a subbuilding or the group of building automorphisms preserving the subcomplex has a fixed point in it. Together with previous results of Muehlherr-Tits, and Leeb and the author, this completes the proof of Tits' Center Conjecture for thick spherical buildings.

Ramos-Cuevas, Carlos

2009-01-01T23:59:59.000Z

128

On Constitutive Equations and Effective Stress for Deformable, Double Porosity Media  

E-Print Network (OSTI)

Tuncay and Corapcioglu [1995] used volume averaging methods to derive an effective stress principle for the bulk volumetric strain in a deformable double-porosity medium. The coefficients of the matrix pore pressure and fracture pore pressure in their equation for the effective stress are shown to be identical to those which can be obtained from the constitutive equation approach of Berryman and Wang (1995). Representative values for a fractured Berea sandstone show that a change in pore pressure within matrix blocks produces about 10% of the volume change due to an equal but opposite change in confining pressure, whereas the same change in pore pressure within fractures is about 90% as effective. A similar result is true for Westerly granite. 1 Introduction The theory of poroelasticity lies at the intersection of mechanics of porous media and fluid flow within porous media. As a consequence, papers dealing with poroelasticity appear in journals that appeal primarily to one or the oth...

Herbert F. Wang; James G. Berryman

1996-01-01T23:59:59.000Z

129

Diagenesis and porosity development associated with major sea level fluctuations, Upper Permian, Jameson land, east Greenland  

SciTech Connect

The Upper Permian of Jameson Land includes two major carbonate sequences, represented by the Karstryggen and Wegener Halvoe formations. The initial Karstryggen transgression led to the development of a shallow marine platform with structurally controlled evaporite basins (salinas) separated by stromatolitic, peloidal, or micritic carbonate depositional areas. The Wegener Havloe sequence reflects more rapid and extensive transgression with the deposition of three subcycles of fully marine, platform, or biohermal carbonates containing minor evaporites near the basin margins. Bioherms (bryozoan-brachiopod-marine cement mounds) show > 100 m of relief, indicating that large relative sea level changes were involved. Both the Karstryggen and Wgener Havloe cycles were terminated by major regressions, which led to karstic and/or fluvial incision of the underlying sequences. Not surprisingly, carbonate and evaporite diagenesis was greatly affected by these regional or eustatic sea level fluctuations. Evaporites dissolved or were replaced by calcite and celestite under the influence of meteoric waters. Limestones show collapse brecciation, grain leaching, soil development, and characteristic vadose and phreatic cements. Most significantly meteoric flushing led to massive dissolution of botryoidal marine cements (aragonite and probable high-Mg calcite) within biohermal facies on the Wegener Peninsula. This early porosity resurrection led to the preservation of porous bioherm core zones until hydrocarbon migration. Only late (posthydrocarbon), probably hydrothermal fluid flow led to cementation of the bioherm cores while expelling most of the reservoired hydrocarbons. If the sea level changes affecting the Greenlandic Permian are eustatic, then this study may provide significant clues to porosity development throughout the largely unexplored northern Zechstein basin.

Scholle, P.A.; Ulmer, D.S. (Southern Methodist Univ., Dallas, TX (USA)); Stemmerik, L. (Greenland Geological Survey, Copenhagen (Denmark))

1990-05-01T23:59:59.000Z

130

METALLICITY GRADIENTS OF THICK DISK DWARF STARS  

Science Conference Proceedings (OSTI)

We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

2012-12-01T23:59:59.000Z

131

Solar absorption in thick and multilayered glazings  

DOE Green Energy (OSTI)

Thick and multilayered glazings generally have a nonuniform distribution of absorbed solar radiation which is not taken into account by current methods for calculating the center of glass solar gain and thermal performance of glazing systems. This paper presents a more accurate method for calculating the distribution of absorbed solar radiation inside thick and multilayered glazings and demonstrates that this can result in a small but significant difference in steady-state temperature profile and Solar Heat Gain Coefficient for some types of glazing systems when compared to the results of current methods. This indicates that a more detailed approach to calculating the distribution of absorbed solar radiation inside glazings and resulting thermal performance may be justified for certain applications.

Powles, Rebecca; Curcija, Dragan; Kohler, Christian

2002-02-01T23:59:59.000Z

132

Ultrasonic thickness testing of aging offshore structures  

E-Print Network (OSTI)

The objectives of this thesis concern the use of ultrasonic thickness (UT) testing for use in the offshore industry. Evidence from prior studies conducted at Texas A&M University suggests that the corrosion on the surface of offshore structural members is not distributed in a random fashion. It was therefore desired to study the matter more extensively to 1) determine the feasibility of using ultrasonic thickness measurements for assessment of corroded members in offshore structures, 2) determine the amount of data needed for meaningful assessment, and 3) identify any common patterns of corrosion in offshore structural members, which might be used in designing a more effective assessment protocol. First, three specimens from an earlier study were available for use here. These "Riverside Specimens'' were subjected to extensive UT measurements. An important statistical tool, Analysis of Variance (ANOVA), was used to determine the probability that thickness variations along the length and around the circumference of each member could be a random event. Both longitudinal and circumferential non-random variations were found in some of these members. A study of reduced sample size confirmed that reduction of data caused more uncertainty in the results. Next, a field study was conducted on recently salvaged offshore jackets in Morgan City, LA. Six tubular bracing specimens (three horizontal, three diagonal) near the splash zone were evaluated. The statistical evidence for corrosion trends was found to be rather weak. Nonetheless, it was possible to make certain generalizations. In particular, the outside facing sections tend to be the most corroded (thinnest), while the surfaces toward the center of the structure tend to be the least corroded (thickest). This also agrees with industry observations. Finally, the effect of sample size on the detection of strength loss was observed. Using some basic assumptions regarding sample mean and standard deviation, it was shown that even with greatly reduced numbers of measurement points, one may still obtain reasonable estimates of critical thickness values corresponding to certain strength loss ratios.

Ellison, Brian Kirk

1999-01-01T23:59:59.000Z

133

Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale from Conventional Well  

E-Print Network (OSTI)

, and TOC in Hydrocarbon-Bearing Shale from Conventional Well Logs Haryanto Adiguna, SPE, Anadarko Petroleum, and mineral composition is an integral part of unconventional shale reservoir formation evaluation. Porosity requirement for economically viable flow of gas in very-low permeability shales. Brittle shales are favorable

Torres-VerdĂ­n, Carlos

134

Average Depth of Crude Oil and Natural Gas Wells  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Average depth may ...

135

Flexible finite-element modeling of global geomagnetic depth sounding  

E-Print Network (OSTI)

Modeling in 2D and 3D for Geomagnetic Depth Sounding (31, 16610. Banks, R. , 1969: Geomagnetic variations and the1997: Introduction to geomagnetic fields. Cambridge Univ Pr.

Ribaudo, Joseph Thomas

2011-01-01T23:59:59.000Z

136

Control Systems Cyber Security: Defense in Depth Strategies ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and direction for developing 'defense-in-depth' strategies for organizations that use control system networks while maintaining a multi-tier information architecture. Control...

137

EFFECT OF DUST ON Ly{alpha} PHOTON TRANSFER IN AN OPTICALLY THICK HALO  

SciTech Connect

We investigate the effects of dust on Ly{alpha} photons emergent from an optically thick medium by solving the integro-differential equation of radiative transfer of resonant photons. To solve the differential equations numerically, we use the weighted essentially non-oscillatory method. Although the effects of dust on radiative transfer are well known, the resonant scattering of Ly{alpha} photons makes the problem non-trivial. For instance, if the medium has an optical depth of dust absorption and scattering of {tau}{sub a} >> 1, {tau} >> 1, and {tau} >> {tau}{sub a}, the effective absorption optical depth in a random walk scenario would be equal to {radical}({tau}{sub a}({tau}{sub a}+{tau})). We show, however, that for a resonant scattering at frequency {nu}{sub 0}, the effective absorption optical depth would be even larger than {tau}({nu}{sub 0}). If the cross section of dust scattering and absorption is frequency-independent, the double-peaked structure of the frequency profile given by the resonant scattering is basically dust-independent. That is, dust causes neither narrowing nor widening of the width of the double-peaked profile. One more result is that the timescales of the Ly{alpha} photon transfer in an optically thick halo are also basically independent of the dust scattering, even when the scattering is anisotropic. This is because those timescales are mainly determined by the transfer in the frequency space, while dust scattering, either isotropic or anisotropic, does not affect the behavior of the transfer in the frequency space when the cross section of scattering is wavelength-independent. This result does not support the speculation that dust will lead to the smoothing of the brightness distribution of a Ly{alpha} photon source with an optically thick halo.

Yang Yang; Shu Chiwang [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Roy, Ishani [Computing Laboratory, University of Oxford, Oxford, OX1 3QD (United Kingdom); Fang Lizhi [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States)

2011-10-01T23:59:59.000Z

138

Skin thickness effects on in vivo LXRF  

SciTech Connect

The analysis of lead concentration in bone utilizing LXRF can be adversely effected by overlying issue. A quantitative measure of the attenuation of the 10.5 keV Pb L a x-ray signal by skin and skin equivalent plastic has been conducted. Concentration ranges in plaster of Paris and goat bone from 7 to 90 ppm with attenuators of Lucite{reg_sign} and pig skin were examined. It is concluded that no quantitative or semi quantitative analysis can be achieved if overlying sue thickness exceeds 3 mm for Ph concentrations of less than 30 porn Ph in bone.

Preiss, I.L.; Washington, W. II [Rensselaer Polytechnic Inst., Troy, NY (United States)

1995-12-31T23:59:59.000Z

139

Pyrolysis of tire rubber: Porosity and adsorption characteristics of the pyrolytic chars  

Science Conference Proceedings (OSTI)

Tire rubber has been pyrolyzed at various temperatures under a nitrogen atmosphere. The resulting chars have been analyzed for their porosity using nitrogen gas adsorption and for their aqueous adsorption characteristics using phenol, methylene blue, and the reactive dyes Procion Turquoise H-A and Procion Red H-E3B. Nitrogen adsorption isotherms were modeled to the BET and Dubinin-Astakhov (DA) equations to determine effective surface areas, mesopore volumes, and micropore volumes. Results showed that pyrolysis of tire rubber was essentially complete at 500 C and resulted in a char yield of approximately 42 wt%. Pyrolytic chars exhibited BET surface areas up to 85 m{sup 2}/g and micropore volumes up to 0.04 mL/g. Owing to their poorly developed micropore structure, the pyrolytic chars exhibited limited aqueous adsorption capacity for compounds of small molecular weight, such as phenol. However, the chars possessed significantly greater adsorption capacity for species of large molecular weight which was attributed to the presence of large mesopore volumes (up to 0.19 mL/g).

Miguel, G.S.; Fowler, G.D.; Sollars, C.J. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom)

1998-06-01T23:59:59.000Z

140

A dual-porosity reservoir model with an improved coupling term  

DOE Green Energy (OSTI)

A new dual-porosity model is developed for single-phase flow in fractured/porous media. As in the commonly-used approach, flow is assumed to take place through the fracture network, and between the fractures and matrix blocks. The matrix blocks are treated in a lumped-parameter manner, with a single average pressure used for each matrix block. However, instead of assuming that fracture/matrix flux is proportional to the difference between the fracture pressure and matrix pressure at each point, as in the Warren-Root model, a nonlinear equation is used which accurately models the flux at both early and late times. This flux equation is verified against analytical solutions for spherical blocks with prescribed pressure variations on their boundaries. This equation is then used as a source/sink term in the numerical simulator TOUGH. The modified code allows more accurate simulations than the conventional Warren-Root method, and with a large savings in computational time compared to methods which explicitly discretize the matrix blocks.

Zimmerman, R.W.; Chen, G.; Bodvarsson, G.S.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Secondary porosity and hydrocarbon reservoirs in Lower-Middle Miocene Sandstones, southern San Joaquin basin, California  

SciTech Connect

Immature lower to middle Miocene marine sandstones constitute important reservoir rocks in many southern San Joaquin basin oil fields. Surface samples from the east and west margins of the basin and subsurface samples from Round Mountain, Belridge, and Coalinga fields were examined. These localities have undergone recurrent uplift since middle Tertiary time and maximum burial probably did not exceed 2500-3000 m. Diagenetic features common to east- and west-side sandstones include phosphatization, early calcite cementation, pressure solution and replacement of silicate grains by calcite cement, framework grain dissolution and creation of secondary porosity, and replacement of biotite and hornblende by chlorite. Differences include recrystallization and dolomitization of early calcite on the west side, and massive carbonate dissolution followed by extensive crushing and pressure solution of silicate grains and late replacement of plagioclase by calcite and calcite by hematite on the east side. Replacement of biotite by chlorite occurred only in the deepest samples on either side of the basin. Basinwide differences in diagenesis reflect different tectonic evolutions between east and west sides of the basin. Local variations in diagenetic patterns are pronounced in all areas and are controlled by initial sediment composition. For example, in one core from Coalinga early calcite cement, recrystallized calcite cement, and dolomitized calcite cement are interbedded over the 60-m interval sampled. Hydrocarbons in all samples reside mainly in secondary pores created by cement and framework-grain dissolution, underscoring the importance of diagenesis in creating reservoirs in this basin.

Horton, R.A. Jr.; Menzie, R.J. Jr.

1987-05-01T23:59:59.000Z

142

Dworshak Dam Impacts Assessment and Fisheries Investigation: Kokanee Depth Distribution in Dworshak Reservoir and Implications Toward Minimizing Entrainment, 1994 Annual Report.  

DOE Green Energy (OSTI)

The authors measured the day and night depth distribution of kokanee Oncorhynchus nerka kennerlyi directly upstream of Dworshak Dam from October 1993 to December 1994 using split-beam hydroacoustics. At night most kokanee (70%) were distributed in a diffuse layer about 10 m thick. The depth of the layer varied with the season and ranged from 30 to 40 m deep during winter and from 15 to 25 m deep during summer. Nighttime depth of the kokanee layer during summer roughly corresponded to a zone where water temperatures ranged from 7 C to 12 C. Daytime kokanee distribution was much different with kokanee located in dense schools. Most kokanee (70%) were found in a 5--15 m thick layer during summer. Daytime depth distribution was also shallowest during fall and deepest during winter. Dworshak Dam has structures which can be used for selective water withdrawal and can function in depth ranges that will avoid the kokanee layer. Temperature constraints limit the use of selective withdrawal during the spring, summer, and fall, but in the winter, water is nearly isothermal and the full range of selector gate depths may be utilized. From October 1993 to February 1994, selector gates were positioned to withdraw water from above the kokanee layer. The discharge pattern also changed with more water being released during May and July, and less water being released during fall and winter. A combination of these two changes is thought to have increased kokanee densities to a record high of 69 adults/ha.

Maiolie, Melo; Elam, Steve

1996-10-01T23:59:59.000Z

143

Electrode immersion depth determination and control in electroslag remelting furnace  

DOE Patents (OSTI)

An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

Melgaard, David K. (Albuquerque, NM); Beaman, Joseph J. (Austin, TX); Shelmidine, Gregory J. (Tijeras, NM)

2007-02-20T23:59:59.000Z

144

Property:AvgReservoirDepth | Open Energy Information  

Open Energy Info (EERE)

AvgReservoirDepth AvgReservoirDepth Jump to: navigation, search Property Name AvgReservoirDepth Property Type Quantity Description Average depth to reservoir Use this type to express a quantity of length. The default unit is the meter (m). Acceptable units (and their conversions) are: Meters - 1 m, meter, meters Meter, Meters, METER, METERS Kilometers - 0.001 km, kilometer, kilometers, Kilometer, Kilometers, KILOMETERS, KILOMETERS Miles - 0.000621371 mi, mile, miles, Mile, Miles, MILE, MILES Feet - 3.28084 ft, foot, feet, Foot, Feet, FOOT, FEET Yards - 1.09361 yd, yard, yards, Yard, Yards, YARD, YARDS Pages using the property "AvgReservoirDepth" Showing 24 pages using this property. A Amedee Geothermal Area + 213 m0.213 km 0.132 mi 698.819 ft 232.939 yd + B Beowawe Hot Springs Geothermal Area + 850 m0.85 km

145

Radiation phantom with humanoid shape and adjustable thickness  

SciTech Connect

A radiation phantom comprising a body with a general humanoid shape and at least a portion having an adjustable thickness. In one embodiment, the portion with an adjustable thickness comprises at least one tissue-equivalent slice.

Lehmann, Joerg (Pleasanton, CA); Levy, Joshua (Salem, NY); Stern, Robin L. (Lodi, CA); Siantar, Christine Hartmann (Livermore, CA); Goldberg, Zelanna (Carmichael, CA)

2006-12-19T23:59:59.000Z

146

Confined-unconfined changes above longwall coal mining due to increases in fracture porosity  

Science Conference Proceedings (OSTI)

Subsidence and strata movement above longwall (total extraction) coal mines produce complex hydrologic responses that can occur independently of drainage to the mine. One response is dewatering from confined to unconfined conditions in bedrock aquifers as a result of loss of water into new void space created by fracture and bedding separations. This dewatering process has been little studied but accounts for several hydraulic and geochemical effects of longwall mining. This article presents a conceptual model of the process and reviews evidence from case studies. Confined bedrock aquifers in subsiding zones exhibit dramatically steep head drops because of the low value of confined storage coefficients relative to the volume of water drained into the new fracture void space. The aquifer changes rapidly to an unconfined condition. Tight units to which air entry is restricted may even develop negative water pressures. In the unconfined state, sulfide minerals present in the strata readily oxidize to soluble hydrated sulfates. When the aquifer re-saturates, these salts are rapidly mobilized and produce a flush of increased sulfate and total dissolved solids (TDS) levels. Observations made in our previous studies in Illinois are consistent with the confined-unconfined model and include rapid head drops, changes to unconfined conditions, and increases in sulfate and TDS during re-saturation of a sandstone aquifer. Studies reported from the Appalachian coalfield show aspects consistent with the model, but in this high-relief fractured setting it is often difficult to distinguish aquifers from aquitards, confined from unconfined states, and the fracture-porosity cause of head drops from several others that occur during mine subsidence.

Booth, C.J. [North Illinois University, De Kalb, IL (USA). Dept. of Geology & Environmental Geoscience

2007-11-15T23:59:59.000Z

147

Determination of porosity of lignocellulosic biomass before and after pretreatment by using Simonsâ Â’ stain and NMR techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

porosity porosity of lignocellulosic biomass before and after pretreatment by using Simons' stain and NMR techniques Xianzhi Meng a , Marcus Foston a,1 , Johannes Leisen b , Jaclyn DeMartini c , Charles E. Wyman c , Arthur J. Ragauskas a,⇑ a BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, Atlanta, GA 30332, USA b School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA c Department of Chemical & Environmental Engineering, Center for Environmental Research and Technology, University of California, Riverside, BioEnergy Science Center, Riverside, CA 92507, USA h i g h l i g h t s  Cellulose accessibility was tested by Simons' stain and multiple NMR techniques.  Pretreatment increases the pore size and overall surface area of the

148

Piezoelectric Thick-Film Structures for High-Frequency Transducer ...  

Science Conference Proceedings (OSTI)

The dielectric, mechanical and piezoelectric parameters of selected thick films will be ... and Their Electrochemical Performance for Energy Storage Applications

149

Microphysical and Dynamical Influences on Cirrus Cloud Optical Depth Distributions  

SciTech Connect

Cirrus cloud inhomogeneity occurs at scales greater than the cirrus radiative smoothing scale ({approx}100 m), but less than typical global climate model (GCM) resolutions ({approx}300 km). Therefore, calculating cirrus radiative impacts in GCMs requires an optical depth distribution parameterization. Radiative transfer calculations are sensitive to optical depth distribution assumptions (Fu et al. 2000; Carlin et al. 2002). Using raman lidar observations, we quantify cirrus timescales and optical depth distributions at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Lamont, OK (USA). We demonstrate the sensitivity of outgoing longwave radiation (OLR) calculations to assumed optical depth distributions and to the temporal resolution of optical depth measurements. Recent work has highlighted the importance of dynamics and nucleation for cirrus evolution (Haag and Karcher 2004; Karcher and Strom 2003). We need to understand the main controls on cirrus optical depth distributions to incorporate cirrus variability into model radiative transfer calculations. With an explicit ice microphysics parcel model, we aim to understand the influence of ice nucleation mechanism and imposed dynamics on cirrus optical depth distributions.

Kay, J.; Baker, M.; Hegg, D.

2005-03-18T23:59:59.000Z

150

Understanding Fault Characteristics And Sediment Depth For Geothermal  

Open Energy Info (EERE)

Understanding Fault Characteristics And Sediment Depth For Geothermal Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Southern Walker Lake Basin, situated in the Walker Lake structural domain, consists of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada showed elevated temperatures. Two recent drill holes reaching downhole depths of more than 4000 ft give some insight to the geologic picture, but more information

151

Ensemble-Based Data Assimilation for Estimation of River Depths  

Science Conference Proceedings (OSTI)

A method is presented for estimating bathymetry in a river, based on observations of depth-averaged velocity during steady flow. The estimator minimizes a cost function that combines known information in the form of a prior estimate and measured ...

Greg Wilson; H. Tuba Özkan-Haller

2012-10-01T23:59:59.000Z

152

Radar Reflectivity–Based Estimates of Mixed Layer Depth  

Science Conference Proceedings (OSTI)

This study investigates the potential for estimating mixed layer depth by taking advantage of the radial gradients in the radar reflectivity field produced by the large vertical gradients in water vapor mixing ratio that are characteristic of the ...

P. L. Heinselman; P. L. Spencer; K. L. Elmore; D. J. Stensrud; R. M. Hluchan; P. C. Burke

2009-02-01T23:59:59.000Z

153

Global Datasets of Rooting Zone Depth Inferred from Inverse Methods  

Science Conference Proceedings (OSTI)

Two inverse methods are applied to a land surface model to infer global patterns of the hydrologically active depth of the vegetation's rooting zone. The first method is based on the assumption that vegetation is optimally adapted to its ...

Axel Kleidon

2004-07-01T23:59:59.000Z

154

Non-contact system for measuring tillage depth  

Science Conference Proceedings (OSTI)

A microprocessor-based non-contact ultrasonic sensor for tillage depth was evaluated. The sensor was tested on concrete, grass, wheat stubble, lightly disked wheat stubble (semi-stubble) and disked surfaces. The grass surface gave a higher variation ...

M. Yasin; R. D. Grisso; G. M. Lackas

1992-07-01T23:59:59.000Z

155

Method and apparatus to measure the depth of skin burns  

DOE Patents (OSTI)

A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

156

Estimating Mixed Layer Depth from Oceanic Profile Data  

Science Conference Proceedings (OSTI)

Estimates of mixed layer depth are important to a wide variety of oceanic investigations including upper-ocean productivity, air–sea exchange processes, and long-term climate change. In the absence of direct turbulent dissipation measurements, ...

Richard E. Thomson; Isaac V. Fine

2003-02-01T23:59:59.000Z

157

Evaluation of Boundary Layer Depth Estimates at Summit Station, Greenland  

Science Conference Proceedings (OSTI)

Boundary layer conditions in polar regions have been shown to have a significant impact on the levels of trace gases in the lower atmosphere. The ability to properly describe boundary layer characteristics (e.g., stability, depth, and variations ...

B. Van Dam; D. Helmig; W. Neff; L. Kramer

2013-10-01T23:59:59.000Z

158

Depth-resolved cathodoluminescence spectroscopy of silicon supersaturated with sulfur  

E-Print Network (OSTI)

We investigate the luminescence of Si supersaturated with S (Si:S) using depth-resolved cathodoluminescence spectroscopy and secondary ion mass spectroscopy as the S concentration is varied over 2 orders of magnitude ...

Fabbri, Filippo

159

Instrumentation and Technique for Deducing Cloud Optical Depth  

Science Conference Proceedings (OSTI)

The feasibility of using a photodiode radiometer to infer optical depth of thin clouds from solar intensity measurements is examined. Data were collected by a photodiode radiometer which measured incident radiation at angular fields of view of 2, ...

R. A. Raschke; S. K. Cox

1983-11-01T23:59:59.000Z

160

Autonomous Depth Adjustment for Underwater Sensor Networks: Design and Applications  

E-Print Network (OSTI)

To fully understand the ocean environment requires sensing the full water column. Utilizing a depth adjustment system on an underwater sensor network provides this while also improving global sensing and communications. ...

Detweiler, Carrick

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Property:FirstWellDepth | Open Energy Information  

Open Energy Info (EERE)

FirstWellDepth FirstWellDepth Jump to: navigation, search Property Name FirstWellDepth Property Type Quantity Use this type to express a quantity of length. The default unit is the meter (m). Acceptable units (and their conversions) are: Meters - 1 m, meter, meters Meter, Meters, METER, METERS Kilometers - 0.001 km, kilometer, kilometers, Kilometer, Kilometers, KILOMETERS, KILOMETERS Miles - 0.000621371 mi, mile, miles, Mile, Miles, MILE, MILES Feet - 3.28084 ft, foot, feet, Foot, Feet, FOOT, FEET Yards - 1.09361 yd, yard, yards, Yard, Yards, YARD, YARDS Pages using the property "FirstWellDepth" Showing 5 pages using this property. B Blue Mountain Geothermal Area + 672 m0.672 km 0.418 mi 2,204.724 ft 734.906 yd + K Kilauea East Rift Geothermal Area + 1,968 m1.968 km

162

Colour videos with depth : acquisition, processing and evaluation  

E-Print Network (OSTI)

. Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the regulation length of 60 000 words... -step pipeline that aligns the video streams, efficiently removes and fills invalid and noisy geometry, and finally uses a spatiotemporal filter to increase the spatial resolution of the depth data and strongly reduce depth measurement noise. I show...

Richardt, Christian

2012-03-06T23:59:59.000Z

163

Study of Thick CZT Detectors for X-ray and Gamma-ray Astronomy  

Science Conference Proceedings (OSTI)

CdZnTe (CZT) is a wide bandgap II-VI semiconductor developed for the spectroscopic detection of X-rays and {gamma}-rays at room temperature. The Swift Burst Alert Telescope is using an 5240 cm{sup 2} array of 2 mm thick CZT detectors for the detection of 15-150 keV X-rays from Gamma-ray Bursts. We report on the systematic tests of thicker (0.5 cm) CZT detectors with volumes between 2 cm{sup 3} and 4 cm{sup 3} which are potential detector choices for a number of future X-ray telescopes that operate in the 10 keV to a few MeV energy range. The detectors contacted in our laboratory achieve Full Width Half Maximum energy resolutions of 2.7 keV (4.5%) at 59 keV, 3 keV (2.5%) at 122 keV and 4 keV (0.6%) at 662 keV. The 59 keV and 122 keV energy resolutions are among the world-best results for 0.5 cm thick CZT detectors. We use the data set to study trends of how the energy resolution depends on the detector thickness and on the pixel pitch. Unfortunately, we do not find clear trends, indicating that even for the extremely good energy resolutions reported here, the achievable energy resolutions are largely determined by the properties of individual crystals. Somewhat surprisingly, we achieve the reported results without applying a correction of the anode signals for the depth of the interaction. Measuring the interaction depths thus does not seem to be a pre-requisite for achieving sub-1% energy resolutions at 662 keV.

Li Q.; De Geronimo G.; Beilicke, M.; Lee, K.; Garson III, A.; Guo, Q.; Martin, J.; Yin, Y.; Dowkontt, P.; Jung, I.; Krawczynski, H.

2011-02-12T23:59:59.000Z

164

Separate effects of surface roughness, wettability and porosity on boiling heat transfer and critical heat flux and optimization of boiling surfaces  

E-Print Network (OSTI)

The separate effects of surface wettability, porosity, and roughness on critical heat flux (CHF) and heat transfer coefficient (HTC) were examined using carefully-engineered surfaces. All test surfaces were prepared on ...

O'Hanley, Harrison Fagan

2012-01-01T23:59:59.000Z

165

Thick planar domain wall: its thin wall limit and dynamics  

E-Print Network (OSTI)

We consider a planar gravitating thick domain wall of the $\\lambda \\phi^4$ theory as a spacetime with finite thickness glued to two vacuum spacetimes on each side of it. Darmois junction conditions written on the boundaries of the thick wall with the embedding spacetimes reproduce the Israel junction condition across the wall in the limit of infinitesimal thickness. The thick planar domain wall located at a fixed position is then transformed to a new coordinate system in which its dynamics can be formulated. It is shown that the wall's core expands as if it were a thin wall. The thickness in the new coordinates is not constant anymore and its time dependence is given.

S. Ghassemi; S. Khakshournia; R. Mansouri

2006-09-28T23:59:59.000Z

166

Improving dual-porosity simulation of waterflood performance in the naturally fractured Spraberry Trend area  

E-Print Network (OSTI)

In this thesis we have discussed the methods of analyzing the waterflood performance of the O'Daniel waterflood pilot in the Spraberry Trend Area with the help of reservoir simulation. Spraberry Trend Area is considered to be one of the richest oil fields in the world. However, out of 6-10 billion bbls of original oil only 700 million bbls have been produced. In an effort to increase recovery, several waterflood pilots were conducted in Spraberry beginning in the late 1950's. Because of profoundly complicated nature of the reservoir, waterflooding has been only moderately successful, and billions of barrels of hydrocarbons remain unrecovered. A recent waterflood pilot study started in 1995 with dramatically different results. The pilot was conducted in the O'Daniel unit of the Spraberry. The recovery in this lease has exceeded 25% of the original oil in place, compared to only 10% recovery in the entire Spraberry. Data from the current waterflood clearly shows that on-trend wells which are outside the pilot and along the major fracture trend responded favorably. In the previous waterflood pilots in Spraberry, the producer located off-trend from the water injectors received all the attention and the response in the on-trend wells was overlooked. In this study, we have developed a waterflood pattern for Spraberry where the target wells for waterflood response will be the on-trend producers. A successful waterflood depends on properly positioning the injectors and producers. In fractured reservoirs, fracture location, orientation and permeability dictates the placing of injection and production wells. So, to understand the fracture distribution, the main intention behind this thesis is to develop a method to determine location, orientation and permeability of fractures in Spraberry by using reservoir simulation. We performed three simulation studies: Humble pilot waterflood, O'Daniel tracer analysis and O'Daniel pilot waterflood. The first two simulation studies were performed with simple two-well models. The fracture orientation and permeability ratio obtained in these models were applied to the full field O'Daniel pilot that consists of 59 wells in about 8500-acre area. Our simulation model shows that a concept of fracture enhancement (grid-blocks with high fracture permeability) in the dual-porosity model is necessary to capture the effect of heterogeneity of fracture network. The major fracture orientation obtained from the simulation is very close to the one obtained from the interference test and horizontal core analysis. The results of this study could be used in determining an optimum waterflood pattern suitable for that area to forecast oil production with different scenarios such as, infill drilling, CO2 injection, horizontal wells etc. Finally, the results of this work will provide a method to assess the economic feasibility of large-scale water injection in the remainder of the field.

Chowdhury, Tanvir

2002-01-01T23:59:59.000Z

167

Generalized triangle inequalities in thick Euclidean buildings of rank 2  

E-Print Network (OSTI)

We give the generalized triangle inequalities which determine the possible vector valued side lengths of n-gons in thick Euclidean buildings of rank 2.

Ramos-Cuevas, Carlos

2010-01-01T23:59:59.000Z

168

Numerical Investigation of Residual Stress in Thick Titanium Alloy ...  

Science Conference Proceedings (OSTI)

Jul 22, 2010 ... thick welded components with EBW is very difficult, especially for .... Because the welded plate is symmetrical about the weld centerline, only ...

169

Gulf of Mexico Proved Reserves By Water Depth, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves from the GOM Fed have gradually diminished, both volumetrically and as a percentage of overall U.S. proved reserves. The latter is especially true in recent years as onshore additions (particularly those associated with shale gas activity) have increased considerably. Proved oil reserves from

170

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat Flow At Standard Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow At Standard Depth Details Activities (2) Areas (1) Regions (0) Abstract: Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which

171

ARM - Evaluation Product - Aerosol Optical Depths from SASHE  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAerosol Optical Depths from SASHE ProductsAerosol Optical Depths from SASHE Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Aerosol Optical Depths from SASHE Site(s) PVC SGP General Description The Shortwave Array Spectroradiometer Hemispheric (SASHE) is a ground-based instrument that measures both direct and diffuse shortwave irradiance. In this regard, the instrument is similar to the multifilter rotating shadowband radiometer (MFRSR)-an instrument that has been in the ARM Facility stable for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the SASHE provides hyperspectral measurements from about 350 nm to 1700 nm at a wavelength resolution from 1 to several nanometers, while the MFRSR only

172

Depth recovery using an adaptive color-guided auto-regressive model  

Science Conference Proceedings (OSTI)

This paper proposes an adaptive color-guided auto-regressive (AR) model for high quality depth recovery from low quality measurements captured by depth cameras. We formulate the depth recovery task into a minimization of AR prediction errors subject ... Keywords: AR model, depth camera, depth recovery, nonlocal filtering

Jingyu Yang; Xinchen Ye; Kun Li; Chunping Hou

2012-10-01T23:59:59.000Z

173

Scalable Thick-Film Magnetics: Nano Structured Scalable Thick-Film Magnetics  

SciTech Connect

ADEPT Project: Magnetic components are typically the largest components in a power converter. To date, however, researchers haven't found an effective way to reduce their size without negatively impacting their performance. And, reducing the size of the converter's other components isn't usually an option because shrinking them can also diminish the effectiveness of the magnetic components. GE is developing smaller magnetic components for power converters that maintain high performance levels. The company is building smaller components with magnetic films. These films are created using the condensation of a vaporized form of the magnetic material. It's a purely physical process that involves no chemical reactions, so the film composition is uniform. This process makes it possible to create a millimeter-thick film deposition over a wide surface area fairly quickly, which would save on manufacturing costs. In fact, GE can produce 1-10 millimeter-thick films in hours. The magnetic components that GE is developing for this project could be used in a variety of applications, including solar inverters, electric vehicles, and lighting.

None

2011-01-01T23:59:59.000Z

174

The Ocean general circulation near 1000 m depth  

Science Conference Proceedings (OSTI)

The mean Ocean circulation near 1000 m depth is estimated with a 100 km resolution from the Argo float displacements collected before January 1 2010. After a thorough validation, the 400 000 or so displacements found in the [950, 1150] dbar layer ...

Michel Ollitrault; Alain Colin de Verdičre

175

Trap-depth determination from residual gas collisions  

SciTech Connect

We present a method for determining the depth of an atomic or molecular trap of any type. This method relies on a measurement of the trap loss rate induced by collisions with background gas particles. Given a fixed gas composition, the loss rate uniquely determines the trap depth. Because of the ''soft'' long-range nature of the van der Waals interaction, these collisions transfer kinetic energy to trapped particles across a broad range of energy scales, from room temperature to the microkelvin energy scale. The resulting loss rate therefore exhibits a significant variation over an enormous range of trap depths, making this technique a powerful diagnostic with a large dynamic range. We present trap depth measurements of a Rb magneto-optical trap using this method and a different technique that relies on measurements of loss rates during optical excitation of colliding atoms to a repulsive molecular state. The main advantage of the method presented here is its large dynamic range and applicability to traps of any type requiring only knowledge of the background gas density and the interaction potential between the trapped and background gas particles.

Van Dongen, J.; Zhu, C.; Clement, D.; Dufour, G.; Madison, K. W. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, V6T 1Z1 (Canada); Booth, J. L. [Physics Department, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, British Columbia, V5G 3H2 (Canada)

2011-08-15T23:59:59.000Z

176

Computational depth complexity of measurement-based quantum computation  

E-Print Network (OSTI)

We prove that one-way quantum computations have the same computational power as quantum circuits with unbounded fan-out. It demonstrates that the one-way model is not only one of the most promising models of physical realisation, but also a very powerful model of quantum computation. It confirms and completes previous results which have pointed out, for some specific problems, a depth separation between the one-way model and the quantum circuit model. Since one-way model has the same computational power as unbounded quantum fan-out circuits, the quantum Fourier transform can be approximated in constant depth in the one-way model, and thus the factorisation can be done by a polytime probabilistic classical algorithm which has access to a constant-depth one-way quantum computer. The extra power of the one-way model, comparing with the quantum circuit model, comes from its classical-quantum hybrid nature. We show that this extra power is reduced to the capability to perform unbounded classical parity gates in constant depth.

Dan E. Browne; Elham Kashefi; Simon Perdrix

2009-09-25T23:59:59.000Z

177

Inferring Optical Depth of Broken Clouds from Landsat Data  

Science Conference Proceedings (OSTI)

Optical depths ?pp for broken, shallow clouds over ocean were inferred from Landsat cloud reflectances Rcld (0.83 ?m) with horizontal resolution of 28.5 m. The values ?pp were obtained by applying an inverse, homogeneous, plane-parallel radiance ...

Howard W. Barker; Damin Liu

1995-11-01T23:59:59.000Z

178

Interactions in the air: adding further depth to interactive tabletops  

Science Conference Proceedings (OSTI)

Although interactive surfaces have many unique and compelling qualities, the interactions they support are by their very nature bound to the display surface. In this paper we present a technique for users to seamlessly switch between interacting on the ... Keywords: 3D, 3D graphics, computer vision, depth-sensing cameras, holoscreen, interactive surfaces, surfaces, switchable diffusers, tabletop

Otmar Hilliges; Shahram Izadi; Andrew D. Wilson; Steve Hodges; Armando Garcia-Mendoza; Andreas Butz

2009-10-01T23:59:59.000Z

179

Depth enhancement techniques for the in situ vitrification process  

SciTech Connect

In-situ vitrification (ISV) is a process by which electrical energy is supplied to a soil/waste matrix. The resulting Joule heat raises the temperature of the soil/waste matrix, producing a pool of molten soil. Since its inception, there have been many successful applications of the technology to both staged and actual waste sites. However, there has been some difficulty in extending the attainable treatment melt depth to levels greater than 5 m. Results obtained from application of two novel approaches for extending the ultimate treatment depth attainable with in-situ vitrification (ISV) are presented. In the first, the electrode design is modified to concentrate the Joule heat energy delivered to the soil/waste matrix in the lower region of the target melt zone. This electrode design has been dubbed the hot-tip electrode. Results obtained from both computational and experimental investigations of this design concept indicate that some benefit toward ISV depth enhancement was realized with these hot-tip electrodes. A second, alternative approach to extending process depth with ISV involves initiating the melt at depth and propagating it in either vertical direction (e.g., downward, upward, or both) to treat the target waste zone. A series of engineering-scale experiments have been conducted to assess the benefits of this approach. The results from these tests indicate that ISV may be effectively initiated and sustained using this subsurface start-up technique. A survey of these experiments and the associated results are presented herein, together with brief discussion of some considerations regarding setup and implementation of this subsurface start-up technique.

Lowery, P.S.; Luey, J.; Seiler, D.K.; Tixier, J.S. [Pacific Northwest Lab., Richland, WA (United States); Timmerman, C.L. [Geosafe Corp., Richland, WA (United States)

1994-11-01T23:59:59.000Z

180

Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes  

Science Conference Proceedings (OSTI)

In many practical applications snow depth is known, but snow water equivalent (SWE) is needed as well. Measuring SWE takes 20 times as long as measuring depth, which in part is why depth measurements outnumber SWE measurements worldwide. Here a ...

Matthew Sturm; Brian Taras; Glen E. Liston; Chris Derksen; Tobias Jonas; Jon Lea

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Depth Profile of Radioactivity Induced in the Thick Concrete Shield in EP1 Beam Line at the KEK 12-GeV Proton Synchrotron Facility  

Science Conference Proceedings (OSTI)

Accelerators / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Measurements and Instrumentation

Norikazu Kinoshita; Hiroshi Matsumura; Kotaro Bessho; Akihiro Toyoda; Kazuyoshi Masumoto; Yuki Matsushi; Kimikazu Sasa; Tsutomu Takahashi; Shozo Mihara; Toshiyuki Oki; Masumi Matsumura; Yuki Tosaki; Keisuke Sueki; Michiko Tamari; Yasuo Nagashima

182

Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma  

Science Conference Proceedings (OSTI)

The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

Masashi Shimada; G. Cao; Y. Hatano; T. Oda; Y. Oya; M. Hara; P. Calderoni

2011-05-01T23:59:59.000Z

183

Apparatus and method for measuring the thickness of a coating  

DOE Patents (OSTI)

An apparatus and method for measuring the thickness of a coating adhered to a substrate. An electromagnetic acoustic transducer is used to induce surface waves into the coating. The surface waves have a selected frequency and a fixed wavelength. Interpolation is used to determine the frequency of surface waves that propagate through the coating with the least attenuation. The phase velocity of the surface waves having this frequency is then calculated. The phase velocity is compared to known phase velocity/thickness tables to determine the thickness of the coating.

Carlson, Nancy M. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Tow, David M. (Idaho Falls, ID); Walter, John B (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

184

Thermal spray and cold spray analysis of density, porosity, and tensile Specimens for use with LIGA applications  

SciTech Connect

This analysis provides a preliminary investigation into using Twin-Wire Arc Thermal Spray and Cold Spray as material deposition processes for LIGA applications. These spray material processes were studied to make an initial determination of their potential as alternatives to producing mechanical parts via the electroplating process. Three materials, UltraMachinable{reg_sign} Stainless Steel, BondArc{reg_sign}, and aluminum, were sprayed using Thermal Spray. Only aluminum was sprayed using the Cold Spray process. Following the spray procedure, the test specimens were released from a copper mold and then tested. Three tests, density, tensile strength, and porosity, were performed on the specimens to determine the spray effect on material properties. Twin-Wire Arc Thermal Spray did not demonstrate adequate deposition properties and does not appear to be a good process candidate for LIGA. However, Cold Spray yielded better density results and warrants further investigation to analyze the minimum feature size produced by the process.

DECKER,MERLIN K.; SMITH,MARK F.

2000-02-01T23:59:59.000Z

185

A high-porosity limit for the transition from conductive to convective burning in gas-permeable explosives  

SciTech Connect

The experimentally known phenomenon of an abrupt transition from slow conductive to fast convective (penetrative) burning in a confined gas-permeable explosive is discussed. A simple model, involving only the most essential physical ingredients, is formulated and analyzed. In addition to commonly utilized assumptions of the solid-gas thermal equilibrium, validity of Darcy's law, immobility of the solid phase, and one-step Arrhenius kinetics, the model employs the distinguished limit combining high-porosity with high solid/gas density ratio, resulting in conservation of enthalpy, advantageous for theoretical analysis. A good qualitative agreement between theoretical and experimental dependencies is obtained. The transition is triggered by a localized autoignition in the extended resistance-induced preheat zone formed ahead of the advancing deflagration, provided the pressure difference between hot gas products and gases deep inside the pores of the unburned solid exceeds a certain critical level. In line with observations the critical overpressure increases with diminishing permeability. (author)

Kagan, Leonid; Sivashinsky, Gregory [Sackler Faculty of Exact Sciences, School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

2010-02-15T23:59:59.000Z

186

Using depth-normalized coordinates to examine mass transport residual circulation in estuaries with large tidal amplitude relative to the mean depth  

Science Conference Proceedings (OSTI)

Residual (subtidal) circulation profiles in estuaries with a large tidal amplitude to depth ratio often are quite complex and do not resemble the traditional estuarine gravitational circulation profile. In this paper we show how a depth-normalized,...

Sarah N. Giddings; Stephen G. Monismith; Derek A. Fong; Dr. Mark T. Stacey

187

Reactor physics assessment of thick silicon carbide clad PWR fuels  

E-Print Network (OSTI)

High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

Bloore, David A. (David Allan)

2013-01-01T23:59:59.000Z

188

Estimation of Cirrus Optical Thickness from Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

A method is proposed to estimate the optical thickness of cirrus clouds from ground-based sun photometry. Transfer calculations of solar radiation in ice clouds were made by the Monte Carlo method. A scattering phase function presented by Takano ...

Masataka Shiobara; Shoji Asano

1994-06-01T23:59:59.000Z

189

Consistent 4D cortical thickness measurement for longitudinal neuroimaging study  

Science Conference Proceedings (OSTI)

Accurate and reliable method for measuring the thickness of human cerebral cortex provides powerful tool for diagnosing and studying of a variety of neuro-degenerative and psychiatric disorders. In these studies, capturing the subtle longitudinal changes ...

Yang Li; Yaping Wang; Zhong Xue; Feng Shi; Weili Lin; Dinggang Shen

2010-09-01T23:59:59.000Z

190

Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing  

SciTech Connect

Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

Elder, J.; Vandekamp, R.

2011-02-10T23:59:59.000Z

191

Campbell penetration depth of a superconductor in the critical state.  

SciTech Connect

The magnetic penetration depth {lambda}(T,H{sub J}) was measured in the presence of a slowly relaxing supercurrent j. In single crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} below approximately 25 K, {lambda}(T,H{sub J}) is strongly hysteretic. We propose that the irreversibility arises from a shift of the vortex position within its pinning well as j changes. The Campbell length depends upon the ratio j/j{sub c} where j{sub c} is the critical current defined through the Labusch parameter. Similar effects were observed in other cuprates and in an organic superconductor.

Prozorov, R.; Giannetta, R. W.; Tamegai, T.; Schlueter, J.; Kini, A. M.; Fournier, P.; Greene, R. L.; Materials Science Division; Univ. of Illinois; Univ. of South Carolina; Univ. of Tokyo; Univ. of Sherbrooke; Univ. of Maryland

2003-05-01T23:59:59.000Z

192

Determination of filter-cake thicknesses from on-line flow measurements and gas/particle transport modeling  

SciTech Connect

The use of cylindrical candle filters to remove fine ({approx}0.005 mm) particles from hot ({approx}500- 900{degrees}C) gas streams currently is being developed for applications in advanced pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) technologies. Successfully deployed with hot-gas filtration, PFBC and IGCC technologies will allow the conversion of coal to electrical energy by direct passage of the filtered gases into non-ruggedized turbines and thus provide substantially greater conversion efficiencies with reduced environmental impacts. In the usual approach, one or more clusters of candle filters are suspended from a tubesheet in a pressurized (P {approx_lt}1 MPa) vessel into which hot gases and suspended particles enter, the gases pass through the walls of the cylindrical filters, and the filtered particles form a cake on the outside of each filter. The cake is then removed periodically by a backpulse of compressed air from inside the filter, which passes through the filter wall and filter cake. In various development or demonstration systems the thickness of the filter cake has proved to be an important, but unknown, process parameter. This paper describes a physical model for cake and pressure buildups between cleaning backpulses, and for longer term buildups of the ``baseline`` pressure drop, as caused by incomplete filter cleaning and/or re-entrainment. When combined with operating data and laboratory measurements of the cake porosity, the model may be used to calculate the (average) filter permeability, the filter-cake thickness and permeability, and the fraction of filter-cake left on the filter by the cleaning backpulse or re-entrained after the backpulse. When used for a variety of operating conditions (e.g., different coals, sorbents, temperatures, etc.), the model eventually may provide useful information on how the filter-cake properties depend on the various operating parameters.

Smith, D.H.; Powell, V. [USDOE Morgantown Energy Technology Center, WV (United States); Ibrahim, E. [Oak Ridge Inst. for Science and Education, TN (United States); Ferer, M. [West Virginia Univ., Morgantown, WV (United States). Dept. of Physics; Ahmadi, G. [National Research Council, Washington, DC (United States)

1996-12-31T23:59:59.000Z

193

Near independence of OLED operating voltage on transport layer thickness  

SciTech Connect

We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Ĺ using the N,N?-Bis(naphthalen-1-yl)-N,N?-bis(phenyl)-benzidine (?-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

Swensen, James S.; Wang, Liang (Frank) [Frank; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

2013-01-01T23:59:59.000Z

194

Average Depth of Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Depth of Crude Oil and Natural Gas Wells Depth of Crude Oil and Natural Gas Wells (Feet per Well) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 5,426 5,547 5,508 5,613 6,064 5,964 1949-2008 Crude Oil 4,783 4,829 4,836 4,846 5,111 5,094 1949-2008 Natural Gas 5,616 5,757 5,777 5,961 6,522 6,500 1949-2008 Dry Holes 5,744 5,848 5,405 5,382 5,578 5,540 1949-2008 Exploratory Wells 6,744 6,579 6,272 6,187 6,247 6,322 1949-2008 Crude Oil 6,950 8,136 8,011 7,448 7,537 7,778 1949-2008 Natural Gas 6,589 5,948 5,732 5,770 5,901 5,899 1949-2008 Dry Holes 6,809 6,924 6,437 6,340 6,307 6,232 1949-2008

195

Identification Of Rippability And Bedrock Depth Using Seismic Refraction  

SciTech Connect

Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer [Geophysics Section, School of Physics, 11800 Universiti Sains Malaysia, Pulau Pinang (Malaysia); Mohamad, Edy Tonizam [Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

2010-12-23T23:59:59.000Z

196

Campbell penetration depth in Fe-based superconductors  

Science Conference Proceedings (OSTI)

A 'true' critical current density, j{sub c}, as opposite to commonly measured relaxed persistent (Bean) current, j{sub B}, was extracted from the Campbell penetration depth, {lambda}{sub c}(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter {alpha}. At the equilibrium (upon field - cooling), {alpha}(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j{sub c}(2 K) {approx_equal} 1.22 x 10{sup 6} A/cm{sup 2} provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe{sub 2}As{sub 2} based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j{sub c}(2K) {approx_equal} 3.3 x 10{sup 6} A/cm{sup 2}. The magnetic-dependent feature was observed near the transition temperature in FeTe{sub 0.53}Se{sub 0.47} and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} (BaK122) and isovalent doped BaFe{sub 2}(As{sub 0.7}P{sub 0.3}){sub 2} (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnicitde superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.

Prommapan, Plegchart

2011-08-15T23:59:59.000Z

197

Study of semantic features of dimensional adjective Cu 'thick' in mandarin chinese  

Science Conference Proceedings (OSTI)

Cu 'thick' is an adjective which is used to describe an object's spatial dimension of thickness. Cu 'thick' used to describe cylindrical objects shares the same sense in essence with Cu 'thick' used to describe granular objects, ... Keywords: Cu 'thick', dimensional adjective, semantic features

Ying Wu

2012-07-01T23:59:59.000Z

198

Spray Shadowing For Stress Relief And Mechanical Locking In Thick  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials » Advanced Materials » Spray Shadowing For Stress Relief And Mechanical Locking Spray Shadowing For Stress Relief And Mechanical Locking In Thick Protective Coatings A method for applying a protective coating on an article. Available for thumbnail of Feynman Center (505) 665-9090 Email Spray Shadowing For Stress Relief And Mechanical Locking In Thick Protective Coatings A method for applying a protective coating on an article, comprising the following steps: selecting an article with a surface for applying a coating thickness; creating undercut grooves on the article, where the grooves depend beneath the surface to a bottom portion with the grooves having an upper width on the surface and a lower width on the bottom portion connected by side walls, where at least one of the side walls connects the

199

H(t,n)/sup 3/He reaction for depth profiling of hydrogen by neutron time-of-flight  

DOE Green Energy (OSTI)

The cross section for the H(t,n) reaction is large (200 to 700 mb/sr at 0/sup 0/) and smoothly varying. The usefulness of this reaction for depth profiling hydrogen in solids was investigated using the pulsed T/sup +/ beam from the Los Alamos vertical Van de Graaff. Neutron spectra from targets of Ti and TiH/sub 2/ with a nominal thickness of ten microns were compared with targets of SiO/sub 2/, C and Au to assess the importance of neutron backgrounds from triton reactions with the constituents of those targets. A 2.54-cm-diameter by 2.54-cm-thick stilbene neutron detector was placed at 0/sup 0/ 5.35 meters from the target. Pulse shape discrimination virtually eliminated gamma-ray background. When the neutron spectra were transformed into profiles, the background corrected TiH/sub 2/ spectrum showed a uniform hydrogen concentration over ten microns. In the experimental geometry used, a measurement of the neutron spectrum produced when bombarding an Au target (on which (t,n) reactions are strongly inhibited by the Coulomb barrier) yields a background equivalent to a concentration of 3 at.% of hydrogen in Ti. This background is due to reactions on hydrogen, hydrocarbons, or other light nuclei on or in beam line components. Equivalent hydrogen atomic concentrations (in Ti) calculated from neutron spectra measured on the other targets were: SiO/sub 2/-11 at.%, Si-7 at.%, C-22 at.%, Ti-5 at.%. Development of high sensitivity for depth profiling hydrogen with this technique appears possible only for high Z host materials and will require careful attention to beam line and vacuum system design.

Davis, J.C.; Lefevre, H.W.; Poppe, C.H.; Drake, D.M.; Veeser, L.R.

1977-06-01T23:59:59.000Z

200

Process for manufacture of thick film hydrogen sensors  

DOE Patents (OSTI)

A thick film process for producing hydrogen sensors capable of sensing down to a one percent concentration of hydrogen in carrier gasses such as argon, nitrogen, and air. The sensor is also suitable to detect hydrogen gas while immersed in transformer oil. The sensor includes a palladium resistance network thick film printed on a substrate, a portion of which network is coated with a protective hydrogen barrier. The process utilizes a sequence of printing of the requisite materials on a non-conductive substrate with firing temperatures at each step which are less than or equal to the temperature at the previous step.

Perdieu, Louisa H. (Overland Park, KS)

2000-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Bryan Pivovar (PI) Bryan Pivovar (PI) National Renewable Energy Laboratory Sept 30, 2009 Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes This presentation does not contain any proprietary, confidential, or otherwise restricted information Objectives To assist the DOE Fuel Cell Technologies (FCT) Program in meeting cost, durability, and performance targets in the areas of Electrocatalysts and MEAs. Approach: Novel Synthesis and Electrode Studies Pt nanotubes (UC-R) Pt coated carbon nanotubes Synthesis of novel catalysts based on extended surfaces due to 3M's demonstrated improvements in specific activity and durability using similar systems. Electrode architecture design, based on novel catalyst structures that allow thick (~10 µm), dispersed electrodes to

202

Some thick brane solutions in $f(R)$-gravity  

E-Print Network (OSTI)

The thick brane model is considered in $f(R)\\sim R^n$ gravity. It is shown that regular asymptotically anti-de Sitter solutions exist in some range of values of the parameter $n$. A peculiar feature of this model is the existence of a fixed point in the phase plane where all solutions start, and the brane can be placed at this point. The presence of the fixed point allows to avoid fine tuning of the model parameters to obtain thick brane solutions.

V. Dzhunushaliev; V. Folomeev; B. Kleihaus; J. Kunz

2009-12-15T23:59:59.000Z

203

Electrical Resistivity Imaging for Unknown Bridge Foundation Depth Determination  

E-Print Network (OSTI)

Unknown bridge foundations pose a significant safety risk due to stream scour and erosion. Records from older structures may be non-existent, incomplete, or incorrect. Nondestructive and inexpensive geophysical methods have been identified as suitable to investigate unknown bridge foundations. The objective of the present study is to apply advanced 2D electrical resistivity imaging (ERI) in order to identify depth of unknown bridge foundations. A survey procedure is carried out in mixed terrain water and land environments with rough topography. A conventional resistivity survey procedure is used with the electrodes installed on the stream banks. However, some electrodes must be adapted for underwater use. Tests were conducted in one laboratory experimentation and at five field experimentations located at three roadway bridges, a geotechnical test site, and a railway bridge. The first experimentation was at the bridges with the smallest foundations, later working up in size to larger drilled shafts and spread footings. Both known to unknown foundations were investigated. The geotechnical test site is used as an experimental site for 2D and 3D ERI. The data acquisition is carried out along 2D profile with a linear array in the dipole-dipole configuration. The data collections have been carried out using electrodes deployed directly across smaller foundations. Electrodes are deployed in proximity to larger foundations to image them from the side. The 2D ERI can detect the presence of a bridge foundation but is unable to resolve its precise shape and depth. Increasing the spatial extent of the foundation permits better image of its shape and depth. Using electrode < 1 m to detect a slender foundation < 1 m in diameter is not feasible. The 2D ERI method that has been widely used for land surface surveys presently can be adapted effectively in water-covered environments. The method is the most appropriate geophysical method for determination of unknown bridge foundations. Fully 3D ERI method at bridge sites is labor intensive, time consuming, and does not add enough value over 2D ERI to make it worthwhile.

Arjwech, Rungroj

2011-12-01T23:59:59.000Z

204

Shared Communications: Volume 2. In-Depth Systems Research  

Science Conference Proceedings (OSTI)

This report is the second of two documents that examine the literature for actual examples of organizations and agencies that share communications resources. While the primary emphasis is on rural, intelligent transportation system (ITS) communications involving transit, examples will not be limited to rural activities, nor to ITS implementation, nor even to transit. In addition, the term ''communication'' will be broadly applied to include all information resources. The first document of this series, ''Shared Communications: Volume I. A Summary and Literature Review'', defines the meaning of the term ''shared communication resources'' and provides many examples of agencies that share resources. This document, ''Shared Communications: Volume II. In-Depth Systems Research'', reviews attributes that contributed to successful applications of the sharing communication resources concept. A few examples of each type of communication sharing are provided. Based on the issues and best practice realworld examples, recommendations for potential usage and recommended approaches for field operational tests are provided.

Truett, LF

2004-09-22T23:59:59.000Z

205

Predicting Daily Maximum Temperatures Using Linear Regression and Eta Geopotential Thickness Forecasts  

Science Conference Proceedings (OSTI)

The relationship between forecast geopotential thickness and observed maximum temperature is investigated, and regression equations are calculated using numerical model thickness forecasts for Nashville. Model thickness forecast accuracy is shown ...

Darrell R. Massie; Mark A. Rose

1997-12-01T23:59:59.000Z

206

Design of thermal imprinting system with uniform residual thickness  

Science Conference Proceedings (OSTI)

A new thermal imprinting system for the printed circuit boards (PCBs) with both large areas and fine conducting lines was developed adopting hot airs with a high pressure. Several small nickel stamps were used to cover the large area, and the stamps ... Keywords: Patterned circuit boards, Thermal imprinting system, Uniformity of residual thickness

Won-Ho Shin

2009-11-01T23:59:59.000Z

207

Europium-152 depth profile of a stone bridge pillar exposed to the Hiroshima atomic bomb: /sup 152/Eu activities for analysis of the neutron spectrum  

Science Conference Proceedings (OSTI)

The /sup 152/Eu activity depth profile of a granite pillar of the Motoyasu bridge located 132 m from the Hiroshima atomic bomb hypocenter was assessed. The pillars each measured 82 cm in depth, 82 cm in width and 193 cm in height. One of the pillars was bored and 6.8-cm-diameter core samples were removed and cut into 2-cm-thick disks. Two gamma rays of /sup 152/Eu, 122 keV and 344 keV, in each disk were measured using a low background, gamma-ray spectrometer, and the activity distribution was determined as a function of depth in the granite. A concentration of stable Eu in the granite was determined by activation analysis. The specific radioactivity of /sup 152/Eu and /sup 154/Eu at the pillar surface was determined to have been 117 and 24 Bq per mg Eu, respectively, at the time of detonation. The value of /sup 152/Eu agrees within 20% of that calculated by Loewe. The depth profile of /sup 152/Eu in granite demonstrates a distinct difference from the estimates made only by thermal neutrons. Present data provide valuable information for the analysis of the neutron spectrum of the Hiroshima atomic bomb and its intensity.

Hasai, H.; Iwatani, K.; Shizuma, K.; Hoshi, M.; Yokoro, K.; Sawada, S.; Kosako, T.; Morishima, H.

1987-09-01T23:59:59.000Z

208

Effects of Membrane- and Catalyst-layer-thickness Nonuniformities in Polymer-electrolyte Fuel Cells  

E-Print Network (OSTI)

thicknesses for the membrane and catalyst layer. Figure 2.of dry membrane (a) and catalyst-layer (b) thickness (andhollow symbols) and catalyst-layer (filled symbols)

Weber, Adam Z.; Newman, John

2006-01-01T23:59:59.000Z

209

Validity of automated x-ray photoelectron spectroscopy algorithm to determine the amount of substance and the depth distribution of atoms  

SciTech Connect

The author reports a systematic study of the range of validity of a previously developed algorithm for automated x-ray photoelectron spectroscopy analysis, which takes into account the variation in both peak intensity and the intensity in the background of inelastically scattered electrons. This test was done by first simulating spectra for the Au4d peak with gold atoms distributed in the form of a wide range of nanostructures, which includes overlayers with varying thickness, a 5 A layer of atoms buried at varying depths and a substrate covered with an overlayer of varying thickness. Next, the algorithm was applied to analyze these spectra. The algorithm determines the number of atoms within the outermost 3 {lambda} of the surface. This amount of substance is denoted AOS{sub 3{lambda}} (where {lambda} is the electron inelastic mean free path). In general the determined AOS{sub 3{lambda}} is found to be accurate to within {approx}10-20% depending on the depth distribution of the atoms. The algorithm also determines a characteristic length L, which was found to give unambiguous information on the depth distribution of the atoms for practically all studied cases. A set of rules for this parameter, which relates the value of L to the depths where the atoms are distributed, was tested, and these rules were found to be generally valid with only a few exceptions. The results were found to be rather independent of the spectral energy range (from 20 to 40 eV below the peak energy) used in the analysis.

Tougaard, Sven [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense M DK-5230 (Denmark)

2013-05-15T23:59:59.000Z

210

Interpolation Scheme for Standard Depth Data Applicable for Areas with a Complex Hydrographical Structure  

Science Conference Proceedings (OSTI)

Oceanographic datasets, which are arranged for standard depths, have many applications for various users. However, oceanic observations are not always conducted exactly at standard depths, especially in the case of historical bottle observations. ...

Sachiko Oguma; Toru Suzuki; Yutaka Nagata; Hidetoshi Watanabe; Hatsuyo Yamaguchi; Kimio Hanawa

2004-04-01T23:59:59.000Z

211

Nonlinear Energy Transfer through the Spectrum of Gravity Waves for the Finite Depth Case  

Science Conference Proceedings (OSTI)

An algorithm for calculation of the nonlinear kinetic integral is described for the case of finite depth. The use of an effective approximation of the exact dispersion relationship for gravity waves in finite depth permits modification of the ...

V. G. Polnikov

1997-08-01T23:59:59.000Z

212

A Finite-Depth Wind-Wave Model. Part I: Model Description  

Science Conference Proceedings (OSTI)

A parametric windsea model for arbitrary water depths is presented. The model is derived from a conservation of energy flux formulation and includes shoaling, refraction, dissipation by bottom friction, as well as finite-depth modifications of ...

Hans C. Graber; Ole S. Madsen

1988-11-01T23:59:59.000Z

213

Photon-limited time of flight depth acquisition : new parametric model and its analysis  

E-Print Network (OSTI)

As 3-D imaging systems become more popular, the depth estimation which is their core component should be made as accurate as possible at low power levels. In this thesis, we consider the time of flight depth acquisition ...

Montazerhodjat, Vahid

2013-01-01T23:59:59.000Z

214

Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites  

Science Conference Proceedings (OSTI)

Fractal dimensions derived from log–log variograms are useful for characterizing spatial structure and scaling behavior in snow depth distributions. This study examines the temporal consistency of snow depth scaling features at two sites using ...

Jeffrey S. Deems; Steven R. Fassnacht; Kelly J. Elder

2008-10-01T23:59:59.000Z

215

Influence of Linear Depth Variation on Poincaré, Kelvin, and Rossby Waves  

Science Conference Proceedings (OSTI)

Exact solutions to the linearized shallow-water equations in a channel with linear depth variation and a mean flow are obtained in terms of confluent hypergeometric functions. These solutions are the generalization to finite s (depth variation ...

A. N. Staniforth; R. T. Williams; B. Neta

1993-04-01T23:59:59.000Z

216

Porosity and Nanostructure  

Science Conference Proceedings (OSTI)

We demonstrate that by starting with a homogeneous and isotropic ... organic phase on lithium ion transport and mechanical rigidity of these network structures .

217

4D frequency analysis of computational cameras for depth of field extension  

Science Conference Proceedings (OSTI)

Depth of field (DOF), the range of scene depths that appear sharp in a photograph, poses a fundamental tradeoff in photography---wide apertures are important to reduce imaging noise, but they also increase defocus blur. Recent advances in computational ... Keywords: Fourier analysis, computational camera, depth of field, light field

Anat Levin; Samuel W. Hasinoff; Paul Green; Frédo Durand; William T. Freeman

2009-07-01T23:59:59.000Z

218

A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth  

Science Conference Proceedings (OSTI)

We contribute a 2D nearest-neighbor quantum architecture for Shor's algorithm to factor an n-bit number in O(log3 n) depth. Our implementation uses parallel phase estimation, constant-depth fanout and teleportation, and constant-depth ... Keywords: Shor's algorithm, carry-save addition, nearest-neighbor, prime factorization, quantum architecture

Paul Pham, Krysta M. Svore

2013-11-01T23:59:59.000Z

219

Multirate depth control of an AUV by neurocontroller for enhanced situational awareness  

Science Conference Proceedings (OSTI)

This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy ... Keywords: autonomous underwater vehicle, depth flight, multirate system, neurocontroller, simulation, situational awareness

Igor Astrov; Andrus Pedai

2010-12-01T23:59:59.000Z

220

Calculation of the Effect of Random Superfluid Density on the Temperature Dependence of the Penetration Depth  

SciTech Connect

Microscopic variations in composition or structure can lead to nanoscale inhomogeneity in superconducting properties such as the magnetic penetration depth, but measurements of these properties are usually made on longer length scales. We solve a generalized London equation with a non-uniform penetration depth {lambda}(r), obtaining an approximate solution for the disorder-averaged Meissner screening. We find that the effective penetration depth is different from the average penetration depth and is sensitive to the details of the disorder. These results indicate the need for caution when interpreting measurements of the penetration depth and its temperature dependence in systems which may be inhomogeneous.

Lippman, Thomas; Moler, Kathryn A.

2012-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Turbulence Power Spectrum in Optically Thick Interstellar Clouds  

E-Print Network (OSTI)

The Fourier power spectrum is one of the most widely used statistical tools to analyze the nature of magnetohydrodynamic turbulence in the interstellar medium. Lazarian & Pogosyan (2004) predicted that the spectral slope should saturate to -3 for an optically thick medium and many observations exist in support of their prediction. However, there have not been any numerical studies to-date testing these results. We analyze the spatial power spectrum of MHD simulations with a wide range of sonic and Alfv\\'enic Mach numbers, which include radiative transfer effects of the $^{13}$CO transition. We confirm numerically the predictions of Lazarian & Pogosyan (2004) that the spectral slope of line intensity maps of an optically thick medium saturates to -3. Furthermore, for very optically thin supersonic CO gas, where the density or CO abundance values are too low to excite emission in all but the densest shock compressed gas, we find that the spectral slope is shallower than expected from the column density....

Burkhart, Blakesley; Ossenkopf, V; Stutzki, J

2013-01-01T23:59:59.000Z

222

Turbine blade having a constant thickness airfoil skin  

SciTech Connect

A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

Marra, John J; McNamee, Sara

2012-10-23T23:59:59.000Z

223

Effects of buffer thickness on ATW blanket performance.  

DOE Green Energy (OSTI)

This paper presents preliminary results of target and buffer design studies for liquid metal cooled accelerator transmutation of waste (ATW) systems, aimed at maximizing the source importance while simultaneously reducing the irradiation damage to fuel. Using 840 MWt liquid metal cooled ATW designs, the effects of buffer thickness on the blanket performance have been studied. Varying the buffer thickness for a given blanket configuration, system performance parameters have been estimated by a series of calculations using the MCNPX and REBUS-3 codes. The effects of source importance variation are studied by investigating the low-energy (< 20 MeV) neutron source distribution and the equilibrium cycle blanket performance parameters such as fuel inventory, discharge burnup, burnup reactivity loss, and peak fast fluence. For investigating irradiation damage to fuel, the displacements per atom (dpa), hydrogen production, and helium production rates are evaluated at the buffer and blanket interface where the peak fast fluence occurs. Results for the liquid-metal-cooled designs show that the damage rates and the source importance increase monotonically as the buffer thickness decreases. Based on a compromise between the competing objectives of increasing the source importance and reducing the damage rates, a buffer thickness of around 20 cm appears to be reasonable. Investigation of the impact of the proton beam energy on the target and buffer design shows that for a given blanket power level, a lower beam energy (0.6 GeV versus 1 GeV) results in a higher irradiation damage to the beam window. This trend occurs because of the increase in the beam intensity required to maintain the power level.

Yang, W. S.; Mercatali, L.; Taiwo, T. A.; Hill, R. N.

2001-08-10T23:59:59.000Z

224

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Rob Newsom; John Goldsmith

225

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

226

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

227

Aerosol optical depth increase in partly cloudy conditions  

Science Conference Proceedings (OSTI)

Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

2012-09-14T23:59:59.000Z

228

Residual stress measurement and microstructural characterization of thick beryllium films  

SciTech Connect

Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

2008-02-11T23:59:59.000Z

229

Abundance trends in the thin and thick disks  

E-Print Network (OSTI)

The Milky Way harbours two disks that appear distinct concerning scale-heights, kinematics, and elemental abundance patterns. Recent years have seen a surge of studies of the elemental abundance trends in the disks using high resolution spectroscopy. Here I will review and discuss the currently available data. Special focus will also be put on how we define stars to be members of either disk, and how current models of galaxy formation favour that thick disks are formed from several accreted bodies. The ability for the stellar abundance trends to test such predictions are discussed.

Sofia Feltzing

2004-11-07T23:59:59.000Z

230

ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsMicroPulse LIDAR Cloud Optical Depth ProductsMicroPulse LIDAR Cloud Optical Depth (MPLCOD) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MicroPulse LIDAR Cloud Optical Depth (MPLCOD) 1999.05.01 - 2004.05.14 Site(s) SGP General Description The MPLCOD VAP retrieves the column cloud visible optical depth using LIDAR derived backscatter from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and radiosonde thermodynamic profiles. The optical depth retrieval is derived following Comstock et al. (2001), which retrieves visible optical depth and layer average backscatter-to-extinction ratio (k) at the lidar wavelength for each backscatter profile. Data Information Data Directory Contacts Principal Investigator Jennifer Comstock (509) 372-424

231

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engström; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

232

Weighted exponential regression for characterizing radionuclide concentrations in soil depth profiles  

Science Conference Proceedings (OSTI)

Characterization of radionuclide concentrations in soil profiles requires accurate evaluation of the depth distribution of the concentrations as measured by gamma emissions. An ongoing study based on 137Cs activity has shown that such concentration data generally follow an exponential trend when the fraction of radioactivity below depth is plotted against the depth. The slope of the exponential regression fit is defined as alpha/rho, the depth profile parameter. A weighted exponential regression procedure has been developed to compute a mean ??? for a group of related soil samples. Regression results from different areas or from different time periods can be used to compare representative radionuclide concentrations for the specified groupings.

C.P.Oertel; J.R.Giles

2009-11-01T23:59:59.000Z

233

Eddy Transport of Thickness and Momentum in Layer and Level Models  

Science Conference Proceedings (OSTI)

The relation between thickness diffusion in layer and level models is set out. Parameterizations of thickness diffusion are related to a parameterization of eddy effects on momentum. The author anticipates where these parameterizations for ...

Greg Holloway

1997-06-01T23:59:59.000Z

234

A New Apparatus for Monitoring Sea Ice Thickness Based on the Magnetostrictive-Delay-Line Principle  

Science Conference Proceedings (OSTI)

High-precision ice thickness observations are required to gain a better understanding of ocean–ice–atmosphere interactions and to validate numerical sea ice models. A new apparatus for monitoring sea ice and snow thickness has been developed, ...

Ruibo Lei; Zhijun Li; Yanfeng Cheng; Xin Wang; Yao Chen

2009-04-01T23:59:59.000Z

235

Statistical cloud coverage as a function of cloud optical thickness  

Science Conference Proceedings (OSTI)

The time-averaged, daylight fractional statistical cloud coverages as a function of cloud optical thickness and selected values of cloud transmission were determined for various geographic areas using D1 data from the International Satellite Cloud Climatology Project (ISCCP). The regions of interest chosen for this report are: global earth, global sea, global land, global coast, and the six 30{degree}-latitude bands over sea, over land, and over coast with longitude 0{degree}--360{degree}. This statistical information is deduced from data determined from satellite measurements of terrestrial, atmospheric and cloud properties by the International Satellite Cloud Climatology Project. In particular the results are based on the ISCCP D1 data base.

Brower, K.L.

1998-07-01T23:59:59.000Z

236

Mass gap for gravity localized on thick branes  

Science Conference Proceedings (OSTI)

We present a scalar thick brane configuration arising in a theory of 5D gravity coupled to a self—interacting scalar field. We start from a classical solution of the field equations and study the physics of linear fluctuations around this background which obey a Schrödinger—like equation. We further focus our attention on a special case in which it is possible to solve this equation analytically for any massive mode. This fact allows us to make a closed analysis of the massive spectrum of Kaluza–Klein (KK) excitations and to compute the corrections to Newton’s law in the thin brane limit. There exist two bound states: the massless 4D graviton

N. Barbosa–Cendejas; A. Herrera–Aguilar; U. Nucamendi; I. Quiros; M. A. Reyes Santos; C. Schubert

2008-01-01T23:59:59.000Z

237

Thick $f(R)$-Brane Solutions in Maximally Symmetric Spaces  

E-Print Network (OSTI)

The purpose of this paper is to present an alternative way of finding thick brane solutions in metric $f(R)$ gravity with a background scalar field. Our main idea is to constrain the bulk curvature as a constant, so that all the dynamical equations reduce to second or even first order ones. To prevent our work from the problem of singularity, we give up the Gaussian normal coordinates. Instead, a more general metric is applied as our set up. The studies we have performed show that as an arbitrary symmetric warp factor $a(y)$ is given, the solution of the background scalar field is determined only by the value of $df(R)/dR$. Different values of $f(R)$ would lead to various types of distribution of the energy density. As another new feature, the kink-like solution of the background scalar field might, but not necessarily connect two extreme points of the scalar potential.

Zhong, Yuan; Yang, Ke

2010-01-01T23:59:59.000Z

238

CSAMT method for determining depth and shape of a sub-surface conductive object  

SciTech Connect

The depth to and size of an underground object may be determined by sweeping a CSAMT signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

1986-01-01T23:59:59.000Z

239

Non-photorealistic camera: depth edge detection and stylized rendering using multi-flash imaging  

Science Conference Proceedings (OSTI)

We present a non-photorealistic rendering approach to capture and convey shape features of real-world scenes. We use a camera with multiple flashes that are strategically positioned to cast shadows along depth discontinuities in the scene. The projective-geometric ... Keywords: depth edges, image enhancement, non-photorealistic rendering

Ramesh Raskar; Kar-Han Tan; Rogerio Feris; Jingyi Yu; Matthew Turk

2005-07-01T23:59:59.000Z

240

Hurricane-Generated Depth-Averaged Currents and Sea Surface Elevation  

Science Conference Proceedings (OSTI)

A theory of the depth-averaged currents and sea surface elevation generated by a moving hurricane in a stratified ocean with flat bottom is presented. Using a scale analysis of the depth-integrated momentum and continuity equations, it is found ...

Isaac Ginis; Georgi Sutyrin

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Non-photorealistic camera: depth edge detection and stylized rendering using multi-flash imaging  

Science Conference Proceedings (OSTI)

We present a non-photorealistic rendering approach to capture and convey shape features of real-world scenes. We use a camera with multiple flashes that are strategically positioned to cast shadows along depth discontinuities in the scene. The projective-geometric ... Keywords: depth edges, image enhancement, non-photorealistic rendering

Ramesh Raskar; Kar-Han Tan; Rogerio Feris; Jingyi Yu; Matthew Turk

2004-08-01T23:59:59.000Z

242

From PD to Nonlinear Adaptive Depth-Control of a Tethered Autonomous Underwater Vehicle  

E-Print Network (OSTI)

From PD to Nonlinear Adaptive Depth-Control of a Tethered Autonomous Underwater Vehicle D and an adaptive nonlinear state feedback one, both applied on a tethered autonomous underwater vehicle. The aim performed using each of the above mentioned control laws. Keywords: Underwater robotics, Depth control

Paris-Sud XI, Université de

243

Combining multiple depth cameras and projectors for interactions on, above and between surfaces  

Science Conference Proceedings (OSTI)

Instrumented with multiple depth cameras and projectors, LightSpace is a small room installation designed to explore a variety of interactions and computational strategies related to interactive displays and the space that they inhabit. LightSpace cameras ... Keywords: augmented reality, depth cameras, interactive spaces, surface computing, ubiquitous computing

Andrew D. Wilson; Hrvoje Benko

2010-10-01T23:59:59.000Z

244

Method for determining depth and shape of a sub-surface conductive object  

DOE Patents (OSTI)

The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

Lee, D.O.; Montoya, P.C.; Wayland, Jr.

1984-06-27T23:59:59.000Z

245

Model for hydrogen isotope backscattering, trapping and depth profiles in C and a-Si  

DOE Green Energy (OSTI)

A model of low energy hydrogen trapping and backscattering in carbon and a-silicon is described. Depth profiles are calculated and numerical results presented for various incident angular and energy distributions. The calculations yield a relation between depth profiles and the incident ion energy distribution. The use of this model for tokamak plasma diagnosis is discussed.

Cohen, S.A.; McCracken, G.M.

1979-03-01T23:59:59.000Z

246

Modeling risk and simulation-based optimization of channel depths at Cam Pha Coal Port  

Science Conference Proceedings (OSTI)

This paper presents a simulation-based method and a risk model of ship grounding for a long-term optimization of channel depths. The long-term optimization of channel depths should be considered a two-stage process: Firstly, establishing a ship entrance ... Keywords: entrance channel, risk modeling, ship grounding, simulation

N. M. Quy; J. K. Vrijling; P. H. A. J. M Gelder; R. Groenveld

2007-10-01T23:59:59.000Z

247

Kinect in the kitchen: testing depth camera interactions in practical home environments  

Science Conference Proceedings (OSTI)

Depth cameras have become a fixture of millions of living rooms thanks to the Microsoft Kinect. Yet to be seen is whether they can succeed as widely in other areas of the home. This research takes the Kinect into real-life kitchens, where touchless gestural ... Keywords: cooking, depth camera, gestures, home, joint selection, kinect, kitchen, push gesture, recipes

Galen Panger

2012-05-01T23:59:59.000Z

248

A comparison of carbide fracture during fixed depth and fixed load scratch tests  

SciTech Connect

In order to simulate abrasion of dual-phase materials containing large carbides under fixed depth conditions an apparatus has been designed and used to perform scratch tests at a fixed depth of cut on such materials. The scratch test consists of two support arms tipped with small steel balls held in contact with surface by /sup 700/ g, while the scratch tool is mounted on the tip of a central arm whose adjustable length allow control of the depth of cut. The scratch tool does not deflect significant when it encounters a large carbide. Scratch tests with the new apparatus have been performed on Co-base Stellite alloys containing large Cr-rich carbides, using individual particles of alumina as scratch tools to generate fixed depth scratches. A in situ SEM scratch test apparatus has also been used to genrate fixed load scratches. Comparison of the scratches shows that for comparable average scratch depths, under fixed load conditions the scratch tool deflects over the carbides without causing fracture, but that since it cannot deflect under fixed depth conditions it induces gross carbide fracture. Results suggest that the fixed depth scratch test can be successfully employed to simulate fixed depth abrasion, which has been previously shown to generate gross carbide fracture in these alloys. The in situ SEM scratch test simulates fixed load abrasion conditions such as those which occur in rubber wheel abrasion tests. 12 refs., 9 figs

Prasad, S.V.; Kosel, T.H.

1985-01-01T23:59:59.000Z

249

Bilayer Thickness Mismatch Controls Domain Size in Model Membranes  

Science Conference Proceedings (OSTI)

The observation of lateral phase separation in lipid bilayers has received considerable attention, especially in connection to lipid raft phenomena in cells. It is widely accepted that rafts play a central role in cellular processes, notably signal transduction. While micrometer-sized domains are observed with some model membrane mixtures, rafts much smaller than 100 nm beyond the reach of optical microscopy are now thought to exist, both in vitro and in vivo. We have used small-angle neutron scattering, a probe free technique, to measure the size of nanoscopic membrane domains in unilamellar vesicles with unprecedented accuracy. These experiments were performed using a four-component model system containing fixed proportions of cholesterol and the saturated phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), mixed with varying amounts of the unsaturated phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoylsn- glycero-3-phosphocholine (DOPC). We find that liquid domain size increases with the extent of acyl chain unsaturation (DOPC:POPC ratio). Furthermore, we find a direct correlation between domain size and the mismatch in bilayer thickness of the coexisting liquid-ordered and liquid-disordered phases, suggesting a dominant role for line tension in controlling domain size. While this result is expected from line tension theories, we provide the first experimental verification in free-floating bilayers. Importantly, we also find that changes in bilayer thickness, which accompany changes in the degree of lipid chain unsaturation, are entirely confined to the disordered phase. Together, these results suggest how the size of functional domains in homeothermic cells may be regulated through changes in lipid composition.

Heberle, Frederick A [ORNL; Petruzielo, Robin S [ORNL; Pan, Jianjun [ORNL; Drazba, Paul [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Feigenson, Gerald [Cornell University; Katsaras, John [ORNL

2013-01-01T23:59:59.000Z

250

A Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar Lo, Chaomei Pacific Northwest National Laboratory Comstock, Jennifer Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Category: Cloud Properties Optically thin clouds (e.g. optical depth < 3) can have a significant impact on radiative heating in the atmosphere, particularly in the cold upper troposphere. Currently, there is no value-added product (VAP) in the Atmospheric Radiation Measurement (ARM) program archive that produces thin cloud optical depth, particularly at the Tropical Western Pacific and North Slope of Alaska sites. A VAP is under development to obtain the cirrus cloud visible optical depth from the MPLNOR (Micro Pulse Lidar Normalized

251

Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis  

Science Conference Proceedings (OSTI)

Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of our data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.

Anovitz, Lawrence {Larry} M [ORNL; Cole, David [Ohio State University; Rother, Gernot [ORNL; Allard Jr, Lawrence Frederick [ORNL; Jackson, Andrew [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Littrell, Ken [ORNL

2013-01-01T23:59:59.000Z

252

Study on thick-film PTC thermistor fabricated by micro-pen direct writing  

Science Conference Proceedings (OSTI)

Micro-pen direct-write technique has been used to fabricate thick-film PTC thermistor. Thick-film PTC thermistors were fired at 700, 750, 800, 850 and 900^oC. The microstructure and the development of the conductive phase were investigated by optical ... Keywords: Direct writing, Micro-pen, Microstructure, Thick-film PTC thermistor

Zhixiang Cai; Xiangyou Li; Qianwu Hu; Xiaoyan Zeng

2008-12-01T23:59:59.000Z

253

Method and system using power modulation and velocity modulation producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients  

DOE Patents (OSTI)

A method and system for determining a source flux modulation recipe for achieving a selected thickness profile of a film to be deposited (e.g., with highly uniform or highly accurate custom graded thickness) over a flat or curved substrate (such as concave or convex optics) by exposing the substrate to a vapor deposition source operated with time-varying flux distribution as a function of time. Preferably, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. Preferably, the method includes the steps of measuring the source flux distribution (using a test piece held stationary while exposed to the source with the source operated at each of a number of different applied power levels), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of source flux modulation recipes, and determining from the predicted film thickness profiles a source flux modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal source flux modulation recipe to achieve a desired thickness profile on a substrate. The method enables precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

Montcalm, Claude (Livermore, CA); Folta, James Allen (Livermore, CA); Walton, Christopher Charles (Berkeley, CA)

2003-12-23T23:59:59.000Z

254

Influence of a local change of depth on the behavior of bouncing oil drops  

E-Print Network (OSTI)

The work of Couder \\textit{et al} (see also Bush \\textit{et al}) inspired consideration of the impact of a submerged obstacle, providing a local change of depth, on the behavior of oil drops in the bouncing regime. In the linked videos, we recreate some of their results for a drop bouncing on a uniform depth bath of the same liquid undergoing vertical oscillations just below the conditions for Faraday instability, and show a range of new behaviors associated with change of depth. This article accompanies a fluid dynamics video entered into the Gallery of Fluid Motion of the 66th Annual Meeting of the APS Division of Fluid Dynamics.

Carmigniani, Remi; Symon, Sean; McKeon, Beverley J

2013-01-01T23:59:59.000Z

255

Rotary union for use with ultrasonic thickness measuring probe  

DOE Patents (OSTI)

A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs.

Nachbar, H.D.

1992-09-15T23:59:59.000Z

256

The Relative Age of the Thin and Thick Galactic Disks  

E-Print Network (OSTI)

We determine the relative ages of the open cluster NGC 188 and selected Hipparcos field stars by isochrone fitting, and compare them to the age of the thick disk globular cluster 47 Tuc. The best fit age for NGC 188 was determined to be $6.5 \\pm 1.0$ Gyr. The solar metallicity Hipparcos field stars yielded a slightly older thin disk age, $7.5 \\pm 0.7$ Gyr. Two slightly metal-poor ($\\feh = -0.22$) field stars whose kinematic and orbital parameters indicate that they are members of the thin disk were found to have an age of $9.7\\pm 0.6$ Gyr. The age for 47 Tuc was determined to be $12.5 \\pm 1.5$ Gyr. All errors are internal errors due to the uncertainty in the values of metallicity and reddening. Thus, the oldest stars dated in the thin disk are found to be $2.8\\pm 1.6$ Gyr younger than 47 Tuc. Furthermore, as discussed by \\citet{Chb99} 47 Tuc has a similar age to three globular clusters located in the inner part of the Galactic halo, implying that star formation in the thin disk started within $2.8\\pm 1.6$ Gyr of star formation in the halo.

Wilson M. Liu; Brian Chaboyer

2000-07-13T23:59:59.000Z

257

Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet)  

Science Conference Proceedings (OSTI)

The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased airtightness and improved water management. For thick layers of exterior insulation (more than 1.5 in.), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. Although the approach has proven effective, there is significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved in the development of the vertical displacement resistance capacity. In addition, the long-term in-service performance of the system has been questioned due to potential creep effects of the assembly under the sustained dead load of the cladding and effects of varying environmental conditions. In addition, the current International Building Code (IBC) and International Residential Code (IRC) do not have a provision that specifically allows this assembly.

Not Available

2013-11-01T23:59:59.000Z

258

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper  

Open Energy Info (EERE)

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Abstract Temperature gradient drilling has historically been a key tool in the exploration for geothermal resources in the Great Basin, USA, but regulatory, environmental, and accessibility issues, as well as the expense of drilling, are increasingly limiting its use. In cases where thermal groundwater is not overlain by near-surface cold aquifers, it is possible to augment temperature gradient drilling with temperatures measured from a 2-meter depth. We discuss the development of a rapid, efficient, and

259

Depth Profile of Uncompensated Spins in an Exchange-Bias System  

NLE Websites -- All DOE Office Websites (Extended Search)

Depth Profile of Uncompensated Depth Profile of Uncompensated Spins in an Exchange-Bias System Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Wednesday, 25 January 2006 00:00 The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased sample. These results provide atomic-level insights into the mechanism of exchange bias, specifically the involvement of mutual interactions between two kinds of uncompensated spins in the antiferromagnet and spins in the ferromagnet.

260

Analysis of Langley optical depth data, with aerosol and gas retrievals,  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Langley optical depth data, with aerosol and gas retrievals, Analysis of Langley optical depth data, with aerosol and gas retrievals, for the RSS 103 instrument in Barrow, Alaska Gianelli, Scott Columbia University - NASA/GISS Lacis, Andrew NASA/Goddard Institute for Space Studies Carlson, Barbara NASA/Goddard Institute for Space Studies Category: Aerosols Bimodal aerosol retrievals, and high-resolution retrevals of nitrogen dioxide, are performed on the Langley optical depth data from the RSS 103 device that was situated in Barrow, Alaska between March and August in 1999. The results show a higher fine mode aerosol optical depth on average than was retrieved by the RSS 102 at the SGP site. The seasonal cycle is also reversed with high values at Barrow occurring in the spring and low values in the summer. The fine mode effective radius also appears to

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

U.S. Average Depth of Dry Holes Developmental Wells Drilled ...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

262

U.S. Average Depth of Natural Gas Exploratory Wells Drilled ...  

Annual Energy Outlook 2012 (EIA)

Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

263

Depth-Integrated Vorticity Budget of the Southern Ocean from a General Circulation Model  

Science Conference Proceedings (OSTI)

An analysis of the depth-integrated vorticity budget of the U.K. Fine Resolution Antarctic Model is used to investigate the mechanisms that maintain and dissipate vorticity in the Antarctic Circumpolar Current (ACC) and adjacent circulations of ...

N. C. Wells; B. A. De Cuevas

1995-11-01T23:59:59.000Z

264

U.S. Average Depth of Natural Gas Developmental Wells Drilled...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

265

U.S. Average Depth of Natural Gas Exploratory and Developmental...  

Gasoline and Diesel Fuel Update (EIA)

and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

266

U.S. Average Depth of Dry Exploratory and Developmental Wells...  

Annual Energy Outlook 2012 (EIA)

Exploratory and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

267

U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet...  

Annual Energy Outlook 2012 (EIA)

Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

268

Influence of Filter Band Function on Retrieval of Aerosol Optical Depth from Sunphotometer Data  

Science Conference Proceedings (OSTI)

Beer’s attenuation law is the basis for the retrieval of aerosol optical depth (AOD) from sunphotometer data. However, the filter band function causes uncertainty during the retrieval of AOD from sunphotometer data, particularly for channels ...

Hao Zhang; Bing Zhang; Dongmei Chen; Junsheng Li; Guangning Zhao

2013-05-01T23:59:59.000Z

269

A Comparison of Mixing Depths Observed by Ground-Based Wind Profilers and an Airborne Lidar  

Science Conference Proceedings (OSTI)

The authors compare the mixing depths in the daytime convective boundary layers that were observed remotely by wind profilers and an airborne lidar during the 1995 Southern Oxidants Study. The comparison is used to determine whether the mixing ...

A. B. White; C. J. Senff; R. M. Banta

1999-05-01T23:59:59.000Z

270

Inference of Cloud Optical Depth from Aircraft-Based Solar Radiometric Measurements  

Science Conference Proceedings (OSTI)

A method is introduced for inferring cloud optical depth ? from solar radiometric measurements made on an aircraft at altitude z. It is assessed using simulated radiometric measurements produced by a 3D Monte Carlo algorithm acting on fields of ...

H. W. Barker; A. Marshak; W. Szyrmer; J-P. Blanchet; A. Trishchenko; Z. Li

2002-07-01T23:59:59.000Z

271

A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios  

Science Conference Proceedings (OSTI)

Knowledge of cirrus cloud optical depths is necessary to understand the earth’s current climate and to model the cloud radiation impact on future climate. Cirrus clouds, depending on the ratio of their shortwave “visible” to longwave “infrared” ...

Daniel H. DeSlover; William L. Smith; Paivi K. Piironen; Edwin W. Eloranta

1999-02-01T23:59:59.000Z

272

Inferring Optical Depth of Broken Clouds above Green Vegetation Using Surface Solar Radiometric Measurements  

Science Conference Proceedings (OSTI)

A method for inferring cloud optical depth ? is introduced and assessed using simulated surface radiometric measurements produced by a Monte Carlo algorithm acting on fields of broken, single-layer, boundary layer clouds derived from Landsat ...

Howard W. Barker; Alexander Marshak

2001-10-01T23:59:59.000Z

273

Interannual Variations of Aerosol Optical Depth over Coastal India: Relation to Synoptic Meteorology  

Science Conference Proceedings (OSTI)

Interannual variations in spectral aerosol optical depths (AOD) were examined using the data obtained from a chain of ground-based multiwavelength solar radiometers from various locations of the Indian peninsula during the dry winter season (...

Auromeet Saha; K. Krishna Moorthy; K. Niranjan

2005-07-01T23:59:59.000Z

274

Estimating Cloud Field Albedo Using One-Dimensional Series Of Optical Depth  

Science Conference Proceedings (OSTI)

This study examines the ability to estimate regional cloud albedo using 1D series of cloud optical depth ? similar to those inferred from ground-based microwave radiometers. The investigation has two facets: use of appropriate radiative transfer ...

Howard W. Barker

1996-10-01T23:59:59.000Z

275

Intermediate-Depth Circulation of the Indian and South Pacific Oceans Measured by Autonomous Floats  

Science Conference Proceedings (OSTI)

As part of the World Ocean Circulation Experiment, 306 autonomous floats were deployed in the tropical and South Pacific Ocean and 228 were deployed in the Indian Ocean to observe the basinwide circulation near 900-m depth. Mean velocities, ...

Russ E. Davis

2005-05-01T23:59:59.000Z

276

Analysis of a Method to Estimate Chlorophyll-a Concentration from Irradiance Measurements at Varying Depths  

Science Conference Proceedings (OSTI)

A model to estimate chlorophyll-a concentration and yellow substance absorption at 440 nm from irradiance measurements made at varying depths is examined. The derivation of the model, requiring irradiance measurements at three wavebands, is ...

Jasmine S. Nahorniak; Mark R. Abbott; Ricardo M. Letelier; W. Scott Pegau

2001-12-01T23:59:59.000Z

277

Impact of Precipitation on Aerosol Spectral Optical Depth and Retrieved Size Distributions: A Case Study  

Science Conference Proceedings (OSTI)

A case study is presented on the impact of two isolated, strong thundershowers during a prevailing dry, sunny season on the spectral optical depths and inferred columnar size characteristics of atmospheric aerosols at a tropical station. Results ...

Auromeet Saha; K. Krishna Moorthy

2004-06-01T23:59:59.000Z

278

Depth-Dependent Studies of Tidally Induced Residual Currents on the Sides of Georges Bank  

Science Conference Proceedings (OSTI)

Using a depth-dependent tidal model, the tidally induced residual currents on the northern and southern sections of Georges Bank are computed and the effects of various physical parameters on the current are examined. Because of significant on-...

Kim-Tai Tee

1985-12-01T23:59:59.000Z

279

Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport  

Science Conference Proceedings (OSTI)

The impact of changes in shortwave radiation penetration depth on the global ocean circulation and heat transport is studied using the GFDL Modular Ocean Model (MOM4) with two independent parameterizations that use ocean color to estimate the ...

Colm Sweeney; Anand Gnanadesikan; Stephen M. Griffies; Matthew J. Harrison; Anthony J. Rosati; Bonita L. Samuels

2005-06-01T23:59:59.000Z

280

An Evaluation of Depth Resolution Requirements for Optical Profiling in Coastal Waters  

Science Conference Proceedings (OSTI)

Wave perturbations induce uncertainties in subsurface quantities determined from the extrapolation of optical measurements taken at different depths. An analysis of these uncertainties was made using data collected in the northern Adriatic Sea ...

Giuseppe Zibordi; Davide D'Alimonte; Jean-François Berthon

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparison of Cirrus Height and Optical Depth Derived from Satellite and Aircraft Measurements  

Science Conference Proceedings (OSTI)

During the International Cirrus Experiment (ICE'89) simultaneous measurements of Cirrus cloud-top height and optical depth by satellite and aircraft have been taken. Data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA ...

M. Kästner; K. T. Kriebel; R. Meerkötter; W. Renger; G. H. Ruppersberg; P. Wendling

1993-10-01T23:59:59.000Z

282

The Intrusion Depth of Density Currents Flowing into Stratified Water Bodies  

Science Conference Proceedings (OSTI)

Theory and laboratory experiments are presented describing the depth at which a density current intrudes into a linearly stratified water column, as a function of the entrainment ratio E, the buoyancy flux in the dense current B, and the ...

Mathew Wells; Parthiban Nadarajah

2009-08-01T23:59:59.000Z

283

Variations in Mixed-Layer Depths Arising from Inhomogeneous Surface Conditions  

Science Conference Proceedings (OSTI)

Current approaches to parameterizations of sub-grid-scale variability in surface sensible heat fluxes in general circulation models normally neglect the associated variability in mixed-layer depths. Observations and a numerical mesoscale model ...

J. C. Doran; S. Zhong

1995-08-01T23:59:59.000Z

284

A Laboratory Model of Thermocline Depth and Exchange Fluxes across Circumpolar Fronts  

Science Conference Proceedings (OSTI)

A laboratory experiment has been constructed to investigate the possibility that the equilibrium depth of a circumpolar front is set by a balance between the rate at which potential energy is created by mechanical and buoyancy forcing and the ...

Claudia Cenedese; John Marshall; J. A. Whitehead

2004-03-01T23:59:59.000Z

285

Comparison and Uncertainty of Aerosol Optical Depth Estimates Derived from Spectral and Broadband Measurements  

Science Conference Proceedings (OSTI)

An experimental comparison of spectral aerosol optical depth ?a,? derived from measurements by two spectral radiometers [a LI-COR, Inc., LI-1800 spectroradiometer and a Centre Suisse d'Electronique et de Microtechnique (CSEM) SPM2000 sun ...

Thomas Carlund; Tomas Landelius; Weine Josefsson

2003-11-01T23:59:59.000Z

286

Broadband Extinction Method to Determine Aerosol Optical Depth from Accumulated Direct Solar Radiation  

Science Conference Proceedings (OSTI)

There are two important problems in the aerosol optical depth (AOD) retrievals from hourly/daily/monthly accumulated pyrheliometer data, that is, how to select a suitable cosine of the solar zenith angle (?0) and how to eliminate or minimize ...

Jinhuan Qiu

2003-11-01T23:59:59.000Z

287

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment...  

Open Energy Info (EERE)

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library...

288

Retrieval of Optical Depth for Heavy Smoke Aerosol Plumes: Uncertainties and Sensitivities to the Optical Properties  

Science Conference Proceedings (OSTI)

This paper is concerned with uncertainties in the Advanced Very High Resolution Radiometer (AVHRR)-based retrieval of optical depth for heavy smoke aerosol plumes generated from forest fires that occurred in Canada due to a lack of knowledge on ...

Jeff Wong; Zhanqing Li

2002-02-01T23:59:59.000Z

289

Bottom Stress in Wind-Driven Depth-Averaged Coastal Flows  

Science Conference Proceedings (OSTI)

The relationship between depth-averaged velocity and bottom stress for purely wind-driven flows in unstratified coastal waters is examined using a one-dimensional (vertically resolving) current model. Results indicate that conventional drag laws ...

Harry L. Jenter; Ole Secher Madsen

1989-07-01T23:59:59.000Z

290

The Potential for Improved Boundary Layer Cloud Optical Depth Retrievals from the Multiple Directions of MISR  

Science Conference Proceedings (OSTI)

The Multiangle Imaging Spectroradiometer (MISR) views the earth with nine cameras, ranging from a 70° zenith angle viewing forward through nadir to 70° viewing aft. MISR does not have an operational cloud optical depth retrieval algorithm, but ...

K. Franklin Evans; Alexander Marshak; Tamás Várnai

2008-10-01T23:59:59.000Z

291

Remote Sensing of Cirrus Cloud Particle Size and Optical Depth Using Polarimetric Sensor Measurements  

Science Conference Proceedings (OSTI)

This paper presents a conceptual approach toward the remote sensing of cirrus cloud particle size and optical depth using the degree of polarization and polarized reflectance associated with the first three Stokes parameters, I, Q, and U, for the ...

S. C. Ou; K. N. Liou; Y. Takano; R. L. Slonaker

2005-12-01T23:59:59.000Z

292

Evaluations of Mesoscale Models' Simulations of Near-Surface Winds, Temperature Gradients, and Mixing Depths  

Science Conference Proceedings (OSTI)

Mesoscale meteorological models are being used to provide inputs of winds, vertical temperature and stability structure, mixing depths, and other parameters to atmospheric transport and dispersion models. An evaluation methodology is suggested ...

Steven R. Hanna; Ruixin Yang

2001-06-01T23:59:59.000Z

293

Instrumentation to Measure the Depth/Time Fluctuations in Acoustic Pulses Propagated through Arctic Internal Waves  

Science Conference Proceedings (OSTI)

Instrumentation for measuring the evolution of volume-scattered acoustic signals in both depth and time is described. Measurements were taken for 12 days during the spring of 1985 with transmitters and receivers suspended beneath arctic pack ice ...

Terry E. Ewart; Stephen A. Reynolds

1990-02-01T23:59:59.000Z

294

A Case Study of the Morning Evolution of the Convective Boundary Layer Depth  

Science Conference Proceedings (OSTI)

Because of the importance of the convective boundary layer depth (CBLD) in determining pollutant concentrations near the surface, a study of the morning evolution of the convective boundary layer was carried out at the Central Nuclear de Almaraz, ...

José A. Garc; Mar L. Cancillo; José L. Cano

2002-10-01T23:59:59.000Z

295

Application of Sun/star photometry to derive the aerosol optical depth  

Science Conference Proceedings (OSTI)

Atmospheric aerosols play a crucial role in the radiative transfer and chemical processes that control the Earth's climate. Aerosol optical depth and other related aerosol characteristics are widely known during daytime through Sun photometers, and so ...

D. Perez-Ramirez; B. Ruiz; J. Aceituno; F. J. Olmo; L. Alados-Arboledas

2008-09-01T23:59:59.000Z

296

Wave- and Wind-Driven Flow in Water of Finite Depth  

Science Conference Proceedings (OSTI)

The authors first derive both Coriolis-induced and viscosity-induced stresses for arbitrary water depth and arbitrary wave direction. Opportunity is taken here to succinctly and rigorously derive the Longuet-Higgins virtual tangential stress due ...

Zhigang Xu; A. J. Bowen

1994-09-01T23:59:59.000Z

297

Spatial Inhomogeneities and the Spectral Behavior of Atmospheric Aerosol Optical Depth over the Atlantic Ocean  

Science Conference Proceedings (OSTI)

In this paper the results of investigations into atmospheric aerosol optical depth (AOD) over the Atlantic Ocean are discussed. The data were collected during five shipboard expeditions that took place between 1989 and 1996. Measurements were ...

Sergey M. Sakerin; Dmitry M. Kabanov

2002-02-01T23:59:59.000Z

298

Optical Depth of Overcast Cloud across Canada: Estimates Based on Surface Pyranometer and Satellite Measurements  

Science Conference Proceedings (OSTI)

Overcast cloud optical depths ? are inferred from hourly, broadband surface pyranometer measurements of global irradiance for 21 Canadian stations. A radiative transfer model that treats the atmosphere as plane-parallel and horizontally ...

H. W. Barker; T. J. Curtis; E. Leontieva; K. Stamnes

1998-11-01T23:59:59.000Z

299

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...  

Annual Energy Outlook 2012 (EIA)

Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

300

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory...  

Gasoline and Diesel Fuel Update (EIA)

and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0...

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. Average Depth of Crude Oil Exploratory and Developmental...  

Annual Energy Outlook 2012 (EIA)

and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

302

U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

303

U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet ...  

U.S. Energy Information Administration (EIA)

U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1940's: 4,232 ...

304

U.S. Average Depth of Crude Oil Developmental Wells Drilled ...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

305

Efficient Depth of Field Rasterization Using a Tile Test Based on Half-Space Culling  

Science Conference Proceedings (OSTI)

For depth of field (DOF) rasterization, it is often desired to have an efficient tile versus triangle test, which can conservatively compute which samples on the lens that need to execute the sample-in-triangle test. We present a novel test for this, ... Keywords: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Visible line/surface algorithms, culling, depth of field, rasterization

Tomas Akenine-Möller; Robert Toth; Jacob Munkberg; Jon Hasselgren

2012-02-01T23:59:59.000Z

306

The logic behind thick, liquid-walled, fusion concepts  

Science Conference Proceedings (OSTI)

It may be possible to surround the region where fusion reactions are taking place with a neutronically thick liquid blanket which has penetrations that allow only a few tenths of a percent of the neutrons to leak out. Even these neutrons can be attenuated by adding an accurately placed liquid or solid near the target to shadow-shield the beam ports from line-of-sight neutrons. The logic of such designs are discussed and their evolution is described with examples applied to both magnetic and inertial fusion (HYLIFE-II). These designs with liquid protection are self healing when exposed to pulsed loading and have a number of advantages-over the usual designs with solid first walls. For example, the liquid-protected solid components will last the life of the plant, and therefore the capacity factor is estimated to be approximately 10% higher than for the non-liquid-walled blankets, because no blanket replacement shutdowns are required. The component replacement, operations, and maintenance costs might be half the usual value because no blanket change-out costs or accompanying facilities are required. These combined savings might lower the cost of electricity by 20%. Nuclear-grade construction should not be needed, largely because the liquid attenuates neutrons and results in less activation of materials. Upon decommissioning, the reactor materials should qualify for disposal by shallow burial even when constructed of ordinary 304 stainless steel. The need for a high-intensity 14-MeV neutron test facility to develop first-wall materials is avoided or greatly reduced, saving billions of development dollars. Flowing molten Li, the molten salt Flibe (Li{sub 2}BeF{sub 4}), and molten Li{sub l7}Pb{sub 83} have been considered. An advantage of molten salt is that it will not burn and has a low tritium solubility and therefore low tritium inventory.

Moir, R.W.

1994-04-15T23:59:59.000Z

307

Non-destructive in-situ method and apparatus for determining radionuclide depth in media  

DOE Patents (OSTI)

A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

Xu, X. George (Clifton Park, NY); Naessens, Edward P. (West Point, NY)

2003-01-01T23:59:59.000Z

308

Depth profiling the optical absorption and thermal reflection coefficient via an analysis based on the method of images (abstract)  

Science Conference Proceedings (OSTI)

The problem of depth profiling optical absorption in a thermally depth variable solid is a problem of direct interest for the analysis of complex structured materials. In this work

J. F. Power

2003-01-01T23:59:59.000Z

309

Importance of Using Observations of Mixing Depths in order to Avoid Large Prediction Errors by a Transport and Dispersion Model  

Science Conference Proceedings (OSTI)

The mixing depth of the boundary layer is an input to most atmospheric transport and dispersion (ATD) models, which obtain mixing depths in one of four ways: 1) observations by radiosondes, sodars, or other devices; 2) simulations by regional or ...

J. M. White; J. F. Bowers; S. R. Hanna; J. K. Lundquist

2009-01-01T23:59:59.000Z

310

Growth of Thick, On-Axis SiC Epitaxial Layers by High Temperature ...  

Science Conference Proceedings (OSTI)

... Layers by High Temperature Halide CVD for High Voltage Power Devices ... rate, high temperature process ideally suited for thick epitaxial requirements.

311

Fullerene Film as a Coating Material for Silicon Thick Film Anodes ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fullerene Film as a Coating Material for Silicon Thick Film Anodes for Lithium Ion Batteries. Author(s), Arenst Andreas Arie. On-Site Speaker

312

Experimental analysis of disc thickness variation development in motor vehicle brakes.  

E-Print Network (OSTI)

??Over the past decade vehicle judder caused by Disc Thickness Variation (DTV) has become of major concern to automobile manufacturers worldwide. Judder is usually perceived… (more)

Rodriguez, C

2006-01-01T23:59:59.000Z

313

ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm  

DOE Data Explorer (OSTI)

10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

Rob Newsom; John Goldsmith

314

Depth Profiles of Radionuclides Induced in Shielding Concrete of the 12 GeV Proton Accelerator Facility at KEK  

E-Print Network (OSTI)

Depth Profiles of Radionuclides Induced in Shielding Concrete of the 12 GeV Proton Accelerator Facility at KEK

Miura, T; Ishihama, S; Ohotsuka, N; Kunifuda, T

2000-01-01T23:59:59.000Z

315

Daily snow depth measurements from 195 stations in the United States  

SciTech Connect

This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

1997-02-01T23:59:59.000Z

316

The depth of the oil/brine interface and crude oil leaks in SPR caverns  

Science Conference Proceedings (OSTI)

Monitoring wellhead pressure evolution is the best method of detecting crude oil leaks in SPR caverns while oil/brine interface depth measurements provide additional insight. However, to fully utilize the information provided by these interface depth measurements, a thorough understanding of how the interface movement corresponds to cavern phenomena, such as salt creep, crude oil leakage, and temperature equilibration, as well as to wellhead pressure, is required. The time evolution of the oil/brine interface depth is a function of several opposing factors. Cavern closure due to salt creep and crude oil leakage, if present, move the interface upward. Brine removal and temperature equilibration of the oil/brine system move the interface downward. Therefore, the relative magnitudes of these factors determine the net direction of interface movement. Using a mass balance on the cavern fluids, coupled with a simplified salt creep model for closure in SPR caverns, the movement of the oil/brine interface has been predicted for varying cavern configurations, including both right-cylindrical and carrot-shaped caverns. Three different cavern depths and operating pressures have been investigated. In addition, the caverns were investigated at four different points in time, allowing for varying extents of temperature equilibration. Time dependent interface depth changes of a few inches to a few feet were found to be characteristic of the range of cases studied. 5 refs, 19 figs., 1 tab.

Heffelfinger, G.S.

1991-06-01T23:59:59.000Z

317

Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector  

SciTech Connect

Purpose: This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. Results: The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.

Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc [Departement de Radio-Oncologie, Centre hospitalier de l'Universite de Montreal (CHUM), 1560 Sherbrooke est, Montreal, Quebec H2L 4M1, Canada and Departement de Physique, Universite de Montreal, Pavillon Roger-Gaudry (D-428), 2900 Boul. Edouard-Montpetit, Montreal, Quebec H3T 1J4 (Canada); Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec G1K 7P4, Quebec, Canada and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre hospitalier universitaire de Quebec (CHUQ), Quebec, Quebec G1R 2J6 (Canada); Ionizing Radiation Standards, Institute for National Measurement Standards, National Research Council (NRC), Ottawa, Ontario K1A 0R6 (Canada); Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec G1K 7P4, Quebec, Canada and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre hospitalier universitaire de Quebec (CHUQ), Quebec, Quebec G1R 2J6 (Canada)

2011-10-15T23:59:59.000Z

318

On-Sun Comparison of GaInP2/GaAs Tandem Cells with Top Cell Thickness Varied  

DOE Green Energy (OSTI)

This study compares the on-sun performance of a set of GaInP2/GaAs tandem cells with different GaInP2 top-cell thicknesses. Because high-efficiency III-V cells are best suited to concentrating photovoltaic (CPV) applications, the cells were mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with measurements of the direct solar spectrum. Our two major conclusions are: (1) GaInP2/GaAs tandem cells designed for an ''air mass 1.5 global'' (AM 1.5G) or a ''low aerosol optical depth'' (Low AOD) spectrum perform the best, and (2) cells can be characterized indoors and modeled using outdoor spectra to predict the correct result. These results are equally valid for GaInP2/GaAs/Ge triple-junction cells.

McMahon, W. E.; Emery, K. E.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

2005-02-01T23:59:59.000Z

319

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

320

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

In-Depth: Cleantech at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Depth: Cleantech at the National Labs In-Depth: Cleantech at the National Labs In-Depth: Cleantech at the National Labs January 7, 2014 - 5:30pm Addthis These solar power collection dishes at Sandia National Labs' National Solar Thermal Test Facility are capable of some of the highest solar to electricity conversion. In January 2008, this technology set a new solar-to-grid system conversion efficiency record of 31.25 percent net efficiency rate; the technology is still available to benefit the U.S. by delivering power at all hours of the day by implementing thermal energy storage. CSP with storage provides important benefits to integrate more renewable energy to our electric power supply by mitigating resource variability and satisfying peak demand after sunset. | Photo courtesy of Sandia National Laboratories.

322

Depth Profile of Uncompensated Spins in an Exchange-Bias System  

NLE Websites -- All DOE Office Websites (Extended Search)

Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased sample. These results provide atomic-level insights into the mechanism of exchange bias, specifically the involvement of mutual interactions between two kinds of uncompensated spins in the antiferromagnet and spins in the ferromagnet.

323

Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP,  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP, Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP, MISR, and MODIS Marchand, Roger Pacific Northwest National Laboratory Ackerman, Thomas Pacific Northwest National Laboratory Category: Cloud Properties Joint histograms of Cloud Top Height (CTH) and Optical Depth (OD) derived by the International Satellite Cloud Climatology Project (ISCCP) are being widely used by the climate modeling community in evaluating global climate models. Similar joint histograms of CTH-OD are now being produced by the NASA Multi-angle Imaging Spectro-Radiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. There are notable differences in the histograms being produced by these three projects. In this poster we analyze some of the differences and discuss how the

324

Depth Profile of Uncompensated Spins in an Exchange-Bias System  

NLE Websites -- All DOE Office Websites (Extended Search)

Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased sample. These results provide atomic-level insights into the mechanism of exchange bias, specifically the involvement of mutual interactions between two kinds of uncompensated spins in the antiferromagnet and spins in the ferromagnet.

325

Thickness measurement and crease detection of wheat grains using stereo vision  

Science Conference Proceedings (OSTI)

Wheat grain quality assessment is important in meeting market requirements. The thickness of grains can be used for the measurement of the mass proportion of grains that pass through a sieve. This measure is known as ''screenings''. The determination ... Keywords: Grain crease detection, Grain thickness measurement, Stereo vision

Changming Sun; Mark Berman; David Coward; Brian Osborne

2007-09-01T23:59:59.000Z

326

Li-doped (Ba,Sr)TiO3 thick film interdigital capacitors for microwave applications  

Science Conference Proceedings (OSTI)

Microwave properties of Li-doped (Ba,Sr)TiO"3 thick film interdigital capacitors have been investigated. According to the reported papers, BaSrTiO"3 materials, paraelectric state at the room temperature, have high dielectric permittivity (>500 @ 1MHz) ... Keywords: BST, Microwave properties, Screen printing, Thick film, Tunability

Se-Ho Kim; Jung-Hyuk Koh

2009-01-01T23:59:59.000Z

327

2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for  

E-Print Network (OSTI)

1 2009 ASME WIND ENERGY SYMPOSIUM Static and Fatigue Testing of Thick Adhesive Joints for Wind as wind blade size has increased. Typical blade joints use paste adhesives several millimeters thick aircraft, which are also of relevance to wind blades in many instances. The strengths of lap-shear and many

328

Hadron energy resolution as a function of iron plate thickness at ICAL  

E-Print Network (OSTI)

We report on a detailed study of the hadron energy resolution as a function of the thickness of the absorber plates for the proposed Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO). We compare the hadron resolutions obtained with absorber thicknesses in the range 1.5 -- 8 cm for neutrino interactions in the energy range 2 -- 15 GeV, which is relevant to hadron production in atmospheric neutrino interactions. We find that at lower energies, the thickness dependence of energy resolution is steeper than at higher energies, however there is a constant contribution that dominates at the lower thicknesses discussed in this paper. As a result, the gain in hadron energy resolution with decreasing plate thickness is marginal. We present the results in the form of fits to a function with energy-dependent exponent.

Mohan, Lakshmi S; Devi, Moon Moon; Kaur, Daljeet; Choubey, Sandhya; Dighe, Amol; Indumathi, D; Murthy, M V N; Naimuddin, Md

2014-01-01T23:59:59.000Z

329

Film Thickness Changes in EHD Sliding Contacts Lubricated by a Fatty Alcohol  

E-Print Network (OSTI)

This paper describes the appearance of abnormal film thickness features formed in elastohydrodynamic contacts lubricated by a fatty alcohol. Experiments were conducted by varying the slide to roll ratio between a steel ball and a glass disk in a ball-on-disk type device. Lauric alcohol was used as lubricant and film thickness was measured in the contact area by optical interferometry. Experimental results showed that the film thickness distributions under pure rolling conditions remained classical whereas the film shape changed when the slide to roll ratio was increased. The thickness in the central contact area increased and in the same time inlet and exit film thicknesses were modified. In addition, the film shapes observed when the ball surface was moving faster than the disk one and those obtained in the opposite case were different, i.e. when opposite signs but equal absolute values of the slide to roll ratio were applied.

Yagi, Kazuyuki

2006-01-01T23:59:59.000Z

330

A multi-detector, digitizer based neutron depth profiling device for characterizing thin film materials  

Science Conference Proceedings (OSTI)

Neutron depth profiling (NDP) is a mature, nondestructive technique used to characterize the concentration of certain light isotopes in a material as a function of depth by measuring the residual energy of charged particles in neutron induced reactions. Historically, NDP has been performed using a single detector, resulting in low intrinsic detection efficiency, and limiting the technique largely to high flux research reactors. In this work, we describe a new NDP instrument design with higher detection efficiency by way of spectrum summing across multiple detectors. Such a design is capable of acquiring a statistically significant charged particle spectrum at facilities limited in neutron flux and operation time.

Mulligan, P. L.; Cao, L. R.; Turkoglu, D. [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

2012-07-15T23:59:59.000Z

331

Method and apparatus for recovering geopressured methane gas from ocean depths  

SciTech Connect

A suggested method for recovering the estimated 50,000 trillion CF of methane that is dissolved in areas of the Gulf of Mexico at depths of 15,000 ft involves liberating the methane molecules by means of an electrolytic process. Electrodes lowered to the desired depth and insulated from the overlying saltwater establish an electrical circuit with the methane-laden water acting as the electrolyte. The a-c current density causes dissociation of the water molecules, freeing the methane gas, which rises to the ocean surface. A tent-like structure lying on the surface traps the gas for transfer to a storage facility.

Carpenter, N.

1982-08-24T23:59:59.000Z

332

An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.  

Science Conference Proceedings (OSTI)

The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in inconsistent proportions of metal and glassy phase particles present during the subsequent firing process. The consequences were subtle, intermittent changes to the thick film microstructure that gave rise to the reaction layer and, thus, the low pull strength phenomenon. A mitigation strategy would be the use of physical vapor deposition (PVD) techniques to create thin film bond pads; this is multi-chip module, deposited (MCM-D) technology.

Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

2008-09-01T23:59:59.000Z

333

Development of a dual-porosity model for vapor-dominated fractured geothermal reservoirs using a semi-analytical fracture/matrix interaction term  

DOE Green Energy (OSTI)

A new type of dual-porosity model is being developed to simulate two-phase flow processes in fractured geothermal reservoirs. At this time it is assumed that the liquid phase in the matrix blocks remains immobile. By utilizing the effective compressibility of a two-phase water/steam mixture in a porous rock, flow within the matrix blocks can be modeled by a single diffusion equation. This equation in turn is replaced by a non-linear ordinary differential equation that utilizes the mean pressure and mean saturation in the matrix blocks to calculate the rate of fluid flow between the matrix blocks and fractures. This equation has been incorporated into the numerical simulator TOUGH to serve as a source/sink term for computational gridblocks that represent the fracture system. The new method has been compared with solutions obtained using fully-discretized matrix blocks, on a problem involving a three-dimensional vapor-dominated reservoir containing an injection and a production well, and has been found to be quite accurate.

Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

1993-02-01T23:59:59.000Z

335

Probing the Depths of CSP-M: A new fdr-compliant Validation Tool  

E-Print Network (OSTI)

Probing the Depths of CSP-M: A new fdr-compliant Validation Tool Michael Leuschel and Marc Fontaine,fontaine}@cs.uni-duesseldorf.de Abstract. We present a new animation and model checking tool for CSP. The tool covers the CSP-M language in the source code, has an LTL model checker and can be used for combined CSP B specifications. During

Southampton, University of

336

{sup 152}Eu depths profiles granite and concrete cores exposed to the Hiroshima atomic bomb  

SciTech Connect

Two granite and two concrete core samples were obtained within 500 m from the hypocenter of the Hiroshima atomic bomb, and the depth profile of {sup 152}Eu was measured to evaluate the incident neutron spectrum. The granite cores were obtained from a pillar of the Motoyasu Bridge located 101 m from the hypocenter and from a granite rock in the Shirakami Shrine (379 m); the concrete cores were obtained from a gate in the Gokoku Shrine (398 m) and from top of the Hiroshima bank (250 m). The profiles of the specific activities of the cores were measured to a depth of 40 cm from the surface using low background germanium (Ge) spectrometers. According to the measured depth profiles, relaxation lengths of incident neutrons were derived as 13.6 cm for Motoyasu Bridge pillar (granite), 12.2 cm for Shirakami Shrine core (granite), and 9.6 cm for concrete cores of Gokoku Shrine and Hiroshima Bank. In addition, a comparison of the granite cores in Hiroshima showed good agreement with Nagasaki data. Present results indicates that the depth profile of {sup 152}Eu reflects incident neutrons not so high but in the epithermal region. 19 refs., 7 figs., 8 tabs.

Shizuma, Kiyoshi; Iwatani, Kazuo [Hiroshima Univ. (Japan); Oka, Takamitsu [Kure Univ. (Japan)] [and others

1997-06-01T23:59:59.000Z

337

Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs  

Science Conference Proceedings (OSTI)

Time-of-flight range sensors and passive stereo have complimentary characteristics in nature. To fuse them to get high accuracy depth maps varying over time, we extend traditional spatial MRFs to dynamic MRFs with temporal coherence. This new model allows ... Keywords: Stereo, MRFs, time-of-flight sensor, data fusion, global optimization.

Jiejie Zhu; Liang Wang; Jizhou Gao; Ruigang Yang

2010-05-01T23:59:59.000Z

338

Using hydrodynamic modeling for estimating flooding and water depths in grand bay, alabama  

Science Conference Proceedings (OSTI)

This paper presents a methodology for using hydrodynamic modeling to estimate inundation areas and water depths during a hurricane event. The Environmental Fluid Dynamic Code (EFDC) is used in this research. EFDC is one of the most commonly applied models ... Keywords: EFDC, flooding, grand bay, grid generation, hydrodynamics, inundation, modeling

Vladimir J. Alarcon; William H. McAnally

2012-06-01T23:59:59.000Z

339

The relationship between tibetan snow depth, ENSO, river discharge and the monsoons of Bangladesh  

E-Print Network (OSTI)

The relationship between tibetan snow depth, ENSO, river discharge and the monsoons of Bangladesh, we examine the interannual variability of the monsoon rains of Bangladesh, an area greatly affected of Bengal storm surge. For the twentieth century, we found Bangladesh monsoon rainfall (BMR

340

A Generalized Depth-Integrated Model of the Oceanic Mixed Layer  

Science Conference Proceedings (OSTI)

A generalized depth-integrated model of the oceanic mixed layer is developed by considering the heat and energy budgets of the upper ocean. Unlike the Kraus–Turner-type bulk models, the assumptions of an a priori well mixed layer and a positive ...

P. Ravindran; Daniel G. Wright; Trevor Platt; Shubha Sathyendranath

1999-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Remote sensing of breaking wave phase speeds with application to non-linear depth inversions  

E-Print Network (OSTI)

Remote sensing of breaking wave phase speeds with application to non-linear depth inversions high-resolution remote sensing video and surface elevation records from fixed, in-situ wave gages. Wave phase speeds are extracted from the remote sensing data using a feature tracking technique, and local

Haller, Merrick

342

Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage  

Science Conference Proceedings (OSTI)

This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

2012-03-01T23:59:59.000Z

343

Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller  

Science Conference Proceedings (OSTI)

Sliding mode control, due to its robustness against modelling imprecisions and external disturbances, has been successfully employed to the dynamic positioning of remotely operated underwater vehicles. In order to improve the performance of the complete ... Keywords: Adaptive algorithms, Depth control, Fuzzy logic, Nonlinear control, Remotely operated vehicles, Sliding modes

Wallace M. Bessa; Max S. Dutra; Edwin Kreuzer

2008-08-01T23:59:59.000Z

344

Nonlinear Properties of Random Gravity Waves in Water of Finite Depth  

Science Conference Proceedings (OSTI)

The weakly nonlinear theory for a stationary and homogeneous field of random gravity waves in water of finite depth is developed to the third order. This describes the second-order nonlinearities as a bound wavefield that can be expressed in ...

A. K. Laing

1986-12-01T23:59:59.000Z

345

Low-Frequency Pycnocline Depth Variability at Ocean Weather Station P in the Northeast Pacific  

Science Conference Proceedings (OSTI)

Low-frequency variability of the depth of the main pycnocline at Ocean Weather Station P and over the northeast Pacific is examined in terms of the one-dimensional response to local Ekman pumping according to the Hasselmann stochastic climate ...

Patrick F. Cummins; Gary S. E. Lagerloef

2002-11-01T23:59:59.000Z

346

Stable Boundary Layer Depth from High-Resolution Measurements of the Mean Wind Profile  

Science Conference Proceedings (OSTI)

The depth h of the stable boundary layer (SBL) has long been an elusive measurement. In this diagnostic study the use of high-quality, high-resolution (?z = 10 m) vertical profile data of the mean wind U(z) and streamwise variance ?u2(z) is ...

Yelena L. Pichugina; Robert M. Banta

2010-01-01T23:59:59.000Z

347

A satisfiability algorithm for constant depth boolean circuits with unbounded fan-in gates  

E-Print Network (OSTI)

Boolean Circuits with Unbounded Fan-In Gates A dissertationAC 0 by allowing unbounded fan-in M OD m 1 , . . . , M OD mSince each gate in ? has fan-in at most k and ? has depth D

Matthews, William Grant

2011-01-01T23:59:59.000Z

348

IEA BESTEST Multi-Zone Non-Airflow In-Depth Diagnostic Cases: Preprint  

Science Conference Proceedings (OSTI)

This paper documents a set of in-depth diagnostic test cases for multi-zone heat transfer models that do not include the heat and mass transfer effects of airflow between zones. The multi-zone non-airflow test cases represent an extension to IEA BESTEST (Judkoff and Neymark 1995a).

Neymark, J.; Judkoff, R.; Alexander, D.; Felsmann, C.; Strachan, P.; Wijsman, A.

2011-11-01T23:59:59.000Z

349

Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging  

E-Print Network (OSTI)

a single-mode telecommunications fiber to the rest of the optical ranging system. This type of detector of of the reflected laser sig- nal, which is focused into a multimode optical fiber. An in-line bandpass interferenceSubcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system

Buller, Gerald S.

350

Report on the Depth Requirements for a Massive Detector at Homestake  

E-Print Network (OSTI)

This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass in the mega-ton scale will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. In addition to the physics justification there are practical issues regarding the existing infrastructure at Homestake, and the stress characteristics of the Homestake rock formations. The depth requirements associated with the various physics processes are reported for water Cherenkov and liquid argon detector technologies. While some of these physics processes can be adequately studied at shallower depths, none of them require a depth greater than 4300 mwe which corresponds to the 4850 ft level at Homestake. It is very important to note that the scale of the planned detector is such that even for accelerator neutrino detection (which allows one to use the accelerator duty factor to eliminate cosmics) a minimum depth is needed to reduce risk of contamination from cosmic rays. After consideration of the science and the practical issues regarding the Homestake site, we strongly recommend that the geotechnical studies be commenced at the 4850ft level in a timely manner.

Adam Bernstein; Mary Bishai; Edward Blucher; David B. Cline; Milind V. Diwan; Bonnie Fleming; Maury Goodman; Zbigniew J. Hladysz; Richard Kadel; Edward Kearns; Joshua Klein; Kenneth Lande; Francesco Lanni; David Lissauer; Steve Marks; Robert McKeown; William Morse; Regina Rameika; William M. Roggenthen; Kate Scholberg; Michael Smy; Henry Sobel; James Stewart; Gregory Sullivan; Robert Svoboda; Mark Vagins; Brett Viren; Christopher Walter; Robert Zwaska

2009-07-23T23:59:59.000Z

351

Dust Aerosol Optical Depth Retrieval over a Desert Surface Using the SEVIRI Window Channels  

Science Conference Proceedings (OSTI)

The authors present a new algorithm to retrieve aerosol optical depth (AOD) over a desert using the window channels centered at 8.7, 10.8, and 12.0 ?m of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on board the Meteosat ...

Bart De Paepe; Steven Dewitte

2009-04-01T23:59:59.000Z

352

Refractive index gradient measurement across the thickness of a dielectric film by the prism coupling method  

Science Conference Proceedings (OSTI)

A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness H{sub f} with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [{Delta} n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)

Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N [Institute of Laser and Information Technologies, Russian Academy of Sciences, Troitsk, Moscow Region (Russian Federation)

2012-08-31T23:59:59.000Z

353

Optimizing diode thickness for thin-film solid state thermal neutron detectors  

Science Conference Proceedings (OSTI)

In this work, we investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. We evaluate several diode materials, Si, CdTe, GaAs, C (diamond), and ZnO, and two neutron converter materials, {sup 10}B and {sup 6}LiF. Investigating a coplanar diode/converter geometry, we determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

Murphy, John W.; Mejia, Israel; Quevedo-Lopez, Manuel A.; Gnade, Bruce [Department of Materials and Science, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, George R.; Allee, David [Flexible Display Center at Arizona State University, Tempe, Arizona 85284 (United States)

2012-10-01T23:59:59.000Z

354

In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material  

SciTech Connect

Purpose: For external beam in vivo measurements, the dosimeter is normally placed on the patient's skin, and the dose to a point of interest inside the patient is derived from surface measurements. In order to obtain accurate and reliable measurements, which correlate with the dose values predicted by a treatment planning system, a dosimeter needs to be at a point of electronic equilibrium. This equilibrium is accomplished by adding material (buildup) above the detector. This paper examines the use of buildup caps in a clinical setting for two common detector types: OSLDs and diodes. Clinically built buildup-caps and commercially available hemispherical caps are investigated. The effects of buildup cap thickness and fabrication material on field-size correction factors, C{sub FS}, are reported, and differences between the effects of thickness and fabrication material are explained based on physical parameters. Methods: Measurements are made on solid water phantoms for 6 and 15 MV x-ray beams. Two types of dosimeters are used: OSLDs, InLight/OSL Nanodot dosimeters (Landauer, Inc., Glenwood, IL) and a P-type surface diode (Standard Imaging, Madison, WI). Buildup caps for these detectors were fabricated out of M3, a water-equivalent material, and sheet-metal stock of Al, Cu, and Pb. Also, commercially available hemispherical buildup caps made of plastic water and brass (Landauer, Inc., Glenwood, IL) were used with Nanodots. OSLDs were read with an InLight microStar reader (Landauer, Inc., Glenwood, IL). Dose calculations were carried out with the XiO treatment planning system (CMS/Elekta, Stockholm) with tissue heterogeneity corrections. Results: For OSLDs and diodes, when measurements are made with no buildup cap a change in C{sub FS} of 200% occurs for a field-size change from 3 cm x 3 cm to 30 cm x 30 cm. The change in C{sub FS} is reduced to about 4% when a buildup cap with wall thickness equal to the depth of maximum dose is used. Buildup caps with larger wall thickness do not cause further reduction in C{sub FS}. The buildup cap fabrication material has little or no effect on C{sub FS}. The perturbation to the delivered dose caused by placing a detector with a buildup cap on the surface of a patient is measured to be 4%-7%. A comparison between calculated dose and dose measured with a Nanodot and a diode for 6 and 15 MV x-rays is made. When C{sub FS} factors are carefully determined and applied to measurements made on a phantom, the differences between measured and calculated doses were found to be between {+-}1.3%. Conclusions: OSLDs and diodes with appropriate buildup caps can be used to measure dose on the surface of a patient and predict the delivered dose to depth dmax in a range of {+-}1.3% for 100 cGy. The buildup cap: can be fabricated from any material examined in this work, is best with wall thickness dmax, and causes a perturbation to the delivered dose of 4%-7% when the wall thickness is dmax. OSLDs and diodes with buildup caps can both give accurate measurements of delivered dose.

Jursinic, Paul A.; Yahnke, Clifford J. [West Michigan Cancer Center, 200 North Park St. Kalamazoo, Michigan 49007 (United States); Landauer, Inc., 2 Science Road, Glenwood, Illinois 60425 (United States)

2011-10-15T23:59:59.000Z

355

A Model for the Thickness and Salinity of the Upper Layer in the Arctic Ocean and the Relationship between the Ice Thickness and Some External Parameters  

Science Conference Proceedings (OSTI)

This paper presents a dynamical model for the salinity and thickness of the upper layer in the Arctic. The parameters are the river runoff to the Arctic, the buoyancy supply through the Bering Strait, the export of ice from the Arctic and a ...

Anders Stigebrandt

1981-10-01T23:59:59.000Z

356

Cloud Layer Thicknesses from a Combination of Surface and Upper-Air Observations  

Science Conference Proceedings (OSTI)

Cloud layer thicknesses are derived from base and top altitudes by combining 14 years (1975–1988) of surface and upper-air observations at 63 sites in the Northern Hemisphere. Rawinsonde observations are employed to determine the locations of ...

Kirk D. Poore; Junhong Wang; William B. Rossow

1995-03-01T23:59:59.000Z

357

Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates  

Science Conference Proceedings (OSTI)

A parallel ocean and ice model (POIM) in generalized orthogonal curvilinear coordinates has been developed for global climate studies. The POIM couples the Parallel Ocean Program (POP) with a 12-category thickness and enthalpy distribution (TED) ...

Jinlun Zhang; D. A. Rothrock

2003-05-01T23:59:59.000Z

358

Determination of the Scaled Optical Thickness of Clouds from Reflected Solar Radiation Measurements  

Science Conference Proceedings (OSTI)

A method is presented for determining the scaled optical thickness of clouds from reflected solar radiation measurements. The procedure compares measurements of the reflection function with asymptotic expressions for the reflection function of ...

Michael D. King

1987-07-01T23:59:59.000Z

359

Future Projections of Landfast Ice Thickness and Duration in the Canadian Arctic  

Science Conference Proceedings (OSTI)

Projections of future landfast ice thickness and duration were generated for nine sites in the Canadian Arctic and one site on the Labrador coast with a simple downscaling technique that used a one-dimensional sea ice model driven by ...

J. A. Dumas; G. M. Flato; R. D. Brown

2006-10-01T23:59:59.000Z

360

A Simple Empirical Equation to Calculate Cloud Optical Thickness Using Shortwave Broadband Measurements  

Science Conference Proceedings (OSTI)

In this paper, an empirical equation is presented that can be used to estimate shortwave cloud optical thickness from measurements and analysis of shortwave broadband irradiances. When applied to a time series of broadband observations, this ...

James C. Barnard; Charles N. Long

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Scaling Properties of Aerosol Optical Thickness Retrieved from Ground-Based Measurements  

Science Conference Proceedings (OSTI)

Statistical scale-by-scale analysis, for the first time, has been applied to the aerosol optical thickness (AOT) retrieved from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) network. The MFRSR data were collected in September 2000 from ...

Mikhail D. Alexandrov; Alexander Marshak; Brian Cairns; Andrew A. Lacis; Barbara E. Carlson

2004-05-01T23:59:59.000Z

362

Transmission Nuclear Resonance Fluorescence Measurements of 238U in Thick Targets  

E-Print Network (OSTI)

thickness of a nuclear fuel assembly. The experimental dataproperties similar to a nuclear fuel assembly so that thein ? bjquiter@lbl.gov nuclear fuel could be tested. In this

Quiter, Brian J.

2011-01-01T23:59:59.000Z

363

IFE thick liquid wall chamber dynamics: Governing mechanisms and modeling and experimental capabilities  

E-Print Network (OSTI)

et al. , "HYLIFE-II: a Molten-Salt Inertial Fusion Energyliquid, such as the molten salts flibe (Li BeF ) orflinabe (of the thick liquid metal or molten salt systems would be to

2005-01-01T23:59:59.000Z

364

Surface?modified RuO2?based thick film resistors using Nd:YAG laser  

Science Conference Proceedings (OSTI)

An RuO2?based thick film resistor (TFR) is a cermet?type resistor which consists of RuO2 particles and glass. Paste containing organic vehicles is printed onto an insulating substrate

E. Gofuku; T. Ogama; H. Takasago

1989-01-01T23:59:59.000Z

365

White-light scanning interferometer for absolute nano-scale gap thickness measurement  

E-Print Network (OSTI)

A special configuration of white-light scanning interferometer is described for measuring the absolute air gap thickness between two planar plates brought into close proximity. The measured gap is not located in any ...

Xu, Zhiguang

366

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

The Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness ? for major types of tropospheric aerosols including sulfate, dust, organic carbon ...

Mian Chin; Paul Ginoux; Stefan Kinne; Omar Torres; Brent N. Holben; Bryan N. Duncan; Randall V. Martin; Jennifer A. Logan; Akiko Higurashi; Teruyuki Nakajima

2002-02-01T23:59:59.000Z

367

Boundary Layer Height and Entrainment Zone Thickness Measured by Lidars and Wind-Profiling Radars  

Science Conference Proceedings (OSTI)

The authors examine measurements of boundary layer height zi and entrainment zone thickness observed with two lidars and with a radar wind profiler during the Flatland96 Lidars in Flat Terrain experiment. Lidar backscatter is proportional to ...

Stephen A. Cohn; Wayne M. Angevine

2000-08-01T23:59:59.000Z

368

Three-Dimensional Microstructure Visualization of Porosity and Fe-Rich Inclusions in SiC Particle-Reinforced Al Alloy Matrix Composites by X-Ray Synchrotron Tomography  

SciTech Connect

Microstructural aspects of composites such as reinforcement particle size, shape, and distribution play important roles in deformation behavior. In addition, Fe-rich inclusions and porosity also influence the behavior of these composites, particularly under fatigue loading. Three-dimensional (3-D) visualization of porosity and Fe-rich inclusions in three dimensions is critical to a thorough understanding of fatigue resistance of metal matrix composites (MMCs), because cracks often initiate at these defects. In this article, we have used X-ray synchrotron tomography to visualize and quantify the morphology and size distribution of pores and Fe-rich inclusions in a SiC particle-reinforced 2080 Al alloy composite. The 3-D data sets were also used to predict and understand the influence of defects on the deformation behavior by 3-D finite element modeling.

Silva, Flávio de Andrade; Williams, Jason J.; Müller, Bernd R.; Hentschel, Manfred P.; Portella, Pedro D.; Chawla, Nikhilesh

2011-11-15T23:59:59.000Z

369

Commercializatzon of thick film solar cells. Quarterly progress report, September 21, 1979-December 31, 1979  

DOE Green Energy (OSTI)

Starting materials for the preparation of thick film cadmium sulfide and cadmium telluride solar cells have been comminuted. Initial trial films of cadmium sulfide showed that during the next phase of this work, the printing of films, one of the major problem areas will be to obtain sufficient reflow in the printed films to remove the screen-caused variation in film thickness. The thin areas corresponding to the screen pattern caused pinholes to form in the fired parts.

McDonald, G.D.; Goodman, G.

1979-01-01T23:59:59.000Z

370

Brief Studying of Oil Crust Thickness Measurement by Gamma Ray Compton Scattering Approach  

E-Print Network (OSTI)

The relation between the scattering cross section and the scattering angle under different energy condition of the incident rays is analyzed. From Compton scattering total cross section, a formula of quasi-parallel incident gamma ray Compton scattering response function versus to thickness of oil crust target is derived and analyzed. Numerical fitting result shows that there exists cubic relation between response function of gamma ray and thickness of oil crust. Key words: Gamma ray, Compton scattering, oil crust

Mamatrishat, Mamat; Jie, Ding; Shiheng, Wang

2008-01-01T23:59:59.000Z

371

Assessment of Nondestructive Evaluation Methods and Analytical Procedures for Thick-Section Component Cracking  

Science Conference Proceedings (OSTI)

A significant concern for owners and operators, damage in the form of cracking in thick-section components (valves, casings, headers, and so on) in fossil fuel–fired boilers continues to be observed. With increased cyclic duty and the fast startups associated with combined-cycle plants, such damage will remain a prevalent industry problem. Specifically, the concerns for continued operation of cracked thick-section components arise from the uncertainties associated with the nondestructive ...

2013-08-21T23:59:59.000Z

372

Film thickness measurement techniques applied to micro-scale two-phase flow systems  

SciTech Connect

Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (author)

Tibirica, Cristiano Bigonha; do Nascimento, Francisco Julio; Ribatski, Gherhardt [Department of Mechanical Engineering, Escola de Engenharia de Sao Carlos (EESC), University of Sao Paulo (USP), Sao Carlos (Brazil)

2010-05-15T23:59:59.000Z

373

Assess in-depth contributions of selected scenarios to goals across sectors  

Open Energy Info (EERE)

in-depth contributions of selected scenarios to goals across sectors in-depth contributions of selected scenarios to goals across sectors Jump to: navigation, search Stage 3c LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other

374

Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Effective Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Prepared under Task No. BE12.0201

375

Exact method for determining subsurface radioactivity depth profiles from gamma spectroscopy measurements  

E-Print Network (OSTI)

Subsurface radioactivity may be due to transport of radionuclides from a contaminated surface into the solid volume, as occurs for radioactive fallout deposited on soil, or from fast neutron activation of a solid volume, as occurs in concrete blocks used for radiation shielding. For purposes including fate and transport studies of radionuclides in the environment, decommissioning and decontamination of radiation facilities, and nuclear forensics, an in situ, nondestructive method for ascertaining the subsurface distribution of radioactivity is desired. The method developed here obtains a polynomial expression for the radioactivity depth profile, using a small set of gamma-ray count rates measured by a collimated detector directed towards the surface at a variety of angles with respect to the surface normal. To demonstrate its capabilities, this polynomial method is applied to the simple case where the radioactivity is maximal at the surface and decreases exponentially with depth below the surface, and to the ...

Van Siclen, Clinton DeW

2011-01-01T23:59:59.000Z

376

[Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report  

SciTech Connect

During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

Blackwell, D.D.

1998-04-25T23:59:59.000Z

377

Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter  

SciTech Connect

A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E.; Cantrell, J. A.

2011-04-01T23:59:59.000Z

378

Method for the depth corrected detection of ionizing events from a co-planar grids sensor  

DOE Patents (OSTI)

A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.

De Geronimo, Gianluigi (Syosset, NY); Bolotnikov, Aleksey E. (South Setauket, NY); Carini, Gabriella (Port Jefferson, NY)

2009-05-12T23:59:59.000Z

379

Fluctuating Arctic Sea Ice Thickness Changes Estimated by an In Situ Learned and Empirically Forced Neural Network Model  

Science Conference Proceedings (OSTI)

Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982–2003 ...

G. I. Belchansky; D. C. Douglas; N. G. Platonov

2008-02-01T23:59:59.000Z

380

Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part I: Theory  

Science Conference Proceedings (OSTI)

A method is presented for determining the optical thickness and effective particle radius of stratiform cloud layers from reflected solar radiation measurements. A detailed study is presented which shows that the cloud optical thickness (?c) and ...

Teruyuki Nakajima; Michael D. King

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Report on the Depth Requirements for a Massive Detector at Homestake  

SciTech Connect

This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of hundreds of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent in a mountain. Projections for signal and background capability for a larger and deeper(or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which should provide enhanced capability for background rejection. We have based background rejection on reasonable estimates of track and energy resolution, and in some cases scaled background rates from measurements in water. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the currently planned detectors or new technologies. Therefore the depth requirement also needs to be made on the basis of sound judgment regarding possible future use. In particular, the depth should be sufficient for any possible future use of these cavities or the level which will be developed for these large structures.Along with these physics justifications there are practical issues regarding the existing infrastructure at Homestake and also the stress characteristics of the Homestake rock formations. In this report we will examine the various depth choices at Homestake from the point of view of the particle and nuclear physics signatures of interest. We also have sufficient information about the existing infrastructure and the rock characteristics to narrow the choice of levels for the development of large cavities with long lifetimes. We make general remarks on desirable ground conditions for such large cavities and then make recommendations on how to start examining these levels to make a final choice. In the appendix we have outlined the initial requirements for the detectors. These requirements will undergo refinement during the course of the design. Finally, we strongly recommend that the geotechnical studies be commenced at the 4850 ft level, which we find to be the most suitable, in a timely manner.

Kadel, Richard W.; Bernstein, Adam; Blucher, Edward; Cline, David B.; Diwan, Milind V.; Fleming, Bonnie; Kearns, Edward; Klein, Joshua; Lande, Kenneth; Lanni, Francesco; Lissauer, David; McKeown, Robert; Morse, William; Rameika, Regina; Scholberg, Kate; Smy, Michael; Sobel, Henry; Sullivan, Gregory; Svoboda, Robert; Vagins, Mark; Walter, Christopher; Zwaska, Robert

2008-12-23T23:59:59.000Z

382

Report on the Depth Requirements for a Massive Detector at Homestake  

Science Conference Proceedings (OSTI)

This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of tens of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent. Projections for signal and background capability for a larger and deeper (or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which provides enhanced capability for background rejection. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the currently planned detectors or new technologies. Therefore the depth requirement also needs to be made on the basis of sound judgment regarding possible future use. In particular, the depth should be sufficient for any possible future use of these cavities or the level which will be developed for these large structures. Along with these physics justifications there are practical issues regarding the existing infrastructure at Homestake and also the stress characteristics of the Homestake rock formations. In this report we will examine the various depth choices at Homestake from the point of view of the particle and nuclear physics signatures of interest. We also have sufficient information about the existing infrastructure and the rock characteristics to narrow the choice of levels for the development of large cavities with long lifetimes. We make general remarks on desirable ground conditions for such large cavities and then make recommendations on how to start examining these levels to make a final choice. In the appendix we have outlined the initial requirements for the detectors. These requirements will undergo refinement during the course of the design. Finally, we strongly recommend that the geotechnical studies be commenced at the 4850 ft level, which we find to be the most suitable, in a timely manner.

Bernstein,A.; Blucher, E.; Cline, D. B.; Diwan, M. V.; Fleming, b.; Kadel, R.; Kearns, E.; Klein, J.; Lande, K.; Lanni, F.; Lissauer, D.; McKeown, R.; Morse, W.; Radeika, R.; Scholberg, K.; Smy, M.; Sobel, H.; Sullivan, G.; Svoboda, R.; Vagins, M.; Walter, C.; Zwaska, R.

2008-12-22T23:59:59.000Z

383

Making 3D work: a classification of visual depth cues, 3D display technologies and their applications  

Science Conference Proceedings (OSTI)

3D display technologies improve perception and interaction with 3D scenes, and hence can make applications more effective and efficient. This is achieved by simulating depth cues used by the human visual system for 3D perception. The type of employed ... Keywords: 3D display technologies, applications of 3D display technologies, classification, depth cues, stereo perception

Mostafa Mehrabi, Edward M. Peek, Burkhard C. Wuensche, Christof Lutteroth

2013-01-01T23:59:59.000Z

384

Enhancing realism of mixed reality applications through real-time depth-imaging devices in X3D  

Science Conference Proceedings (OSTI)

Until recently, depth sensing cameras have been used almost exclusively in research due to the high costs of such specialized equipment. With the introduction of the Microsoft Kinect device, realtime depth imaging is now available for the ordinary developer ... Keywords: X3D, augmented reality, mixed reality, rendering

Tobias Franke; Svenja Kahn; Manuel Olbrich; Yvonne Jung

2011-06-01T23:59:59.000Z

385

An Integrated System for the Study of Wind-Wave Source Terms in Finite-Depth Water  

Science Conference Proceedings (OSTI)

A field experiment to study the spectral balance of the source terms for wind-generated waves in finite water depth was carried out in Lake George, Australia. The measurements were made from a shore-connected platform at varying water depths from ...

Ian R. Young; Michael L. Banner; Mark A. Donelan; Cyril McCormick; Alexander V. Babanin; W. Kendall Melville; Fabrice Veron

2005-07-01T23:59:59.000Z

386

The Influence of Unsteady Depths and Currents of Tides on Wind-Wave Propagation in Shelf Seas  

Science Conference Proceedings (OSTI)

The influence of unsteady depths and currents on wind wave propagation on the scale of shelf seas such as the North Sea is investigated. The attention is focused on depth and current variations due to tides, which are essentially stationary at ...

H. L. Tolman

1990-08-01T23:59:59.000Z

387

Method and apparatus for ultrasonic characterization through the thickness direction of a moving web  

DOE Patents (OSTI)

A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.

Jackson, Theodore (Atlanta, GA); Hall, Maclin S. (Marietta, GA)

2001-01-01T23:59:59.000Z

388

Calculated /alpha/-induced thick target neutron yields and spectra, with comparison to measured data  

Science Conference Proceedings (OSTI)

One component of the neutron source associated with the decay of actinide nuclides in many environments is due to the interaction of decay /alpha/ particles in (/alpha/,n) reactions on low Z nuclides. Measurements of (/alpha/,n) thick target neutron yields and associated neutron spectra have been made for only a few combinations of /alpha/ energy and target nuclide or mixtures of actinide and target nuclides. Calculations of thick target neutron yields and spectra with the SOURCES code require /alpha/-energy-dependent cross sections for (/alpha/,n) reactions, as well as branching fractions leading to the energetically possible levels of the product nuclides. A library of these data has been accumulated for target nuclides of Z /le/ 15 using that available from measurements and from recent GNASH code calculations. SOURCES, assuming neutrons to be emitted isotopically in the center-of-mass system, uses libraries of /alpha/ stopping cross sections, (/alpha/,n) reaction cross reactions, product nuclide level branching fractions, and actinide decay /alpha/ spectra to calculate thick target (/alpha/,n) yields and neutron spectra for homogeneous combinations of nuclides. The code also calculates the thick target yield and angle intergrated neutron spectrum produced by /alpha/-particle beams on targets of homogeneous mixtures of nuclides. Illustrative calculated results are given and comparisons are made with measured thick target yields and spectra. 50 refs., 1 fig., 2 tabs.

Wilson, W.B.; Bozoian, M.; Perry, R.T.

1988-01-01T23:59:59.000Z

389

Metal Oxidation Kinetics and the Transition from Thin to Thick Films  

SciTech Connect

We report an investigation of growth kinetics and transition from thin to thick films during metal oxidation. In the thin film limit (< 20 nm), Cabrera and Mott’s theory is usually adopted by explicitly considering ionic drift through the oxide in response to electric fields, where the growth kinetics follow an inverse logarithmic law . It is generally accepted that Wagner’s theory, involving self-diffusion, is valid only in the limit of thick film regime (>1?m) and leads to parabolic growth kinetics , where l is the oxide film thickness. Theory presented here unifies the two models and provides a complete description of oxidation including the transition from thin to thick film. The range of validity of Cabrera and Mott’s theory and Wagner’s theory can be well defined in terms of the Debye-Hückel screening length. The transition from drift-dominated ionic transport for thin film to diffusion-dominated transport for thick film is found to strictly follow the direct logarithmic law that is frequently observed in many experiments.

Xu, Zhijie; Rosso, Kevin M.; Bruemmer, Stephen M.

2012-09-01T23:59:59.000Z

390

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old  

Open Energy Info (EERE)

Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Variable Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Details Activities (3) Areas (3) Regions (0) Abstract: Utilizing commercial mine blasts and local earthquakes, as well as a dense array of portable seismographs, we have achieved long-range crustal refraction profiles across northern Nevada and the Sierra Nevada Mountains. In our most recent refraction experiment, the Idaho-Nevada-California (INC) transect, we used a dense spacing of 411 portable seismographs and 4.5-Hz geophones. The instruments were able to record events ranging from large mine blasts to small local earthquakes.

391

Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho  

SciTech Connect

Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated during the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities.

Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.

1996-06-01T23:59:59.000Z

392

Permeability-thickness determination from transient production response at the southeast geysers  

DOE Green Energy (OSTI)

The Fetkovich production decline curve analysis method was extended for application to vapor-dominated geothermal reservoirs for the purpose of estimating the permeability-thickness product (kh) from the transient production response. The analytic dimensionless terms for pressure, production rate, decline rate, and decline time were derived for saturated steam using the real gas potential and customary geothermal production units of pounds-mass per hour. The derived terms were numerically validating using ``Geysers-line`` reservoir properties at initial water saturation of 0 and at permeabilities of 1, 10, and 100 mD. The production data for 48 wells in the Southeast Geysers were analyzed and the permeability-thickness products determined from the transient production response using the Fetkovich production decline type curve. The kh results were in very good agreement with the published range at the Southeast Geysers and show regions of high permeability-thickness.

Faulder, D.D.

1996-08-01T23:59:59.000Z

393

First-principles study of the critical thickness in asymmetric ferroelectric tunnel junctions  

SciTech Connect

The absent critical thickness of fully relaxed asymmetric ferroelectric tunnel junctions is investigated by first-principles calculations. The results show that PbTiO{sub 3} thin film between Pt and SrRuO{sub 3} electrodes can still retain a significant and stable polarization down to thicknesses as small as 0.8 nm, quite unlike the case of symmetric ferroelectric tunnel junctions. We trace this surprising result to the generation of a large electric field by the charge transfer between the electrodes caused by their different electronic environments, which acts against the depolarization field and enhances the ferroelectricity, leading to the reduction, or even complete elimination, for the critical thickness.

Cai Mengqiu [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); School of Physics and Microelectronics Science, Hunan University, Changsha 410082, Hunan (China); State Key Laboratory of Optoelectronic Materials and Technologies, Zhongshan University, Guangzhou 510275, Guangdong (China); Du Yong; Huang Boyun [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

2011-03-07T23:59:59.000Z

394

Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings  

SciTech Connect

This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

Woods, J.; Winkler, J.; Christensen, D.

2013-01-01T23:59:59.000Z

395

2nd Quarterly technical progress report for geothermal system temperature-depth database  

DOE Green Energy (OSTI)

At the Southern Methodist University Geothermal Laboratory in Dallas, Texas, the Earth`s surface and internal temperature are studied. With financial support from the U.S. Department of Energy, a data base containing geothermal temperature well information for the United States is being developed. During this calendar quarter, activity with this project has continued involving several different tasks: planning and development of the geothermal system thermal-well data base and temperature-depth data, development of the specifications for the data base, and completion of an initial inventory of the geothermal areas for which data are available.

Blackwell, D.D.

1997-07-30T23:59:59.000Z

396

The design of a modern steamflood in a thick, dipping, heavy oil reservoir  

SciTech Connect

In 1988, Mobil completed the design phase of a new steamflood project. This project is in a thick, moderately dipping, unconsolidated heavy oil reservoir. The design takes advantage of the gravity drainage recovery mechanism in the thick reservoir, allowing vertical steam zone expansion with minimal steam breakthrough. The steamflood was designed to be economic in the late 1980's period of low oil prices. The design was completed with an interdisciplinary teamwork approach using concurrent studies for expediency. This paper was first presented at the 1989 California Regional Meeting in Bakersfield. The presentation for this meeting will conclude with an update of project performance since 1989.

Atkinson, D.S.; Clayton, C.A.; Baldwin, J.O.; Smith, R.C. (Mobile E and P US, Inc., Denver, CO (United States))

1991-02-01T23:59:59.000Z

397

Probability and dynamics in the toss of a non-bouncing thick coin  

E-Print Network (OSTI)

When a thick cylindrical coin is tossed in the air and lands without bouncing on an inelastic substrate, it ends up on its face or its side. We account for the rigid body dynamics of spin and precession and calculate the probability distribution of heads, tails, and sides for a thick coin as a function of its dimensions and the distribution of its initial conditions. Our theory yields a simple expression for the aspect ratio of homogeneous coins with a prescribed frequency of heads/tails compared to sides, which we validate by tossing experiments using coins of different aspect ratios.

Ee Hou Yong; L. Mahadevan

2010-08-26T23:59:59.000Z

398

In-situ temperature and thickness characterization for silicon wafers undergoing thermal annealing  

E-Print Network (OSTI)

Nano scale processing of IC chips has become the prime production technique as the microelectronic industry aims towards scaling down product dimensions while increasing accuracy and performance. Accurate control of temperature and a good monitoring mechanism for thickness of the deposition layers during epitaxial growth are critical parameters influencing a good yield. The two-fold objective of this thesis is to establish the feasibility of an alternative to the current pyrometric and ellipsometric techniques to simultaneously measure temperature and thickness during wafer processing. TAP-NDE is a non-contact, non-invasive, laser-based ultrasound technique that is employed in this study to contemporarily profile the thermal and spatial characteristics of the wafer. The Gabor wavelet transform allows the wave dispersion to be unraveled and the group velocity of individual frequency components to be extracted from the experimentally acquired time waveform. The thesis illustrates the formulation of a theoretical model that is used to identify the frequencies sensitive to temperature and thickness changes. The group velocity of the corresponding frequency components is determined and their corresponding changes with respect to temperature for different thickness are analytically modeled. TAP-NDE is then used to perform an experimental analysis on Silicon wafers of different thickness to determine the maximum possible resolution of TAP-NDE towards temperature sensitivity, and to demonstrate the ability to differentiate between wafers of different deposition layer thickness at temperatures up to 600?C. Temperature resolution is demonstrated for ?10?C resolution and for ?5?C resolution; while thickness differentiation is carried out with wafers carrying 4000? and 8000? of aluminum deposition layer. The experimental group velocities of a set of selected frequency components extracted using the Gabor Wavelet time-frequency analysis as compared to their corresponding theoretical group velocities show satisfactory agreement. As a result of this work, it is seen that TAP-NDE is a suitable tool to identify and characterize thickness and temperature changes simultaneously during thermal annealing that can replace the current need for separate characterization of these two important parameters in semiconductor manufacturing.

Vedantham, Vikram

2003-08-01T23:59:59.000Z

399

An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network  

SciTech Connect

Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

Rodriguez, Marko A [Los Alamos National Laboratory; Pepe, Alberto [UCLA

2009-01-01T23:59:59.000Z

400

Device and method for the measurement of depth of interaction using co-planar electrodes  

DOE Patents (OSTI)

A device and method for measuring a depth of interaction of an ionizing event and improving resolution of a co-planar grid sensor (CPG) are provided. A time-of-occurrence is measured using a comparator to time the leading edge of the event pulse from the non-collecting or collecting grid. A difference signal between the grid signals obtained with a differential amplifier includes a pulse with a leading edge occurring at the time-of-detection, measured with another comparator. A timing difference between comparator outputs corresponds to the depth of interaction, calculated using a processor, which in turn weights the difference grid signal to improve spectral resolution of a CPG sensor. The device, which includes channels for grid inputs, may be integrated into an Application Specific Integrated Circuit. The combination of the device and sensor is included. An improved high-resolution CPG is provided, e.g., a gamma-ray Cadmium Zinc Telluride CPG sensor operating at room temperature.

DeGeronimo, Gianluigi (Syosset, NY)

2007-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An Analytical Model of Evaporation Efficiency for Unsaturated Soil Surfaces with an Arbitrary Thickness  

Science Conference Proceedings (OSTI)

Analytical expressions of evaporative efficiency over bare soil (defined as the ratio of actual to potential soil evaporation) have been limited to soil layers with a fixed depth and/or to specific atmospheric conditions. To fill the gap, a new ...

Olivier Merlin; Ahmad Al Bitar; Vincent Rivalland; Pierre Béziat; Eric Ceschia; Gérard Dedieu

2011-02-01T23:59:59.000Z

402

Temporal Variability of the Energy Balance of Thick Arctic Pack Ice  

Science Conference Proceedings (OSTI)

The temporal variability of the six terms of the energy balance equation for a slab of ice 3 m thick is calculated based on 45 yr of surface meteorological observations from the drifting ice stations of the former Soviet Union. The equation ...

R. W. Lindsay

1998-03-01T23:59:59.000Z

403

Commercialization of thick film solar cell. Final technical report, 9/15/79-9/14/80  

DOE Green Energy (OSTI)

Films of cadmium sulfide and cadmium telluride have been produced by screen printing and sintering. Cadmium sulfide films ten microns thick had a resistivity in the 10 ohm-cm range. A technique was developed for forming a cadmium telluride layer on top of a cadmium sulfide layer. Process control and device preparation are areas requiring further study.

None

1980-01-01T23:59:59.000Z

404

Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis  

SciTech Connect

The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

405

Physical Aging of Arsenic Trisulfide Thick Films and Bulk Materials Rong-Ping Wang,w  

E-Print Network (OSTI)

Physical Aging of Arsenic Trisulfide Thick Films and Bulk Materials Rong-Ping Wang,w Andrei Rode referred to as a physical aging phenomenon.7,8 To avoid the changes in physical properties caused by physical aging, a material with completely saturated aging should be used in chalcogenide-based devices

Chen, Ying

406

Extended Kantorovich method for static analysis of moderately thick functionally graded sector plates  

Science Conference Proceedings (OSTI)

In this paper, an iterative procedure based on the extended Kantorovich method (EKM) is presented to gain highly accurate solution for bending of moderately thick functionally graded (FG) fully clamped sector plates. Effective mechanical properties of ... Keywords: Bending analysis, Extended Kantorovich method, Fully clamped sector plates, Functionally graded material

M. M. Aghdam; N. Shahmansouri; M. Mohammadi

2012-12-01T23:59:59.000Z

407

Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope  

Science Conference Proceedings (OSTI)

The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected. (MOW)

Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

1981-01-01T23:59:59.000Z

408

Influence of the Sea Ice Thickness Distribution on Polar Climate in CCSM3  

Science Conference Proceedings (OSTI)

The sea ice simulation of the Community Climate System Model version 3 (CCSM3) T42-gx1 and T85-gx1 control simulations is presented and the influence of the parameterized sea ice thickness distribution (ITD) on polar climate conditions is ...

Marika M. Holland; Cecilia M. Bitz; Elizabeth C. Hunke; William H. Lipscomb; Julie L. Schramm

2006-06-01T23:59:59.000Z

409

Model-based analysis of flow-mediated dilation and intima-media thickness  

Science Conference Proceedings (OSTI)

We present an end-to-end system for the automatic measurement of flow-mediated dilation (FMD) and intima-media thickness (IMT) for the assessment of the arterial function. The video sequences are acquired from a B-mode echographic scanner. A spline model ...

G. Bartoli; G. Menegaz; M. Lisi; G. Di Stolfo; S. Dragoni; T. Gori

2008-01-01T23:59:59.000Z

410

Aerosol optical thickness retrieval from satellite observation using support vector regression  

Science Conference Proceedings (OSTI)

Processing of data recorded by the MODIS sensors on board the Terra and Aqua satellites has provided AOT maps that in some cases show low correlations with ground-based data recorded by the AERONET. Application of SVR techniques to MODIS data is a promising, ... Keywords: MODIS, aerosol optical thickness, earth observation, remote sensing, support vector regression

Thi Nhat Thanh Nguyen; Simone Mantovani; Piero Campalani; Mario Cavicchi; Maurizio Bottoni

2010-11-01T23:59:59.000Z

411

A robust SN-DG-approximation for radiation transport in optically thick and diffusive regimes  

Science Conference Proceedings (OSTI)

We introduce a new discontinuous Galerkin (DG) method with reduced upwind stabilization for the linear Boltzmann equation applied to particle transport. The asymptotic analysis demonstrates that the new formulation does not suffer from the limitations ... Keywords: Discontinuous Galerkin, Radiation transport, Thick diffusion limit, Upwind technique

J. C. Ragusa; J. -L. Guermond; G. Kanschat

2012-02-01T23:59:59.000Z

412

Assessing a Cloud Optical Depth Retrieval Algorithm with Model-Generated Data and the Frozen Turbulence Assumption  

Science Conference Proceedings (OSTI)

A cloud optical depth retrieval algorithm that utilizes time series of solar irradiance and zenith downwelling radiance data collected at a fixed surface site is assessed using model-generated cloud fields and simulated radiation measurements. To ...

H. W. Barker; C. F. Pavloski; M. Ovtchinnikov; E. E. Clothiaux

2004-12-01T23:59:59.000Z

413

Aerosol optical depth of the atmosphere over the ocean in the wavelength range 0.37-4 µm  

Science Conference Proceedings (OSTI)

At least two problems, the climatic impact of aerosols and improvement in techniques for space-borne sensing, require investigation of the spatiotemporal variability of the aerosol optical depth (AOD) over the ocean. The marine atmosphere covers an area ...

S. M. Sakerin; D. M. Kabanov; A. V. Smirnov; B. N. Holben

2008-05-01T23:59:59.000Z

414

A Model Comparison: Numerical Simulations of the North and Equatorial Atlantic Oceanic Circulation in Depth and Isopycnic Coordinates  

Science Conference Proceedings (OSTI)

A series of medium-resolution (1°) numerical simulations for the equatorial and North Atlantic basin have been performed with two primitive equation models, one employing depth and the other density as the vertical coordinate. The models have ...

Eric P. Chassignet; Linda T. Smith; Rainer Bleck; Frank O. Bryan

1996-09-01T23:59:59.000Z

415

Aerosol Optical Depth over Oceans: High Space- and Time-Resolution Retrieval and Error Budget from Satellite Radiometry  

Science Conference Proceedings (OSTI)

A method to retrieve aerosol vertical optical depth at 0.64 ?m from satellite observations of cloud-free scenes over oceans with high spatial resolution (1°) and instantaneous temporal resolution is described and evaluated. The observed radiance ...

Richard Wagener; Seth Nemesure; Stephen E. Schwartz

1997-06-01T23:59:59.000Z

416

Aerosol Optical Depth and the Global Brewer Network: A Study Using U.K.- and Malaysia-Based Brewer Spectrophotometers  

Science Conference Proceedings (OSTI)

Aerosols play an important role in attenuating solar radiation reaching the earth's surface and are thus important inputs to climate models. Aerosol optical depth is routinely measured in the visible range but little data in the ultraviolet (UV) ...

Wilawan Kumharn; John S. Rimmer; Andrew R. D. Smedley; Toh Ying Ying; Ann R. Webb

2012-06-01T23:59:59.000Z

417

Cell Merger Potential in Multicell Thunderstorms of Weakly Sheared Environments: Cell Separation Distance versus Planetary Boundary Layer Depth  

Science Conference Proceedings (OSTI)

Using high-resolution three-dimensional numerical experiments, this paper shows that the cell separation distance scales as 0.75 times the planetary boundary layer (PBL) depth for successful cell mergers between constructively interacting cells ...

James R. Stalker; Kevin R. Knupp

2003-08-01T23:59:59.000Z

418

Objectively Determined Fair-Weather CBL Depths in the ARW-WRF Model and Their Comparison to CASES-97 Observations  

Science Conference Proceedings (OSTI)

High-resolution 24-h runs of the Advanced Research version of the Weather Research and Forecasting Model are used to test eight objective methods for estimating convective boundary layer (CBL) depth h, using four planetary boundary layer schemes: ...

Margaret A. LeMone; Mukul Tewari; Fei Chen; Jimy Dudhia

2013-01-01T23:59:59.000Z

419

The Impact on Simulated Storm Structure and Intensity of Variations in the Mixed Layer and Moist Layer Depths  

Science Conference Proceedings (OSTI)

The sensitivities of convective storm structure and intensity to variations in the depths of the prestorm mixed layer, represented here by the environmental lifted condensation level (LCL), and moist layer, represented by the level of free ...

Eugene W. McCaul Jr.; Charles Cohen

2002-07-01T23:59:59.000Z

420

An Evaluation of Radiometric Products from Fixed-Depth and Continuous In-Water Profile Data from Moderately Complex Waters  

Science Conference Proceedings (OSTI)

Radiometric products determined from fixed-depth and continuous in-water profile data collected at a coastal site characterized by moderately complex waters were compared to investigate differences and limitations between the two measurement ...

Giuseppe Zibordi; Jean-François Berthon; Davide D’Alimonte

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Diagnostic Model for Mixed Layer Depth Estimation with Application to Ocean Station P in the Northeast Pacific  

Science Conference Proceedings (OSTI)

This paper presents a simple diagnostic model for estimating mixed layer depth based solely on the one-dimensional heat balance equation, the surface heat flux, and the sea surface temperature. The surface fluxes drive heating or cooling of the ...

Richard E. Thomson; Isaac V. Fine

2009-06-01T23:59:59.000Z

422

Boundary Layer Depth, Entrainment, and Decoupling in the Cloud-Capped Subtropical and Tropical Marine Boundary Layer  

Science Conference Proceedings (OSTI)

Estimates of marine boundary layer (MBL) depth and degree of decoupling for two regions of the subtropical and tropical east Pacific are presented using satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the ...

Robert Wood; Christopher S. Bretherton

2004-09-01T23:59:59.000Z

423

Modeling of Bathymetry-Locked Residual Eddies in Well-Mixed Tidal Channels with Arbitrary Depth Variations  

Science Conference Proceedings (OSTI)

The concept of the in–out-type exchange flow in estuaries only applies to situations with significant freshwater discharge and/or elongated channels with relatively simple variations in depth and coastline along the channel. In waterways with ...

Chunyan Li

2006-10-01T23:59:59.000Z

424

Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source  

Science Conference Proceedings (OSTI)

A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to ...

Timothy A. Berkoff; Mikail Sorokin; Tom Stone; Thomas F. Eck; Raymond Hoff; Ellsworth Welton; Brent Holben

2011-10-01T23:59:59.000Z

425

Convective Boundary Layer Depth Estimation from Wind Profilers: Statistical Comparison between an Automated Algorithm and Expert Estimations  

Science Conference Proceedings (OSTI)

A previous study showed success in determining the convective boundary layer depth with radar wind-profiling radars using fuzzy logic methods, and improvements to the earlier work are discussed. The improved method uses the Vaisala multipeak ...

Laura Bianco; James M. Wilczak; Allen B. White

2008-08-01T23:59:59.000Z

426

A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation  

Science Conference Proceedings (OSTI)

A new hybrid method for finding the mixed layer depth (MLD) of individual ocean profiles models the general shape of each profile, searches for physical features in the profile, and calculates threshold and gradient MLDs to assemble a suite of ...

James Holte; Lynne Talley

2009-09-01T23:59:59.000Z

427

Detailed Aerosol Optical Depth Intercomparison between Brewer and Li-Cor 1800 Spectroradiometers and a Cimel Sun Photometer  

Science Conference Proceedings (OSTI)

Aerosol optical depth (AOD) using different instruments during three short and intensive campaigns carried out from 1999 to 2001 at El Arenosillo in Huelva, Spain, are presented and compared. The specific aim of this study is to determine the ...

V. E. Cachorro; A. Berjón; C. Toledano; S. Mogo; N. Prats; A. M. de Frutos; J. M. Vilaplana; M. Sorribas; B. A. De La Morena; J. Gröbner; N. Laulainen

2009-08-01T23:59:59.000Z

428

Optical Depth Measurements of Aerosol Cloud, and Water Vapor Using Sun Photometers during FIRE Cirrus IFO II  

Science Conference Proceedings (OSTI)

Optical depths in the visible to infrared spectral region were obtained from solar extinction measurements with two sun photometers during the First ISCCP Regional Experiment Phase II Cirrus Intensive Field Observation in Kansas.

Masataka Shiobara; James D. Spinhirne; Akihiro Uchiyama; Shoji Asano

1996-01-01T23:59:59.000Z

429

A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents  

Science Conference Proceedings (OSTI)

A full discrete spectral model for propagation generation and dissipation of wind waves for arbitrary depth, current and wind fields is presented (WAVEWATCH). This model incorporates all relevant wave-current interaction mechanisms including ...

Hendrik L. Tolman

1991-06-01T23:59:59.000Z

430

SOFAR Float Observations of an Intermediate-Depth Eastern Boundary Current and Mesoscale Variability in the Eastern Tropical Atlantic Ocean  

Science Conference Proceedings (OSTI)

Two neutrally buoyant SOFAR floats vigorously looped and meandered at depths of 950–1150 m in the eastern tropical Atlantic Ocean. The float trajectories illustrate a poleward flow along the tropical eastern boundary and significant intermediate-...

David M. Fratantoni; Philip L. Richardson

1999-06-01T23:59:59.000Z

431

Influence of variable topsoil replacement depths on soil chemical parameters within a coal mine in northeastern Wyoming, USA  

SciTech Connect

Uniform topsoil replacement depths on coal mine reclaimed areas have been mandated by USA federal and state regulations; however, soils of the premine landscape are not naturally uniform in depth and vary in physical, chemical, and biological characteristics. In addition, uniform topsoil depths may actually hinder the development of diverse reclaimed plant communities. We studied the effect of varying topsoil replacement depth treatments (15, 30, and 56 cm) on soil and backfill pH, electrolytic conductivity (EC), and sodium adsorption ratio (SAR) within a reclaimed coal mine study area. Backfill material (also known as spoil) at this site did not possess levels of pH, EC, and SAR that were detrimental to plant growth. There was only a slight reduction in pH, EC, and SAR within the upper 15 cm depth in the reclaimed topsoil treatments with a general increase of EC and SAR in the lower portion of the replaced soil profile. Some downward movement of soluble salts within the reclaimed treatments was evident despite low precipitation. For examples, SAR in the 0-15 cm depth over all reclaimed treatments was lower in 2002 than 2000-2001, and the 0-30 cm portion of the reclaimed soil profile had reduced pH and EC, while the 30-60 cm portion had increased EC and SAR. It is anticipated that soil quality differences in terms of pH, EC, and SAR between topsoil depth treatments will be enhanced with time. Comparison of the reclaimed area to the native reference areas suggested numerous depth differences as a result of homogeneity of the replaced topsoil vs. undisturbed soil profiles.

Schladweiler, B.K.; Vance, G.F.; Legg, D.E.; Munn, L.C.; Haroian, R. [University of Wyoming, Laramie, WY (US). Dept. of Renewable Resources

2004-10-15T23:59:59.000Z

432

A METHOD OF EFFECTIVELY WIDENING THE BRAGG PEAK IN DEPTH IN THE PATH OF CHARGED HEAVY PARTICLES IN TISSUE  

SciTech Connect

A device is described for the filtration of charged energetic heavy particles resulting in the production of adjacent or separated Bragg peaks within the range of the particles in tissue. Two or more layers of intense ionization at different depths separated by layers of less ionlzation in tissue can be produced. A cylinder of uniform ionization which cuts off sharply in depth in tissue can also be produced. (auth)

Jansen, C.R.; Baker, C.; Calvo, W.; Rai, K.R.; Lippincott, S.

1960-01-01T23:59:59.000Z

433

Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations  

E-Print Network (OSTI)

The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons f...

Singh, G P

2003-01-01T23:59:59.000Z

434

Growth and depth dependence of visible luminescence in wurtzite InN epilayers  

SciTech Connect

We present detailed investigation of growth and depth dependence of visible ({approx}1.9 eV) photoluminescence (PL) in wurtzite InN epilayers grown by magnetron sputtering. For normal surface incidence, PL peak was found to redshift with increasing growth temperatures. Cross-sectional PL measurements were able to separate contributions from the InN epilayers and sapphire substrates, which not only demonstrated the visible luminescence in InN but also revealed the blueshift of the PL peak with laser spot focusing from epilayer surface toward the interface. The results have been well explained by the growth mechanism and residual strain along growth direction of InN epilayers.

Pu, X.D.; Shen, W.Z.; Zhang, Z.Q.; Ogawa, H.; Guo, Q.X. [Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Saga University, Saga 840-8502 (Japan)

2006-04-10T23:59:59.000Z

435

Unusual temperature dependence of the London penetration depth in all-organic {beta}  

SciTech Connect

The temperature dependence of the in-plane, {lambda}{sub {parallel}}(T), and interplane, {lambda}{sub {perpendicular}}(T), London penetration depth was measured in the metal-free all-organic superconductor {beta}''-(ET){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3} (T{sub c}{approx}5.2 K). {Delta}{lambda}{sub ||}(T){proportional_to}T{sup 3} up to 0.5 T{sub c}, a power law previously observed only in materials thought to be p-wave superconductors. {lambda}{sub {perpendicular}} is larger than the sample dimensions down to the lowest temperatures (0.35 K), implying an anisotropy of {lambda}{sub {perpendicular}}/{lambda}{sub {parallel}}{approx}400-800.

Prozorov, R.; Giannetta, R. W.; Schlueter, J.; Kini, A. M.; Mohtasham, J.; Winter, R. W.; Gard, G. L.

2001-02-01T23:59:59.000Z

436

Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites  

Science Conference Proceedings (OSTI)

The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given for habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited.

Gano, K.A.; States, J.B.

1982-05-01T23:59:59.000Z

437

PRICE 9S. 6d. NETExperiments Concerning the Effect of Trailing, Edge Thickness on Blade Loss and  

E-Print Network (OSTI)

Theoretical assessments of the influence of trailing-edge thickness on turbine blade loss coefficients are reviewed and compared with the results of a cascade tunnel investigation. Tests on a single-stage turbine indicate that efficiency is much more sensitive to stator blade trailing-edge thickness than simple estimates woul d indicate, but rotor blade thickness effects on efficiency are in line with simple prediction.

Turbine Stage Efficiency; I. H. Johnston; D. C. Dransfield; D. J. Fullbrook; Turbine Stage Efficiency; I. H. Johnston; D. C. Dransfield; D. J. Fullbrook

1964-01-01T23:59:59.000Z

438

The Meridional and Seasonal Structures of the Mixed-Layer Depth and its Diurnal Amplitude Observed during the Hawaii-to-Tahiti Shuttle Experiment  

Science Conference Proceedings (OSTI)

We describe the meridional and seasonal structures of daily mean mixed-layer depth and its diurnal amplitude and their relation to atmospheric fluxes by compositing mixed-layer depth estimates derived from density observations. The diurnal mean ...

Niklas Schneider; Peter Müller

1990-09-01T23:59:59.000Z

439

Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2  

SciTech Connect

Elevated atmospheric [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. However, sustained forest production will depend on the nutrient balance of the forested ecosystem. Our aim was to examine the causes and consequences of increased fine-root production and mortality throughout the soil profile under elevated CO2 with respect to potential gross nitrogen (N) cycling rates. Our study was conducted in a CO2-enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were two-fold: (1) determine whether N is available for root acquisition in deeper soil, and (2) determine whether increased inputs of labile C from greater fine-root mortality at depth under elevated [CO2] had altered N cycling rates. While gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where microbial consumption of mineral N was reduced. Overall, up to 60% of potential gross N mineralization, and 100% of potential net N mineralization, occurred below 15-cm depth at this site. This finding was supported by in situ measurements from ion-exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.

Iversen, Colleen M [ORNL; Hooker, Toby [Utah State University (USU); Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

2011-01-01T23:59:59.000Z

440

A Simple Empirical Equation to Calculate Cloud Optical Thickness from Shortwave Broadband Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Simple Empirical Equation to Calculate Cloud Optical Simple Empirical Equation to Calculate Cloud Optical Thickness from Shortwave Broadband Measurements J. C. Barnard and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Observational studies of shortwave cloud optical thickness, c , play an important role in determining how clouds affect climate. Accordingly, considerable effort has been, and continues to be expended to characterize the spatial and temporal distribution of c over the globe. This effort involves satellite and ground-based measurements that infer c from measurements of the reflection or transmission of solar radiation. Transmitted solar radiation forms the basis of several important algorithms designed to calculate c ; these algorithms use either spectral irradiances (Min and Harrison 1996; henceforth referred

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Transmission Nuclear Resonance Fluorescence Measurements of 238U in Thick Targets  

SciTech Connect

Transmission nuclear resonance fluorescence measurements were made on targets consisting of Pb and depleted U with total areal densities near 86 g/cm2. The 238U content n the targets varied from 0 to 8.5percent (atom fraction). The experiment demonstrates the capability of using transmission measurements as a non-destructive technique to identify and quantify the presence of an isotope in samples with thicknesses comparable to he average thickness of a nuclear fuel assembly. The experimental data also appear to demonstrate the process of notch refilling with a predictable intensity. Comparison of measured spectra to previous backscatter 238U measurements indicates general agreement in observed excited states. Two new 238U excited states and possibly a third state have also been observed.

Quiter, Brian J.; Ludewigt, Bernhard A.; Mozin, Vladimir V.; Wilson, Cody; Korbly, Steve

2010-08-31T23:59:59.000Z

442

Method for rapid, controllable growth and thickness, of epitaxial silicon films  

DOE Patents (OSTI)

A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

Wang, Qi (Littleton, CO); Stradins, Paul (Golden, CO); Teplin, Charles (Boulder, CO); Branz, Howard M. (Boulder, CO)

2009-10-13T23:59:59.000Z

443

Overview of thick-film technology as applied to solar cells  

DOE Green Energy (OSTI)

Thick-film technology was developed by the electronics industry as a means of fabricating components and miniature circuitry. Today, the solar cell industry is looking at screen printing as an alternate to more expensive, high-vacuum techniques in several of the production steps during the manufacture of silicon solar cells. Screen printing is already fairly well established as a means of providing electrical contact to a cell and for the formation of a back surface field. Now under investigation are the possibilities of non-noble metal contacts and protective and antireflective coatings applied to solar cells by the use of screen printing. Most exciting is the work being done in the non-silicon area on the fabrication of the active layers of a solar cell, using thick-film inks made up of II-VI semiconductors.

Firor, K.; Hogan, S.

1980-01-01T23:59:59.000Z

444

Standard guide for mutual inductance bridge applications for wall thickness determinations in boiler tubing  

E-Print Network (OSTI)

1.1 This guide describes a procedure for obtaining relative wall thickness indications in ferromagnetic and non-ferromagnetic steels using the mutual inductance bridge method. The procedure is intended for use with instruments capable of inducing two substantially identical magnetic fields and noting the change in inductance resulting from differing amounts of steel. It is used to distinguish acceptable wall thickness conditions from those which could place tubular vessels or piping at risk of bursting under high temperature and pressure conditions. 1.2 This guide is intended to satisfy two general needs for users of industrial Mutual Inductance Bridge (MIB) equipment: (1) the need for a tutorial guide addressing the general principles of Mutual Inductance Bridges as they apply to industrial piping; and (2) the need for a consistent set of MIB performance parameter definitions, including how these performance parameters relate to MIB system specifications. Potential users and buyers, as well as experienced M...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

445

Evaluation of Cadmium-Free Thick Film Materials on Alumina Substrates  

Science Conference Proceedings (OSTI)

A new cadmium-free material system was successfully evaluated for the fabrication of thick film hybrid microcircuits at Honeywell Federal Manufacturing & Technologies (FM&T). The characterization involved screen printing, drying and firing two groups of resistor networks which were made using the current material system and the cadmium-free material system. Electrical, environmental and adhesion tests were performed on both groups to determine the more suitable material system. Additionally, untrimmed test coupons were evaluated to further characterize the new materials. The cadmiumfree material system did as well or better than the current material system. Therefore, the new cadmium-free material system was approved for use on production thick film product.

L. H. Perdieu

2009-09-01T23:59:59.000Z

446

Design method for turbomachine blades with finite thickness by the circulation method  

SciTech Connect

This paper presents a procedure to extend a recently developed three-dimensional inverse method for infinitely thin blades to handle blades with finite thickness. In this inverse method, the prescribed quantities are the blade pressure loading and the blade thickness distributions, and the calculated quantity is the blade mean camber line. The method is formulated in the fully inverse mode whereby the blade shape is determined iteratively using the flow-tangency condition along the blade surfaces. Design calculations are presented for an inlet guide vane, an impulse turbine blade, and a compressor blade in the two-dimensional inviscid- and incompressible-flow limit. Consistency checks are carried out for these design calculations using a panel analysis method and the analytical solution for the Gostelow profile.

Jiang, J.; Dang, T. [Syracuse Univ., NY (United States). Dept. of Mechanical, Aerospace and Manufacturing Engineering

1997-07-01T23:59:59.000Z

447

On-Sun Comparison of GaInP2/GaAs Tandem Cells with Top-Cell Thickness Varied  

DOE Green Energy (OSTI)

This study compares the on-sun performance of a set of GaInP2/GaAs tandem cells with different GaInP2 top-cell thicknesses. Because high-efficiency III-V cells are best suited to concentrating photovoltaic (CPV) applications, the cells were mounted on a two-axis tracker with the incident sunlight collimated to exclude all except the direct beam. Current-voltage (I-V) curves were taken throughout the course of several days, along with the direct solar spectrum. Our two major conclusions are: (1) GaInP2/GaAs tandem cells designed for an ''air mass 1.5 global'' (AM 1.5G) or a ''low aerosol optical depth'' (Low AOD) spectrum perform the best, and (2) a simple device model using the measured direct spectra as an input gives the same result. These results are equally valid for GaInP2/GaAs/Ge triple-junction cells.

McMahon, W. E.; Emery, K. A.; Friedman, D. J.; Ottoson, L.; Young, M. S.; Ward, J. S.; Kramer, C. M.; Duda, A.; Kurtz, S.

2005-01-01T23:59:59.000Z

448

Thickness effects on the plastic collapse of perforated plates with triangular penetration patterns  

SciTech Connect

This paper investigates the effects of plate thickness on the accuracy of limit load solutions obtained using an elastic-perfectly plastic [EPP] equivalent solid [EQS] procedure for flat perforated plates with a triangular array of penetrations. The EQS approach for limit loads is based on an EQS collapse surface that is valid for generalized plane strain. This assumption is applicable for very thick plates but is known to be less reasonable for very thin plates where plane stress may be a better assumption. The limits of applicability of the generalized plane strain assumption are investigated by obtaining limit load solutions for perforated plates of various thicknesses that are subjected to in-plane and bending loads. Plastic limit load solutions obtained using three-dimensional EPP finite element analysis [FEA] of models which include each penetration explicitly are compared with solutions obtained using the EQS approximation. The penetration pattern chosen for this study has a ligament efficiency (ligament width-to-pitch ratio, h/P) of 0.32. For plates thicker than the pitch, the limit load calculated using the EQS method for both in-plane and bending loads is shown to be very accurate (within 4%) of the limit load calculated for the explicit model. On the other hand, for thin plates (t/P< 2), the EQS limit load is 5% greater than the explicit limit load for bending and 8% greater than the explicit limit load for in-plane loads. For thinner plates, the collapse surface is tied to the local geometry deformation and, hence, an equivalent solid plate representation of plastic collapse is a function of deformation mode and thickness.

Gordon, J.L.; Jones, D.P.; Holliday, J.E.

2000-03-01T23:59:59.000Z

449

Estimation of the Thickness of Overlapping Materials by Using Neural Networks  

Science Conference Proceedings (OSTI)

Backpropagation type artificial neural networks (ANN) were used to estimate the thickness of two overlapping materials by inspecting two X-ray images obtained at different x-ray tube voltage settings. Radiographic images of overlapping aluminum and brass wedges were simulated by using the X-ray radiography simulation program XRSIM. Simulated images were used for training and testing of the ANNs. The average estimation error was less than 4% and 7% on the training and test data respectively.

Reen, N.; Tansel, I. N.; Chen, P.; Wang, X. [Florida International University, Miami, Fl 33174 (United States); Inanc, F. [CNDE, Iowa State University, Ames, IA 50011-3042 (United States); Kropas-Hughes, C. [AFRL/MLLP, Wright Patterson, OH 45433 (United States)

2005-04-09T23:59:59.000Z

450

Unique Challenges Accompany Thick-Shell CdSe/nCdS (n > 10) Nanocrystal Synthesis  

SciTech Connect

Thick-shell CdSe/nCdS (n {ge} 10) nanocrystals were recently reported that show remarkably suppressed fluorescence intermittency or 'blinking' at the single-particle level as well as slow rates of Auger decay. Unfortunately, whereas CdSe/nCdS nanocrystal synthesis is well-developed up to n {le} 6 CdS monolayers (MLs), reproducible syntheses for n {ge} 10 MLs are less understood. Known procedures sometimes result in homogeneous CdS nucleation instead of heterogeneous, epitaxial CdS nucleation on CdSe, leading to broad and multimodal particle size distributions. Critically, obtained core/shell sizes are often below those desired. This article describes synthetic conditions specific to thick-shell growth (n {ge} 10 and n {ge} 20 MLs) on both small (sub2 nm) and large (>4.5 nm) CdSe cores. We find added secondary amine and low concentration of CdSe cores and molecular precursors give desired core/shell sizes. Amine-induced, partial etching of CdSe cores results in apparent shell-thicknesses slightly beyond those desired, especially for very-thick shells (n {ge} 20 MLs). Thermal ripening and fast precursor injection lead to undesired homogeneous CdS nucleation and incomplete shell growth. Core/shells derived from small CdSe (1.9 nm) have longer PL lifetimes and more pronounced blinking at single-particle level compared with those derived from large CdSe (4.7 nm). We expect our new synthetic approach will lead to a larger throughput of these materials, increasing their availability for fundamental studies and applications.

Guo, Y; Marchuk, K; Abraham, R; Sampat, S; Abraham, R.; Fang, N; Malko, AV; Vela, J

2011-12-23T23:59:59.000Z

451

Effects of the Thickness of Niobium Surface Oxide Layers on Field Emission  

SciTech Connect

Field emission on the inner surfaces of niobium superconducting radio frequency cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results* seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3 nm up to 460 nm. A home-made scanning field emission microscope was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The SFEM experimental results were analyzed in terms of surface morphology and oxide thickness of Nb samples and chemical composition and geographic shape of the emitters. A model based on the classic electromagnetic theory was developed trying to understand the experimental results. Possibly implications for Nb SRF cavity applications from this study will be discussed.

A.T. Wu, S. Jin, J.D. Mammosser, R.A. Rimmer, X.Y. Lu, K. Zhao

2011-09-01T23:59:59.000Z

452

Effect of Substrate Thickness on Oxide Scale Spallation for Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

In this paper, the effect of the ferritic substrate's thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the high-temperature oxidation environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The growth stress is induced by the growth of the oxide scale on the scale/substrate interface, and thermal stress is induced by a mismatch of the coefficient of thermal expansion between the oxide scale and the substrate. The numerical results show that the interfacial shear stresses, which are the driving force of scale delamination between the oxide scale and the ferritic substrate, increase with the growth of the oxide scale and also with the thickness of the ferritic substrate; i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. Experimental observation confirmed the predicted results of the delamination and spallation of the oxide scale on the ferritic substrate.

Liu, Wenning N.; Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2011-07-01T23:59:59.000Z

453

Proposed method for determining the thickness of glass in solar collector panels  

DOE Green Energy (OSTI)

An analytical method has been developed for determining the minimum thickness for simply supported, rectangular glass plates subjected to uniform normal pressure environmental loads such as wind, earthquake, snow, and deadweight. The method consists of comparing an analytical prediction of the stress in the glass panel to a glass breakage stress determined from fracture mechanics considerations. Based on extensive analysis using the nonlinear finite element structural analysis program ARGUS, design curves for the structural analysis of simply supported rectangular plates have been developed. These curves yield the center deflection, center stress and corner stress as a function of a dimensionless parameter describing the load intensity. Results are included for plates having length-to-width ratios of 1, 1.5, 2, 3, and 4. The load range considered extends to 1000 times the load at which the behavior of the plate becomes significantly nonlinear. Over the load range analyzed, the analysis shows that the ratio of center deflection to plate thickness for a plate of length-to-width ratio of 4 is less than 70 to 1, whereas linear theory would predict a center deflection about 1200 times the plate thickness. The stress is also markedly lower than would be predicted by linear theory. These analytical results show good agreement with the analytical and experimental work of others.

Moore, D.M.

1980-03-01T23:59:59.000Z

454

A novel algorithm for estimation of depth map using image focus for 3D shape recovery in the presence of noise  

Science Conference Proceedings (OSTI)

Three-dimensional shape recovery from one or multiple observations is a challenging problem of computer vision. In this paper, we present a new Focus Measure for the estimation of a depth map using image focus. This depth map can subsequently be used ... Keywords: 3D shape recovery, Depth map, Focus Measure, Noise, Robustness, Shape from focus

Aamir Saeed Malik; Tae-Sun Choi

2008-07-01T23:59:59.000Z

455

Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells  

SciTech Connect

Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and hydrogeologic characteristics are graphically presented even when there are only a few data. This approach benchmarks what is currently known about the association of depth-specific hydraulic conductivity and hydrogeologic characteristics.

P. Oberlander; D. McGraw; C. Russell

2007-10-31T23:59:59.000Z

456

"Defense-in-Depth" Laser Safety and the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential hazard to personnel. Because of this, a multilayered approach to safety is taken. This paper presents the philosophy and approach taken at the NIF in the multi-layered 'defense-in-depth' approach to laser safety.

King, J J

2010-12-02T23:59:59.000Z

457

Thickness-dependent changes in the optical properties of PPV-and PF-based polymer light emitting diodes  

E-Print Network (OSTI)

the thickness-dependent optical properties of single layer polymer light emitting diodes for two materials, poly the electronic and optical properties of these materials in light emitting diode LED structures.2 OurThickness-dependent changes in the optical properties of PPV- and PF-based polymer light emitting

Carter, Sue

458

Optimization of a Sea Ice Model Using Basinwide Observations of Arctic Sea Ice Thickness, Extent, and Velocity  

Science Conference Proceedings (OSTI)

A stand-alone sea ice model is tuned and validated using satellite-derived, basinwide observations of sea ice thickness, extent, and velocity from the years 1993 to 2001. This is the first time that basin-scale measurements of sea ice thickness ...

Paul A. Miller; Seymour W. Laxon; Daniel L. Feltham; Douglas J. Cresswell

2006-04-01T23:59:59.000Z

459

The significance of employing depth-related community replacement models in Carboniferous-Permian sequence stratigraphy  

SciTech Connect

Paleoecological analysis is essential for accurate Carboniferous-Permian sequence-stratigraphic modeling. Employing depth-related community replacement paleoecological models (such as proposed by Boardman and others, 1984) is crucial for delineation of transgressive, highstand, and regressive deposits; locating and calibrating highstands and determination of degree of accommodation space utilization within the cycle succession. Early transgressive deposits are often exceedingly thin or absent in middle to inner shelf regions, and are commonly associated with mixed biofacies representing rapid sea-level rise accompanied by excessively slow net sedimentation rate. Because of the highly discontinuous and poorly developed nature of transgressive deposits, maximum highstand deposits as determined by the onshore-offshore paleoecological model, are shown to commonly be in direct contact with non-marine or marginal marine deposits, the result of facies dislocation. The amount of accommodation space utilized during a particular transgressive and regressive sedimentary sequence is directly related to the rates of sea-level rise, duration of stillstand, as well as the rates of sea-level fall. The author's work suggests that the rates of sea-level rises and falls have varied significantly during the Upper Pennsylvanian and Lower Permian. Sea-Level fluctuation curves have thusfar aided in interbasinal correlations of upper Desmoinesian-lower Virgilian strata from the Midcontinent to the Eastern Shelf of the Midland Basin, Pedregosa Basin of Arizona, the Illinois Basin, and the Appalachian Basin.

Boardman, D.R. (Oklahoma State Univ., Stillwater, OK (United States). School of Geology); Mapes, R.H. (Ohio Univ., Athens, OH (United States). Dept. of Geological Sciences)

1993-02-01T23:59:59.000Z

460

Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth  

SciTech Connect

Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

Pruess, K.

2007-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "depth thickness porosity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Engineering Task Plan for Development and Fabrication and Deployment of Nested Fixed Depth Fluidic Sampling and At Tank Analysis Systems  

Science Conference Proceedings (OSTI)

This engineering task plan identifies the resources, responsibilities, and schedules for the development and deployment of a mobile, variable depth sampling system and an at-tank analysis system. The mobile, variable depth sampling system concept was developed after a cost assessment indicated a high cost for multiple deployments of the nested, fixed-depth sampling system. The sampling will provide double-shell tank (DST) staging tank waste samples for assuring the readiness of the waste for shipment to the LAW/HLW plant for treatment and immobilization. The at-tank analysis system will provide ''real-time'' assessments of the samples' chemical and physical properties. These systems support the Hanford Phase 1B vitrification project.

BOGER, R.M.

2000-10-30T23:59:59.000Z

462

DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed tank--1.6 gallons; (c) Decontaminated salt solution hold tank--1.6 gallons; (d) Contactor drain tank--0.40 gallons; (e) Strip effluent hold tank--0.33 gallons; (f) Decontaminated salt solution decanter--0.37 gallons; (g) Strip effluent decanter--0.14 gallons; (h) Solvent hold tank--0.30 gallon; and (i) Corrugated piping between contactors--16-21 mL. (5) After the initial vessel draining, flushing the vessels with 100 gallons of water using a spray nozzle that produces complete vessel coverage and draining the flush water reduces the source term by the following amounts: (i) Salt solution receipt tank--63X; (ii) Salt solution feed tank--63X; (iii) Decontaminated salt solution hold tank--63X; (iv) Contactor drain tank--250X; (v) Strip effluent hold tank--300X; (vi) Decontaminated salt solution decanter--270X; (vii) Strip effluent decanter--710X; (viii) Solvent hold tank--330X. Understand that these estimates of film thickness are based on laboratory testing and fluid mechanics theory. The calculations assume drainage occurs by film flow. Much of the data used to develop the models came from tests with very ''clean'' fluids. Impurities in the fluids and contaminants on the vessels walls could increase liquid holdup. The application of film thickness models and source term reduction calculations should be considered along with operational conditions and H-Tank Farm/Liquid Waste operating experience. These calculations exclude the PVV/HVAC duct work and piping, as well as other areas that area outside the scope of this report.

Poirier, M; Fernando Fondeur, F; Samuel Fink, S

2006-06-06T23:59:59.000Z

463

Depth Requirements for a Tonne-scale 76Ge Neutrinoless Double-beta Decay Experiment  

E-Print Network (OSTI)

Neutrinoless double-beta decay experiments can potentially determine the Majorana or Dirac nature of the neutrino, and aid in understanding the neutrino absolute mass scale and hierarchy. Future 76Ge-based searches target a half-life sensitivity of >10^27 y to explore the inverted neutrino mass hierarchy. Reaching this sensitivity will require a background rate of required to reach this background goal in a tonne-scale experiment with a compact (copper and lead) shield based on Monte Carlo calculations of cosmic-ray background rates. We find that, in light of the presently large uncertainties in these types of calculations, a site with an underground depth >~5200 mwe is required for a tonne-scale experiment with a compact shield similar to the planned 40-kg MAJORANA DEMONSTRATOR. The required overburden is highly dependent on the chosen shielding configuration and could be relaxed significantly if, for example, a liquid cryogen and water shield, or an active neutron shield were employed. Operation of the MAJORANA DEMONSTRATOR and GERDA detectors will serve to reduce the uncertainties on cosmic-ray background rates and will impact the choice of shielding style and location for a future tonne-scale experiment. 4/2013: The peer review process revealed that one of the veto rejection factors (the factor-of-4 described on p12) needs to be better established. Our reevaluation of this parameter to date has not yielded strong support for the value stated in the manuscript, and we require further study to develop a solid estimate. This further study will supersede the work described in this manuscript, and may or may not lead to the same conclusion regarding the ~>5200 mwe requirement for future tonne-scale 76Ge neutrinoless double beta decay experiments.

The MAJORANA Collaboration; E. Aguayo; F. T. Avignone III; H. O. Back; A. S. Barabash; M. Bergevin; F. E. Bertrand; M. Boswell; V. Brudanin; M. Busch; Y-D. Chan; C. D. Christofferson; J. I. Collar; D. C. Combs; R. J. Cooper; J. A. Detwiler; P. J. Doe; Yu. Efremenko; V. Egorov; H. Ejiri; S. R. Elliott; J. Esterline; J. E. Fast; N. Fields; P. Finnerty; F. M. Fraenkle; V. M. Gehman; G. K. Giovanetti; M. P. Green; V. E. Guiseppe; K. Gusey; A. L. Hallin; R. Hazama; R. Henning; A. Hime; E. W. Hoppe; M. Horton; S. Howard; M. A. Howe; R. A. Johnson; K. J. Keeter; M. E. Keillor; C. Keller; J. D. Kephart; M. F. Kidd; A. Knecht; O. Kochetov; S. I. Konovalov; R. T. Kouzes; B. D. LaFerriere; B. H. LaRoque; J. Leon; L. E. Leviner; J. C. Loach; S. MacMullin; M. G. Marino; R. D. Martin; D. -M. Mei; J. H. Merriman; M. L. Miller; L. Mizouni; M. Nomachi; J. L. Orrell; N. R. Overman; D. G. Phillips II; A. W. P. Poon; G. Perumpilly; G. Prior; D. C. Radford; K. Rielage; R. G. H. Robertson; M. C. Ronquest; A. G. Schubert; T. Shima; M. Shirchenko; K. J. Snavely; V. Sobolev; D. Steele; J. Strain; K. Thomas; V. Timkin; W. Tornow; I. Vanyushin; R. L. Varner; K. Vetter; K. Vorren; J. F. Wilkerson; B. A. Wolfe; E. Yakushev; A. R. Young; C. -H. Yu; V. Yumatov; C. Zhang

2011-09-19T23:59:59.000Z

464

Climatology of aerosol optical depth in north?central Oklahoma: 1992–2008  

SciTech Connect

Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow?band, interference?filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun’s elevation is greater than 9.25°. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month?by?month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

Michalsky, Joseph J.; Denn, Frederick; Flynn, Connor J.; Hodges, G. B.; Kiedron, Piotr; Koontz, Annette S.; Schlemmer, James; Schwartz, Stephen E.

2010-04-13T23:59:59.000Z

465

Climatology of aerosol optical depth in North-Central Oklahoma: 1992-2008  

SciTech Connect

Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloud-screening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun's elevation is greater than 9.25{sup o}. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

Michalsky, J.; Schwartz, S.; Denn, F.; Flynn, C.; Hodges, G.; Kiedron, P.; Koontz, A.; Schlemmer, J., and Schwartz, S. E

2010-04-01T23:59:59.000Z

466

Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006.  

SciTech Connect

Understanding the roles of human and natural sources in contributing to aerosol concentrations around the world is an important step toward developing efficient and effective mitigation measures for local and regional air quality degradation and climate change. In this study we test the hypothesis that changes in aerosol optical depth (AOD) over time are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors. We present estimated trends of contributions to AOD for eight world regions from 1980 to 2006, built upon a full run of the Goddard Chemistry Aerosol Radiation and Transport model for the year 2001, extended in time using trends in emissions of man-made and natural sources. Estimated AOD trends agree well (R > 0.5) with observed trends in surface solar radiation in Russia, the United States, south Asia, southern Africa, and East Asia (before 1992) but less well for Organization for Economic Co-operative Development (OECD) Europe (R < 0.5). The trends do not agree well for southeast Asia and for East Asia (after 1992) where large-scale inter- and intraannual variations in emissions from forest fires, volcanic eruptions, and dust storms confound our approach. Natural contributions to AOD, including forest and grassland fires, show no significant long-term trends (<1%/a), except for a small increasing trend in OECD Europe and a small decreasing trend in South America. Trends in man-made contributions to AOD follow the changing patterns of industrial and economic activity. We quantify the average contributions of key source types to regional AOD over the entire time period.

Streets, D. G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C.; Decision and Information Sciences; Univ. of Illinois; NASA; Cornell Univ.; Forschungszentrum; Inst.for Atmospheric and Climate Science; Tsinghua Univ.

2009-07-28T23:59:59.000Z

467

Increase of Cloud Droplet Size with Aerosol Optical Depth: An Observational and Modeling Study  

SciTech Connect

Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including water vapor swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D spectral-bin microphysics Goddard Cumulus Ensemble model (GCE) which incorporated a reformulation of the Köhler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant CCNs. Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon.

Yuan, Tianle; Li, Zhanqing; Zhang, Renyi; Fan, Jiwen

2008-02-21T23:59:59.000Z

468

Measurement of thermal noise in multilayer coatings with optimized layer thickness  

Science Conference Proceedings (OSTI)

A standard quarter-wavelength multilayer optical coating will produce the highest reflectivity for a given number of coating layers, but in general it will not yield the lowest thermal noise for a prescribed reflectivity. Coatings with the layer thicknesses optimized to minimize thermal noise could be useful in future generation interferometric gravitational wave detectors where coating thermal noise is expected to limit the sensitivity of the instrument. We present the results of direct measurements of the thermal noise of a standard quarter-wavelength coating and a low noise optimized coating. The measurements indicate a reduction in thermal noise in line with modeling predictions.

Villar, Akira E.; Black, Eric D.; DeSalvo, Riccardo; Libbrecht, Kenneth G.; Michel, Christophe; Morgado, Nazario; Pinard, Laurent; Pinto, Innocenzo M.; Pierro, Vincenzo; Galdi, Vincenzo; Principe, Maria; Taurasi, Ilaria [LIGO Laboratory, California Institute of Technology, Mail Code 264-33, Pasadena, California 91125 (United States); Laboratoire des Materiaux Avances, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbaune (France); Waves Group, University of Sannio at Benevento, Benevento, Italy, INFN and LSC (Italy)

2010-06-15T23:59:59.000Z

469

Effective Diffusion-Medium Thickness for Simplified Polymer-Electrolyte-Fuel-Cell Modeling  

SciTech Connect

In this manuscript, conformal mapping is applied to a rib/channel domain of a polymer-electrolyte-fuel-cell diffusion medium. The analysis leads to the calculation of an effective diffusion-medium thickness, which can subsequently be used in 1-D simulations to account for the average rib/channel 2-D geometric effect. Extensions of the analysis to anisotropic and multilayer diffusion media are also given. Both equations and figures show the impact on a given variable at the catalyst layer of having a combined conducting/nonconducting boundary across from it.

Weber, Adam; Weber, Adam Z.

2008-07-30T23:59:59.000Z

470

Modeling the Critical Current Decrease in Coated Conductors with Film Thickness  

Science Conference Proceedings (OSTI)

YBCO-based Coated Conductors (CC) are touted as the next generation of high current=carrying capacity High Temperature Superconductors (HTS) wires. If commercially viable, CC will signal a revolution in power trnasmission, with enormous economic consequences. It has been recently reported that the observed ciritical current in such CC is decreasing with the fil thickness d, roughly as d-1/2. The origin of this decrease is not understood. This work is aimed at developing a simple model to explain this feature.

D. Agassi; D.K. Christen; S.J. Pennycook

2007-01-01T23:59:59.000Z

471

Apparatus and method for measuring the thickness of a semiconductor wafer  

DOE Patents (OSTI)

Apparatus for measuring thicknesses of semiconductor wafers, comprising: housing means for supporting a wafer in a light-tight environment; a light source mounted to the housing at one side of the wafer to emit light of a predetermined wavelength to normally impinge the wafer; a light detector supported at a predetermined distance from a side of the wafer opposite the side on which a light source impinges and adapted to receive light transmitted through the wafer; and means for measuring the transmitted light.

Ciszek, Theodoer F. (31843 Miwok Trail, P.O. Box 1453, Evergreen, CO 80439)

1995-01-01T23:59:59.000Z