National Library of Energy BETA

Sample records for depth precipitable water

  1. ARM - Measurement - Precipitable water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitable water Total amount ...

  2. Monitoring of Precipitable Water Vapor and Cloud Liquid Path...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave ... used to measure atmospheric precipitable water vapor (PWV) and cloud liquid path (CLP). ...

  3. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM ...

  4. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value...

    Office of Scientific and Technical Information (OSTI)

    G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product Citation Details In-Document Search Title: G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) ...

  5. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  6. University of Oregon: GPS-based Precipitable Water Vapor (PWV)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vignola, F.; Andreas, A.

    2013-08-22

    A partnership with the University of Oregon and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect Precipitable Water Vapor (PWV) data to compliment existing resource assessment data collection by the university.

  7. Gulf of Mexico Proved Reserves By Water Depth, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved

  8. Recovery of carboxylic acids from water by precipitation from organic solutions

    DOE Patents [OSTI]

    King, C. Judson; Starr, John

    1992-01-01

    Carboxylic acids are recovered from wet organic solutions by reducing the solutions' water content thus causing the acids to precipitate as recoverable crystals.

  9. Borehole sounding device with sealed depth and water level sensors

    DOE Patents [OSTI]

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  10. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product

    SciTech Connect (OSTI)

    Koontz, A; Cadeddu, M

    2012-12-05

    The G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) value-added product (VAP) computes precipitable water vapor using neural network techniques from data measured by the GVR. The GVR reports time-series measurements of brightness temperatures for four channels located at 183.3 ± 1, 3, 7, and 14 GHz.

  11. Critical analysis of atmospheric turbidity and precipitable water at five Canadian stations

    SciTech Connect (OSTI)

    Garrison, J.; Gueymard, C.

    1997-12-31

    Global and diffuse radiation and surface meteorological measurements at Edmonton, Montreal, Port Hardy, Toronto and Winnipeg for the years 1977--1984 are analyzed to yield estimates of atmospheric precipitable water and turbidity. Three methods of estimating the precipitable water and two methods of estimating the turbidity are used and compared. Measurements of pyranometer response as a function of zenith angle are used to correct the global radiation measurements. Turbidity is corrected for the effect of circumsolar radiation included in the direct radiation obtained from the global and diffuse radiation measurements. A comparison with earlier precipitable water and turbidity results is included.

  12. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  13. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  14. DOE/SC-ARM/TR-122 G-Band Vapor Radiometer Precipitable Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product A Koontz M Cadeddu December 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  15. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    SciTech Connect (OSTI)

    Guo, Y.R.; Zou, X.; Kuo, Y.H.

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  16. Precipitating clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A suggestion for a new focus on cloud microphysical process study in the ARM program 1. Retrieving precipitating mixed- phase cloud properties Zhien Wang University of Wyoming zwang@uwyo.edu Retrieving Precipitating Mixed-phase Cloud Properties Global distribution of supercooled water topped stratiform clouds (top > 1 km and length> 14km) Most of them are mixed-phase with precipitation or virga An multiple sensor based approach to provide water phase as well as ice phase properties

  17. Evaluation of precipitates used in strainer head loss testing : Part III. Long-term aluminum hydroxide precipitation tests in borated water.

    SciTech Connect (OSTI)

    Bahn, C. B.; Kasza, K. E.; Shack, W. J.; Natesan, K.; Klein, P.

    2011-05-01

    Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al]{sub T}' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  18. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Lianhong; Pallardy, Stephen G.; Hosman, Kevin P.; Sun, Ying

    2015-12-11

    Variations in precipitation regimes can shift ecosystem structure and function by altering frequency, severity and timing of plant water stress. There is a need for predictively understanding impacts of precipitation regimes on plant water stress in relation to species water use strategies. Here we first formulated two complementary, physiologically-linked measures of precipitation variability (PV) - Precipitation Variability Index (PVI) and Average Recurrence Interval of Effective Precipitation (ARIEP). We then used nine-year continuous measurements of Predawn Leaf Water Potential Integral (PLWPI) in a central US forest to relate PVI and ARIEP to actual plant water availability and comparative water stress responsesmore » of six species with different capacities to regulate their internal water status. We found that PVI and ARIEP explained nearly all inter-annual variations in PLWPI for all species as well as for the community scaled from species measurements. The six species investigated showed differential sensitivities to variations in precipitation regimes. Their sensitivities were reflected more in the responses to PVI and ARIEP than to the mean precipitation rate. Further, they exhibited tradeoffs between responses to low and high PV. Finally, PVI and ARIEP were closely correlated with temporal integrals of positive temperature anomalies and vapor pressure deficit. We suggest that the comparative responses of plant species to PV are part of species-specific water use strategies in a plant community facing the uncertainty of fluctuating precipitation regimes. In conclusion, PVI and ARIEP should be adopted as key indices to quantify physiological drought and the ecological impacts of precipitation regimes in a changing climate.« less

  19. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US

    SciTech Connect (OSTI)

    Gu, Lianhong; Pallardy, Stephen G.; Hosman, Kevin P.; Sun, Ying

    2015-12-11

    Variations in precipitation regimes can shift ecosystem structure and function by altering frequency, severity and timing of plant water stress. There is a need for predictively understanding impacts of precipitation regimes on plant water stress in relation to species water use strategies. Here we first formulated two complementary, physiologically-linked measures of precipitation variability (PV) - Precipitation Variability Index (PVI) and Average Recurrence Interval of Effective Precipitation (ARIEP). We then used nine-year continuous measurements of Predawn Leaf Water Potential Integral (PLWPI) in a central US forest to relate PVI and ARIEP to actual plant water availability and comparative water stress responses of six species with different capacities to regulate their internal water status. We found that PVI and ARIEP explained nearly all inter-annual variations in PLWPI for all species as well as for the community scaled from species measurements. The six species investigated showed differential sensitivities to variations in precipitation regimes. Their sensitivities were reflected more in the responses to PVI and ARIEP than to the mean precipitation rate. Further, they exhibited tradeoffs between responses to low and high PV. Finally, PVI and ARIEP were closely correlated with temporal integrals of positive temperature anomalies and vapor pressure deficit. We suggest that the comparative responses of plant species to PV are part of species-specific water use strategies in a plant community facing the uncertainty of fluctuating precipitation regimes. In conclusion, PVI and ARIEP should be adopted as key indices to quantify physiological drought and the ecological impacts of precipitation regimes in a changing climate.

  20. Desalination of brackish ground waters and produced waters using in-situ precipitation.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Pless, Jason; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn; Sattler, Allan Richard

    2004-08-01

    The need for fresh water has increased exponentially during the last several decades due to the continuous growth of human population and industrial and agricultural activities. Yet existing resources are limited often because of their high salinity. This unfavorable situation requires the development of new, long-term strategies and alternative technologies for desalination of saline waters presently not being used to supply the population growth occurring in arid regions. We have developed a novel environmentally friendly method for desalinating inland brackish waters. This process can be applied to either brackish ground water or produced waters (i.e., coal-bed methane or oil and gas produced waters). Using a set of ion exchange and sorption materials, our process effectively removes anions and cations in separate steps. The ion exchange materials were chosen because of their specific selectivity for ions of interest, and for their ability to work in the temperature and pH regions necessary for cost and energy effectiveness. For anion exchange, we have focused on hydrotalcite (HTC), a layered hydroxide similar to clay in structure. For cation exchange, we have developed an amorphous silica material that has enhanced cation (in particular Na{sup +}) selectivity. In the case of produced waters with high concentrations of Ca{sup 2+}, a lime softening step is included.

  1. Tsunami and acoustic-gravity waves in water of constant depth

    SciTech Connect (OSTI)

    Hendin, Gali; Stiassnie, Michael

    2013-08-15

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  2. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  3. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    SciTech Connect (OSTI)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-01-03

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for

  4. Estimation of m.w.e (meter water equivalent) depth of the salt mine of Slanic Prahova, Romania

    SciTech Connect (OSTI)

    Mitrica, B.; Margineanu, R.; Stoica, S.; Petcu, M.; Brancus, I. M.; Petre, M.; Toma, G.; Saftoiu, A.; Apostu, A.; Jipa, A.; Lazanu, I.; Sima, O.; Haungs, A.; Rebel, H.

    2010-11-24

    A new mobile detector was developed in IFIN-HH, Romania, for measuring muon flux at surface and in underground. The measurements have been performed in the salt mines of Slanic Prahova, Romania. The muon flux was determined for 2 different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at surface at different altitudes were performed. Based on the results, the depth of the 2 galleries was established at 610 and 790 m.w.e. respectively.

  5. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Molina Bueno, Laura

    2015-09-01

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (1018 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problem related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry

  6. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam -- Annual Report -- October 2007-September 2008

    SciTech Connect (OSTI)

    Arntzen, Evan V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations----a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezo¬meters. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet.

  7. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  8. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  9. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam : Annual Report October 2007-September 2008

    SciTech Connect (OSTI)

    Arntzen, E.V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations - a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezometers. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet. During our overall monitoring period (October 2007 through June 2008), mean temperature in chum spawning areas was nearly 2 C warmer within the riverbed than in the overlying river. During chum salmon spawning (mid-November 2007 through December2007), mean riverbed temperature in the Ives Island area was 14.5 C, more than 5 C higher than in the river, where mean temperature was 9.4 C. During the incubation period (January 2008 through mid-May 2008), riverbed temperature was approximately 3 C greater than in the overlying river (10.5 C and 7.2 C, respectively). Chum salmon preferentially select spawning locations where riverbed temperatures are elevated; consequently the incubation time of alevin is shortened before they emerge in the spring.

  10. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  11. STRONTIUM PRECIPITATION

    DOE Patents [OSTI]

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  12. ARM - Measurement - Snow depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Snow depth Snow depth measured at the surface Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  13. Draft Genome Sequence of Pseudoalteromonas sp. Strain ND6B, an Oil-Degrading Isolate from Eastern Mediterranean Sea Water Collected at a Depth of 1,210 Meters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harris, Austin P.; Techtmann, Stephen M.; Stelling, Savannah C.; Utturkar, Sagar M.; Alshibli, Noor K.; Brown, Steven D.; Hazen, Terry C.

    2014-11-26

    We report the draft genome of Pseudoalteromonas sp. strain ND6B, which is able to grow with crude oil as a carbon source. Strain ND6B was isolated from eastern Mediterranean Sea deep water at a depth of 1,210 m. The genome of strain ND6B provides insight into the oil-degrading ability of the Pseudoalteromonas species.

  14. Performance of Evapotranspirative Covers Under Enhanced Precipitation: Preliminary Data

    SciTech Connect (OSTI)

    David C. Anderson, Lloyd T. Desotell, David B. Hudson, Gregory J. Shott, Vefa Yucel

    2007-02-01

    Since January 2001, drainage lysimeter studies have been conducted at Yucca Flat, on the Nevada Test Site, in support of an evapotranspirative cover design. Yucca Flat has an arid climate with average precipitation of 16.5 cm annually. The facility consists of six drainage lysimeters 3 m in diameter, 2.4 m deep, and backfilled with a single layer of native soil. The bottom of each lysimeter is sealed and equipped with a small drain that enables direct measurement of saturated drainage. Each lysimeter has eight time-domain reflectometer probes to measure moisture content-depth profiles paired with eight heat-dissipation probes to measure soil-water potential depth profiles. Sensors are connected to dataloggers which are remotely accessed via a phone line. The six lysimeters have three different surface treatments: two are bare-soil; two were revegetated with native species (primarily shadscale, winterfat, ephedra, and Indian rice grass); and two were allowed to revegetate naturally with such species as Russian thistle, halogeton, tumblemustard and cheatgrass. Beginning in October 2003, one half of the paired cover treatments (one bare soil, one invader species, and one native species) were irrigated with an amount of water equal to two times the natural precipitation to achieve a three times natural precipitation treatment. From October 2003 through December 2005, all lysimeters received 52.8 cm precipitation, and the four irrigated lysimeters received an extra 105.6 cm of irrigation. No drainage has occurred from any of the nonirrigated lysimeters, but moisture has accumulated at the bottom of the bare-soil lysimeter and the native-plant lysimeter. All irrigated lysimeters had some drainage. The irrigated baresoil lysimeter had 48.3 cm of drainage or 26.4 percent of the combined precipitation and applied irrigation for the entire monitoring record. The irrigated invader species lysimeter had 5.8 cm of drainage, about 3.2 percent of the combined precipitation and

  15. Streamflow and selected precipitation data for Yucca Mountain...

    Office of Scientific and Technical Information (OSTI)

    water years 1983--85 Citation Details In-Document Search Title: Streamflow and selected precipitation data for Yucca Mountain and vicinity, Nye County, Nevada, water years ...

  16. Depth Optimization Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kawase, Mitsuhiro

    2009-11-22

    The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu. Reference: Mitsuhiro Kawase, Patricia Beba, and Brian Fabien (2011), Finding an Optimal Placement Depth for a Tidal In-Stream Conversion Device in an Energetic, Baroclinic Tidal Channel, NNMREC Technical Report.

  17. Detecting vegetation-precipitation feedbacks in mid-Holocene...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Detecting vegetation-precipitation ... information resources in energy science and technology. ... of upper and lower soil water contents, and their ...

  18. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan...

    Office of Scientific and Technical Information (OSTI)

    Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic ...

  19. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, Peter M.; Reger, Robert J.

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  20. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  1. ARM - Word Seek: Precipitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precipitation Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Precipitation

  2. PRECIPITATION OF PROTACTINIUM

    DOE Patents [OSTI]

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  3. ARM - Measurement - Precipitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPrecipitation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Precipitation All liquid or solid phase aqueous particles that originate in the atmosphere and fall to the earth's surface. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  4. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOE Patents [OSTI]

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  5. Intermediate depth burial of classified transuranic wastes in arid alluvium

    SciTech Connect (OSTI)

    Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States). Environmental Risk and Decision Analysis Dept.; Crowe, B.M. [Los Alamos National Lab., NM (United States). Geologic Integration Group; Di Sanza, F. [Dept. of Energy, Las Vegas, NV (United States). Nevada Operations Office

    1999-04-01

    Intermediate depth disposal operations were conducted by the US Department of Energy (DOE) at the DOE`s Nevada Test Site (NTS) from 1984 through 1989. These operations emplaced high-specific activity low-level wastes (LLW) and limited quantities of classified transuranic (TRU) wastes in 37 m (120-ft) deep, Greater Confinement Disposal (GCD) boreholes. The GCD boreholes are 3 m (10 ft) in diameter and founded in a thick sequence of arid alluvium. The bottom 15 m (50 ft) of each borehole was used for waste emplacement and the upper 21 m (70 ft) was backfilled with native alluvium. The bottom of each GCD borehole is almost 200 m (650 ft) above the water table. The GCD boreholes are located in one of the most arid portions of the US, with an average precipitation of 13 cm (5 inches) per year. The limited precipitation, coupled with generally warm temperatures and low humidities results in a hydrologic system dominated by evapotranspiration. The US Environmental Protection Agency`s (EPA`s) 40 CFR 191 defines the requirements for protection of human health from disposed TRU wastes. This EPA standard sets a number of requirements, including probabilistic limits on the cumulative releases of radionuclides to the accessible environment for 10,000 years. The DOE Nevada Operations Office (DOE/NV) has contracted with Sandia National Laboratories (Sandia) to conduct a performance assessment (PA) to determine if the TRU wastes emplaced in the GCD boreholes complies with the EPA`s 40 CFR 191 requirements. This paper describes DOE`s actions undertaken to evaluate whether the TRU wastes in the GCD boreholes will, or will not, endanger human health. Based on preliminary modeling, the TRU wastes in the GCD boreholes meet the EPA`s requirements, and are, therefore, protective of human health.

  6. URANIUM PRECIPITATION PROCESS

    DOE Patents [OSTI]

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  7. PRECIPITATION OF ZIRCONIUM, NIOBIUM, AND RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOE Patents [OSTI]

    Wilson, A.S.

    1958-08-12

    An improvement on the"head end process" for decontaminating dissolver solutions of their Zr, Ni. and Ru values. The process consists in adding a water soluble symmetrical dialkyl ketone. e.g. acetone, before the formation of the manganese dioxide precipitate. The effect is that upon digestion, the ruthenium oxide does not volatilize, but is carried on the manganese dioxide precipitate.

  8. Urbanization and recharge in the vicinity of East Meadow Brook, Nassau County, New York, part 4. Water quality in the headwaters area, 1988-93. Water resources investigations

    SciTech Connect (OSTI)

    Brown, C.J.; Scorca, M.P.; Stockar, G.G.; Stumm, F.; Ku, H.F.H.

    1997-12-31

    This report (1) discusses the concentration of constituents in precipitation and stormwater in the headwaters area of East Meadow Brook, and (2) describes the extent, and depth to which ground water beneath the stream is affected by stormwater. It also relates the concentrations and loads of selected constituents, including sodium and chloride, to storm discharge and season. This is the final report from the four-part study that examined stormwater and ground water at East Meadow Brook during 1988-93.

  9. Precipitation hardening austenitic superalloys

    DOE Patents [OSTI]

    Korenko, Michael K. (Wexford, PA)

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  10. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    SciTech Connect (OSTI)

    Leung, L. R.; Prather, K.; Ralph, R.; Rosenfeld, D.; Spackman, R.; DeMott, P.; Fairall, C.; Fan, J.; Hagos, S.; Hughes, M.; Long, C.; Rutledge, S.; Waliser, D.; Wang, H.

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  11. ARM - Measurement - Aerosol optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sky-Scanning, Sun Tracking Atmospheric Research SAM : Sun and Aureole Measurement UAV-GNAT : UAV-General Atomics GNAT Value-Added Products AOD : Aerosol Optical Depth, derived from ...

  12. Biologically produced acid precipitable polymeric lignin

    DOE Patents [OSTI]

    Crawford, Don L.; Pometto, III, Anthony L.

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  13. Rotating drum variable depth sampler

    DOE Patents [OSTI]

    Nance, Thomas A.; Steeper, Timothy J.

    2008-07-01

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  14. Precipitation Process and Apparatus Therefor

    DOE Patents [OSTI]

    Stang, Jr, L C

    1950-12-05

    This invention concerns an apparatus for remotely-controlled precipitation and filtration operations. Liquid within a precipitation chamber is maintained above a porous member by introducing air beneath the member; pressure beneath the porous member is reduced to suck the liquid through the member and effect filtration.

  15. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    SciTech Connect (OSTI)

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column returned to aerobic

  16. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect (OSTI)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  17. Ultrasonic material hardness depth measurement

    DOE Patents [OSTI]

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  18. Ultrasonic material hardness depth measurement

    DOE Patents [OSTI]

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  19. Silica Precipitation and Lithium Sorption

    SciTech Connect (OSTI)

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  20. Evaluation of Global Monsoon Precipitation Changes based on Five Reanalysis Datasets

    SciTech Connect (OSTI)

    Lin, Renping; Zhou, Tianjun; Qian, Yun

    2014-02-01

    With the motivation to identify whether or not a reasonably simulated atmospheric circulation would necessarily lead to a successful reproduction of monsoon precipitation, the performances of five sets of reanalysis data (NCEP2, ERA40, JRA25, ERA-Interim and MERRA) in reproducing the climatology, interannual variation and long-term trend of global monsoon (GM) precipitation are comprehensively evaluated. In order to better understand the variability and long-term trend of GM precipitation, we also examined the major components of water budget, including evaporation, water vapor convergence and the change in local water vapor storage, based on five reanalysis datasets. The results show that all five reanalysis data reasonably reproduce the climatology of GM precipitation. The ERA-Interim (NCEP2) shows the highest (lowest) skill among the five datasets. The observed GM precipitation shows an increasing tendency during 1979-2001 along with a strong interannual variability, which is reasonably reproduced by the five sets of reanalysis data. The observed increasing trend of GM precipitation is dominated by the contribution from the North African, North American and Australian monsoons. All five data fail in reproducing the increasing tendency of North African monsoon precipitation. The wind convergence term in water budget equation dominate the GM precipitation variation, indicating a consistency between the GM precipitation and the seasonal change of prevailing wind.

  1. Stable isotopic study of precipitation and spring discharge on the Nevada Test Site

    SciTech Connect (OSTI)

    Ingraham, N.L.; Jacobson, R.L.; Hess, J.W.; Lyles, B.F. . Water Resources Center Nevada Univ., Reno, NV . Water Resources Center)

    1990-07-01

    Precipitation was collected in southern Nevada (on the Nevada Test Site) on a semi-regular monthly basis at 41 locations for six years for stable isotopic analysis. The precipitation record shows two time-based regimes. For the first three years of collection, the precipitation was highly variable with several large events and several dry periods. During the last three years of collection, the precipitation was much more even with no large events. However, there is no correlation between the variability in the amount of precipitation and the stable isotopic composition of precipitation. In addition, the oxygen isotope composition and discharge of two springs, Whiterock Spring and Cane Spring, issuing from perched water tables, were monitored for five years in a similar time frame as for the precipitation. 17 refs., 42 figs., 3 tabs.

  2. Portable liquid collection electrostatic precipitator

    DOE Patents [OSTI]

    Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.

    2005-10-18

    A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.

  3. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in

  4. Property:Depth(m) | Open Energy Information

    Open Energy Info (EERE)

    Depth(m) Jump to: navigation, search This is a property of type String. Pages using the property "Depth(m)" Showing 25 pages using this property. (previous 25) (next 25) 1 1.5-ft...

  5. An Improved Plutonium Trifluoride Precipitation Flowsheet

    SciTech Connect (OSTI)

    Harmon, H.D.

    2001-06-26

    This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

  6. Uterine caliper and depth gauge

    DOE Patents [OSTI]

    King, Loyd L.; Wheeler, Robert G.; Fish, Thomas M.

    1977-01-01

    A uterine caliper and sound consisting of an elongated body having outwardly biased resilient caliper wings and a spring-loaded slidable cervical stop. A slide on the body is operatively connected to the wings by a monofilament and operates with respect to a first scale on the body as a width indicator. A rod extending longitudinally on the body is connected to the cervical stop and cooperates with a second scale on the body as a depth indicator. The instrument can be positioned to measure the distance from the outer cervical ostium to the fundus, as read on said second scale. The wings may be allowed to open by moving the slide, and when the wings engage the utero-tubal junctions, the width may be read on said first scale. By adjustment of the caliper wings the instrument may be retracted until the resistance of the inner ostium of the cervix is felt, enabling the length of the cervical canal to be read directly by the position of the longitudinal indicator rod with respect to said second scale. The instrument may be employed to measure the width of the uterine cavity at any position between the inner ostium of the cervix and the fundus.

  7. Life Cycle Water Consumption and Water Resource Assessment for...

    Office of Scientific and Technical Information (OSTI)

    Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details ...

  8. Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Terai, C. R.; Wood, R.; Kubar, T. L.

    2015-09-05

    Quantifying the sensitivity of warm rain to aerosols is important for constraining climate model estimates of aerosol indirect effects. In this study, the precipitation sensitivity to cloud droplet number concentration (Nd) in satellite retrievals is quantified by applying the precipitation susceptibility metric to a combined CloudSat/Moderate Resolution Imaging Spectroradiometer data set of stratus and stratocumulus clouds that cover the tropical and subtropical Pacific Ocean and Gulf of Mexico. We note that consistent with previous observational studies of marine stratocumulus, precipitation susceptibility decreases with increasing liquid water path (LWP), and the susceptibility of the mean precipitation rate R is nearly equalmore » to the sum of the susceptibilities of precipitation intensity and of probability of precipitation. Consistent with previous modeling studies, the satellite retrievals reveal that precipitation susceptibility varies not only with LWP but also with Nd. Puzzlingly, negative values of precipitation susceptibility are found at low LWP and high Nd. There is marked regional variation in precipitation susceptibility values that cannot simply be explained by regional variations in LWP and Nd. This suggests other controls on precipitation apart from LWP and Nd and that precipitation susceptibility will need to be quantified and understood at the regional scale when relating to its role in controlling possible aerosol-induced cloud lifetime effects.« less

  9. Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds

    SciTech Connect (OSTI)

    Terai, C. R.; Wood, R.; Kubar, T. L.

    2015-09-05

    Quantifying the sensitivity of warm rain to aerosols is important for constraining climate model estimates of aerosol indirect effects. In this study, the precipitation sensitivity to cloud droplet number concentration (Nd) in satellite retrievals is quantified by applying the precipitation susceptibility metric to a combined CloudSat/Moderate Resolution Imaging Spectroradiometer data set of stratus and stratocumulus clouds that cover the tropical and subtropical Pacific Ocean and Gulf of Mexico. We note that consistent with previous observational studies of marine stratocumulus, precipitation susceptibility decreases with increasing liquid water path (LWP), and the susceptibility of the mean precipitation rate R is nearly equal to the sum of the susceptibilities of precipitation intensity and of probability of precipitation. Consistent with previous modeling studies, the satellite retrievals reveal that precipitation susceptibility varies not only with LWP but also with Nd. Puzzlingly, negative values of precipitation susceptibility are found at low LWP and high Nd. There is marked regional variation in precipitation susceptibility values that cannot simply be explained by regional variations in LWP and Nd. This suggests other controls on precipitation apart from LWP and Nd and that precipitation susceptibility will need to be quantified and understood at the regional scale when relating to its role in controlling possible aerosol-induced cloud lifetime effects.

  10. U.S.DOE Global Monthly Station Temperature and Precipitation, 1738-1980

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The global monthly station temperature and precipitation data from the U.S. Department of Energy, a dataset hosted at, covers the time period from January, 1738 to December, 1980. The air temperature and precipitation levels are platform observations from ground and water surfaces. The data are maintained in the Research Data Archive at the National Center for Atmospheric Research.

  11. Examinations of Oxidation and Sulfidation of Grain Boundaries in Alloy 600 Exposed to Simulated Pressurized Water Reactor Primary Water

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Saxey, David W.; Kruska, Karen; Moore, K. L.; Lozano-Perez, Sergio; Bruemmer, Stephen M.

    2013-06-01

    High-resolution characterizations of intergranular attack in alloy 600 (Ni-17Cr-9Fe) exposed to 325 C simulated pressurized water reactor (PWR) primary water have been conducted using a combination of scanning electron microscopy, NanoSIMS, analytical transmission electron microscopy and atom probe tomography. The intergranular attack exhibited a two-stage microstructure that consisted of continuous corrosion/oxidation to a depth of ~200 nm from the surface followed by discrete Cr-rich sulfides to a further depth of ~500 nm. The continuous oxidation region contained primarily nanocrystalline MO-structure oxide particles and ended at Ni-rich, Cr-depleted grain boundaries with spaced CrS precipitates. Three-dimensional characterization of the sulfidized region using site-specific atom probe tomography revealed extraordinary grain boundary composition changes, including total depletion of Cr across a several nm wide dealloyed zone as a result of grain boundary migration.

  12. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect (OSTI)

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the worlds first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STARs spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  13. Characterization of extreme precipitation within atmospheric river events over California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeon, S.; Prabhat,; Byna, S.; Gu, J.; Collins, W. D.; Wehner, M. F.

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  14. ARM - Routine AAF Clouds with Low Optical Water Depths (CLOWD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Discovery Channel Earth Live Blog News & Press RACORO Backgrounder (PDF, 528K) ... will obtain representative statistics of cloud microphysical, aerosol, and ...

  15. ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Precipitation Datastream Title: ARM: 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream 1290-MHz Beam-Steered Radar Wind Profiler: Precipitation Datastream ...

  16. ARM: 1290-MHz Radar Wind Profiler, precipitation moments data...

    Office of Scientific and Technical Information (OSTI)

    1290-MHz Radar Wind Profiler, precipitation moments data Title: ARM: 1290-MHz Radar Wind Profiler, precipitation moments data 1290-MHz Radar Wind Profiler, precipitation moments ...

  17. Life Cycle Water Consumption and Water Resource Assessment for

    Office of Scientific and Technical Information (OSTI)

    Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects (Technical Report) | SciTech Connect Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details In-Document Search Title: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS

  18. In-Drift Precipitates/Salts Model

    SciTech Connect (OSTI)

    P. Mariner

    2004-11-09

    This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, OH{sup -}, H{sup +}, HSO{sub 4}{sup -}, Ca{sup 2+}, Mg{sup 2+}, CaHCO{sub 3}{sup +}, MgHCO{sub 3}{sup +}, HSiO{sub 3

  19. Control of electrode depth in electroslag remelting

    DOE Patents [OSTI]

    Melgaard, David K.; Shelmidine, Gregory J.; Damkroger, Brian K.

    2002-01-01

    A method of and apparatus for controlling an electroslag remelting furnace by driving the electrode at a nominal speed based upon melting rate and geometry while making minor proportional adjustments based on a measured metric of the electrode immersion depth. Electrode drive speed is increased if a measured metric of electrode immersion depth differs from a set point by a predetermined amount, indicating that the tip is too close to the surface of a slag pool. Impedance spikes are monitored to adjust the set point for the metric of electrode immersion depth based upon one or more properties of the impedance spikes.

  20. Arid site water balance: evapotranspiration modeling and measurements

    SciTech Connect (OSTI)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table.

  1. METATHESIS OF PLUTONIUM CARRIER LANTHANUM FLUORIDE PRECIPITATE WITH AN ALKALI

    DOE Patents [OSTI]

    Duffield, R.B.

    1960-04-01

    A plutonium fluoride precipitate is converted to plutonium hydroxide by digesting the precipitate with an aqueous alkali metal hydroxide solution.

  2. Mechanisms affecting swelling in alloys with precipitates

    SciTech Connect (OSTI)

    Mansur, L.K.; Haynes, M.R.; Lee, E.H.

    1980-01-01

    In alloys under irradiation many mechanisms exist that couple phase instability to cavity swelling. These are compounded with the more familiar mechanisms associated with point defect behavior and the evolution of microstructure. The mechanisms may be classified according to three modes of operation. Some affect cavity swelling directly by cavity-precipitate particle association, others operate indirectly by precipitate-induced changes in sinks other than cavities and finally there are mechanisms that are mediated by precipitate-induced changes in the host matrix. The physics of one mechanism of each type is developed in detail and the results compared where possible to experimental measurements. In particular, we develop the theory necessary to treat the effects on swelling of precipitation-induced changes in overall sink density; precipitation-induced changes in point defect trapping by solute depletion and creation of precipitate particle-matrix interfacial trap sites.

  3. METHOD FOR REMOVING CONTAMINATION FROM PRECIPITATES

    DOE Patents [OSTI]

    Stahl, G.W.

    1959-01-01

    An improvement in the bismuth phosphate carrier precipitation process is presented for the recovery and purification of plutonium. When plutonium, in the tetravalent state, is carried on a bismuth phosphate precipitate, amounts of centain of the fission products are carried along with the plutonium. The improvement consists in washing such fission product contaminated preeipitates with an aqueous solution of ammonium hydrogen fluoride. since this solution has been found to be uniquely effective in washing fission production contamination from the bismuth phosphate precipitate.

  4. ARM - Will There be Increased Global Precipitation?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Will There be Increased Global Precipitation? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Will There be Increased Global Precipitation? Very probable. Along with an increase in air temperature might be an increase in evaporation, which could lead to greater global precipitation. The

  5. ARM - Evaluation Product - Corrected Precipitation Radar Moments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would...

  6. Radioactivity in Precipitation: Methods and Observations from...

    Office of Environmental Management (EM)

    Radioactivity in Precipitation: Methods & Observations from Savannah River Site Dennis Jackson ...operatingops- experiencetritiumplant-info.html 14 15 DOE Nuclear & NRC ...

  7. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment a NOAA ship in the Pacific Ocean and on a DOE- sponsored plane over land and sea. These researchers will study: (1) water sources, evolution and structure of...

  8. Using the depth-velocity-size diagram to interpret equilibrium bed configurations in river flows

    SciTech Connect (OSTI)

    Southard, J.B. (Massachusetts Institute of Technology, Cambridge, MA (USA))

    1990-05-01

    Data from flume studies that report equilibrium bed configuration as well as water temperature, flow depth, flow velocity, and sediment size were used to develop the best approximation to the relationships among the various bed phases (ripples, dunes, lower regime plane bed, upper regime plane bed, and antidunes) in a three-axis graph (depth-velocity-size diagram) with dimensionless measures of mean flow depth, mean flow velocity, and sediment size along the axis. Relationships are shown in a series of depth-velocity and velocity-size sections through the diagram. Boundaries between bed-phase stability fields are drawn as surfaces that minimize, misplacement of data points. A large subset of the data, for which reliable values of bed shear stress are reported, was also used to represent the stability relationships in a graph of dimensionless boundary shear stress against dimensionless sediment size, but with results less useful for fluvial flow interpretation. The diagram covers about one order of magnitude in flow depth. To be useful for river flows, the diagram must be extrapolated in flow depth by about one more order of magnitude, but this is not a serious problem for approximate work. The depth-velocity-size diagram permits prediction of equilibrium bed configuration in river flows when the approximate flow depth and mean flow velocity are known. Because the diagram is essentially dimensionless, the effect of water temperature (via the fluid viscosity) on the bed configuration is easily accounted for by use of the diagram.

  9. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect (OSTI)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  10. Precipitation and soil impacts on partitioning of subsurface moisture in Avena barbata: Observations from a greenhouse experiment

    SciTech Connect (OSTI)

    Salve, R.; Torn, M.S.

    2011-03-01

    The primary objective of this study was to assess the impact of two grassland soils and precipitation regimes on soil-moisture dynamics. We set up an experiment in a greenhouse, and monitored soil moisture dynamics in mesocosms planted with Avena barbata, an annual species found in California grasslands. By repeating the precipitation input at regular intervals, we were able to observe plant manipulation of soil moisture during well-defined periods during the growing season. We found that the amount of water partitioned to evapotranspiration, seepage, and soil storage varied among different growth stages. Further, both soil type and precipitation regimes had a significant impact on redistributing soil moisture. Whereas in the low-precipitation treatments most water was released to the atmosphere as evapotranspiration, major losses from the high-precipitation treatment occurred as gravity drainage. Observations from this study emphasize the importance of understanding intra-seasonal relationships between vegetation, soil, and water.

  11. ARM - PI Product - Niamey Aerosol Optical Depths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Optical Depths ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Niamey Aerosol Optical Depths MFRSR irradiance data collected during the ACRF AMF deployment in Niamey, Niger have been used to derive AOD for five wavelength channels of the MFRSR. These data have been corrected to adjust for filter drift over the course of the campaign and contamination due to forward scattering as a result of

  12. Two-stage precipitation of neptunium (IV) oxalate

    SciTech Connect (OSTI)

    Luerkens, D. W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide.

  13. Flotation process for removal of precipitates from electrochemical chromate reduction unit

    DOE Patents [OSTI]

    DeMonbrun, James R.; Schmitt, Charles R.; Williams, Everett H.

    1976-01-01

    This invention is an improved form of a conventional electrochemical process for removing hexavalent chromium or other metal-ion contaminants from cooling-tower blowdown water. In the conventional process, the contaminant is reduced and precipitated at an iron anode, thus forming a mixed precipitate of iron and chromium hydroxides, while hydrogen being evolved copiously at a cathode is vented from the electrochemical cell. In the conventional process, subsequent separation of the fine precipitate has proved to be difficult and inefficient. In accordance with this invention, the electrochemical operation is conducted in a novel manner permitting a much more efficient and less expensive precipitate-recovery operation. That is, the electrochemical operation is conducted under an evolved-hydrogen partial pressure exceeding atmospheric pressure. As a result, most of the evolved hydrogen is entrained as bubbles in the blowdown in the cell. The resulting hydrogen-rich blowdown is introduced to a vented chamber, where the entrained hydrogen combines with the precipitate to form a froth which can be separated by conventional techniques. In addition to the hydrogen, two materials present in most blowdown act as flotation promoters for the precipitate. These are (1) air, with which the blowdown water becomes saturated in the course of normal cooling-tower operation, and (2) surfactants which commonly are added to cooling-tower recirculating-water systems to inhibit the growth of certain organisms or prevent the deposition of insoluble particulates.

  14. In-Drift Precipitates/Salts Model

    SciTech Connect (OSTI)

    P. Mariner

    2003-10-21

    As directed by ''Technical Work Plan For: Engineered Barrier System Department Modeling and Testing FY03 Work Activities'' (BSC 2003 [165601]), the In-Drift Precipitates/Salts (IDPS) model is developed and refined to predict the aqueous geochemical effects of evaporation in the proposed repository. The purpose of this work is to provide a model for describing and predicting the postclosure effects of evaporation and deliquescence on the chemical composition of water within the proposed Engineered Barrier System (EBS). Application of this model is to be documented elsewhere for the Total System Performance Assessment License Application (TSPA-LA). The principal application of this model is to be documented in REV 02 of ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2003 [165601]). The scope of this document is to develop, describe, and validate the IDPS model. This model is a quasi-equilibrium model. All reactions proceed to equilibrium except for several suppressed minerals in the thermodynamic database not expected to form under the proposed repository conditions within the modeling timeframe. In this revision, upgrades to the EQ3/6 code (Version 8.0) and Pitzer thermodynamic database improve the applicable range of the model. These new additions allow equilibrium and reaction-path modeling of evaporation to highly concentrated brines for potential water compositions of the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O at temperatures in the range of 0 C to 125 C, pressures in the atmospheric range, and relative humidity in the range of 0 to 100 percent. This system applies to oxidizing conditions only, and therefore limits the model to applications involving oxidizing conditions. A number of thermodynamic parameters in the Pitzer database have values that have not been determined or verified for the entire temperature range. In these cases, the known values are used to approximate

  15. Defense-in-Depth, How Department of Energy Implements Radiation...

    Energy Savers [EERE]

    Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Defense-in-Depth, How Department of Energy Implements Radiation Protection in ...

  16. ARM - Evaluation Product - Precipitation Radar Moments Mapped...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Precipitation Radar Moments Mapped to a Cartesian Grid The Scanning...

  17. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  18. ARM Data Help Improve Precipitation in Global Climate Models...

    Office of Science (SC) Website

    ARM Data Help Improve Precipitation in Global Climate Models Biological and Environmental ... ARM Data Help Improve Precipitation in Global Climate Models Cloud, radiation, and drizzle ...

  19. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    SciTech Connect (OSTI)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  20. MWRRET Value-Added Product: The Retrieval of Liquid Water Path...

    Office of Scientific and Technical Information (OSTI)

    MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2) Citation Details In-Document ...

  1. Precipitation of metal nitrides from chloride melts

    SciTech Connect (OSTI)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-12-31

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts.

  2. Precipitation in Pores: A Geochemical Frontier

    SciTech Connect (OSTI)

    Stack, Andrew G.

    2015-01-01

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid velocities

  3. Precipitation in pores: A geochemical frontier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below.more » The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid

  4. High volume, multiple use, portable precipitator

    DOE Patents [OSTI]

    Carlson, Duane C.

    2011-10-25

    A portable high air volume electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a collection electrode adapted to carry a variety of collecting media. An air intake is provided such that air to be analyzed flows through an ionization section with a transversely positioned ionization wire to ionize analytes in the air, and then flows over the collection electrode where ionized analytes are collected. Air flow is maintained at but below turbulent flow, Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the selected medium which can be removed for analysis.

  5. Estimating Annual Precipitation in the Fenner Basin of the Eastern Mojave Desert, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Rose, T.P.

    2000-05-15

    Metropolitan Water District (MWD) of southern California and Cadiz Inc. investigated the feasibility of storing Colorado River water in groundwater aquifers of the eastern Mojave Desert as a future drought mitigation strategy. This culminated in the public release of the Cadiz Groundwater Storage and Dry-Year Supply program Draft EIR, which included pilot percolation studies, groundwater modeling, and precipitation/runoff analysis in the Fenner groundwater basin, which overlies the proposed storage site. The project proposes to store and withdrawal Colorado River water over a 50-year period, but will not exceed the natural replenishment rates of the groundwater basin. Several independent analyses were conducted to estimate the rates of natural groundwater replenishment to the Fenner Groundwater Basin which was included in the Draft EIR. The US Geologic Survey, Water Resources Division (WRD) officially submitted comments during public review and concluded that the natural groundwater replenishment rates calculated for the Draft EIR were too high. In the WRD review, they provided a much lower recharge calculation based on a Maxey-Eakin estimation approach. This approach estimates annual precipitation over an entire basin as a function of elevation, followed by calibration against annual recharge rates. Previous attempts to create precipitation-elevation functions in western Nevada have been difficult and result in large uncertainty. In the WRD data analysis, the effect of geographic scale on the precipitation-elevation function was overlooked. This contributed to an erroneous Maxey-Eakin recharge estimate.

  6. Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012

    SciTech Connect (OSTI)

    Puscas, R.; Feurdean, V.; Simon, V.

    2013-11-13

    The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviated from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.

  7. Effects of Aerosols on Autumn Precipitation over Mid-Eastern China

    SciTech Connect (OSTI)

    Chen, Siyu; Huang, J.; Qian, Yun; Ge, Jinming; Su, Jing

    2014-09-20

    Long-term observational data indicated a decreasing trend for the amount of autumn precipitation (i.e. 54.3 mm per decade) over Mid-Eastern China, especially after 1980s (~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy (i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Ours results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to the relatively more stable synoptic system in autumn. The impact of large-scale circulation dominated in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.

  8. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOE Patents [OSTI]

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  9. Superconductor precursor mixtures made by precipitation method

    DOE Patents [OSTI]

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1989-01-01

    Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.

  10. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  11. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  12. Rooting depths of plants relative to biological and environmental factors

    SciTech Connect (OSTI)

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  13. Changes in Concurrent Precipitation and Temperature Extremes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  14. Changes in Concurrent Precipitation and Temperature Extremes

    SciTech Connect (OSTI)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes. The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.

  15. PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS

    DOE Patents [OSTI]

    Thompson, S.G.

    1960-04-26

    A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

  16. Water softening process

    DOE Patents [OSTI]

    Sheppard, John D.; Thomas, David G.

    1976-01-01

    This invention involves an improved process for softening hard water which comprises selectively precipitaing CaCO.sub.3 to form a thin layer thereof, increasing the pH of said water to precipitate magnesium as magnesium hydroxide and then filtering the resultant slurry through said layer. The CaCO.sub.3 layer serves as a thin permeable layer which has particularly useful application in cross-flow filtration applications.

  17. Radioactive demonstration of the late wash'' Precipitate Hydrolysis Process

    SciTech Connect (OSTI)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the late wash'' flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  18. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect (OSTI)

    Bannochie, C.J.

    1992-10-05

    This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).

  19. Radioactive demonstration of the ``late wash`` Precipitate Hydrolysis Process

    SciTech Connect (OSTI)

    Bibler, N.E.; Ferrara, D.M.; Ha, B.C.

    1992-06-30

    This report presents results of the radioactive demonstration of the DWPF Precipitate Hydrolysis Process as it would occur in the ``late wash`` flowsheet in the absence of hydroxylamine nitrate. Radioactive precipitate containing Cs-137 from the April, 1983, in-tank precipitation demonstration in Tank 48 was used for these tests.

  20. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    SciTech Connect (OSTI)

    Castle, James W.; Rodgers, John H.; Alley, Bethany; Beebe, Alex; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael M.

    2013-08-08

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  1. Innovative Water Management Technology to Reduce Environment Impacts of Produced Water

    SciTech Connect (OSTI)

    Castle, James; Rodgers, John; Alley, Bethany; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  2. Innovative Water Management Technology to Reduce Environmental Impacts of Produced Water

    SciTech Connect (OSTI)

    Castle, James; Rodgers, John; Alley, Bethany; Beebe, Alex; Coffey, Ruthanne; Jurinko, Kristen; Pardue, Michael; Ritter, Tina; Spacil, Michael

    2013-05-15

    Clemson University with Chevron as an industry partner developed and applied treatment technology using constructed wetland systems to decrease targeted constituents in simulated and actual produced waters to achieve reuse criteria and discharge limits. Pilot-scale and demonstration constructed wetland treatment system (CWTS) experiments led to design strategies for treating a variety of constituents of concern (COCs) in produced waters including divalent metals, metalloids, oil and grease, and ammonia. Targeted biogeochemical pathways for treatment of COCs in pilot-scale CWTS experiments included divalent metal sulfide precipitation through dissimilatory sulfate reduction, metal precipitation through oxidation, reduction of selenite to insoluble elemental selenium, aerobic biodegradation of oil, nitrification of ammonia to nitrate, denitrification of nitrate to nitrogen gas, separation of oil using an oilwater separator, and sorption of ammonia to zeolite. Treatment performance results indicated that CWTSs can be designed and built to promote specific environmental and geochemical conditions in order for targeted biogeochemical pathways to operate. The demonstration system successfully achieved consistent removal extents even while inflow concentrations of COCs in the produced water differed by orders of magnitude. Design strategies used in the pilot-scale and demonstration CWTSs to promote specific conditions that can be applied to designing full-scale CWTSs include plant and soil selection, water-depth selection, addition of amendments, and hydraulic retention time (HRT). These strategies allow conditions within a CWTS to be modified to achieve ranges necessary for the preferred biogeochemical treatment pathways. In the case of renovating a produced water containing COCs that require different biogeochemical pathways for treatment, a CWTS can be designed with sequential cells that promote different conditions. For example, the pilot-scale CWTS for post

  3. Method and apparatus of prefetching streams of varying prefetch depth

    DOE Patents [OSTI]

    Gara, Alan; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan; Hoenicke, Dirk

    2012-01-24

    Method and apparatus of prefetching streams of varying prefetch depth dynamically changes the depth of prefetching so that the number of multiple streams as well as the hit rate of a single stream are optimized. The method and apparatus in one aspect monitor a plurality of load requests from a processing unit for data in a prefetch buffer, determine an access pattern associated with the plurality of load requests and adjust a prefetch depth according to the access pattern.

  4. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect (OSTI)

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  5. Control Systems Cyber Security: Defense in Depth Strategies ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cyber Security: Defense in Depth Strategies Control Systems Cyber Security: Defense in ... strategies for organizations that use control system networks while maintaining a ...

  6. Bouguer gravity anomalies, depth to bedrock, and shallow temperature...

    Open Energy Info (EERE)

    Bouguer gravity anomalies, depth to bedrock, and shallow temperature in the Humboldt House geothermal area, Pershing County, Nevada Jump to: navigation, search OpenEI Reference...

  7. Hyperspectral aerosol optical depths from TCAP flights (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Hyperspectral aerosol optical depths from TCAP flights Citation Details ... DOE Contract Number: DE-AC02-98CH10886 Resource Type: Journal Article Resource Relation: ...

  8. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the MPLNOR (Micro Pulse Lidar Normalized Backscatter) and radiosonde thermodynamic profiles. The optical depth retrieval is derived following Comstock et al. (2001),...

  9. Understanding Fault Characteristics And Sediment Depth For Geothermal...

    Open Energy Info (EERE)

    Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search OpenEI Reference...

  10. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology ...

  11. A Comparison of Cirrus Cloud Visible Optical Depth Derived from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar Lo, Chaomei Pacific Northwest National Laboratory Comstock, Jennifer Pacific Northwest National Laboratory...

  12. Geochemical and isotopic water results, Barrow, Alaska, 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Heikoop, Jeff; Wilson, Cathy; Newman, Brent

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  13. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    SciTech Connect (OSTI)

    Anderson, J.E.

    1997-12-31

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands of perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.

  14. Chemical composition of interstitial waters from the Japan Sea, ODP Leg 128

    SciTech Connect (OSTI)

    Sturz, A. ); Von Breymann, M.; Dunbar, R. )

    1990-06-01

    During ODP Leg 128, interstitial waters were recovered from Oki Ridge (Site 798) and Kita-Yamato Trough (Site 799) sediment, Sea of Japan. Interstitial water chemical composition reflects diagenetic processes. Evidence indicating organic matter degradation processes includes sulfate depletion, high ammonium concentrations, and shallow maxima of dissolved phosphate. Rapid alkalinity increases in the uppermost sections of the sediments are accompanied by decreases in dissolved calcium, reflecting inorganic calcite precipitation. Authigenic dolomitization results in changes in slopes of the Mg/Ca molar ratios with depth. The opal-A/opal-CT transition is documented by the concentration depth profiles of dissolved silica and lithium. Dolomitization precedes the opal-A/opal-CT transition at both sites. Kita-Yamato Trough sediments show an abrupt change in the compositional character of the pore fluids below 435 mbsf, which coincides with the occurrence of low porosity and high bulk density layers composed of dolomite and opal-CT. These layers impede to some extent diffusional communication with the overlying interstitial waters. The interstitial waters in sediments below 435 mbsf have chloride concentrations of 504-515 mM, significantly lower than that of modern day Japan Sea water (540 mM). The presence of low chloride waters within Miocene age sediments may indicate: (1) diagenetic reactions that involve the release of exchangeable and structural bound water from clay minerals and/or opal-A, (2) Miocene connate brackish lake water, (3) phase separation of hydrothermal fluids associated with rifting, (4) potential effects of clay membrane filtration in a high pressure zone.

  15. Disordered amorphous calcium carbonate from direct precipitation

    SciTech Connect (OSTI)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value in iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.

  16. Disordered amorphous calcium carbonate from direct precipitation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; Hauser, Karin; Zhang, Peng; Hedin, Niklas; Gebauer, Denis

    2015-06-01

    Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less

  17. An Evaluation of MWR Retrievals of Liquid Water Path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of MWR Retrievals of Liquid Water Path and Precipitable Water Vapor R. T. Marchand and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction This paper offers some observations on the quality of Microwave Radiometer (MWR) retrievals of precipitable water vapor (PWV) and liquid water path (LWP). The paper shows case study comparisons between the standard "statistical" approach and those obtained using an iterative solution of the microwave

  18. Detecting Fractures Using Technology at High Temperatures and Depths -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report | Department of Energy Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal

  19. Electrode immersion depth determination and control in electroslag remelting furnace

    DOE Patents [OSTI]

    Melgaard, David K.; Beaman, Joseph J.; Shelmidine, Gregory J.

    2007-02-20

    An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.

  20. Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand

    SciTech Connect (OSTI)

    Jones, B.; Renaut, R.W.; Rosen, M.R.

    1997-01-01

    Before anthropogenic modifications, Ohaaki Pool (Broadlands-Ohaaki) and Dragon`s Mouth Geyser (Wairakei) emitted waters at temperatures of 93--98 C. The siliceous sinter that precipitated around their vents has the characteristics of geyserite, a dense laminated deposit of presumed abiogenic origin, that was precipitated from waters too hot (>73C) to support microbes other than thermophilic bacteria. Petrographic and SEM examinations of the sinters show that they incorporate columnar stromatolites and silicified, laminated stromatolitic mats that contain well-preserved filamentous microbes. At both localities the microbes lack evidence of desiccation or shrinkage, which implies that they were silicified rapidly at or shortly after their death. Although boiling and very hot (>90 C) waters were discharged, temperatures at many sites surrounding the vents remained sufficiently low and moist to support a microbial community that included thermophilic bacteria and cyanobacteria. In these cooler niches, the microbes and their biofilms served as highly favorable templates for the nucleation and growth of amorphous silica, and collectively provided a microbial framework for the laminated accretionary sinter. Some columnar, spicular, and stratiform geyserites are probably not abiotic precipitates, but are true silica stromatolites.

  1. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams

    SciTech Connect (OSTI)

    Ono, Takeshi; Araki, Fujio; Yoshiyama, Fumiaki

    2011-08-15

    Purpose: This study investigated the possibility of using cylindrical ionization chambers for percent depth-dose (PDD) measurements in high-energy clinical electron beams. Methods: The cavity correction factor, P{sub cav}, for cylindrical chambers with various diameters was calculated as a function of depth from the surface to R{sub 50}, in the energy range of 6-18 MeV electrons with the EGSnrc C ++ -based user-code CAVITY. The results were compared with those for IBA NACP-02 and PTW Roos parallel-plate ionization chambers. The effective point of measurement (EPOM) for the cylindrical chamber and the parallel-plate chamber was positioned according to the IAEA TRS-398 code of practice. The overall correction factor, P{sub Q}, and the percent depth-ionization (PDI) curve for a PTW30013 Farmer-type chamber were also compared with those of NACP-02 and Roos chambers. Results: The P{sub cav} values at depths between the surface and R{sub 50} for cylindrical chambers were all lower than those with parallel-plate chambers. However, the variation in depth for cylindrical chambers equal to or less than 4 mm in diameter was equivalent to or smaller than that for parallel-plate chambers. The P{sub Q} values for the PTW30013 chamber mainly depended on P{sub cav}, and for parallel-plate chambers depended on the wall correction factor, P{sub wall}, rather than P{sub cav}. P{sub Q} at depths from the surface to R{sub 50} for the PTW30013 chamber was consequently a lower value than that with parallel-plate chambers. However, the variation in depth was equivalent to that of parallel-plate chambers at electron energies equal to or greater than 9 MeV. The shift to match calculated PDI curves for the PTW30013 chamber and water (perturbation free) varied from 0.65 to 0 mm between 6 and 18 MeV beams. Similarly, the shifts for NACP-02 and Roos chambers were 0.5-0.6 mm and 0.2-0.3 mm, respectively, and were nearly independent of electron energy. Conclusions: Calculated PDI curves for PTW

  2. Method for Removing Precipitates in Biofuel - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Method for Removing Precipitates in Biofuel Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryAt ORNL the application of ultrasonic energy, or sonication, has been shown to successfully remove or prevent the formation of 50-90% of the precipitates in biofuels. Precipitates can plug filters as biodiesel is transported from one location to another, and often cannot be detected

  3. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign Links Field Campaign Report ACAPEX Website ARM Data Discovery Browse Data Related Campaigns ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerosols and Ocean Science Expedition (AEROSE) 2015.01.14, Morris, AMF ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Ship-Based Ice Nuclei Collections 2015.01.14, DeMott, AMF ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14, Leung, AAF Comments? We would love to hear from you! Send us a note below or

  4. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign...

    Office of Scientific and Technical Information (OSTI)

    2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. ...

  5. Separating Cloud and Drizzle Radar Moments during Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Onset using Doppler Spectra Citation Details In-Document Search Title: Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Authors: ...

  6. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic...

    Office of Scientific and Technical Information (OSTI)

    and Space Administration (NASA) Global Precipitation Mission (GPM) Ground Validation (GV) field campaign after the launch of the GPM Core Satellite (Barros et al. 2014). ...

  7. Mechanisms Contributing to Suppressed Precipitation in Mt. Hua...

    Office of Scientific and Technical Information (OSTI)

    Consistent with the increase of air pollution in these regions, it has been argued that the precipitation trend is linked to aerosol microphysical effect on suppressing warm rain. ...

  8. ARM: Auxiliary data for the Total Precipitation Sensor (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Availability: ORNL Language: English Subject: 54 Environmental Sciences Atmospheric temperature; Horizontal wind; Precipitation Dataset File size NAView Dataset View Dataset DOI: ...

  9. Microbial Activity and Precipitation at Solution-Solution Mixing...

    Office of Scientific and Technical Information (OSTI)

    Media -- Subsurface Biogeochemical Research Citation Details In-Document Search Title: Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media -- ...

  10. Insights from modeling and observational evaluation of a precipitating...

    Office of Scientific and Technical Information (OSTI)

    Insights from modeling and observational evaluation of a precipitating continental cumulus event observed during the MC3E field campaign Title: Insights from modeling and ...

  11. Comparison of Uncertainty of Two Precipitation Prediction Models...

    Office of Scientific and Technical Information (OSTI)

    Prediction Models at Los Alamos National Lab Technical Area 54 Citation Details In-Document Search Title: Comparison of Uncertainty of Two Precipitation Prediction Models ...

  12. Detecting vegetation-precipitation feedbacks in mid-Holocene...

    Office of Scientific and Technical Information (OSTI)

    North Africa from two climate models Citation Details In-Document Search Title: Detecting vegetation-precipitation feedbacks in mid-Holocene North Africa from two ...

  13. Precipitation and Hydrology Experiment Counter-Flow Spectrometer...

    Office of Scientific and Technical Information (OSTI)

    (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA ...

  14. Flowsheet Development for the New Neptunium Oxalate Precipitation System

    SciTech Connect (OSTI)

    Luerkens, D.W.

    2001-08-16

    This report summarizes laboratory development work and provides flowsheet guidelines for neptunium (IV) oxalate precipitation in the new HB-Line.

  15. An optimal merging technique for high-resolution precipitation products

    SciTech Connect (OSTI)

    Houser, Paul

    2011-01-01

    Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.

  16. Process for removing metals from water

    DOE Patents [OSTI]

    Napier, John M.; Hancher, Charles M.; Hackett, Gail D.

    1989-01-01

    A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a flocculating agent, separating precipitate-containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions.

  17. Confocal volume in laser Raman microscopy depth profiling

    SciTech Connect (OSTI)

    Maruyama, Yutaka; Kanematsu, Wataru

    2011-11-15

    To clarify the degradation of confocality in laser Raman microscopy depth profiling (optical sectioning) and the influence of pinhole filtering on it, we investigate the confocal volume in detail based on Gaussian beam optics and scalar wave optics. Theoretical depth profiles of a homogeneous transparent sample for four different pinhole sizes, which are computed using the measured incident beam waist radius w{sub 0} and only a few optical system specific parameters such as a numerical aperture (NA) and a focal length, show a good agreement with the corresponding measured depth profiles. The computed confocal volume demonstrates that the pinhole size affects the actual probe depth as well as the axial resolution and the total intensity loss.

  18. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect (OSTI)

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  19. Depth-resolved magnetic and structural analysis of relaxing epitaxial...

    Office of Scientific and Technical Information (OSTI)

    Depth-resolved magnetic and structural analysis of relaxing epitaxial Sr 2 CrReO 6 <...

  20. Heat Flow At Standard Depth | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat Flow At Standard Depth Abstract Secular and long-term periodic changes in surface...

    1. Next Generation Nuclear Plant Defense-in-Depth Approach

      SciTech Connect (OSTI)

      Edward G. Wallace; Karl N. Fleming; Edward M. Burns

      2009-12-01

      The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

    2. Method and apparatus to measure the depth of skin burns

      DOE Patents [OSTI]

      Dickey, Fred M.; Holswade, Scott C.

      2002-01-01

      A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

    3. Assessing the Radiative Impact of Clouds of Low Optical Depth

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      the Radiative Impact of Clouds of Low Optical Depth W. O'Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California C. Gautier Department of Geography and Institute for Computational Earth System Science University of California Santa Barbara, California Introduction Analysis from the International Satellite Cloud Climatology Project (ISCCP) reveals that the global mean cloud optical depth is surprisingly low (i.e., τ = 3.8).

    4. Airborne soil organic particles generated by precipitation

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

      2016-05-02

      Airborne organic particles play a critical role in Earth’s climate1, public health2, air quality3, and hydrological and carbon cycles4. However, sources and formation mechanisms for semi-solid and solid organic particles5 are poorly understood and typically neglected in atmospheric models6. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets7. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemicalmore » composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. Lastly, we suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events8.« less

    5. On the complex conductivity signatures of calcite precipitation

      SciTech Connect (OSTI)

      Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

      2009-11-01

      Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

    6. SEPARATION OF FISSION PRODUCTS FROM PLUTONIUM BY PRECIPITATION

      DOE Patents [OSTI]

      Seaborg, G.T.; Thompson, S.G.; Davidson, N.R.

      1959-09-01

      Fission product separation from hexavalent plutonium by bismuth phosphate precipitation of the fission products is described. The precipitation, according to this invention, is improved by coprecipitating ceric and zirconium phosphates (0.05 to 2.5 grams/liter) with the bismuth phosphate.

    7. THE RESILIENCE OF UPLAND-OAK FOREST CANOPY TREES TO CHRONIC AND ACUTE PRECIPITATION MANIPULATIONS

      SciTech Connect (OSTI)

      Hanson, Paul J; Tschaplinski, Timothy J; Wullschleger, Stan D; Todd Jr, Donald E; Auge, Robert M.

      2007-01-01

      Implications of chronic ( 33 percent) and acute (-100 percent) precipitation change were evaluated for trees of upland-oak forests of the eastern United States. Chronic manipulations have been conducted since 1993, and acute manipulations of dominant canopy trees (Quercus prinus; Liriodendron tulipifera) were initiated in 2003. Through 12 years of chronic manipulations tree growth remained unaffected by natural or induced rainfall deficits even though severe drought conditions dramatically reduced canopy function in some years. The resilience of canopy trees to chronic-change was the result of a disconnect between tree growth phenology and late-season drought occurrence. Acute precipitation exclusion from the largest canopy trees also produced limited growth reductions from 2003 through 2005. Elimination of lateral root water sources for the acute treatment trees, via trenching midway through the 2004 growing-season, forced the conclusion that deep rooting was a key mechanism for large-tree resilience to severe drought.

    8. Thermodynamic micellization model of asphaltene precipitation from petroleum fluids

      SciTech Connect (OSTI)

      Victorov, A.I.; Firoozabadi, A.

      1996-06-01

      A thermodynamic micellization model is proposed for the description of asphaltene precipitation from petroleum fluids. It describes the solubilization of asphaltene polar species by resin bipolar molecules in the micelles. A simple form of the standard Gibbs free energy of micellization is used. The petroleum fluid is assumed to be a dilute solution with respect to the monomeric asphaltenes, resins, and micelles. The Peng-Robinson equation of state (PR-EOS) is applied to describe the fugacity of monomeric asphaltene in the bulk of the petroleum fluid. Intermicellar interactions as well as osmotic pressure effects are neglected. The proposed model shows promising results to describe asphaltene deposition from crude mixtures. It predicts the change in precipitation power of different alkane precipitants and the effect of pressure on asphaltene precipitation. The amount and the onset of predicted asphaltene precipitation are sensitive to the amount of resins in the crude. All these results are in line with laboratory observations and oil-field data.

    9. NREL: Water Power Research - Economic and Power System Modeling...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      The model represents the initial capital investment of offshore projects, considering project size, water depth, distance from shore, and turbine technology. NREL also develops ...

    10. Origin And Characterization Of Geothermal Waters At Desert Queen...

      Open Energy Info (EERE)

      energy potential. Further investigation by drilling is necessary to determine the true nature of the waters at depth. Authors Laura Garchar and Greg Arehart Published GRC, 2008 DOI...

    11. Water resources data, Kentucky. Water year 1991

      SciTech Connect (OSTI)

      McClain, D.L.; Byrd, F.D.; Brown, A.C.

      1991-12-31

      Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

    12. Measuring depth profiles of residual stress with Raman spectroscopy

      SciTech Connect (OSTI)

      Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

      1988-12-01

      Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

    13. Report on the Depth Requirements for a Massive Detector at Homestake

      SciTech Connect (OSTI)

      Kadel, Richard W.; Bernstein, Adam; Blucher, Edward; Cline, David B.; Diwan, Milind V.; Fleming, Bonnie; Kearns, Edward; Klein, Joshua; Lande, Kenneth; Lanni, Francesco; Lissauer, David; McKeown, Robert; Morse, William; Rameika, Regina; Scholberg, Kate; Smy, Michael; Sobel, Henry; Sullivan, Gregory; Svoboda, Robert; Vagins, Mark; Walter, Christopher; Zwaska, Robert

      2008-12-23

      This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of hundreds of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent in a mountain. Projections for signal and background capability for a larger and deeper(or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which should provide enhanced capability for background rejection. We have based background rejection on reasonable estimates of track and energy resolution, and in some cases scaled background rates from measurements in water. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the

    14. ARM - Campaign Instrument - csphot

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Aerosol optical properties Cloud optical depth Cloud droplet size Particle number concentration Particle size distribution Precipitable water Shortwave narrowband radiance...

    15. California Wintertime Precipitation in Regional and Global Climate Models

      SciTech Connect (OSTI)

      Caldwell, P M

      2009-04-27

      In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

    16. Oil recovery improvement through profile modification by thermal precipitation. Final report, October 1, 1991--August 27, 1993

      SciTech Connect (OSTI)

      Reis, J.C.

      1994-04-01

      The objective of this research project has been to investigate the potential for using temperature-dependent (thermal) precipitation of chemicals to reduce the porosity and permeability of porous rocks. The method consists of injecting hot water that is saturated in a chemical that will precipitate upon cooling. Through this process, the permeability of thief zones in oil reservoirs could be reduced, allowing improved recovery by secondary and tertiary recovery processes. The chemical literature was reviewed for environmentally safe chemicals that have a suitable temperature-dependent solubility for the thermal precipitation process. Four suitable chemicals were identified: boron oxide, potassium carbonate, sodium borate, and potassium chloride. An experimental apparatus was constructed to test the thermal precipitation process at high temperatures and pressures. Data was collected with clastic Berea sandstone cores using two chemicals: potassium carbonate and sodium borate. Data was also collected with limestone cores using potassium carbonate. The porosities and permeabilities were measured before and after being treated by the thermal precipitation process. A theoretical study of the process was also conducted. A model for predicting the fractional reduction in porosity was developed that is based on the temperature-dependent solubility of the chemical used. An empirical model that predicts the fractional reduction in permeability in terms of the fractional reduction in porosity was then developed for Berea sandstone. Existing theoretical models for estimating the permeability of porous media were tested against the measured data. The existing models, including the widely-used Carman-Kozeny equation, underpredicted the reduction in permeability for the thermal precipitation process. This study has shown that the thermal precipitation process has considerable potential for the controlled reduction in porosity and permeability in geologic formations.

    17. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

      SciTech Connect (OSTI)

      Easterling, D.R.

      2002-10-28

      This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

    18. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

      SciTech Connect (OSTI)

      VanWeverberg K.; Vogelmann A.; vanLipzig, N. P. M.; Delobbec, L.

      2012-04-01

      We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

    19. ARM - Evaluation Product - Quantitative Precipitation Estimates (QPE) from

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      the CSAPR ProductsQuantitative Precipitation Estimates (QPE) from the CSAPR ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Quantitative Precipitation Estimates (QPE) from the CSAPR Precipitation rates from cloud systems can give a fundamental insight into the processes occurring in-cloud. While rain

    20. ARM - Field Campaign - IPHEX/Orographic Precipitation Processes Study

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      govCampaignsIPHEX/Orographic Precipitation Processes Study Campaign Links Field Campaign Report IPHEX Web Page ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : IPHEX/Orographic Precipitation Processes Study 2013.12.01 - 2014.12.31 Lead Scientist : Ana Barros For data sets, see below. Abstract IPHEX - Integrated Precipitation and Hydrology Experiment (IPHEX Science Plan, 2013) is a field campaign led by

    1. Precipitation and Air Pollution at Mountain and Plain Stations in Northern China: Insights Gained from Observations and Modeling

      SciTech Connect (OSTI)

      Guo, Jianping; Deng, Minjun; Fan, Jiwen; Li, Zhanqing; Chen, Qian; Zhai, Panmao; Dai, Zhijian; Li, Xiaowen

      2014-04-27

      We analyzed 40 year data sets of daily average visibility (a proxy for surface aerosol concentration) and hourly precipitation at seven weather stations, including three stations located on the Taihang Mountains, during the summertime in northern China. There was no significant trend in summertime total precipitation at almost all stations. However, light rain decreased, whereas heavy rain increased as visibility decreased over the period studied. The decrease in light rain was seen in both orographic-forced shallow clouds and mesoscale stratiform clouds. The consistent trends in observed changes in visibility, precipitation, and orographic factor appear to be a testimony to the effects of aerosols. The potential impact of large-scale environmental factors, such as precipitable water, convective available potential energy, and vertical wind shear, on precipitation was investigated. No direct links were found. To validate our observational hypothesis about aerosol effects, Weather Research and Forecasting model simulations with spectral-bin microphysics at the cloud-resolving scale were conducted. Model results confirmed the role of aerosol indirect effects in reducing the light rain amount and frequency in the mountainous area for both orographic-forced shallow clouds and mesoscale stratiform clouds and in eliciting a different response in the neighboring plains. The opposite response of light rain to the increase in pollution when there is no terrain included in the model suggests that orography is likely a significant factor contributing to the opposite trends in light rain seen in mountainous and plain areas.

    2. Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes

      SciTech Connect (OSTI)

      Zelikova TJ; Housman DC; Grote EE; Neher DA; Belnap J

      2012-01-01

      Changes in temperature and precipitation are expected to influence ecosystem processes worldwide. Despite their globally large extent, few studies to date have examined the effects of climate change in desert ecosystems, where biological soil crusts are key nutrient cycling components. The goal of this work was to assess how increased temperature and frequency of summertime precipitation affect the contributions of crust organisms to soil processes. With a combination of experimental 2°C warming and altered summer precipitation frequency applied over 2 years, we measured soil nutrient cycling and the structure and function of crust communities. We saw no change in crust cover, composition, or other measures of crust function in response to 2°C warming and no effects on any measure of soil chemistry. In contrast, crust cover and function responded to increased frequency of summer precipitation, shifting from moss to cyanobacteria-dominated crusts; however, in the short timeframe we measured, there was no accompanying change in soil chemistry. Total bacterial and fungal biomass was also reduced in watered plots, while the activity of two enzymes increased, indicating a functional change in the microbial community. Taken together, our results highlight the limited effects of warming alone on biological soil crust communities and soil chemistry, but demonstrate the substantially larger effects of altered summertime precipitation.

    3. Report on the Depth Requirements for a Massive Detector at Homestake

      SciTech Connect (OSTI)

      Bernstein,A.; Blucher, E.; Cline, D. B.; Diwan, M. V.; Fleming, b.; Kadel, R.; Kearns, E.; Klein, J.; Lande, K.; Lanni, F.; Lissauer, D.; McKeown, R.; Morse, W.; Radeika, R.; Scholberg, K.; Smy, M.; Sobel, H.; Sullivan, G.; Svoboda, R.; Vagins, M.; Walter, C.; Zwaska, R.

      2008-12-22

      This report provides the technical justification for locating a large detector underground in a US based Deep Underground Science and Engineering Laboratory. A large detector with a fiducial mass greater than 100 kTon will most likely be a multipurpose facility. The main physics justification for such a device is detection of accelerator generated neutrinos, nucleon decay, and natural sources of neutrinos such as solar, atmospheric and supernova neutrinos. The requirement on the depth of this detector will be guided by the rate of signals from these sources and the rate of backgrounds from cosmic rays over a very wide range of energies (from solar neutrino energies of 5 MeV to high energies in the range of tens of GeV). For the present report, we have examined the depth requirement for a large water Cherenkov detector and a liquid argon time projection chamber. There has been extensive previous experience with underground water Cherenkov detectors such as IMB, Kamioka, and most recently, Super-Kamiokande which has a fiducial mass of 22 kTon and a total mass of 50 kTon at a depth of 2700 meters-water-equivalent. Projections for signal and background capability for a larger and deeper (or shallower) detectors of this type can be scaled from these previous detectors. The liquid argon time projection chamber has the advantage of being a very fine-grained tracking detector, which provides enhanced capability for background rejection. In the current work we have taken the approach that the depth should be sufficient to suppress the cosmogenic background below predicted signal rates for either of the above two technologies. Nevertheless, it is also clear that the underground facility that we are examining must have a long life and will most likely be used either for future novel uses of the currently planned detectors or new technologies. Therefore the depth requirement also needs to be made on the basis of sound judgment regarding possible future use. In particular, the

    4. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

      2014-11-06

      Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

    5. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Bob Busey; Larry Hinzman; Vladimir Romanovsky; William Cable

      Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

    6. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

    7. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

      DOE Patents [OSTI]

      Seaborg, G.T.; Perlman, I.

      1959-02-10

      A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

    8. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

      SciTech Connect (OSTI)

      Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

      2011-07-15

      Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

    9. Geophysical Monitoring and Reactive Transport Modeling of Ureolytically-Driven Calcium Carbonate Precipitation

      SciTech Connect (OSTI)

      Yuxin Wu; Jonathan B. Ajo-Franklin; Nicolas Spycher; Susan S. Hubbard; Guoxiang Zhang; Kenneth H. Williams; Joanna Taylor; Yoshiko Fujita; Robert Smith

      2011-09-01

      Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4

    10. ARM - Field Campaign - Integrated Precipitation and Hydrology Experiment

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      (IPHEX): Cloud Spectrometer and Impactor (CSI) govCampaignsIntegrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Integrated Precipitation and Hydrology Experiment (IPHEX): Cloud Spectrometer and Impactor (CSI) 2014.03.01 - 2014.07.01 Lead Scientist : Gerald Mace For data sets, see below. Abstract IPHEX -

    11. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

      SciTech Connect (OSTI)

      Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

      2011-10-01

      Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

    12. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; et al

      2015-03-24

      Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

    13. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

      SciTech Connect (OSTI)

      Collins, Emory D; Voit, Stewart L; Vedder, Raymond James

      2011-06-01

      The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co-precipitation

    14. LANL selects two small businesses for water monitoring work

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      LLC and Eberline Services, Inc. April 12, 2011 LANL monitors water at more than 200 wells and sample ports at various depths. LANL monitors water at more than 200 wells and...

    15. Spectroscopic studies of U(VI) sorption at the kaolinite-water interface. Final report

      SciTech Connect (OSTI)

      Thompson, H.A.; Parks, G.A.; Brown, G.E. Jr.

      1994-06-01

      Efficient use of U as a resource and safe handling, recycling and disposal of U-containing wastes require an understanding of the factors controlling the fate of U, where fate refers to the destination of U, typically expressed as an environmental medium or a process phase. The sorption process constitutes a change in elemental fate. Partitioning of an element from solution to a solid phase, or sorption, can be divided into three broad categories: adsorption, surface precipitation, and absorption. Extended X-ray absorption fine structure (EXAFS), a type of X-ray absorption spectroscopy (XAS), offers the possibility for distinguishing among different modes of sorption by characterizing the atomic environment of the sorbing element. In this study, the authors use EXAFS to determine the structure of U(VI) sorption complexes at the kaolinite-water interface. In Chapter One, they present an overview of selected aspects of U structural chemistry as a basis for considering the structural environment of U at the solid-water interface. To evaluate the utility of XAS for characterization of the structural environment of U(VI) at the solid-water interface, they have carried out an in-depth analysis of XAS data from U(VI)-containing solid and solution model compounds, which they describe in Chapter Two. In Chapter three, they consider sorption of U by kaolinite as a means of effecting the removal of U from surface collection pond waters on the Rocky Flats Plant site in northern Colorado.

    16. Best Management Practice #4: Water-Efficient Landscaping

      Office of Energy Efficiency and Renewable Energy (EERE)

      Traditional landscapes require supplemental water to thrive in most locations. Kentucky bluegrass, for example, is native to regions that receive in excess of 40 inches per year of precipitation,...

    17. In-tank precipitation with tetraphenylborate: recent process and research results

      SciTech Connect (OSTI)

      Walker, D.D.; Barnes, M.J.; Crawford, C.L.; Peterson, R.A.; Swingle, R.F.; Fink, S.D.

      1997-09-01

      At the Savannah River Site, the In-Tank Precipitation process uses sodium tetraphenylborate to decontaminate soluble waste by precipitating cesium-137.

    18. RFID tag modification for full depth backscatter modulation

      DOE Patents [OSTI]

      Scott, Jeffrey Wayne [Pasco, WA; Pratt, Richard M [Richland, WA

      2010-07-20

      A modulated backscatter radio frequency identification device includes a diode detector configured to selectively modulate a reply signal onto an incoming continuous wave; communications circuitry configured to provide a modulation control signal to the diode detector, the diode detector being configured to modulate the reply signal in response to be modulation control signal; and circuitry configured to increase impedance change at the diode detector which would otherwise not occur because the diode detector rectifies the incoming continuous wave while modulating the reply signal, whereby reducing the rectified signal increases modulation depth by removing the reverse bias effects on impedance changes. Methods of improving depth of modulation in a modulated backscatter radio frequency identification device are also provided.

    19. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams

      SciTech Connect (OSTI)

      Zink, K.; Czarnecki, D.; Voigts-Rhetz, P. von; Looe, H. K.; Harder, D.

      2014-11-01

      Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known inscattering effect, whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the inout balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the inout balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the first time

    20. Method of treating waste water

      DOE Patents [OSTI]

      Deininger, James P.; Chatfield, Linda K.

      1995-01-01

      A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

    1. Radiation-induced instability of MnS precipitates and its possible consequences on irradiation-induced stress corrosion cracking of austenitic stainless steels

      SciTech Connect (OSTI)

      Chung, H.M.; Sanecki, J.E.; Garner, F.A.

      1996-12-01

      Irradiation-assisted stress corrosion cracking (IASCC) is a significant materials issue for the light water reactor (LWR) industry and may also pose a problem for fusion power reactors that will use water as coolant. A new metallurgical process is proposed that involves the radiation-induced release into solution of minor impurity elements not usually thought to participate in IASCC. MnS-type precipitates, which contain most of the sulfur in stainless steels, are thought to be unstable under irradiation. First, Mn transmutes strongly to Fe in thermalized neutron spectra. Second, cascade-induced disordering and the inverse Kirkendall effect operating at the incoherent interfaces of MnS precipitates are thought to act as a pump to export Mn from the precipitate into the alloy matrix. Both of these processes will most likely allow sulfur, which is known to exert a deleterious influence on intergranular cracking, to re-enter the matrix. To test this hypothesis, compositions of MnS-type precipitates contained in several unirradiated and irradiated heats of Type 304, 316, and 348 stainless steels (SSs) were analyzed by Auger electron spectroscopy. Evidence is presented that shows a progressive compositional modification of MnS precipitates as exposure to neutrons increases in boiling water reactors. As the fluence increases, the Mn level in MnS decreases, whereas the Fe level increases. The S level also decreases relative to the combined level of Mn and Fe. MnS precipitates were also found to be a reservoir of other deleterious impurities such as F and O which could be also released due to radiation-induced instability of the precipitates.

    2. WATER-TRAPPED WORLDS

      SciTech Connect (OSTI)

      Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

      2013-09-01

      Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

    3. Cesium cobaltdicarbollide-solubility, precipitation, and reactivity in basic aqueous solution

      SciTech Connect (OSTI)

      McCabe, D.J.; Fanning, J.C.; Hugg, L.A.; Smith, W.A.; Terrell, A.S.; Yasinsac, L.; Todd, L.J.; Jasper, S.A. Jr.

      1994-12-31

      The title compound, Cs{sup +}[Co((3)-1,2-C{sub 2}B{sub 9}H{sub 11}){sub 2}]{sup {minus}}(CsCDC), was precipitated with a NaCDC solution from solutions containing CsCl. The reaction was followed by measuring loss of light intensity as the precipitate formed. The [Cs{sup +}] and [CDC{sup {minus}}] at the point of precipitation were estimated and approximate values of the K{sub sp} for CsCDC determined at room temperature: 8 {times} 10{sup {minus}6} (water), 7 {times} 10{sup {minus}6} (1 M NaOH), and 2 {times} 10{sup {minus}6} (5M NaCl/0.1 M KOH/1.0 M NaOH). In some cases, NaCDC precipitated from solution when added to the latter salt solution. For the medium, 5 M NaNO{sub 3}/0.1 M KOH/1.0 M NaOH a four-fold excess of NaCDC was added to a 10mM Cs{sup +} solution at 40{degrees}C and the [CDC{sup {minus}}] measured spectrophotometrically. Only CsCDC precipitated, and a K{sub sp} of 3.9 {times} 10{sup {minus}6} was determined. The solubilities of CsCDC were measured in NaNO{sub 3} and NaCl solutions at 30{sub C} as a function of the Na salt concentration. Reaction of the CDC{sup {minus}} with OH{sup {minus}} slowly produces B(OH{sub 4}{sup {minus}}, H{sub 2}, and CoO(OH). Reaction of 22 {mu}M CsCDC with 1M NaOH has a first order rate constant at 56{degrees}C of 8.8 {times} 10{sup {minus}7} s{sup {minus}1}, while that for 14 mM NaCDC is 7.2 {times} 10{sup {minus}7} s {sup {minus}1}. Activation energy for the reaction is 110 kJ.

    4. Dynamic simulation of the in-tank precipitation process

      SciTech Connect (OSTI)

      Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.

      1993-12-31

      As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP{sup TM} software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP{sup TM} simulation This paper summarizes the model development and initial results of the simulation study.

    5. Method of treating waste water

      DOE Patents [OSTI]

      Deininger, J. Paul; Chatfield, Linda K.

      1991-01-01

      A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

    6. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation in the

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Marine Boundary Layer (CAP-MBL) govCampaignsAzores: Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) Campaign Links Azores Website Final Campaign Report Related Campaigns Azores: Above-Cloud Radiation Budget near Graciosa Island 2010.04.15, Miller, AMF Azores: Extension to Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) 2010.01.01, Wood, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send

    7. Fabrication of anatase precipitated glass-ceramics possessing high transparency

      SciTech Connect (OSTI)

      Masai, Hirokazu; Toda, Tatsuya; Takahashi, Yoshihiro; Fujiwara, Takumi

      2009-04-13

      Transparent anatase precipitated glass-ceramics were fabricated using ZnO as a component. The particle size of precipitated anatase is several nanometers enough to possess high transparency. The preparation of the Bi-free transparent TiO{sub 2} glass-ceramic was attained by substitution of two different kinds of oxides for bismuth oxide. It is also noteworthy that we have demonstrated the crystallization of metastable anatase in the glass-ceramics as a main phase. The present bulk anatase glass-ceramics will open up an application field for a TiO{sub 2}-containing photocatalyst.

    8. Identification Of Rippability And Bedrock Depth Using Seismic Refraction

      SciTech Connect (OSTI)

      Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam

      2010-12-23

      Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.

    9. Campbell penetration depth in Fe-based superconductors

      SciTech Connect (OSTI)

      Prommapan, Plegchart

      2011-08-15

      A 'true' critical current density, j{sub c}, as opposite to commonly measured relaxed persistent (Bean) current, j{sub B}, was extracted from the Campbell penetration depth, {lambda}{sub c}(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter {alpha}. At the equilibrium (upon field - cooling), {alpha}(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j{sub c}(2 K) {approx_equal} 1.22 x 10{sup 6} A/cm{sup 2} provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe{sub 2}As{sub 2} based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j{sub c}(2K) {approx_equal} 3.3 x 10{sup 6} A/cm{sup 2}. The magnetic-dependent feature was observed near the transition temperature in FeTe{sub 0.53}Se{sub 0.47} and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and

    10. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

      DOE Patents [OSTI]

      Duffield, R.B.

      1959-02-24

      S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

    11. METHOD OF IMPROVING THE CARRIER PRECIPITATION OF PLUTONIUM

      DOE Patents [OSTI]

      Kamack, H.J.; Balthis, J.H.

      1958-12-01

      Plutonium values can be recovered from acidic solutlons by adding lead nitrate, hydrogen fluoride, lantha num nitrate, and sulfurlc acid to the solution to form a carrler preclpitate. The lead sulfate formed improves the separatlon characteristics of the lanthanum fluoride carrier precipitate,

    12. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

      SciTech Connect (OSTI)

      Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; Teng, Zhenke; Liu, Chain T.; Asta, Mark D.; Gao, Yanfei; Dunand, David C.; Ghosh, Gautam; Chen, Mingwei; Fine, Morris E.; Liaw, Peter K.

      2015-11-09

      There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones. These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.

    13. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Song, Gian; Sun, Zhiqian; Li, Lin; Xu, Xiandong; Rawlings, Michael; Liebscher, Christian H.; Clausen, Bjørn; Poplawsky, Jonathan; Leonard, Donovan N.; Huang, Shenyan; et al

      2015-11-09

      There have been numerous efforts to develop creep-resistant materials strengthened by incoherent particles at high temperatures and stresses in response to future energy needs for steam turbines in thermal-power plants. However, the microstructural instability of the incoherent-particle-strengthened ferritic steels limits their application to temperatures below 900 K. Here, we report a novel ferritic alloy with the excellent creep resistance enhanced by coherent hierarchical precipitates, using the integrated experimental (transmission-electron microscopy/scanning-transmission-electron microscopy, in-situ neutron diffraction, and atom-probe tomography) and theoretical (crystal-plasticity finite-element modeling) approaches. This alloy is strengthened by nano-scaled L21-Ni2TiAl (Heusler phase)-based precipitates, which themselves contain coherent nano-scaled B2 zones.more » These coherent hierarchical precipitates are uniformly distributed within the Fe matrix. Our hierarchical structure material exhibits the superior creep resistance at 973 K in terms of the minimal creep rate, which is four orders of magnitude lower than that of conventional ferritic steels. These results provide a new alloy-design strategy using the novel concept of hierarchical precipitates and the fundamental science for developing creep-resistant ferritic alloys. Finally, the present research will broaden the applications of ferritic alloys to higher temperatures.« less

    14. Precipitation in 18 wt% Ni maraging steel of grade 350

      SciTech Connect (OSTI)

      Tewari, R.; Mazumder, S.; Batra, I.S.; Dey, G.K.; Banerjee, S.

      2000-03-14

      The evolution of precipitates in maraging steel of grade 350 was studied using the complementary techniques of small angle X-ray scattering (SACS) and transmission electron microscopy (TEM). These investigations revealed that ageing the steel at 703 K involved a rhombohedral distortion of the supersaturated b.c.c. martensite accompanied by the appearance of diffuse {omega}-like structures. This was followed by the appearance of well-defined {omega} particles containing chemical order. At the ageing temperature of 783 K, Ni{sub 3}(Ti,Mo) precipitates were the first to appear with a growth exponent of 1/3. The values of the Pored exponent obtained from the SAXS profiles indicated that the {omega} particles, formed below 723 K, had diffuse interfaces up to an ageing time of 48 h. On the other hand, Ni{sub 3}(Ti,Mo) precipitates, formed above 723 K, developed sharp interfaces in just about an hour. Also, the steel exhibited scaling in phase separation both at 703 and 783 K, but only during the early stages. Through this study it was established that at temperatures of ageing less than 723 K, evolution of {omega} particles takes place through the collapse of the unstable b.c.c. lattice and, at temperatures above 723 K, precipitation of A{sub 3}B type of phases through the mechanism of clustering and ordering of atomic species. Sharp interfaces develop rather quickly when the mechanism of precipitation involves development and amplification of a concentration wave along as in the nucleation of Ni{sub 3}(Ti,Mo) at 783 K than when an interplay of both the displacement and concentration waves is required as in the evolution of {omega} at 703 K. These results indicate towards the possibility of existence of two separate time-temperature-transformation (TTT) curves, one for the evolution of {omega}-phase and another for nucleation and growth of Ni{sub 3}(Ti,Mo).

    15. Aerosol Impacts on California Winter Clouds and Precipitation...

      Office of Scientific and Technical Information (OSTI)

      CalWater 2011: Local Pollution versus Long-Range Transported Dust Citation Details ... CalWater 2011: Local Pollution versus Long-Range Transported Dust Mineral dust ...

    16. Laser Acoustic Molten Metal Depth Sensing in Titanium

      SciTech Connect (OSTI)

      J. B. Walter; K. L. Telschow; R. E. Haun

      1999-09-22

      A noncontacting ultrasonic method has been investigated for probing the solidification front in molten titanium for the purposes of profiling the channel depth in a plasma hearth re-melter. The method, known as Laser Ultrasonics, utilized a pulsed laser for generation of ultrasonic waves at the surface of a molten metal pool. The ultrasonic waves propagated into the liquid titanium reflected from the solidification front and the boundaries of the solid plug. A Fabry-Perot interferometer, driven by a second laser, demodulated the small displacements caused by the ultrasonic wave motion at the liquid surface. The method and results of measurements taken within a small research plasma melting furnace will be described. Successful results were obtained even directly beneath the plasma arc using this all-optical approach.

    17. Laser Acoustic Molten Metal Depth Sensing in Titanium

      SciTech Connect (OSTI)

      Walter, John Bradley; Telschow, Kenneth Louis; Haun, R.E.

      1999-08-01

      A noncontacting ultrasonic method has been investigated for probing the solidification front in molten titanium for the purposes of profiling the channel depth in plasma hearth re-melter. The method, known as Laser Ultrasonics, utilized a pulsed laser for generation of ultrasonic waves at the surface of a molten metal pool. The ultrasonic waves propagated into the liquid titanium reflected from the solidification front and the boundaries of the solid plug. A Fabry-Perot interferometer, driven by a second laser, demodulated the small displacements caused by the ultrasonic wave motion at the liquid surface. The method and results of measurements taken within a small research plasma melting furnace will be described. Successful results were obtained even directly beneath the plasma arc using this all optical approach.

    18. Experimental investigation on the chemical precipitation generation under the loss of coolant accident of nuclear power plants

      SciTech Connect (OSTI)

      Kim, C. H.; Sung, J. J.; Chung, Y. W.

      2012-07-01

      The PWR containment buildings are designed to facilitate core cooling in the event of a Loss of Coolant Accident (LOCA). The cooling process requires water discharged from the break and containment spray to be collected in a sump for recirculation. The containment sump contains screens to protect the components of the Emergency Core Cooling System (ECCS) and Containment Spray System (CSS) from debris. Since the containment materials may dissolve or corrode when exposed to the reactor coolant and spray solutions, various chemical precipitations can be generated in a post-LOCA environment. These chemical precipitations may become another source of debris loading to be considered in sump screen performance and downstream effects. In this study, new experimental methodology to predict the type and quantity of chemical precipitations has been developed. To generate the plant-specific chemical precipitation in a post-LOCA environment, the plant specific chemical condition of the recirculation sump during post-LOCA is simulated with the experimental reactor for the chemical effect. The plant-specific containment materials are used in the present experiment such as glass fibers, concrete blocks, aluminum specimens, and chemical reagent - boric acid, spray additives or buffering chemicals (sodium hydroxide, Tri-Sodium Phosphate (TSP), or others). The inside temperature of the reactor is controlled to simulate the plant-specific temperature profile of the recirculation sump. The total amount of aluminum released from aluminum specimens is evaluated by ICP-AES analysis to determine the amount of AlOOH and NaAlSi{sub 3}O{sub 8} which induce very adverse effect on the head loss across the sump screens. The amount of these precipitations generated in the present experimental study is compared with the results of WCAP-16530-NP-A. (authors)

    19. Water Quality

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface ...

    20. Water Quality

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

    1. Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States

      SciTech Connect (OSTI)

      Yoon, Jin-Ho; Leung, Lai-Yung R.

      2015-06-28

      This study assesses the relative influence of soil moisture memory and tropical sea surface temperature (SST) in seasonal rainfall over the contiguous United States. Using observed precipitation, the NINO3.4 index and soil moisture and evapotranspiration simulated by a land surface model for 61 years, analysis was performed using partial correlations to evaluate to what extent land surface and SST anomaly of El Niño and Southern Oscillation (ENSO) can affect seasonal precipitation over different regions and seasons. Results show that antecedent soil moisture is as important as concurrent ENSO condition in controlling rainfall anomalies over the U.S., but they generally dominate in different seasons with SST providing more predictability during winter while soil moisture, through its linkages to evapotranspiration and snow water, has larger influence in spring and early summer. The proposed methodology is applicable to climate model outputs to evaluate the intensity of land-atmosphere coupling and its relative importance.

    2. Phosphorous adsorption and precipitation in a permeable reactive wall: Applications for wastewater disposal systems

      SciTech Connect (OSTI)

      Baker, M.J.; Blowes, D.W. |; Placek, C.J. |

      1997-12-31

      A permeable reactive mixture has been developed using low cost, readily available materials that is capable of providing effective, long-term phosphorous treatment in areas impacted by on-land wastewater disposal. The reactive mixture creates a geochemical environment suitable for P-attenuation by both adsorption and precipitation reactions. Potential benefits include significant reductions in phosphorous loading to receiving groundwater and surface water systems, and the accumulation of P-mass in a finite and accessible volume of material. The mixture may be applied as a component within surface treatment systems or in subsurface applications such as horizontal or vertical permeable reactive walls. The mixture averaged > 90% treatment efficiency over 3.6 years of continuous-flow laboratory column experiments. The mixture was further evaluated at the pilot-scale to treat municipal wastewater, and the field-scale to treat a well-characterized septic system plume using an in situ funnel and gate system. Average PO{sub 4}-P concentrations in effluent exiting the reactive mixture range between 0 - 0.3 mg/L. Mineralogical analyses have isolated the phases responsible for phosphorous uptake, and discrete phosphate precipitates have been identified.

    3. Defluoridation study for Boise geothermal water

      SciTech Connect (OSTI)

      Rigdon, L.

      1980-06-03

      Methods of removing fluorides from water are reviewed and recommendations are made for treating geothermal water used by the Boise Geothermal Project, Boise, Idaho. The Boise geothermal water except for its high fluoride content would be high quality, suitable for primary drinking water. Fluoride ranges from about 15 to 25 mg/l in water from various wells in the Boise region where the Project plans to obtain hot water. Four techniques for removing fluorides from water have been studied extensively during the past 15 years or so. Electrodialysis and reverse osmosis are useful in reducing total dissolved solids from brackish water, but are nonspecific and are too expensive for treatment of the Boise geothermal water. Selective precipitation is a widely used technique for treating water, but would also prove expensive for the Boise geothermal water because of the relatively high solubility of fluoride salts and consequently high concentration (and cost) of precipitants required to reduce the fluorides to an acceptable level. Ion-exchange separation using activated alumina as the exchange medium appears to be the most promising technique and we recommend that some laboratory and pilot studies be conducted to establish suitability and operating boundaries.

    4. Concentration and precipitation of NaCl and KCl from salt cake leach solutions by electrodialysis

      SciTech Connect (OSTI)

      Sreenivasarao, K; Patsiogiannis, F.; Hryn, J.N.

      1997-02-09

      Electrodialysis was investigated for cost-effective recovery of salt from salt cake leach solutions. (Salt cake is a waste stream generated by the aluminum industry during treatment of aluminum drosses and scrap.) We used a pilot-scale electrodialysis stack of 5 membrane pairs, each with an effective area of 0.02 m{sup 2}. The diluate stream contained synthetic NaCl, KCl,mixtures of NaCl and KCl, and actual salt cake leach solutions (mainly NaCl and KCl, with small amounts of MgCl{sub 2}). We concentrated and precipitated NaCl and KCl salts from the concentrate steam when the initial diluate stream concentration was 21.5 to 28.8 wt% NaCl and KCl. We found that water transferring through the membranes was a significant factor in overall efficiency of salt recovery by electrodialysis.

    5. Mechanisms of gas precipitation in plasma-exposed tungsten

      SciTech Connect (OSTI)

      R. D. Kolasinski; D. F. Cowgill; D. C. Donovan; M. Shimada

      2012-05-01

      Precipitation in subsurface bubbles is a key process that governs how hydrogen isotopes migrate through and become trapped within plasma-exposed tungsten. We describe a continuum-scale model of hydrogen diffusion in plasma-exposed materials that includes the effects of precipitation. The model can account for bubble expansion via dislocation loop punching, using an accurate equation of state to determine the internal pressure. This information is used to predict amount of hydrogen trapped by bubbles, as well as the conditions where the bubbles become saturated. In an effort to validate the underlying assumptions, we compare our results with published positron annihilation and thermal desorption spectroscopy data, as well as our own measurements using the tritium plasma experiment (TPE).

    6. Aerosol Optical Depth Value-Added Product for the SAS-He Instrument...

      Office of Scientific and Technical Information (OSTI)

      Aerosol Optical Depth Value-Added Product for the SAS-He Instrument Citation Details In-Document Search Title: Aerosol Optical Depth Value-Added Product for the SAS-He Instrument ...

    7. Taking Oil and Gas Exploration to New Depths | GE Global Research

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Taking Oil and Gas Exploration to New Depths Click to email this to a friend (Opens in new ... Taking Oil and Gas Exploration to New Depths Oliver Astley 2014.11.12 The challenges of ...

    8. Cloud and Precipitation Fields Around Darwin in the Transition Season

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      and Precipitation Fields Around Darwin in the Transition Season P. T. May Bureau of Meteorology Research Centre Melbourne, 3001, Victoria, Australia Introduction An interesting, and very relevant question, for the Atmospheric Radiation Measurement (ARM) Program is how cloud characteristics and their seasonal and diurnal variation changes across the tropics. In particular, how does he cloud field around the new SRCS site compare with nearby regions. Thus, the aim of this study is to look at the

    9. Comparing Climate Models to Real World Shows Differences in Precipitation

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Intensity | U.S. DOE Office of Science (SC) Comparing Climate Models to Real World Shows Differences in Precipitation Intensity Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy

    10. Process for removing metals from water

      DOE Patents [OSTI]

      Napier, J.M.; Hancher, C.M.; Hackett, G.D.

      1987-06-29

      A process for removing metals from water including the steps of prefiltering solids from the water, adjusting the pH to between about 2 and 3, reducing the amount of dissolved oxygen in the water, increasing the pH to between about 6 and 8, adding water-soluble sulfide to precipitate insoluble sulfide- and hydroxide-forming metals, adding a containing floc, and postfiltering the resultant solution. The postfiltered solution may optionally be eluted through an ion exchange resin to remove residual metal ions. 2 tabs.

    11. Apparatus and methods for regeneration of precipitating solvent

      DOE Patents [OSTI]

      Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander

      2015-08-25

      A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.

    12. Mineral-Surfactant Interactions for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery

      SciTech Connect (OSTI)

      P. Somasundaran

      2008-09-20

      Chemical EOR can be an effective method for increasing oil recovery and reducing the amount of produced water; however, reservoir fluids are chemically complex and may react adversely to the polymers and surfactants injected into the reservoir. While a major goal is to alter rock wettability and interfacial tension between oil and water, rock-fluid and fluid-fluid interactions must be understood and controlled to minimize reagent loss, maximize recovery and mitigate costly failures. The overall objective of this project was to elucidate the mechanisms of interactions between polymers/surfactants and the mineral surfaces responsible for determining the chemical loss due to adsorption and precipitation in EOR processes. The role of dissolved inorganic species that are dependent on the mineralogy is investigated with respect to their effects on adsorption. Adsorption, wettability and interfacial tension are studied with the aim to control chemical losses, the ultimate goal being to devise schemes to develop guidelines for surfactant and polymer selection in EOR. The adsorption behavior of mixed polymer/surfactant and surfactant/surfactant systems on typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) was correlated to their molecular structures, intermolecular interactions and the solution conditions such as pH and/or salinity. Predictive models as well as general guidelines for the use of polymer/surfactant surfactant/surfactant system in EOR have been developed The following tasks have been completed under the scope of the project: (1) Mineral characterization, in terms of SEM, BET, size, surface charge, and point zero charge. (2) Study of the interactions among typical reservoir minerals (quartz, alumina, calcite, dolomite, kaolinite, gypsum, pyrite, etc.) and surfactants and/or polymers in terms of adsorption properties that include both macroscopic (adsorption density, wettability) and microscopic (orientation

    13. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

      DOE Patents [OSTI]

      Faris, B.F.

      1961-04-25

      Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

    14. DOE/SC-ARM-14-030 ARM Cloud Aerosol Precipitation Experiment

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ... in that region during winter, much of the rest of the orographic precipitation occurs in ... western U.S. during winter, much of the rest of the orographic precipitation occurs in ...

    15. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook...

      Office of Scientific and Technical Information (OSTI)

      X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook Citation Details In-Document Search Title: X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook ...

    16. C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook (Technical...

      Office of Scientific and Technical Information (OSTI)

      C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook Citation Details In-Document Search Title: C-Band Scanning ARM Precipitation Radar (C-SAPR) Handbook The C-band scanning ...

    17. Radiochemical Analyses of Water Samples from Selected Streams

      Office of Legacy Management (LM)

      > : , - ' and Precipitation Collected in - Connection with Calibration-Test Flaring of Gas From Test Well, - I August 15-October 13, 197,0,, Project Rulison-8, 197 1 HGS 9 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal center, Denver, Colorado 80225 RADIOCHEMICAL ANALYSES OF WATER SAMPLES FROM SELECTED STREAMS AND PRECIPITATION

    18. PURIFICATION OF PLUTONIUM USING A CERIUM PRECIPITATE AS A CARRIER FOR FISSION PRODUCTS

      DOE Patents [OSTI]

      Faris, B.F.; Olson, C.M.

      1961-07-01

      Bismuth phosphate carrier precipitation processes are described for the separation of plutonium from fission products wherein in at least one step bismuth phosphate is precipitated in the presence of hexavalent plutonium thereby carrying a portion of the fission products from soluble plu tonium values. In this step, a cerium phosphate precipitate is formed in conjunction with the bismuth phosphate precipitate, thereby increasing the amount of fission products removed from solution.

    19. Mineralogic Investigation into Occurrence of High Uranium Well Waters in Upstate South Carolina USA

      SciTech Connect (OSTI)

      R Warner; J Meadows; S Sojda; V Price; T Temples; Y Arai; C Fleisher; B Crawford; P Stone

      2011-12-31

      High levels of U (up to 5570 {micro}g/L) have been discovered in well waters near Simpsonville, South Carolina, USA. In order to characterize the mineralogical source of the U and possible structural controls on its presence, a deep (214 m) well was cored adjacent to one of the enriched wells. The highest gamma-ray emissions in the recovered core occur in coarse biotite granite at a depth just below 52 m. A slickenlined fault plane at 48.6 m and narrow pegmatite layers at depths of 113, 203 and 207 m also yield high gamma-ray counts. Thin sections were made from the above materials and along several subvertical healed fractures. Uraninite and coffinite are the principal U-rich minerals in the core. Other U-bearing minerals include thorite and thorogummite, monazite, zircon and allanite. Primary uraninite occurs in the biotite granite and in pegmatite layers. Secondary coffinite is present as tiny (<5 {micro}m) crystals dispersed along fractures in the granite and pegmatites. Coffinite also occurs along the slickenlined fault plane, where it is associated with calcite and calcic zeolite and also replaces allanite. Coffinite lacks radiogenic Pb, hence is considerably younger than the uraninite. Dissolution of partially oxidized Ca-rich uraninite occurring in the surficial biotite granite (or secondary coffinite in fracture zones) is likely the main source for the current high levels of U in nearby area wells. The high-U well waters have a carbonate signature, consistent with pervasive calcite vein mineralization in the core. Aqueous speciation calculations suggest U transport as an uranyl (U{sup 6+}) hydroxyl-carbonate complex. Later reduction resulted in secondary precipitation along fractures as a U{sup 4+} mineral (i.e., coffinite).

    20. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic...

      Office of Scientific and Technical Information (OSTI)

      The radiometers were used along with other instrumentation to estimate the liquid water ... in the region (by monitoring the liquid water path in the column) and observe the effect ...

    1. Optimization of the conditions for the precipitation of thorium oxalate. II. Minimization of the product losses

      SciTech Connect (OSTI)

      Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

      1987-05-01

      The precipitation of thorium as a poorly soluble oxalate was investigated. An equation relating the concentrations of the metal and nitric acid in the initial solution and the amount of precipitant required to minimize the product losses was derived. A graphical solution of the equation is presented for the case where the precipitant is oxalic acid at a concentration of 0.78 M.

    2. PRECIPITATION OF URANIUM PEROXIDE OF LOW FLUORIDE CONTENT FROM SOLUTIONS CONTAINING FLUORIDES

      DOE Patents [OSTI]

      King, E.J.; Clark, H.M.

      1958-08-12

      S>A method is described for the preparation of fluoride free uraniunn peroxide precipitates, even though the solution from which the precipitation is made is contaminated with fluorides. This is accomplished by add ing aluminum ions to the solution, where they complex any fluoride present and prevent its precipitation with the uramum peroxide.

    3. Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Integrating the Production of Biofuels and Bioproducts Integrating the Production of Biofuels and Bioproducts April 28, 2016 - 11:25am Addthis Non-food biomass such as the crop residue (the leftover material from crops like stalks, leaves, and husks of corn plants following harvest) pictured above can be converted to biofuels as well as high-value products such as plastics, chemicals, and fertilizers. Non-food biomass such as the crop residue (the leftover material from crops like

    4. ARBUSCULAR MYCORRHIZAL COLONIZATION OF LARREA TRIDENTATA AND AMBROSIA DUMOSA ROOTS VARIES WITH PRECIPITATION AND SEASON IN THE MOJAVE DESERT

      SciTech Connect (OSTI)

      M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO; C. R. COGAR; C. E. WELLS; R. S. NOWAK

      2004-01-01

      The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungi via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.

    5. Water Security

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

    6. Water Power

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Stationary PowerEnergy Conversion EfficiencyWater Power Water Power Tara Camacho-Lopez 2016-06-01T22:32:54+00:00 Enabling a successful water power industry. Hydropower ...

    7. Radar-Derived Characteristics of Precipitation in South East Queensland

      SciTech Connect (OSTI)

      Peter, Justin R; May, Peter T; Potts, Rodney J; Collis, Scott M.; Manton, Michael J; Wilson, Louise

      2015-10-01

      Statistics of radar-retrievals of precipitation are presented. A K-means clustering algorithm is applied to an historical record of radiosonde measurements which identified three major synoptic regimes; a dry, stable regime with mainly westerly winds prevalent during winter, a moist south easterly trade wind regime and a moist northerly regime both prevalent during summer. These are referred to as westerly, trade wind and northerly regimes, respectively. Cell statistics are calculated using an objective cell identification and tracking methodology on data obtained from a nearby S-band radar. Cell statistics are investigated for the entire radar observational period and also during sub-periods corresponding to the three major synoptic regimes. The statistics investigated are cell initiation location, area, rainrate, volume, height, height of the maximum reflectivity, volume greater than 40 dBZ and storm speed and direction. Cells are found predominantly along the elevated topography. The cell statistics reveal that storms which form in the dry, stable westerly regime are of comparable size to the deep cells which form in the northerly regime, larger than those in the trade regime and, furthermore, have the largest rainrate. However, they occur less frequently and have shorter lifetimes than cells in the other regimes. Diurnal statistics of precipitation area and rainrate exhibit early morning and mid afternoon peaks, although the areal coverage lags the rainrate by several hours indicative of a transition from convective to stratiform precipitation. The probability distributions of cell area, rainrate, volume, height and height of the maximum re ectivity are found to follow lognormal distributions.

    8. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

      SciTech Connect (OSTI)

      Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

      2015-09-04

      Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha–1 yr–1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Provided the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

    9. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

      2015-09-04

      Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing ofmore » ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha–1 yr–1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Provided the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.« less

    10. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Xu, Ning; Gallimore, David; Lujan, Elmer; Garduno, Katherine; Walker, Laurie; Taylor, Fiona; Thompson, Pam; Tandon, Lav

      2015-05-26

      In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

    11. Method and apparatus for welding precipitation hardenable materials

      DOE Patents [OSTI]

      Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

      1994-01-01

      A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

    12. Method and apparatus for welding precipitation hardenable materials

      DOE Patents [OSTI]

      Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

      1994-06-28

      A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

    13. Irradiation-induced nano-voids in strained tin precipitates in silicon

      SciTech Connect (OSTI)

      Gaiduk, P. I., E-mail: gaiduk@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Department of Physical Electronics and Nanotechnology, Belarusian State University, prosp. Nezavisimosti, 4, 220030 Minsk (Belarus); Lundsgaard Hansen, J., E-mail: johnlh@phys.au.dk; Nylandsted Larsen, A., E-mail: anl@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark)

      2014-04-14

      We report on self-assembling of spherically shaped voids in nanometer size strained Sn precipitates after irradiation with He{sup +} ions in different conditions. It is found that high-temperature irradiation induces vacancies which are collected by compressively strained Sn precipitates enhancing of out-diffusion of Sn atoms from the precipitates. Nano-voids formation takes place simultaneously with a ?- to ?-phase transformation in the Sn precipitates. Post-irradiation thermal treatment leads to the removal of voids and a backward transformation of the Sn phase to ?-phase. Strain-enhanced separation of point defects along with vacancy assisted Sn out-diffusion and precipitate dissolution are discussed.

    14. water scarcity

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

    15. water savings

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

    16. water infrastructure

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

    17. Water Demand

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

    18. drinking water

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

    19. Water Power

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Water Power Sandia's 117-scale WEC device with being tested in the maneuvering and ... EC, News, Renewable Energy, Water Power Sandia National Laboratories Uses Its Wave Energy ...

    20. Water Efficiency

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership ...ate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com ...

    1. Water Power

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

    2. Water Security

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Water Security - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

    3. Clinal morphological variation along a depth gradient in the living scleractinian reef coral Favia pallida: Effects on perceived evolutionary tempos in the fossil record

      SciTech Connect (OSTI)

      Cuffey, R.J. ); Pachut, J.F. )

      1990-12-01

      The Holocene reef-building coral Favia pallida was sampled at 4.5 m depth increments (to 40 m) from two reefs on Enewetak Atoll to examine intraspecific environmental effects. An exposed outer reef was massive and wall-like, whereas a sheltered lagoonal reef grew as a slender pinnacle. Corallite diameter and growth rate, two attributes retrievable in fossil corals, were measured with data partitioned into shallow (<20 m), intermediate (20 to 29 m), and deep-water (>29 m) subsets. Highly significant differences between depth zone populations were found for both corallite diameters and growth rates in analyses of individual and combined reef data sets. Canonical variates analyses (CVA) separated populations from depth zones along single, highly significant, functions. Centroids and 95% confidence intervals, calculated from CVA scores of colonies in each population, are widely separated for the lagoon reef and combined data sets. Conversely, populations from shallow and intermediate depths on the outer reef display overlapping confidence bars indicative of more gradational morphologic changes. When CV's were used to classify specimens to groups, misassignments of intermediate depth specimens to shallow or deep-water populations underscored the gradational nature of the environment. Completely intergrading populations of Favia pallida collected from different depths can be morphologically separated into statistically distinct groupings. A stratigraphic succession of such morphotypes might be interpreted as abruptly appearing separate species if sampling were not as uniform, systematic, and detailed as was possible on modern reefs. Analyses of evolutionary patterns must carefully assess potential effects of clinal variation if past evolutionary patterns are to be interpreted correctly.

    4. Precipitation of sigma and chi phases in ?-ferrite of Type 316FR weld metals

      SciTech Connect (OSTI)

      Chun, Eun Joon; Baba, Hayato; Nishimoto, Kazutoshi; Saida, Kazuyoshi

      2013-12-15

      The decomposition behavior and kinetics of ?-ferrite are examined using aging treatments between 873 and 1073 K for Type 316FR stainless steel weld metals with different solidification modes (316FR AF, 316FR FA). The dominant precipitates are sigma, chi, and secondary austenite nucleated at ?-ferrite/austenite interfaces or in the interior of the ferrite grains. These precipitates consume all the ferrite during isothermal aging in both 316FR AF and FA weld metals. Differences in the precipitation behavior (precipitation initiation time and precipitation speed) between weld metals can be explained by i) the degree of Cr and Mo microsegregation within ?-ferrite or austenite near ferrite and ii) the nucleation sites induced due to the solidification mode (AF or FA), such as the ferrite amount. For both weld materials, a JohnsonMehl-type equation can express the precipitation behavior of the sigma + chi phases and quantitatively predict the behavior at the service-exposure temperatures of a fast breed reactor. - Highlights: Precipitation of ? and ? phase in Type 316FR welds (two solidification modes) Different precipitation behaviors: precipitation initiation time and growth speed Johnson-Mehltype equation is the most applicable to the precipitation behaviors Precipitation behaviors are predicted under service conditions of FBRs.

    5. The development of precipitated iron catalysts with improved stability

      SciTech Connect (OSTI)

      Not Available

      1990-01-01

      The goal of this program is to identify the chemical principles governing the deactivation of precipitated iron catalysts during Fischer-Tropsch synthesis and to use these chemical principles in the design of catalysts suitable for slurry reactors. This report covers testing an iron catalyst. During the last quarter, a new precipitated iron catalyst was prepared and tested in the slurry autoclave reactor at various conditions. This catalyst did not noticeably deactivate during 1250 hours of testing. This quarter, the test was extended to include performance evaluations at different conversion levels ranging from 35 to 88% at 265 and 275{degree}C. The conversion levels were varied by changing the feed rate. The catalytic performance at different conversion intervals was then integrated to approximately predict performance in a bubble column reactor. The run was shut down at the end of 1996 hours because of a 24-hour-power outage. When the power was back on, the run was restarted from room temperature. Catalytic performance during the first 300 hours after the restart-up was monitored. Overall product distributions are being tabulated as analytical laboratory data are obtained. 34 figs., 3 tabs.

    6. PoroTomo Subtask 6.8 - Brady Well Coordinates and Observation Sensor Depths

      Office of Scientific and Technical Information (OSTI)

      (Dataset) | SciTech Connect 8 - Brady Well Coordinates and Observation Sensor Depths Citation Details In-Document Search Title: PoroTomo Subtask 6.8 - Brady Well Coordinates and Observation Sensor Depths Contains metadata associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. Included with the well coordinates are the depths to the pressure sensors used in observation and pumping wells. Read me files are included for each .csv

    7. Practical Analysis of materials with depth varying compositions using FT-IR photoacoustic spectroscopy (PAS)

      SciTech Connect (OSTI)

      J.F. McClelland; R.W. Jones; Siquan Luo

      2004-09-30

      FT-IR photoacoustic spectroscopy (PAS) is discussed as a nondestructive method to probe the molecular composition of materials versus depth on the basis of the analysis of layers of experimentally controllable thickness, which are measured from the sample surface to depths of some tens of micrometers, depending on optical and thermal properties. Computational methods are described to process photoacoustic amplitude and phase spectra for both semi-quantitative and quantitative depth analyses. These methods are demonstrated on layered and gradient samples.

    8. LANL selects two small businesses for water monitoring work

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      LANL selects two small businesses for water monitoring work LANL selects two small businesses for water monitoring work The two companies selected are TerranearPMC, LLC and Eberline Services, Inc. April 12, 2011 LANL monitors water at more than 200 wells and sample ports at various depths. LANL monitors water at more than 200 wells and sample ports at various depths. Contact Fred deSousa Communications Office (505) 665-3430 Email Subcontract worth up to $80 million over five years LOS ALAMOS,

    9. Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China

      SciTech Connect (OSTI)

      Li, Yuefeng; Leung, Lai-Yung R.

      2013-02-01

      After the end of the 1970s, there has been a tendency for enhanced summer precipitation over South China and the Yangtze River valley and drought over North China and Northeastern China. Coincidentally, Arctic ice concentration has decreased since the late 1970s, with larger reduction in summer than spring. However, the Arctic warming is more significant in spring than summer, suggesting that spring Arctic conditions could be more important in their remote impacts. This study investigates the potential impacts of the Arctic on summer precipitation in China. The leading spatial patterns and time coefficients of the unfiltered, interannual, and interdecadal precipitation (1960-2008) modes were analyzed and compared using empirical orthogonal function (EOF) analysis, which shows that the first three EOFs can capture the principal precipitation patterns (northern, central and southern patterns) over eastern China. Regression of the Arctic spring and summer temperature onto the time coefficients of the leading interannual and interdecadal precipitation modes shows that interdecadal summer precipitation in China is related to the Arctic spring warming, but the relationship with Arctic summer temperature is weak. Moreover, no notable relationships were found between the first three modes of interannual precipitation and Arctic spring or summer temperatures. Finally, correlations between summer precipitation and the Arctic Oscillation (AO) index from January to August were investigated, which indicate that summer precipitation in China correlates with AO only to some extent. Overall, this study suggests important relationships between the Arctic spring temperature and summer precipitation over China at the interdecadal time scale.

    10. Precipitation of calcium carbonate and calcium phosphate under diffusion controlled mixing

      SciTech Connect (OSTI)

      Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo; Don T. Fox; Hai Huang; Lee Tu; Yoshiko Fujita; Robert W. Smith; George Redden

      2014-07-01

      Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemical systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.

    11. Evaluation of Water Quality Conditions Near Proposed Fish Production Sites Associated with the Yakima Fisheries Project, 1991-1993 Final Report.

      SciTech Connect (OSTI)

      Dauble, Dennis D.

      1994-05-01

      In 1991, the Pacific Northwest Laboratory (PNL) began studying water quality at several sites in the Yakima River Basin for the Bonneville Power Administration. These sites were being proposed as locations for fish culture facilities as part of the Yakima Fisheries Project (YFP). Surface water quality parameters near the proposed fish culture facilities are currently suitable for fish production. Water quality conditions in the mainstream Yakima River and its tributaries are generally excellent in the upper part of the watershed (i.e., near Cle Elum), but they are only fair to poor for the river downstream of Union Gap (river mile 107). Water quality of the Naches River near Oak Flats is also suitable for fish production. Groundwater supplies near the proposed fish production facilities typically have elevated concentrations of metals and dissolved gases. These conditions can be mitigated using best engineering practices such as precipitation and degasification. Additionally, mixing with surface water may improve these conditions. Depending on the location and depth of the well, groundwater temperatures may be warmer than optimum for acclimating and holding juvenile and adult fish. Water quality parameters measured in the Yakima River and tributaries sometimes exceed the range of values described as acceptable for culture of salmonids and for the protection of other aquatic life. However, constituent concentrations are within ranges that exist in many northwest fish hatcheries. Additionally, site-specific tests conducted by PNL (i.e., live box exposures and egg incubation studies) indicate that fish can be successfully reared in surface and well water near the proposed facility sites. Thus, there appear to be no constraints to artificial production for the YFP.

    12. Simulation of the kinetics of precipitation reactions in ferritic steels

      SciTech Connect (OSTI)

      Schneider, A. . E-mail: schneider@mpie.de; Inden, G.

      2005-01-10

      Computer simulations of diffusion-controlled phase transformations in model alloys of Fe-Cr-C, Fe-Cr-W-C, Fe-Cr-Si-C, and Fe-Cr-Co-V-C are presented. The compositions considered are typical for ferritic steels. The simulations are performed using the software DICTRA and the thermodynamic calculations of phase equilibria are performed using Thermo-Calc. The thermodynamic driving forces and the kinetics of diffusion-controlled precipitation reactions of M{sub 23}C{sub 6}, M{sub 7}C{sub 3}, cementite and Laves-phase (Fe, Cr){sub 2}W are discussed. The simultaneous growth of stable and metastable phases is treated in a multi-cell approach. The results show remarkable effects on the growth kinetics due to the competition during simultaneous growth.

    13. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

      SciTech Connect (OSTI)

      Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

      2015-04-17

      We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pH 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.

    14. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; Elwood Madden, Andrew S.

      2015-04-17

      We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less

    15. Eutectic precipitation of melt quenched titanium-silicon-neodymium alloy

      SciTech Connect (OSTI)

      Li, G.P.; Liu, Y.Y.; Li, D.; Hu, Z.Q. . Inst. of Metal Research)

      1995-01-15

      Titanium based metallic glasses have attracted keen interest because of the promise of industrial applications owing to their improves corrosion resistance, better mechanical properties, occurrence of superconductivity and superior magnetic properties. The titanium alloy systems where metallic glass has been obtained include Ti-Cu, Ti-Be, Ti-Si, Ti-B. Polk et al. had reported that they were able to produce an amorphous phase in binary Ti[sub 80]Si[sub 20] alloy system by using an arc-melting piston and anvil apparatus. In the present study, the authors have investigated the effect of adding rare earth element Nd on eutective precipitation of the amorphous Ti[sub 80]Si[sub 20] alloy and the orientation relationship which exists between the [beta]-Ti and Ti[sub 5]Si[sub 3].

    16. Final report for DOE Grant No. DE-SC0006609 - Persistence of Microbially Facilitated Calcite Precipitation as an in situ Treatment for Strontium-90

      SciTech Connect (OSTI)

      Smith, Robert W; Fujita, Yoshiko

      2013-11-15

      Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide Sr-90, is co-precipitation in calcite. We have previously found that nutrient addition can stimulate microbial ureolytic activity, that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days and was followed by long-term monitoring which continued for 13 months. A post experiment core located within the inter-wellbore zone was collected on day 321 and characterized with respect to cation exchange capacity, mineral carbonate content, urease activity, ureC gene abundance, extractable ammonium (a urea hydrolysis product) content, and the C-13 isotopic composition of solid carbonates. It was also subjected to selective extractions for strontium and uranium. Result of the core

    17. Aqueous precipitation: Population balance modeling and control in multi-cation systems

      SciTech Connect (OSTI)

      Voigt, J.A.

      1996-03-01

      Efficient separation of metal species from aqueous streams by precipitation techniques requires a fundamental understanding of the processes that occur during precipitation. These processes include particle nucleation, particle growth by solute deposition, agglomerate formation, and agglomerate breakup. Population balance method has been used to develop a kinetic model that accounts for these competing kinetic processes. The usefulness of the model is illustrated through its application to precipitation of yttrium hydroxynitrate, YHN. Kinetic parameters calculated from the model equations and system-specific solution chemistry are used to describe several aspects of the effect of pH on YHN precipitation. Implications for simultaneous precipitation of more than one cation type are discussed with examples. Effects of solution chemistry, precipitator design, and solvent choice are considered.

    18. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

      SciTech Connect (OSTI)

      White, J.R.

      1985-04-01

      This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

    19. Final Scientific/Technical Report--In-Situ Generation of Iron-Chromium Precipitates for Long Term Immobilization of Chromium at the Hanford Site

      SciTech Connect (OSTI)

      Butler, Elizabeth C.; Krumholz, Lee R.; Madden, Andrew S.; Hansel, Colleen M.

      2013-12-13

      Hexavalent chromium (Cr(VI)) is a toxic ground water contaminant widespread at the Hanford site and many other industrial facilities. A common remediation method for Cr(VI) is in situ reduction/immobilization, in which soluble Cr(VI) is reduced to the less soluble trivalent Cr (Cr(III)). If iron (Fe) minerals are present during the process, Cr(III) precipitates as a mixed Fe(III)-Cr(III) (Fe-Cr) solid. The objective of this exploratory research was to obtain preliminary evidence about the relationships among the method of Cr(VI) reduction (i.e., abiotic or microbial), the properties of the resulting Fe-Cr precipitates, and their tendencies to release soluble Cr(VI) in the presence of the common manganese oxide birnessite. The results of this exploratory research project show that the conditions of Cr(VI) reduction—specifically the ratio of Cr to Fe, and/or whether the Cr(VI) reductant is a mineral or a microorganism—can significantly affect the tendency of the resulting Fe-Cr precipitate to release Cr(VI) to the environment in the presence of birnessite. These results suggest the chosen remediation conditions have the potential to strongly influence not only the initial success of in situ Cr(VI) reduction/immobilization, but also the potential for successful long term sequestration of Cr in the form of stable soil precipitates.

    20. Method for determining depth and shape of a sub-surface conductive object

      DOE Patents [OSTI]

      Lee, D.O.; Montoya, P.C.; Wayland, Jr.

      1984-06-27

      The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

    1. Two weight system for measuring depth and sediment in slurry-supported excavations

      SciTech Connect (OSTI)

      Deming, P.; Good, D.

      1999-07-01

      This paper describes a two weight system using bar and flat shaped weights for measuring depth and detecting sediment at the bottom of slurry-supported excavations. Currently there are no standard depth measurement weights or methods for reliably identifying bottom sediment. Two weights and a procedural system for using the weights is described. Details suitable for manufacture are provided.

    2. Method of precipitating uranium from an aqueous solution and/or sediment

      SciTech Connect (OSTI)

      Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

      2013-08-20

      A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

    3. Reusing Water

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into ...

    4. Water Summit

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the ...

    5. Reusing Water

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

    6. Precipitation in a Cu–Cr–Zr–Mg alloy during aging

      SciTech Connect (OSTI)

      Cheng, J.Y. Shen, B.; Yu, F.X.

      2013-07-15

      The precipitation processes in a Cu-0.69Cr-0.10Zr-0.02Mg alloy aged at 450 °C and 550 °C have been investigated by transmission electron microscopy and high resolution transmission electron microscopy. The precipitation sequence in this alloy aged at 450 °C is: supersaturated solid solution → Guinier–Preston zone (fcc Cr-rich phase) → ordered fcc Cr-rich phase → ordered bcc Cr-rich phase. The precipitation sequence in this alloy aged at 550 °C is: supersaturated solid solution → ordered fcc Cr-rich phase → ordered bcc Cr-rich phase. In the evolution of decomposition, the orientation relationship between the precipitates and the Cu matrix changes from cube-on-cube to Nishiyama–Wassermann orientation. The ordering of Cr-rich precipitates facilitates the formation of the bcc precipitates and promotes the development of Nishiyama–Wassermann orientation. - Highlights: • Two different precipitation sequences in the Cu–Cr–Zr–Mg alloy are proposed. • The changes in orientation relationship of the precipitates are presented. • The roles of ordering and coherent interface of the precipitates are discussed.

    7. Method and means for continuous precipitation of easy-dry, granular uranium peroxide

      DOE Patents [OSTI]

      Cahill, Allen E.; Burkhart, deceased, Lawrence E.

      1992-02-28

      A method and means for continuous precipitation of granular uranium peroxide. The reaction vessel and agitation method practiced in it avoid filter plugging and caking problems.

    8. Precipitates in a quasicrystal-strengthened Al–Mn–Be–Cu alloy

      SciTech Connect (OSTI)

      Zupanič, Franc; Wang, Di; Gspan, Cristian; Bončina, Tonica

      2015-08-15

      In this work, an Al–Mn–Be–Cu alloy was studied containing a primary and eutectic icosahedral quasicrystalline phase in the as-cast microstructure. Special attention was given to a transmission electron microscopy investigation of precipitates formed within the aluminium solid solution (Al{sub ss}) at different temperatures. At 200 °C, only binary Al–Cu precipitates (θ′) were formed. At 300 °C, icosahedral quasicrystalline (IQC) precipitates prevailed with a crystallographic orientation relationship with the Al{sub ss.} The rods of the T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) which were precipitated above 400 °C, also had a specific orientation relationship with the Al{sub ss}. The primary and eutectic IQC microstructural constituent started to transform rapidly to the T-phase and Be{sub 4}Al(Mn,Cu) at 500 °C. - Highlights: • In a quasicrystal-strengthened Al-alloy several types of precipitates can form. • At 200 °C, only binary Al–Cu precipitates formed (Al{sub 2}Cu-θ′). • The icosahedral quasicrystalline (IQC) precipitates prevailed at 300 °C. • T-phase (Al{sub 20}Mn{sub 3}Cu{sub 2}) precipitated at temperatures above 400 °C. • The precipitation of different phases did not have a strong effect on hardness.

    9. Selenium in Oklahoma ground water and soil

      SciTech Connect (OSTI)

      Atalay, A.; Vir Maggon, D.

      1991-03-30

      Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

    10. Waste water filtration enhancement

      SciTech Connect (OSTI)

      Martin, H.L.

      1989-01-01

      Removal of submicron particles from process solutions and waste water is now economically achievable using a new Tyvek{reg sign} media in conventional filtration equipment. This new product greatly enhances filtration and allows use of the much improved filter aids and polymers which were recently developed. It has reduced operating costs and ensures a clean effluent discharge to the environment. This significant technical development is especially important to those who discharge to a small stream with low 7Q10 flow and must soon routinely pass the Toxicity tests that are being required by many States for NPDES permit renewal. The Savannah River Plant produces special nuclear materials for the US Government. Aluminum forming and metal finishing operations in M-Area, that manufacture fuel and target assemblies for the nuclear reactors, discharge to a waste water treatment facility using BAT hydroxide precipitation and filtration. The new Tyvek{reg sign} media and filter aids have achieved 55% less solids in the filtrate discharged to Tims Branch Creek, 15% less hazardous waste (dry filter cake), 150%-370% more filtration capacity, 74% lower materials purchase cost, 10% lower total M-Area manufacturing cost, and have improved safety. Performance with the improved polymers is now being evaluated.

    11. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Kolasinski, Robert; Shimada, Masashi; Oya, Yasuhisa; Buchenauer, Dean A.; Chikada, Takumi; Cowgill, Donald F.; Donovan, David; Friddle, Raymond William; Michibayashi, Katsu; Sato, Misaki

      2015-08-17

      We examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-gradetungsten samples to high flux D plasmas (up to 1.5 × 1022 m-2 s-1) at temperatures ranging between 103 and 554 °C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached a maximum at 230more » °C and diminished rapidly thereafter for T > 300 °C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 μm over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm–1 μm beneath the surface and grew as a result of expansion of sub-surface cracks. Furthermore, to estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. Additionally, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical framework developed here from

    12. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

      SciTech Connect (OSTI)

      Kolasinski, Robert; Shimada, Masashi; Oya, Yasuhisa; Buchenauer, Dean A.; Chikada, Takumi; Cowgill, Donald F.; Donovan, David; Friddle, Raymond William; Michibayashi, Katsu; Sato, Misaki

      2015-08-17

      We examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-gradetungsten samples to high flux D plasmas (up to 1.5 × 1022 m-2 s-1) at temperatures ranging between 103 and 554 °C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached a maximum at 230 °C and diminished rapidly thereafter for T > 300 °C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 μm over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm–1 μm beneath the surface and grew as a result of expansion of sub-surface cracks. Furthermore, to estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. Additionally, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical

    13. A multi-technique analysis of deuterium trapping and near-surface precipitate growth in plasma-exposed tungsten

      SciTech Connect (OSTI)

      Kolasinski, Robert; Shimada, Masashi; Oya, Yasuhisa; Buchenauer, Dean A.; Chikada, Takumi; Cowgill, Donald F.; Donovan, David; Friddle, Raymond William; Michibayashi, Katsu; Sato, Misaki

      2015-08-17

      We examine how deuterium becomes trapped in plasma-exposed tungsten and forms near-surface platelet-shaped precipitates. How these bubbles nucleate and grow, as well as the amount of deuterium trapped within, is crucial for interpreting the experimental database. Here, we use a combined experimental/theoretical approach to provide further insight into the underlying physics. With the Tritium Plasma Experiment, we exposed a series of ITER-gradetungsten samples to high flux D plasmas (up to 1.5 1022 m-2 s-1) at temperatures ranging between 103 and 554 C. Retention of deuterium trapped in the bulk, assessed through thermal desorption spectrometry, reached a maximum at 230 C and diminished rapidly thereafter for T > 300 C. Post-mortem examination of the surfaces revealed non-uniform growth of bubbles ranging in diameter between 1 and 10 ?m over the surface with a clear correlation with grain boundaries. Electron back-scattering diffraction maps over a large area of the surface confirmed this dependence; grains containing bubbles were aligned with a preferred slip vector along the <111> directions. Focused ion beam profiles suggest that these bubbles nucleated as platelets at depths of 200 nm1 ?m beneath the surface and grew as a result of expansion of sub-surface cracks. Furthermore, to estimate the amount of deuterium trapped in these defects relative to other sites within the material, we applied a continuum-scale treatment of hydrogen isotope precipitation. Additionally, we propose a straightforward model of near-surface platelet expansion that reproduces bubble sizes consistent with our measurements. For the tungsten microstructure considered here, we find that bubbles would only weakly affect migration of D into the material, perhaps explaining why deep trapping was observed in prior studies with plasma-exposed neutron-irradiated specimens. We foresee no insurmountable issues that would prevent the theoretical framework

    14. Biogeochemistry of Metalliferous Peats: Sulfur Speciation and Depth Distributions of dsrAB Genes and Cd, Fe, Mn, S, and Zn in Soil Cores

      SciTech Connect (OSTI)

      Martinez,C.; Yanez, C.; Yoon, S.; Bruns, M.

      2007-01-01

      Spatial relationships between concentrations of Cd, Fe, Mn, S, and Zn and bacterial genes for dissimilatory sulfate reduction were studied in soils of the Manning peatland region in western New York. Peat cores were collected within a field exhibiting areas of Zn phytotoxicity, and pH and elemental concentrations were determined with depth. The oxidation states of S were estimated using S-XANES spectroscopy. Soil microbial community DNA was extracted from peat soils for ribosomal RNA intergenic spacer analysis (RISA) of diversity profiles with depth. To assess the presence of sulfate-reducing microorganisms (SRM), DNA extracts were also used as templates for PCR detection of dsrAB genes coding for dissimilatory (bi)sulfite reductase. Elemental distributions, S redox speciation, and detection of dsrAB genes varied with depth and water content. The pH of peat soils increased with depth. The highest concentrations of Zn, Cd, and S occurred at intermediate depths, whereas Mn concentrations were highest in the topmost peat layers. Iron showed a relatively uniform distribution with depth. Concentrations of redox sensitive elements, S and Mn, but not Fe, seemed to respond to variations in water content and indicated vertical redox stratification in peat cores where topmost peats were typically acidic and oxidizing and deeper peats were typically circumneutral and reducing. Even then, S-XANES analyses showed that surface peats contained >50% of the total S in reduced forms while deep peats contained generally <5% of the total S in oxidized forms. While bacterial RISA profiles of the peats were diverse, dsrAB gene detection followed redox stratification chemistry closely. For the most part, dsrAB genes were detected in deeper peats, where S accumulation was evident, while they were not detected in topmost peat layers where Mn accumulation indicated oxic conditions. Combined chemical, spectroscopic, and microbiological analyses indicated that prolonged exposure to dry

    15. Alternative washing strategy during in-tank precipitation processing

      SciTech Connect (OSTI)

      Walker, D.D.; Hobbs, D.T.

      1992-10-30

      If late washing of precipitate is available, it is possible to modify the normal washing phase of the ITP process so that tank corrosion is prevented by inhibiting with sodium hydroxide rather than sodium nitrite. Hydroxide inhibition has numerous advantages to a hydroxide/nitrite flowsheet.1 However, the rate of hydroxide depletion due to radiolysis and C0{sub 2} absorption were uncertainties. Based on recent experiments and calculations: hydroxide consumption by radiolysis will be 0.01 molar per month during Tank 49 storage, hydroxide depletion due to C0{sub 2} absorption will vary from 0.0006 to 0.025 molar per month for waste volumes between 50,000 and 1 million gallons and air flowrates between 100 and 200 cfm. A nominal rate of 0.006 molar/month (or less) is expected in Tank 49 after the first two ITP cycles have been completed. A material balance for the ITP process based on hydroxide inhibition has been calculated and the potential savings have been estimated.

    16. Alternative washing strategy during in-tank precipitation processing

      SciTech Connect (OSTI)

      Walker, D.D.; Hobbs, D.T.

      1992-10-30

      If late washing of precipitate is available, it is possible to modify the normal washing phase of the ITP process so that tank corrosion is prevented by inhibiting with sodium hydroxide rather than sodium nitrite. Hydroxide inhibition has numerous advantages to a hydroxide/nitrite flowsheet.1 However, the rate of hydroxide depletion due to radiolysis and C0[sub 2] absorption were uncertainties. Based on recent experiments and calculations: hydroxide consumption by radiolysis will be 0.01 molar per month during Tank 49 storage, hydroxide depletion due to C0[sub 2] absorption will vary from 0.0006 to 0.025 molar per month for waste volumes between 50,000 and 1 million gallons and air flowrates between 100 and 200 cfm. A nominal rate of 0.006 molar/month (or less) is expected in Tank 49 after the first two ITP cycles have been completed. A material balance for the ITP process based on hydroxide inhibition has been calculated and the potential savings have been estimated.

    17. Preliminary 3d depth migration of a network of 2d seismic lines for fault

      Office of Scientific and Technical Information (OSTI)

      imaging at a Pyramid Lake, Nevada geothermal prospect (Conference) | SciTech Connect Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect Citation Details In-Document Search Title: Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a

    18. SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION

      DOE Patents [OSTI]

      Davies, T.H.

      1959-12-15

      An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.

    19. Optimization of conditions for precipitation of thorium oxalate. IV. State of thorium in oxalate solutions

      SciTech Connect (OSTI)

      Pazukhin, E.M.; Smirnova, E.A.; Pazurkhina, Yu.L.; Kiselev, P.P.

      1989-01-01

      The paper gives the algorithm and the results from computer treatment of data on the solubility of a thorium oxalate hexahydrate precipitate in solutions with various compositions. A new method is proposed for the determination of the solubility product of the precipitate by means of the solubility curve. The stability constants were calculated. The calculations were made on an Elektronika-60 computer.

    20. Precipitation process for the removal of technetium values from nuclear waste solutions

      DOE Patents [OSTI]

      Walker, D.D.; Ebra, M.A.

      1985-11-21

      High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

    1. Theoretical studies of Ir5Th and Ir5Ce nanoscale precipitates in Ir

      SciTech Connect (OSTI)

      Morris, James R; Averill, Frank; Cooper, Valentino R

      2014-01-01

      Experimentally, it is known that very small amounts of thorium and/or cerium added to iridium metal form a precipitate, Ir5Th / Ir5Ce, which improves the high temperature mechanical properties of the resulting alloys. We demonstrate that there are low-energy configurations for nano-scale precipitates of these phases in Ir, and that these coherent arrangements may assist in producing improved mechanical properties. One precipitate/matrix orientation gives a particularly low interfacial energy, and a low lattice misfit. Nanolayer precipitates with this orientation are found to be likely to form, with little driving force to coarsen. The predicted morphology of the precipitates and their orientation with the matrix phase provide a potential experiment that could be used to test these predictions.

    2. Water pollution

      SciTech Connect (OSTI)

      Not Available

      1990-06-01

      Ballast water, which is sea water that is carried in oil tankers to provide stability, can become contaminated with oil. Alyeska Pipeline Service Company runs a water treatment plant at its pipeline terminal at Prot Valdez, Alaska, to treat ballast water before it is discharged into the sea. GAO reviewed EPA's recently reissued National Pollution Discharge Elimination System permit for the Port Valdez facility. In this report, GAO compares the effluent limits and other requirements under the reissued permit with those of the old permit, determines the reasons for changes in the reissued permit, and examines Alyeska's initial efforts to comply with the reissued permit's effluent limits and reporting requirements.

    3. Method of varying a physical property of a material through its depth

      SciTech Connect (OSTI)

      Daniel, Claus

      2015-04-21

      A method is disclosed for varying a mechanical property of a material at two depths. The method involves the application of at least two laser pulses of different durations. The method involves a determination of the density of the material from the surface to each depth, a determination of the heat capacity of the material from the surface to each depth, and a determination of the thermal conductivity of the material from the surface to each depth. Each laser pulse may affect the density, heat capacity, and thermal conductivity of the material, so it may be necessary to re-evaluate those parameters after each laser pulse and prior to the next pulse. The method may be applied to implantation materials to improve osteoblast and osteoclast activity.

    4. Depth Profiling of SiC Lattice Damage Using Micro-Raman Spectroscopy...

      Office of Scientific and Technical Information (OSTI)

      (OAS) was used for establishing the opacity (and therefore the probing depth) of the damaged layer to the 632.8 nm wavelength of the He-Ne laser used for CMR throughout this study. ...

    5. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

      Broader source: Energy.gov [DOE]

      Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 2 (in-depth...

    6. Depth-dependent ordering, two-length-scale phenomena, and crossover...

      Office of Scientific and Technical Information (OSTI)

      a skin layer with defects Citation Details In-Document Search Title: Depth-dependent ordering, two-length-scale phenomena, and crossover behavior in a crystal featuring a skin ...

    7. Depth Profile of Uncompensated Spins in an Exchange-Bias System

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent magnetization in an exchange-biased sample. These results provide atomic-level ...

    8. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

      SciTech Connect (OSTI)

      Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

      2014-05-01

      Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

    9. Ground-water data for 1990--91 and ground-water withdrawals for 1951--91, Nevada Test Site and vicinity, Nye County, Nevada

      SciTech Connect (OSTI)

      Wood, D.B.; Reiner, S.R.

      1996-12-31

      This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made at 74 sites at and in the vicinity of the Nevada Test Site during water years 1990--91. Measured depths to water ranged from 301 to 2,215 feet below land surface and measured altitudes of the ground-water surface at the Nevada Test Site ranged from 2,091 to 6,083 feet above sea level. Depth-to-water measurements were obtained by a combination of wire-line, electric-tape, iron-horse, and steel-tape methods. Available historic withdrawal and depth-to-water data for ground-water supply wells have been included to show changes through time. Water samples were collected and analyzed for tritium concentrations at 15 sites during water years 1990--91. Tritium concentrations in bailed water samples ranged from below detection limits to 5,550,000 picocuries per liter. Tritium concentrations in samples from three wells exceeded drinking water standards established by the US Environmental Protection Agency. All three wells are separate piezometers contained within a single test hole near an area of extensive underground nuclear testing.

    10. Depth Profile of Uncompensated Spins in an Exchange-Bias System

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

    11. Depth Profile of Uncompensated Spins in an Exchange-Bias System

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

    12. Depth Profile of Uncompensated Spins in an Exchange-Bias System

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

    13. Depth Profile of Uncompensated Spins in an Exchange-Bias System

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

    14. Depth Profile of Uncompensated Spins in an Exchange-Bias System

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Depth Profile of Uncompensated Spins in an Exchange-Bias System Print The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used resonant x-ray scattering and polarized-neutron reflectometry to determine the depth-dependent

    15. Depth Profile of Uncompensated Spins in an Exchange-Bias System

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Depth Profile of Uncompensated Spins in an Exchange-Bias System Depth Profile of Uncompensated Spins in an Exchange-Bias System Print Wednesday, 25 January 2006 00:00 The phenomenon known as exchange bias at the interface between a ferromagnet and an antiferromagnet is currently a subject of intense research because of its applications in the magnetic recording and read-head industries. An international collaboration headed by researchers from the University of California, San Diego, has used

    16. Analysis of Langley optical depth data, with aerosol and gas retrievals,

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      for the RSS 103 instrument in Barrow, Alaska Analysis of Langley optical depth data, with aerosol and gas retrievals, for the RSS 103 instrument in Barrow, Alaska Gianelli, Scott Columbia University - NASA/GISS Lacis, Andrew NASA/Goddard Institute for Space Studies Carlson, Barbara NASA/Goddard Institute for Space Studies Category: Aerosols Bimodal aerosol retrievals, and high-resolution retrevals of nitrogen dioxide, are performed on the Langley optical depth data from the RSS 103 device

    17. Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP,

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      MISR, and MODIS Comparison of Cloud Top Height and Optical Depth Histograms from ISCCP, MISR, and MODIS Marchand, Roger Pacific Northwest National Laboratory Ackerman, Thomas Pacific Northwest National Laboratory Category: Cloud Properties Joint histograms of Cloud Top Height (CTH) and Optical Depth (OD) derived by the International Satellite Cloud Climatology Project (ISCCP) are being widely used by the climate modeling community in evaluating global climate models. Similar joint histograms

    18. Daily temperature and precipitation data for 223 USSR Stations

      SciTech Connect (OSTI)

      Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

      1993-11-01

      On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

    19. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

      DOE Patents [OSTI]

      Xu, X. George; Naessens, Edward P.

      2003-01-01

      A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

    20. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

      SciTech Connect (OSTI)

      IceCube Collaboration; Klein, Spencer

      2009-06-04

      We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

    1. WATER TREATMENT

      DOE Patents [OSTI]

      Pitman, R.W.; Conley, W.R. Jr.

      1962-12-01

      An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

    2. Water Wars

      Energy Science and Technology Software Center (OSTI)

      2012-09-11

      Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

    3. Gene expression patterns of two dominant tallgrass prairie species differ in response to warming and altered precipitation

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Smith, Melinda D.; Hoffman, Ava M.; Avolio, Meghan L.

      2016-05-13

      To better understand the mechanisms underlying plant species responses to climate change, we compared transcriptional profiles of the co-dominant C4 grasses, Andropogon gerardii Vitman and Sorghastrum nutans (L.) Nash, in response to increased temperatures and more variable precipitation regimes in a long-term field experiment in native tallgrass prairie. We used microarray probing of a closely related model species (Zea mays) to assess correlations in leaf temperature (Tleaf) and leaf water potential (LWP) and abundance changes of ~10,000 transcripts in leaf tissue collected from individuals of both species. A greater number of transcripts were found to significantly change in abundance levelsmore » with Tleaf and LWP in S. nutans than in A. gerardii. S. nutans also was more responsive to short-term drought recovery than A. gerardii. Water flow regulating transcripts associated with stress avoidance (e.g., aquaporins), as well as those involved in the prevention and repair of damage (e.g., antioxidant enzymes, HSPs), were uniquely more abundant in response to increasing Tleaf in S. nutans. Furthermore, the differential transcriptomic responses of the co-dominant C4 grasses suggest that these species may cope with and respond to temperature and water stress at the molecular level in distinct ways, with implications for tallgrass prairie ecosystem function.« less

    4. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

      SciTech Connect (OSTI)

      Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

      2014-11-01

      The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

    5. Precipitation of aluminum nitride in a high strength maraging steel with low nitrogen content

      SciTech Connect (OSTI)

      Jeanmaire, G.; Dehmas, M.; Redjamia, A.; Puech, S.; Fribourg, G.

      2014-12-15

      In the present work, aluminum nitride (AlN) precipitation was investigated in a X23NiCoCrMoAl13-6-3 maraging steel with low nitrogen content (wt.% N = 5.5 ppm). A reliable and robust automatic method by scanning electron microscopy observations coupled with energy dispersive X-ray spectroscopy was developed for the quantification of AlN precipitates. The first stage was to identify the solvus temperature and to develop a heat treatment able to dissolve the AlN precipitates. The experimental determination of equilibrium conditions and solvus temperature show good agreement with ThermoCalc simulation. Then, from this AlN-free state, the cooling rate, isothermal holding time and temperature were the subject of an intensive investigation in the austenite region of this maraging steel. In spite of the high temperatures used during heat treatments, the growth kinetic of the largest AlN precipitates (> 1 ?m) is slow. The cooling rate has a major effect on the size and the number density of AlN due to a higher driving force for nucleation at low temperatures. At last, quenching prior to isothermal annealing at high temperatures leads to fine and dense AlN precipitation, resulting from the martensite to austenite transformation. Experimental results will be discussed and compared with kinetic data obtained with the mobility database MobFe2 implemented in Dictra software. - Highlights: Slow dissolution kinetic of AlN precipitates due to both their large size and small chemical driving force Significant effects of cooling rate prior isothermal heat treatment, holding time and temperature on AlN precipitation Size of AlN precipitates can be reduced by quenching prior isothermal holding. Fine precipitation of AlN related to the ? ? ? transformation.

    6. Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Subsurface Biogeochemical Research

      SciTech Connect (OSTI)

      Colwell, Frederick; Wildenschild, Dorthe; Wood, Brian; Gerlach, Robin; Redden, George

      2014-08-29

      The goal for this research was to understand how best to add compounds to receptive microbial communities in porous media in order to achieve optimal calcite precipitation in a volumetrically significant space and to understand the physiological health of the cells that are responsible for the calcite precipitation. The specific objectives were to: (1) develop better tools for visually examining biofilms in porous media and calcium carbonate precipitation being mediated by microbes in porous media, and (2) demonstrate the effectiveness of using that tool within a flow cell model system.

    7. Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel

      SciTech Connect (OSTI)

      Kashiwar, A.; Vennela, N. Phani; Kamath, S.L.; Khatirkar, R.K.

      2012-12-15

      In the present study, effect of solution annealing temperature (1050 Degree-Sign C and 1100 Degree-Sign C) and isothermal ageing (700 Degree-Sign C: 15 min to 6 h) on the microstructural changes in 2205 duplex stainless steel has been investigated systematically. Scanning electron microscopy and X-ray diffraction were adopted to follow the microstructural evolution, while an energy dispersive spectrometer attached to scanning electron microscope was used to obtain localised chemical information of various phases. The ferritic matrix of the two phase 2205 duplex stainless steel ({approx} 45% ferrite and {approx} 55% austenite) undergoes a series of metallurgical transformations during ageing-formation of secondary austenite ({gamma}{sub 2}) and precipitation of Cr and Mo rich intermetallic (chi-{chi} and sigma-{sigma}) phases. For solution annealing at 1050 Degree-Sign C, significant amount of carbides were observed in the ferrite grains after 1 h of ageing at 700 Degree-Sign C. {chi} Phase precipitated after the precipitation of carbides-preferentially at the ferrite-ferrite and also at the ferrite-austenite boundaries. {sigma} Phase was not observed in significant quantity even after 6 h of ageing. The sequence of precipitation in samples solution annealed at 1050 Degree-Sign C was found to be carbides {yields} {chi} {yields} {sigma}. On the contrary, for samples solution annealed at 1100 Degree-Sign C, the precipitation of {chi} phase was negligible. {chi} Phase precipitated before {sigma} phase, preferentially along the ferrite-ferrite grain boundaries and was later consumed in the {sigma} phase precipitation. The {sigma} phase precipitated via the eutectoid transformation of ferrite to yield secondary austenite {gamma}{sub 2} and {sigma} phase in the ferrite and along the ferrite-austenite grain boundaries. An increase in the volume fraction of {gamma}{sub 2} and {sigma} phase with simultaneous decrease in the ferrite was evidenced with ageing. - Highlights

    8. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Chitra Sivaraman; Connor Flynn

      1998-03-01

      10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    9. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Chitra Sivaraman; Connor Flynn

      10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    10. ARM: Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low precipitation mode

      SciTech Connect (OSTI)

      Timothy Martin; Paytsar Muradyan; Richard Coulter

      2014-01-28

      Spectra from 1290-MHz Beam-Steered Radar Wind Profiler (BSRWP) operating in low-low precipitation mode

    11. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; et al

      2015-10-01

      The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

    12. Daily snow depth measurements from 195 stations in the United States

      SciTech Connect (OSTI)

      Allison, L.J.; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H.

      1997-02-01

      This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

    13. Extraction of depth-dependent perturbation factors for silicon diodes using a plastic scintillation detector

      SciTech Connect (OSTI)

      Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc

      2011-10-15

      Purpose: This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). Methods: The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. Results: The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. Conclusions: The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.

    14. Water Power

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      ...016-03-01T17:12:00+00:00 March 1st, 2016|News, News & Events, Water Power, Workshops|0 Comments Read More Wave energy distribution example Permalink Gallery Sandia releases 2nd ...

    15. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg(Cu) alloys

      SciTech Connect (OSTI)

      Liu, J.Z.; Chen, J.H.; Yuan, D.W.; Wu, C.L.; Zhu, J.; Cheng, Z.Y.

      2015-01-15

      Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in electron microscopy in association with quantitative image simulations have to be employed; a systematic study of these hardening precipitates in different alloys is also necessary. In Part I of the present study, it is shown that there are five types of structurally different precipitates including the equilibrium η-phase precipitate. Using two state-of-the-art atomic-resolution imaging techniques in electron microscopy in association with quantitative image simulations, we have determined and clarified all the unknown precipitate structures. It is demonstrated that atomic-resolution imaging can directly suggest approximate structure models, whereas quantitative image analysis can refine the structure details that are much smaller than the resolution of the microscope. This combination is crucially important for solving the difficult structure problems of the strengthening precipitates in AlZnMg(Cu) alloys. - Highlights: Part I: • We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. Part II: • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an alloy depends on the alloy's composition. • Very detailed phase

    16. Method for inhibiting silica precipitation and scaling in geothermal flow systems

      DOE Patents [OSTI]

      Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

      1980-06-13

      A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

    17. DOE-SC-ARM-16-012 ARM Cloud-Aerosol-Precipitation Experiment...

      Office of Scientific and Technical Information (OSTI)

      ... Atmospheric Chemistry and Physics 14: 81-101, doi: 10.5194acp-14-81-2014. Givati, A, and D Rosenfeld. 2004. "Quantifying precipitation suppression due to air pollution." Journal ...

    18. PROCESS USING BISMUTH PHOSPHATE AS A CARRIER PRECIPITATE FOR FISSION PRODUCTS AND PLUTONIUM VALUES

      DOE Patents [OSTI]

      Finzel, T.G.

      1959-03-10

      A process is described for separating plutonium from fission products carried therewith when plutonium in the reduced oxidation state is removed from a nitric acid solution of irradiated uranium by means of bismuth phosphate as a carrier precipitate. The bismuth phosphate carrier precipitate is dissolved by treatment with nitric acid and the plutonium therein is oxidized to the hexavalent oxidation state by means of potassium dichromate. Separation of the plutonium from the fission products is accomplished by again precipitating bismuth phosphate and removing the precipitate which now carries the fission products and a small percentage of the plutonium present. The amount of plutonium carried in this last step may be minimized by addition of sodium fluoride, so as to make the solution 0.03N in NaF, prior to the oxidation and prccipitation step.

    19. Giant two-phonon Raman scattering from nanoscale NbC precipitates...

      Office of Scientific and Technical Information (OSTI)

      Giant two-phonon Raman scattering from nanoscale NbC precipitates in Nb Not Available Temp HTML Storage 2: Cao, C.; Tao, R.; Ford, D. C.; Klie, R. F.; Proslier, T.; Cooley, L. D.; ...

    20. Nucleation of Cr precipitates in Fe-Cr alloy under irradiation

      SciTech Connect (OSTI)

      Dai, Y. Y.; Ao, L.; Sun, Qing- Qiang; Yang, L.; Nie, JL; Peng, SM; Long, XG; Zhou, X. S.; Zu, Xiaotao; Liu, L.; Sun, Xin; Terentyev, Dimtry; Gao, Fei

      2015-04-01

      The nucleation of Cr precipitates induced by overlapping of displacement cascades in Fe-Cr alloys has been investigated using the combination of molecular dynamics (MD) and Metropolis Monte Carlo (MMC) simulations. The results reveal that the number of Frenkel pairs increases with the increasing of overlapped cascades. Overlapping cascades could promote the formation of Cr precipitates in Fe-Cr alloys, as analyzed using short range order (SRO) parameters to quantify the degree of ordering and clustering of Cr atoms. In addition, the simulations using MMC approach show that the presence of small Cr clusters and vacancy clusters formed within cascade overlapped region enhance the nucleation of Cr precipitates, leading to the formation of large Cr dilute precipitates.

    1. Optimization of thorium oxalate precipitation conditions relative to thorium oxide sinterability

      SciTech Connect (OSTI)

      White, G.D.; Bray, L.A.; Hart, P.E.

      1980-01-01

      The effect of thorium oxalate precipitation conditions on derived oxide sinterability was investigated with the objective of producing ThO/sub 2/ powder that could be sintered to high density without premilling. Precipitation conditions examined were temperature, digestion time and agitation method which were employed in a two-level factorial experimental design to delineate their effects. The two levels for each of the factors, respectively, were 10/sup 0/C and 70/sup 0/C, 15 min and 360 min, and mechanical stirrer and a homogenizer that imparted both mechanical and ultrasonic agitation. The ThO/sub 2/ derived from each of the precipitation trials was characterized with respect to morphology, surface area, and crystallite size as well as sinterability. Only precipitation temperature had a significant effect upon all the properties of the derived oxide powders.

    2. Method for inhibiting silica precipitation and scaling in geothermal flow systems

      DOE Patents [OSTI]

      Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

      1982-01-01

      A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

    3. ARSENATE CARRIER PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM NEUTRON IRRADIATED URANIUM AND RADIOACTIVE FISSION PRODUCTS

      DOE Patents [OSTI]

      Thompson, S.G.; Miller, D.R.; James, R.A.

      1961-06-20

      A process is described for precipitating Pu from an aqueous solution as the arsenate, either per se or on a bismuth arsenate carrier, whereby a separation from uranium and fission products, if present in solution, is accomplished.

    4. THEORY OF A QUODON GAS WITH APPLICATION TO PRECIPITATION KINETICS IN SOLIDS UNDER IRRADIATION

      SciTech Connect (OSTI)

      Dubinko, Volodymyr; Shapovalov, Roman V.

      2014-06-17

      Rate theory of the radiation-induced precipitation in solids is modified with account of non-equilibrium fluctuations driven by the gas of lattice solitons (a.k.a. quodons) produced by irradiation. According to quantitative estimations, a steady-state density of the quodon gas under sufficiently intense irradiation can be comparable to the density of classical phonon gas. The modified rate theory is applied to modelling of copper precipitation in FeCu binary alloys under electron irradiation. In contrast to the classical rate theory, which disagrees strongly with experimental data on all precipitation parameters, the modified rate theory describes quite well both the evolution of precipitates and the matrix concentration of copper measured by different methods.

    5. Technetium (VII) Co-precipitation with Framework Aluminosilicates

      SciTech Connect (OSTI)

      Harsh, James B.; Dickson, Johnbull Otah; Pierce, Eric M.; Bargar, John

      2015-07-13

      Technetium-99 (99Tc), a long-lived radionuclide, is one of the most widespread contaminants within the Hanford subsurface. At some depths, it is only extractable with strong acids, suggesting incorporation into a solid phase. We hypothesized that Tc may have coprecipitated with feldspathoid aluminosilicates under waste tanks that had leaked caustic solutions into the vadose zone. Our objectives were to determine if Tc could be incorporated into the feldspathoids cancrinite and sodalite and under what conditions coprecipitation could occur. Our hypothesis was that sodalite was more likely to incorporate and retain Tc. Our approach was to use known methods of feldspathoid formation in solutions resembling those in Hanford waste tanks contacting sediments in terms of major ion (Na, NO3, OH, Al(OH)4, and Si(OH)4 concentrations. In some cases, Al and Si were supplied from zeolite. We used perrhenate (ReO4) as a surrogate for pertechnetate (TcO4) to avoid the radioactivity. The major findings of this study were 1) ReO4 could be incorporated into either sodalite or cancrinite but the concentration in the solid was < 1% of the competing ion Cl, NO3, or NO2. 2) The small amount of ReO4 incorporated was not exchangeable with NO3 or NO2. 3) In sodalite, NO3 was highly preferred over ReO4 but significant Re-sodalite was formed when the mole fraction in solution (Re/Re+N) exceeded 0.8. 4) A nonlinear relation between the unit cell parameter and amount of Re incorporated suggested that a separate Re-sodalite phase was formed rather than a solid solution. 5) We determined that sodalite preference for sodalite in the presence of different anions increased with the ionic size of the competing anion: Cl < CO3 < NO3 < SO4 < MnO4 < WO4 and significant incorporation did not occur unless the difference in anion radii was less than 12%. 6) Re(VII) was not significantly reduced to Re(IV) under the conditions of this experiment and Re appeared to be a good surrogate for Tc under oxidizing

    6. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

      SciTech Connect (OSTI)

      Wang, Zhaoying; Jin, Ke; Zhang, Yanwen; Wang, Fuyi; Zhu, Zihua

      2014-11-01

      Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases are presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.

    7. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

      SciTech Connect (OSTI)

      Jaskot, A. E.; Oey, M. S.

      2014-08-20

      We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.

    8. Precipitation hardening in nickel-copper base alloy Monel K 500

      SciTech Connect (OSTI)

      Dey, G.K.; Tewari, R.; Wadekar, S.L.; Mukhopadhyay, P.; Rao, P.

      1993-12-01

      The occurrence of a significant amount of age hardening, due to the precipitation of the {gamma}{prime} phase, has been demonstrated in the nickel-copper base alloy MONEL K 500. The microstructure of the precipitation-hardened and deformed alloy has been examined in peak-aged, underaged and overaged conditions. An attempt has been made to compare the observed increments in strength in these three aged conditions to those predicted on the basis of relevant theoretical models.

    9. The MAP3S Precipitation Chemistry Network: Data and quality control summary for 1986 and 1987

      SciTech Connect (OSTI)

      Dana, M.T.; Barchet, W.R.

      1989-05-01

      This report, the tenth in a series documenting results from the MAP3S Precipitation Chemistry Network, contains a statistical summary of daily precipitation chemistry data from the nine-site network in the eastern United States, both for the years 1986 and 1987 individually and for the period 1977 through 1987. In addition, external quality assurance results for 1986 and 1987 are summarized. 17 refs., 21 figs., 20 tabs.

    10. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

      SciTech Connect (OSTI)

      Daniel M. Dabbs; Ilhan A. Aksay

      2005-01-12

      Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations.

    11. Optimization of the conditions for the precipitation of thorium oxalate. III. General equation for the optimization of the precipitation of poorly soluble oxalates of transuranium elements and thorium

      SciTech Connect (OSTI)

      Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

      1987-07-01

      The precipitation of metals in the form of poorly soluble oxalates was investigated. A program which was written for the Elektronika-60 computer makes it possible to calculate the process parameters to minimize the product losses. The obtained relationships were checked for the case of thorium oxalate. The experimental data agreed well with the calculations.

    12. Mineral Dissolution and Secondary Precipitation on Quartz Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity

      SciTech Connect (OSTI)

      Wang, Guohui; Um, Wooyong

      2012-11-23

      Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energys Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.

    13. Characteristics of optical emissions and particle precipitation in mid/low-latitude aurorae

      SciTech Connect (OSTI)

      Rassoul K., H.R.

      1987-01-01

      Ground-based optical observations have been made at low/mid latitudes to study the auroral effects of particle precipitation. The measured optical emissions include (OI) 5577 {Angstrom}, (OI) 6300 {Angstrom}, and (OI) 7774 {Angstrom} of atomic oxygen, the Balmer-{beta} line of Hydrogen at 4861 {Angstrom}; and the emission bands from the first negative nitrogen system at 3914 {Angstrom} and 4278 {Angstrom}. Spectral characteristics of low-latitude aurorae, the correlation of optical data with geomagnetic field variations, and the nature of the precipitating particles were established. The observed auroral emissions have characteristics appropriate to the precipitation into the thermosphere of heavy energetic (keV energy) particles and/or electrons of energy of the order of eV rather than the keV electron precipitation as in the high-latitude auroral zone. The latitude variation of optical emissions shows a strong increase from low to mid latitudes, and the strongest emissions occur in the evening to midnight local time period. The particle precipitation enhances at times when there is a populated and/or energized ring current and there exists a strong magnetic perturbation near the local meridian of the precipitation.

    14. Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Jiao, Z. B.; Luan, J. H.; Miller, M. K.; Yu, C. Y.; Liu, C. T.

      2016-02-19

      The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly discovered Fe-based alloys with nanostructures. Here we quantitatively elucidate the nucleation mechanism, evolution kinetics and hardening effects of the group-precipitated nanoparticles in the Fe-Cu-Ni-Al-based alloys by atom probe tomography together with both first-principles and thermodynamic calculations. Our results provide the compelling evidence for twomore » interesting but complex group precipitation pathways of nanoparticles, i.e., the Cu-rich and NiAl-based precipitations. Lastly, the co-existence of the two precipitation pathways plays a key role in age hardening kinetics and ultimately enhances the hardening response, as compared to the single particle type of strengthening, therefore providing an effective new approach for strengthening materials for structural applications.« less

    15. Evaluation of moist processes during intense precipitation in km-scale NWP models using remote sensing and in-situ data: Impact of microphysics size distribution assumptions

      SciTech Connect (OSTI)

      VanWeverberg, K.; vanLipzig, N. P. M.; Delobbe, L.

      2011-02-01

      This study investigates the sensitivity of moist processes and surface precipitation during three extreme precipitation events over Belgium to the representation of rain, snow and hail size distributions in a bulk one-moment microphysics parameterisation scheme. Sensitivities included the use of empirically derived relations to calculate the slope parameter and diagnose the intercept parameter of the exponential snow and rain size distributions and sensitivities to the treatment of hail/graupel. A detailed evaluation of the experiments against various high temporal resolution and spatially distributed observational data was performed to understand how moist processes responded to the implemented size distribution modifications. Net vapor consumption by microphysical processes was found to be unaffected by snow or rain size distribution modifications, while it was reduced replacing formulations for hail by those typical for graupel, mainly due to intense sublimation of graupel. Cloud optical thickness was overestimated in all experiments and all cases, likely due to overestimated snow amounts. The overestimation slightly deteriorated by modifying the rain and snow size distributions due to increased snow depositional growth, while it was reduced by including graupel. The latter was mainly due to enhanced cloud water collection by graupel and reduced snow depositional growth. Radar reflectivity and cloud optical thickness could only be realistically represented by inclusion of graupel during a stratiform case, while hail was found indispensable to simulate the vertical reflectivity profile and the surface precipitation structure. Precipitation amount was not much altered by any of the modifications made and the general overestimation was only decreased slightly during a supercell convective case.

    16. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........9 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Static Water Level Data ...

    17. Influence of cooling rate on the development of multiple generations of {gamma}' precipitates in a commercial nickel base superalloy

      SciTech Connect (OSTI)

      Singh, A.R.P.; Nag, S.; Hwang, J.Y.; Viswanathan, G.B.; Tiley, J.; Srinivasan, R.; Fraser, H.L.; Banerjee, R.

      2011-09-15

      The compositional and microstructural evolution of different generations of {gamma}' precipitates during the continuous cooling of a commercial nickel base superalloy, Rene88DT, has been characterized by three dimensional atom probe tomography coupled with energy-filtered transmission electron microscopy studies. After solutionizing in the single {gamma} phase field, continuous cooling at a very high rate results in a monomodal size distribution of {gamma}' precipitates with a high nucleation density and non-equilibrium compositions. In contrast, a relatively slower cooling rate ({approx} 24 deg. C/min) results in a multi-modal size distribution of {gamma}' precipitates with the larger first generation primary precipitates exhibiting close to equilibrium composition, along with the smaller scale secondary {gamma}' precipitates, exhibiting non-equilibrium composition (excess of Co and Cr, depleted in Al and Ti). The composition of the {gamma} matrix near these precipitates also exhibits similar trends with the composition being closer to equilibrium near the primary precipitates as compared to the secondary precipitates. - Highlights: {yields} Effect of cooling rate on the precipitation of {gamma}' particles in commercial nickel base superalloy. {yields} Couples EFTEM and 3DAP studies to determine the composition and morphology of {gamma}' precipitates. {yields} Determination of near and far field compositional variations within the gamma matrix leading to subsequent precipitation.

    18. Transmission electron microscopy study of precipitates in an artificially aged Al–12.7Si–0.7Mg alloy

      SciTech Connect (OSTI)

      Liu, Fang; Yu, Fuxiao; Zhao, Dazhi; Zuo, Liang

      2015-09-15

      An investigation of Al–12.7Si–0.7Mg alloy aged at 160 °C, 180 °C and 200 °C for 3 h was carried out in order to identify the precipitating phases. Regular transmission and high resolution electron microscopy (TEM and HREM) were employed for this purpose. The studies were focused on the dark spots and needle-shaped precipitates lying in (001){sub Al} plane. Based on the HREM observations, dark spots and needle-shaped precipitates have different characteristics. The results revealed that the ellipsoidal and needle-shaped precipitates along <100> direction of the matrix coexist in the alloy by tilting experiments at given aging condition. The ellipsoidal dark spot precipitates viewing along [001]{sub Al} is not cross-sectional image of needle-shaped precipitates along <001>{sub Al}. Needle-shaped precipitate is coherent with the matrix. The diffraction pattern associated with the ellipsoidal precipitates is consistent with β″ reported in literature. - Highlights: • Wrought Al–Si–Mg alloy has been investigated to identify the precipitating phases. • The ellipsoidal and needle-shaped precipitates coexist in wrought Al–Si–Mg alloy. • The needle-shaped and ellipsoidal precipitates exhibit different characteristics.

    19. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

      SciTech Connect (OSTI)

      Hanrahan, Timothy P.; Larson, Kyle B.

      2012-04-09

      As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

    20. WATER CONSERVATION PLAN

      National Nuclear Security Administration (NNSA)

      ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

    1. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

      SciTech Connect (OSTI)

      Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; Collins, Adam D.; Dickman, Lee T.; Hudson, Patrick J.; Zeppel, Melanie J. B.; Jenkins, Michael W.; Powers, Heath; Martinez-Vilalta, Jordi; Mcdowell, Nate G.

      2015-08-08

      Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.

    2. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; Collins, Adam D.; Dickman, Lee T.; Hudson, Patrick J.; Zeppel, Melanie J. B.; Jenkins, Michael W.; Powers, Heath; Martinez-Vilalta, Jordi; et al

      2015-08-08

      Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less

    3. SMALL-SCALE TESTING OF PLUTONIUM (IV) OXALATE PRECIPITATION AND CALCINATION TO PLUTONIUM OXIDE TO SUPPORT THE MOX FEED MISSION

      SciTech Connect (OSTI)

      Crowder, M.; Pierce, R.; Scogin, J.; Daniel, G.; King, W.

      2012-06-25

      The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, SRNL conducted a series of experiments to produce calcined plutonium (Pu) oxide and measure the physical properties and water adsorption of that material. This data will help define the process operating conditions and material handling steps for HB-Line. An anion exchange column experiment produced 1.4 L of a purified 52.6 g/L Pu solution. Over the next nine weeks, seven Pu(IV) oxalate precipitations were performed using the same stock Pu solution, with precipitator feed acidities ranging from 0.77 M to 3.0 M nitric acid and digestion times ranging from 5 to 30 minutes. Analysis of precipitator filtrate solutions showed Pu losses below 1% for all precipitations. The four larger precipitation batches matched the target oxalic acid addition time of 44 minutes within 4 minutes. The three smaller precipitation batches focused on evaluation of digestion time and the oxalic acid addition step ranged from 25-34 minutes because of pump limitations in the low flow range. Following the precipitations, 22 calcinations were performed in the range of 610-690 C, with the largest number of samples calcined at either 650 or 635 C. Characterization of the resulting PuO{sub 2} batches showed specific surface areas in the range of 5-14 m{sup 2}/g, with 16 of the 22 samples in the range of 5-10 m2/g. For samples analyzed with typical handling (exposed to ambient air for 15-45 minutes with relative humidities of 20-55%), the moisture content as measured by Mass Spectrometry ranged from 0.15 to 0.45 wt % and the total mass loss at 1000 C, as measured by TGA, ranged from 0.21 to 0.58 wt %. For the samples calcined between 635 and 650 C, the moisture content without extended exposure ranged from 0.20 to 0.38 wt %, and the TGA mass loss ranged from 0.26 to 0.46 wt %. Of these latter samples, the samples

    4. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

      SciTech Connect (OSTI)

      Yang, Ben; Zhang, Yaocun; Qian, Yun; Wu, Tongwen; Huang, Anning; Fang, Yongjie

      2015-07-15

      In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increased precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

    5. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

      SciTech Connect (OSTI)

      Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C. J.; Turunen, E.; Tsuchiya, F.

      2015-04-21

      Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.

    6. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

      DOE Patents [OSTI]

      Seaborg, G.T.; Thompson, S.G.

      1960-08-23

      A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

    7. Precipitation Estimate Using NEXRAD Ground-Based Radar Images: Validation, Calibration and Spatial Analysis

      SciTech Connect (OSTI)

      Zhang, Xuesong

      2012-12-17

      Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rain gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.

    8. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

      SciTech Connect (OSTI)

      Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

      2014-04-27

      The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

    9. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; et al

      2015-04-21

      Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less

    10. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

      2014-04-27

      The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

    11. Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment

      SciTech Connect (OSTI)

      Wood, Robert; Wyant, Matthew; Bretherton, Christopher S.; Rémillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; de Szoeke, Simone; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, J. Christine; Mann, Julian A. L.; O’Connor, Ewan J.; Hogan, Robin J.; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palikonda, Rabindra; Albrecht, Bruce; Luke, Ed; Hannay, Cecile; Lin, Yanluan

      2015-03-01

      The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) 38 deployment at Graciosa Island in the Azores generated a 21 month (April 2009-December 2010) 39 comprehensive dataset documenting clouds, aerosols and precipitation using the Atmospheric 40 Radiation Measurement (ARM) Mobile Facility (AMF). The scientific aim of the deployment is 41 to gain improved understanding of the interactions of clouds, aerosols and precipitation in the 42 marine boundary layer. 43 Graciosa Island straddles the boundary between the subtropics and midlatitudes in the 44 Northeast Atlantic Ocean, and consequently experiences a great diversity of meteorological and 45 cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus 46 occurring regularly. Approximately half of all clouds contained precipitation detectable as radar 47 echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-48 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide 49 range of aerosol conditions was sampled during the deployment consistent with the diversity of 50 sources as indicated by back trajectory analysis. Preliminary findings suggest important two-way 51 interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation 52 and cloud radiative properties while being controlled in part by precipitation scavenging. 53 The data from at Graciosa are being compared with short-range forecasts made a variety 54 of models. A pilot analysis with two climate and two weather forecast models shows that they 55 reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well, 56 but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to 57 be a long-term ARM site that became operational in October 2013.

    12. Response of the regional water cycle to an increase of atmosphere moisture related to global warming

      SciTech Connect (OSTI)

      Frei, C.; Widmann, M.; Luethi, D.

      1997-11-01

      This study examines the sensitivity of the mid-latitude regional hydrological cycle to an imposed warming. Mesoscale limited-area climate simulations over Europe are performed. The modelling study is complemented with a detailed analysis of the observed precipitation and circulation trends in the same region. It is demonstrated that an increase of the moisture content leads to an enhancement of the model`s water cycle during the synoptically active seasons. The simulations suggest that this mechanism may contribute towards an increase in mean precipitation and more frequency occurrence of heavy precipitation events. Observational analysis results illustrate that the relationship between precipitation and atmospheric moisture seen in the climate simulations constitutes a possible physical mechanism relevant for the interpretation of the observed trends. A key feature of the model results is the pronounced increase in the frequency of strong precipitation events associated with the intensification of the water cycle. This large sensitivity highlights the vulnerability of the precipitation climate with respect to global climate change. 19 refs., 2 figs., 1 tab.

    13. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

      SciTech Connect (OSTI)

      Egbert Schwartz

      2008-12-15

      Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

    14. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

      SciTech Connect (OSTI)

      Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; Maloy, S. A.; Hackenberg, R. E.; Clarke, A. J.; Clarke, K. D.

      2014-11-11

      In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modified alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.

    15. Concepts for the development of nanoscale stable precipitation-strengthened steels manufactured by conventional methods

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; Anderoglu, O.; Fine, M. E.; Chung, Y. -W.; Speer, J. G.; Findley, K. O.; Dogan, O. N.; Jablonski, P. D.; et al

      2014-11-11

      In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less

    16. High-resolution in situ observations of electron precipitation-causing EMIC waves

      SciTech Connect (OSTI)

      Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; Kletzing, Craig A.; Brundell, James B.; Reeves, Geoffrey D.

      2015-11-21

      Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.

    17. High-resolution in situ observations of electron precipitation-causing EMIC waves

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; Kletzing, Craig A.; Brundell, James B.; Reeves, Geoffrey D.

      2015-11-21

      Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size,more » and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.« less

    18. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg(Cu) alloys

      SciTech Connect (OSTI)

      Liu, J.Z.; Chen, J.H.; Liu, Z.R.; Wu, C.L.

      2015-01-15

      Although they are among the most important precipitation-hardened materials for industry applications, the high-strength AlZnMg(Cu) alloys have thus far not yet been understood adequately about their underlying precipitation scenarios in relation with the properties. This is partly due to the fact that the structures of a number of different precipitates involved in the alloys are unknown, and partly due to the complexity that the precipitation behaviors of the alloys may be closely related to the alloy's composition. In Part I of the present study, we have determined all the unknown precipitate structures in the alloys. Here in Part II, using atomic-resolution electron microscopy in association with the first principles energy calculations, we further studied and correlated the phase/structure transformation/evolution among these hardening precipitates in relation with the alloy's composition. It is shown that there are actually two coexisting classes of hardening precipitates in these alloys: the first class includes the η′-precipitates and their early-stage Guinier–Preston (GP-η′) zones; the second class includes the precursors of the equilibrium η-phase (referred to η{sub p}, or η-precursor) and their early-stage Guinier–Preston (GP-η{sub p}) zones. The two coexisting classes of precipitates correspond to two precipitation scenarios. - Highlights: • We determine and verify all the key precipitate structures in AlMgZn(Cu) alloys. • We employ aberration-corrected scanning transmission electron microscopy (STEM). • We use aberration-corrected high-resolution TEM (HRTEM) for the investigations. • We obtain atomic-resolution images of the precipitates and model their structures. • We refine all precipitate structures with quantitative image simulation analysis. • The hardening precipitates in AlZnMg alloys shall be classified into two groups. • Two precipitation scenarios coexist in the alloys. • The precipitation behavior of such an

    19. Variation in soil moisture and N availability modulates carbon and water exchange in a California grassland experiment

      SciTech Connect (OSTI)

      St. Clair, S.B.; Sudderth, E.; Fischer, M.L.; Torn, M.S.; Stuart, S.; Salve, R.; Eggett, D.; Ackerly, D.

      2009-03-15

      Variability in the magnitude and timing of precipitation is predicted to change under future climate scenarios. The primary objective of this study was to understand how variation in precipitation patterns consisting of soil moisture pulses mixed with intermittent dry down events influence ecosystem gas fluxes. We characterized the effects of precipitation amount and timing, N availability, and plant community composition on whole ecosystem and leaf gas exchange in a California annual grassland mesocosm study system that allowed precise control of soil moisture conditions. Ecosystem CO2 and fluxes increased significantly with greater precipitation and were positively correlated with soil moisture. A repeated 10 day dry down period following 11 days of variable precipitation inputs strongly depressed net ecosystem CO2 exchange (NEE) across a range of season precipitation totals, and plant community types. Ecosystem respiration (Re), evapotranspiration (ET) and leaf level photosynthesis (Amax) showed greatest sensitivity to dry down periods in low precipitation plots. Nitrogen additions significantly increased NEE, Re and Amax, particularly as water availability was increased. These results demonstrate that N availability and intermittent periods of soil moisture deficit (across a wide range of cumulative season precipitation totals) strongly modulate ecosystem gas exchange.

    20. September 2004 Water Sampling

      Office of Legacy Management (LM)

      Salmon, Mississippi, Site, Water Sampling Location Map .........5 Water Sampling Field Activities Verification ...

    1. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data ...

    2. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........1 Water Sampling Locations at the Rulison, .........3 Water Sampling Field Activities Verification ...

    3. Beneficial Reuse of San Ardo Produced Water

      SciTech Connect (OSTI)

      Robert A. Liske

      2006-07-31

      This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and

    4. Gulf of Mexico pipelines heading into deeper waters

      SciTech Connect (OSTI)

      True, W.R.

      1987-06-08

      Pipeline construction for Gulf of Mexico federal waters is following drilling and production operations into deeper waters, according to U.S. Department of Interior (DOI) Minerals Management Service (MMS) records. Review of MMS 5-year data for three water depth categories (0-300 ft, 300-600 ft, and deeper than 600 ft) reveals this trend in Gulf of Mexico pipeline construction. Comparisons are shown between pipeline construction applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed. This article is the first of annual updates of MMS gulf pipeline data. Future installments will track construction patterns in water depths, diameter classifications, and mileage. These figures will also be evaluated in terms of pipeline-construction cost data.

    5. Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information

      DOE Patents [OSTI]

      Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert

      2015-12-08

      Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.

    6. Effect of Ion Skin Depth on Relaxation of Merging Spheromaks to a Field-Reversed Configuration

      SciTech Connect (OSTI)

      Kawamori, Eiichirou; Ono, Yasushi

      2005-08-19

      The effect of ion skin depth on the relaxation of merging spheromaks to a field-reversed configuration (FRC) is studied experimentally for a wide range of size parameter S* (ratio of minor radius to ion skin depth) from 1 to 7. The two merging spheromaks are observed to relax to an FRC or a new spheromak depending on whether the initial poloidal eigenvalue is smaller or larger than a threshold value. The bifurcation value is found to increase with decreasing size parameter S{sup *}, indicating that the low-S* condition provides a wide bifurcated range of relaxation to an FRC. The FRC-style relaxation under the low-S* conditions was accompanied by the suppression of the low-n modes (n is the toroidal mode number) activity. The fast rotations of the modes were followed by suppression of the low-n modes.

    7. Surface hardening of titanium alloys with melting depth controlled by heat sink

      DOE Patents [OSTI]

      Oden, Laurance L.; Turner, Paul C.

      1995-01-01

      A process for forming a hard surface coating on titanium alloys includes providing a piece of material containing titanium having at least a portion of one surface to be hardened. The piece having a portion of a surface to be hardened is contacted on the backside by a suitable heat sink such that the melting depth of said surface to be hardened may be controlled. A hardening material is then deposited as a slurry. Alternate methods of deposition include flame, arc, or plasma spraying, electrodeposition, vapor deposition, or any other deposition method known by those skilled in the art. The surface to be hardened is then selectively melted to the desired depth, dependent on the desired coating thickness, such that a molten pool is formed of the piece surface and the deposited hardening material. Upon cooling a hardened surface is formed.

    8. VO.sub.2 precipitates for self-protected optical surfaces

      DOE Patents [OSTI]

      Gea, Laurence A.; Boatner, Lynn A.

      1999-01-01

      A method for forming crystallographically coherent precipitates of vanadium dioxide in the near-surface region of sapphire and the resulting product is disclosed. Ions of vanadium and oxygen are stoichiometrically implanted into a sapphire substrate (Al.sub.2 O.sub.3), and subsequently annealed to form vanadium dioxide precipitates in the substrate. The embedded VO.sub.2 precipitates, which are three-dimensionally oriented with respect to the crystal axes of the Al.sub.2 O.sub.3 host lattice, undergo a first-order monoclinic-to-tetragonal (and also semiconducting-to-metallic) phase transition at .about.77.degree. C. This transformation is accompanied by a significant variation in the optical transmission of the implanted region and results in the formation of an optically active, thermally "switchable" surface region on Al.sub.2 O.sub.3.

    9. VO{sub 2} precipitates for self-protected optical surfaces

      DOE Patents [OSTI]

      Gea, L.A.; Boatner, L.A.

      1999-03-23

      A method for forming crystallographically coherent precipitates of vanadium dioxide in the near-surface region of sapphire and the resulting product is disclosed. Ions of vanadium and oxygen are stoichiometrically implanted into a sapphire substrate (Al{sub 2}O{sub 3}), and subsequently annealed to form vanadium dioxide precipitates in the substrate. The embedded VO{sub 2} precipitates, which are three-dimensionally oriented with respect to the crystal axes of the Al{sub 2}O{sub 3} host lattice, undergo a first-order monoclinic-to-tetragonal (and also semiconducting-to-metallic) phase transition at ca. 77 C. This transformation is accompanied by a significant variation in the optical transmission of the implanted region and results in the formation of an optically active, thermally ``switchable`` surface region on Al{sub 2}O{sub 3}. 5 figs.

    10. Irradiation-enhanced α' precipitation in model FeCrAl alloys

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar; Terrani, Kurt A.; Field, Kevin G.

      2016-02-17

      Model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) have been neutron irradiated at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. This is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning of the Al from themore » α' precipitates was also observed.« less

    11. DECONTAMINATION OF PLUTONIUM FOR FLUORIDE AND CHLORIDE DURING OXALATE PRECIPITATION, FILTRATION AND CALCINATION PROCESSES

      SciTech Connect (OSTI)

      Kyser, E.

      2012-07-25

      Due to analytical limitations for the determination of fluoride (F) and chloride (Cl) in a previous anion exchange study, an additional study of the decontamination of Pu from F and Cl by oxalate precipitation, filtration and calcination was performed. Anion product solution from the previous impurity study was precipitated as an oxalate, filtered, and calcined to produce an oxide for analysis by pyrohydrolysis for total Cl and F. Analysis of samples from this experiment achieved the purity specification for Cl and F for the proposed AFS-2 process. Decontamination factors (DF's) for the overall process (including anion exchange) achieved a DF of {approx}5000 for F and a DF of {approx}100 for Cl. Similar experiments where both HF and HCl were spiked into the anion product solution to a {approx}5000 {micro}g /g Pu concentration showed a DF of 5 for F and a DF of 35 for Cl across the combined precipitation-filtration-calcination process steps.

    12. NREL Takes First In-Depth Look at Solar Project Completion Timelines - News

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Releases | NREL Takes First In-Depth Look at Solar Project Completion Timelines Report examines new data to show how long the PV interconnection process takes in the U.S. February 11, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) has gathered and analyzed data for more than 30,000 solar photovoltaic (PV) installations across the United States to better understand how interconnection regulations align with actual project completion timelines. The findings indicate

    13. DOE/SC-ARM/TR-129 Aerosol Optical Depth Value-Added Product

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      9 Aerosol Optical Depth Value-Added Product A Koontz C Flynn G Hodges J Michalsky J Barnard March 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

    14. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

    15. Small-angle Compton Scattering to Determine the Depth of a Radioactive Source in Matter

      SciTech Connect (OSTI)

      Oberer, R. B.; Gunn, C. A.; Chiang, L. G.; Valiga, R. E.; Cantrell, J. A.

      2011-04-01

      A gamma-ray peak in a spectrum is often accompanied by a discontinuity in the Compton continuum at the peak. The Compton continuum results from Compton scattering in the detector. The discontinuity at a peak results from small-angle Compton scattering by the gamma rays in matter situated directly between the gamma-ray source and the detector. The magnitude of this discontinuity with respect to the gamma-ray peak is therefore an indicator of the amount of material or shielding between the gamma-ray source and the detector. This small-angle scattering was used to determine the depth of highly-enriched uranium (HEU) solution standards in a concrete floor mockup. The empirical results of the use of this small-angle scattering discontinuity in a concrete floor experiment will be described. A Monte Carlo calculation of the experiment will also be described. In addition, the depth determined from small-angle scattering was used in conjunction with differential attenuation to more accurately measure the uranium content of the mockup. Following these empirical results, the theory of small-angle scattering will be discussed. The magnitude of the discontinuity compared to the peak count rate is directly related to the depth of the gamma-ray source in matter. This relation can be described by relatively simple mathematical expressions. This is the first instance that we are aware of in which the small-angle Compton scattering has been used to determine the depth of a radioactive source. Furthermore this is the first development of the theoretical expressions for the magnitude of the small-angle scattering discontinuity.

    16. Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Vapor Radiometer Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based

    17. Impacts of Microphysical Scheme on Convective and Stratiform Characteristics in Two High Precipitation Squall Line Events

      SciTech Connect (OSTI)

      Wu, Di; Dong, Xiquan; Xi, Baike; Feng, Zhe; Kennedy, Aaron; Mullendore, Gretchen; Gilmore, Matthew; Tao, Wei-Kuo

      2013-10-04

      This study investigates the impact of snow, graupel, and hail processes on the simulated squall lines over the Southern Great Plains in the United States. Weather Research and Forecasting (WRF) model is used to simulate two squall line events in May 2007, and the results are validated against radar and surface observations in Oklahoma. Several microphysics schemes are tested in this study, including WRF 5-Class Microphysics Scheme (WSM5), WRF 6-Class Microphysics Scheme (WSM6), Goddard Three Ice scheme (Goddard 3-ice) with graupel, Goddard Two Ice scheme (Goddard 2-ice), and Goddard 3-ice hail scheme. The simulated surface precipitation is sensitive to the microphysics scheme, and especially to whether graupel or hail category is included. All of the three ice (3-ice) schemes overestimated the total precipitation, within which WSM6 has the highest overestimation. Two ice (2-ice) schemes, missing a graupel/hail category, produced less total precipitation than 3-ice schemes. By applying a radar-based convective/stratiform partitioning algorithm, we find that by including the graupel/hail processes, there is an increase in areal coverage, precipitation intensity, updraft and downdraft intensity in convective region and a reduction of areal coverage and its precipitation intensity in stratiform region. For vertical structures, all the bulk schemes, especially 2-ice schemes, have the highest reflectivity located at upper levels (~8 km), which is unrealistic compared to observations. In addition, this study shows the radar-based convective/stratiform partitioning algorithm can reasonably identify WRF simulated precipitation, wind and microphysics fields in both convective and stratiform regions.

    18. Method for the depth corrected detection of ionizing events from a co-planar grids sensor

      DOE Patents [OSTI]

      De Geronimo, Gianluigi; Bolotnikov, Aleksey E.; Carini, Gabriella

      2009-05-12

      A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.

    19. STARSPOTS-TRANSIT DEPTH RELATION OF THE EVAPORATING PLANET CANDIDATE KIC 12557548b

      SciTech Connect (OSTI)

      Kawahara, Hajime; Kurosaki, Kenji; Ito, Yuichi; Ikoma, Masahiro; Hirano, Teruyuki

      2013-10-10

      Violent variation of transit depths and an ingress-egress asymmetry of the transit light curve discovered in KIC 12557548 have been interpreted as evidence of a catastrophic evaporation of atmosphere with dust ( M-dot {sub p}?>1 M{sub ?} Gyr{sup 1}) from a close-in small planet. To explore what drives the anomalous atmospheric escape, we perform time-series analysis of the transit depth variation of Kepler archival data for ?3.5 yr. We find a ?30% periodic variation of the transit depth with P {sub 1} = 22.83 0.21 days, which is within the error of the rotation period of the host star estimated using the light curve modulation, P {sub rot} = 22.91 0.24 days. We interpret the results as evidence that the atmospheric escape of KIC 12557548b correlates with stellar activity. We consider possible scenarios that account for both the mass loss rate and the correlation with stellar activity. X-ray and ultraviolet (XUV)-driven evaporation is possible if one accepts a relatively high XUV flux and a high efficiency for converting the input energy to the kinetic energy of the atmosphere. Star-planet magnetic interaction is another possible scenario, though huge uncertainty remains for the mass loss rate.

    20. Letter Report: Borehole Flow and Horizontal Hydraulic Conductivity with Depth at Well ER-12-4

      SciTech Connect (OSTI)

      Phil L. Oberlander; Charles E. Russell

      2005-12-31

      Borehole flow and fluid temperature during pumping were measured at well ER-12-4 at the Nevada Test Site in Nye County, Nevada. This well was constructed to characterize the carbonate aquifer. The well is cased from land surface to the total depth at 1,132 m (3,713 ft bgs) below ground surface (bgs). The screened section of the well consists of alternating sections of slotted well screen and blank casing from 948 to 1,132 m bgs (3,111 to 3,713 ft bgs). Borehole flow velocity (LT-1) with depth was measured with an impeller flowmeter from the top of the screened section to the maximum accessible depth while the well was pumped and under ambient conditions. A complicating factor to data interpretation is that the well was not filter packed and there is upward and downward vertical flow in the open annulus under ambient and pumping conditions. The open annulus in the well casing likely causes the calculated borehole flow rates being highly nonrepresentative of inflow from the formation. Hydraulic conductivities calculated under these conditions would require unsupportable assumptions and would be subject to very large uncertainties. Borehole hydraulic conductivities are not presented under these conditions.

    1. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

      SciTech Connect (OSTI)

      David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

      1998-09-01

      The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and

    2. Sixth International Conference on Precipitation: Predictability of Rainfall at the Various Scales. Abstracts

      SciTech Connect (OSTI)

      1998-06-29

      This volume contains abstracts of the papers presented at the Sixth International Conference on Precipitation: Predictability of Rainfall at the various scales, held at the Mauna Lani Bay and Bungalows, Hawaii, June 29 - July 1, 1998. The main goal of the conference was to bring together meteorologists, hydrologists, mathematicians, physicists, statisticians, and all others who are interested in fundamental principles governing the physical processes of precipitation. The results of the previous conferences have been published in issues of the Journal of Geophysical Research and Journal of Applied Meteorology. A similar format is planned for papers of this conference.

    3. METHOD OF RECOVERING PLUTONIUM VALUES FROM AQUEOUS SOLUTIONS BY CARRIER PRECIPITATION

      DOE Patents [OSTI]

      James, R.A.; Thompson, S.G.

      1959-11-01

      A process is presented for pretreating aqueous nitric acid- plutonium solutions containing a small quantity of hydrazine that has formed as a decomposition product during the dissolution of neutron-bombarded uranium in nitric acid and that impairs the precipitation of plutonium on bismuth phosphate. The solution is digested with alkali metal dichromate or potassium permanganate at between 75 and 100 deg C; sulfuric acid at approximately 75 deg C and sodium nitrate, oxaiic acid plus manganous nitrate, or hydroxylamine are added to the solution to secure the plutonium in the tetravalent state and make it suitable for precipitation on BiPO/sub 4/.

    4. Method for the preparation of thallium-containing superconducting materials by precipitation

      DOE Patents [OSTI]

      Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

      1991-01-01

      This invention provides improved methods for the preparation of precursor powders that are used in the preparation of superconducting ceramic materials that contain thallium. A first solution that contains the hydrogen peroxide and metal cations, other than thallium, that will be part of the ceramic is quickly mixed with a second solution that contains precipitating anions and thallium (I) to form a precipitate which is dried to yield precursor powders. The precursor powders are calcined an sintered to produce superconducting materials that contain thallium.

    5. Flux pinning by precipitates in the Bi-Sr-Ca-Cu-O system

      DOE Patents [OSTI]

      Shi, Donglu

      1992-01-01

      A fundamental pinning mechanism has been identified in the Bi-Sr-Ca-Cu-O system. The pinning strength has been greatly increased by the introduction of calcium- and copper-rich precipitates into the sample matrix. The calcium and copper are supersaturated in the system by complete melting, and the fine calcium and copper particles precipitated during subsequent crystallization anneal to obtain the superconducting phases. The intragrain critical current density has been increased from the order of 10.sup.5 A/cm.sup.2 to 10.sup.7 A/cm.sup.2 at 5 T.

    6. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

      DOE Patents [OSTI]

      Doherty, Joseph P.; Marek, James C.

      1989-01-01

      A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

    7. Modeling of Late Blooming Phases and Precipitation Kinetics in Aging Reactor Pressure Vessel (RPV) Steels

      SciTech Connect (OSTI)

      Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner

      2013-09-01

      The principle work at the atomic scale is to develop a predictive quantitative model for the microstructure evolution of RPV steels under thermal aging and neutron radiation. We have developed an AKMC method for the precipitation kinetics in bcc-Fe, with Cu, Ni, Mn and Si being the alloying elements. In addition, we used MD simulations to provide input parameters (if not available in literature). MMC simulations were also carried out to explore the possible segregation/precipitation morphologies at the lattice defects. First we briefly describe each of the simulation algorithms, then will present our results.

    8. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

      DOE Patents [OSTI]

      Doherty, J.P.; Marek, J.C.

      1987-02-25

      A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

    9. Decomposition of tetraphenylborate precipitates used to isolate Cs-137 from Savannah River Site high-level waste

      SciTech Connect (OSTI)

      Ferrara, D.M.; Bibler, N.E.; Ha, B.C.

      1993-03-01

      This paper presents results of the radioactive demonstration of the Precipitate Hydrolysis Process (PHP) that will be performed in the Defense Waste Processing Facility (DWPF) at the Savannah River Site. The PHP destroys the tetraphenylborate precipitate that is used at SRS to isolate Cs-137 from caustic High-Level Waste (HLW) supernates. This process is necessary to decrease the amount of organic compounds going to the melter in the DWPF. Actual radioactive precipitate containing Cs-137 was used for this demonstration.

    10. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

      SciTech Connect (OSTI)

      Zhang, Y; Klein, S; Boyle, J; Mace, G G

      2008-11-20

      The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

    11. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

      SciTech Connect (OSTI)

      Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; He, Z. B.; Wang, Z. L.; Ren, Yang; Wang, Y. D.; Li, L. F.

      2015-11-16

      Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

    12. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Liaw, Peter K.

      2015-03-23

      Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. Cracks are likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

    13. CaCO3 Precipitation, Transport and Sensing in Porous Media with In Situ Generation of Reactants

      SciTech Connect (OSTI)

      George Redden; Don Fox; Chi Zhang; Yoshiko Fujita; Luanjing Guo; Hai Huang

      2014-01-01

      Ureolytically driven calcite precipitation is a promising approach for inducing subsurface mineral precipitation, but engineered application requires the ability to control and predict precipitate distribution. To study the coupling between reactant transport and precipitate distribution, columns with defined zones of immobilized urease were used to examine the distribution of calcium carbonate precipitation along the flow path, at two different initial flow rates. As expected, with slower flow precipitate was concentrated toward the upstream end of the enzyme zone and with higher flow the solid was more uniformly distributed over the enzyme zone. Under constant hydraulic head conditions the flow rate decreased as precipitates decreased porosity and permeability. The hydrolysis/precipitation zone was expected to become compressed in the upstream direction. However, apparent reductions in the urea hydrolysis rate and changes in the distribution of enzyme activity, possibly due to CaCO3precipitate hindering urea transport to the enzyme, or enzyme mobilization, mitigated reaction zone compression. Co-injected strontium was expected to be sequestered by coprecipitation with CaCO3, but the results suggested that coprecipitation was not an effective sequestration mechanism in this system. In addition, spectral induced polarization (SIP) was used to monitor the spatial and temporal evolution of the reaction zone.

    14. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; He, Z. B.; Wang, Z. L.; Ren, Yang; Wang, Y. D.; Li, L. F.

      2015-11-16

      Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drasticallymore » increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.« less

    15. Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy

      SciTech Connect (OSTI)

      Dong, Y. H.; Cong, D. Y. He, Z. B.; Li, L. F.; Wang, Y. D.; Nie, Z. H.; Wang, Z. L.; Ren, Y.

      2015-11-16

      Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni{sub 4}Ti{sub 3} precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ∼520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. It is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

    16. Effects of hydrostatic pressure on steelhead survival in air-supersaturated water

      SciTech Connect (OSTI)

      Knittel, M.D.; Chapman, G.A.; Garton, R.R.

      1980-11-01

      Juvenile steelheads (Salmo gairdneri) were placed in cages and suspended at various depths in water supersaturated with air at levels from 120 to 140% of normal atmospheric gas pressure. Survival times of fish held at 10, 50, and 100 cm depth increased with increasing depth at a given level of supersaturation. When the hydrostatic pressure (7.4 mm Hg per 10 cm of water depth) was subtracted from the excess gas pressure (relative to surface barometric pressure) mortality curves (times to 50% mortality versus excess gas pressure) for fish at all three depths essentially coincided. The significant measure of supersaturation appears to be the pressure of dissolved gases in excess of the sum of barometric and hydrostatic pressures. Steelheads held near the surface in supersaturated water for a near-lethal period and then lowered to a depth providing total hydrostatic compensation appeared to recover completely in about 2 hours. The longer fish remained at depth, the longer their survival time when they subsequently were reexposed to surface conditions.

    17. Forecasting Water Quality & Biodiversity

      Broader source: Energy.gov (indexed) [DOE]

      Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

    18. Efficient Water Use & Management

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy ...

    19. Efficient Water Use & Management

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

    20. High post-irradiation ductility thermomechanical treatment for precipitation strengthened austenitic alloys

      DOE Patents [OSTI]

      Laidler, James J.; Borisch, Ronald R.; Korenko, Michael K.

      1982-01-01

      A method for improving the post-irradiation ductility is described which prises a solution heat treatment following which the materials are cold worked. They are included to demonstrate the beneficial effect of this treatment on the swelling resistance and the ductility of these austenitic precipitation hardenable alloys.

    1. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

      DOE Patents [OSTI]

      James, R.A.; Thompson, S.G.

      1958-12-23

      A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

    2. Irradiation-induced precipitation and mechanical properties of vanadium alloys at <430 C

      SciTech Connect (OSTI)

      Chung, H.M.; Gazda, J.; Smith, D.L.

      1998-09-01

      Recent attention to V-base alloys has focused on the effect of low-temperature (<430 C) irradiation on tensile and impact properties of V-4Cr-4Ti. In previous studies, dislocation channeling, which causes flow localization and severe loss of work-hardening capability, has been attributed to dense, irradiation-induced precipitation of very fine particles. However, efforts to identify the precipitates were unsuccessful until now. In this study, analysis by transmission electron microscopy (TEM) was conducted on unalloyed V, V-5Ti, V-3Ti-1Si, and V-4Cr-4Ti specimens that were irradiated at <430 C in conventional and dynamic helium charging experiments. By means of dark-field imaging and selected-area-diffraction analysis, the characteristic precipitates were identified to be (V,Ti{sub 1{minus}x})(C,O,N). In V-3Ti-1Si, precipitation of (V,Ti{sub 1{minus}x})(C,O,N) was negligible at <430 C, and as a result, dislocation channeling did not occur and work-hardening capability was high.

    3. Precipitation-adsorption process for the decontamination of nuclear waste supernates

      DOE Patents [OSTI]

      Lee, L.M.; Kilpatrick, L.L.

      1982-05-19

      High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

    4. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions

      SciTech Connect (OSTI)

      Wu, Yuxin; Versteeg, R.; Slater, L.; LaBrecque, D.

      2009-06-01

      Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO{sub 3} and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO{sub 3} as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO{sub 3} dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO{sub 3} forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO{sub 3} precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.

    5. Mercuric iodate precipitation from radioiodine-containing off-gas scrubber solution

      DOE Patents [OSTI]

      Partridge, Jerry A.; Bosuego, Gail P.

      1982-01-01

      Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

    6. Stability of precipitate phases in Fe-rich Fe-Cr-Ni-Mo alloys

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Yang, Ying; Tan, Lizhen; Busby, Jeremy T

      2015-01-01

      Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the and phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. Two key findings resulted from this work. One is that the phase is stable at high temperature and transformed into the phase at lowmoretemperature. The other is that both the and phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.less

    7. Precipitation-adsorption process for the decontamination of nuclear waste supernates

      DOE Patents [OSTI]

      Lee, Lien-Mow; Kilpatrick, Lester L.

      1984-01-01

      High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

    8. Preferential Cu precipitation at extended defects in bcc Fe: An atomistic study

      SciTech Connect (OSTI)

      Zhang, Yongfeng; Millett, Paul C.; Tonks, Michael R.; Bai, Xian-Ming; Biner, S. Bulent

      2015-04-01

      As a starting point to understand Cu precipitation in RPV alloys, molecular dynamics and Metropolis Monte-Carlo simulations are carried out to study the effect of lattice defects on Cu precipitation by taking Fe-Cu system as a model alloy. Molecular dynamics simulations show that owing to the high heat of mixing and positive size mismatch, Cu is attracted by vacancy type defects such as vacancies and voids, and tensile stress fields. In accordance, preferential precipitation of Cu is observed in Metropolis Monte-Carlo simulations at dislocations, prismatic loops and voids. The interaction of Cu with a stress field, e.g., that associated with a dislocation or a prismatic loop, is dominated by elastic effect and can be well described by the linear-elasticity theory. For prismatic loops, the attraction to Cu is found to be size-dependent with opposite trends displayed by vacancy and interstitial loops. The size-dependences can be explained by considering the stress fields produced by these loops. The current results will be useful for understanding the effect of neutron irradiation on Cu precipitation in reactor-pressure-vessel steels.

    9. Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel

      SciTech Connect (OSTI)

      Matlack, Kathryn; Bradley, Harrison A.; Thiele, Sebastian; Kim, Jin-Yeon; Wall, James J.; Jung, Hee Joon; Qu, Jianmin; Jacobs, Laurence J.

      2015-04-01

      The extension of operational lifetime of most US nuclear reactors will cause reactor pressure vessel to be exposed to increased levels of neutron radiation damage. This research is part of a broader effort to develop a nondestructive evaluation technique to monitor radiation damage in reactor pressure vessel steels. The main contributor to radiation embrittlement in these steels is the formation of copper-rich precipitates. In this work, a precipitate hardenable martensitic alloy, 17-4PH stainless steel is exposed to thermal aging treatments, and used as a surrogate material to study the effects of copper precipitates on the measured acoustic nonlinearity parameter. Previous work has demonstrated the effectiveness of these nonlinear ultrasonic (NLU) measurements in the characterization of radiation-induced microstructural changes in neutron irradiated reactor pressure vessel steels. NLU measurements using Rayleigh surface waves are performed on 17-4PH samples subjected to isothermal aging. NLU measurements are interpreted with hardness, thermo-electric power, TEM, and atom probe tomography measurements. The Rayleigh wave measurements showed a decrease in the acoustic nonlinearity parameter with increasing aging time, consistent with evidence of increasing number density of nucleated precipitates.

    10. A hybrid aluminium alloy and its zoo of interacting nano-precipitates

      SciTech Connect (OSTI)

      Wenner, Sigurd; Marioara, Calin Daniel; Andersen, Sigmund Jarle; Ervik, Martin; Holmestad, Randi

      2015-08-15

      An alloy with aluminium as its base element is heat treated to form a multitude of precipitate phases known from different classes of industrial alloys: Al–Cu(–Mg), Al–Mg–Si–Cu, and Al–Zn–Mg. Nanometer-sized needle-shaped particles define the starting point of the phase nucleation, after which there is a split in the precipitation sequence into six phases of highly diverse compositions and morphologies. There are several unique effects of phases from different alloy systems being present in the same host lattice, of which we concentrate on two: the replacement of Ag by Zn on the Ω interface and the formation of combined plates of the θ′ and C phases. Using atomically resolved scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy, we investigate the formation mechanisms, crystal structures and compositions of the precipitates. - Graphical abstract: Display Omitted - Highlights: • An aluminium alloy composition in-between the 2/6/7xxx systems was investigated. • Six different phases from the three systems coexist in an over-aged state. • All phases with 〈001〉{sub Al} coherencies can nucleate on 6xxx needle precipitates. • Modified theta′ and omega interfaces are observed.

    11. Photosynthetic water oxidation versus photovoltaic water electrolysis

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery Photosynthetic water oxidation versus photovoltaic water ...

    12. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

      SciTech Connect (OSTI)

      Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara; Ringler, Todd; Taylor, Mark

      2014-05-01

      This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisture transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the

    13. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution

      SciTech Connect (OSTI)

      DePaolo, D.

      2010-10-15

      A surface reaction kinetic model is developed for predicting Ca isotope fractionation and metal/Ca ratios of calcite as a function of rate of precipitation from aqueous solution. The model is based on the requirements for dynamic equilibrium; i.e. proximity to equilibrium conditions is determined by the ratio of the net precipitation rate (R{sub p}) to the gross forward precipitation rate (R{sub f}), for conditions where ionic transport to the growing crystal surface is not rate-limiting. The value of R{sub p} has been experimentally measured under varying conditions, but the magnitude of R{sub f} is not generally known, and may depend on several factors. It is posited that, for systems with no trace constituents that alter the surface chemistry, R{sub f} can be estimated from the bulk far-from-equilibrium dissolution rate of calcite (R{sub b} or k{sub b}), since at equilibrium R{sub f} = R{sub b}, and R{sub p} = 0. Hence it can be inferred that R{sub f} {approx} R{sub p} + R{sub b}. The dissolution rate of pure calcite is measureable and is known to be a function of temperature and pH. At given temperature and pH, equilibrium precipitation is approached when R{sub p} (= R{sub f} - R{sub b}) << R{sub b}. For precipitation rates high enough that R{sub p} >> R{sub b}, both isotopic and trace element partitioning are controlled by the kinetics of ion attachment to the mineral surface, which tend to favor more rapid incorporation of the light isotopes of Ca and discriminate weakly between trace metals and Ca. With varying precipitation rate, a transition region between equilibrium and kinetic control occurs near R{sub p} {approx} R{sub b} for Ca isotopic fractionation. According to this model, Ca isotopic data can be used to estimate R{sub f} for calcite precipitation. Mechanistic models for calcite precipitation indicate that the molecular exchange rate is not constant at constant T and pH, but rather is dependent also on solution saturation state and hence R{sub p

    14. Observed damage during Argon gas cluster depth profiles of compound semiconductors

      SciTech Connect (OSTI)

      Barlow, Anders J. Portoles, Jose F.; Cumpson, Peter J.

      2014-08-07

      Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-? dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025?nm/min (3.95??10{sup ?2}?amu/atom in ion) for 6?keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye.

    15. Results of Hg speciation testing on tanks 30, 32, and 37 depth samples

      SciTech Connect (OSTI)

      Bannochie, C. J.

      2015-11-30

      The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The twelfth shipment of samples was designated to include 3H evaporator system Tank 30, 32, and 37 depth samples. The Tank 30 depth sample (HTF-30-15-70) was taken at 190 inches from the tank bottom and the Tank 32 depth sample (HTF-32-15-68) was taken at 89 inches from the tank bottom and both were shipped to SRNL on June 29, 2015 in an 80 mL stainless steel dip bottles. The Tank 37 surface sample (HTF-37-15-94) was taken around 253.4 inches from the tank bottom and shipped to SRNL on July 21, 2015 in an 80 mL stainless steel dip bottle. All samples were placed in the SRNL Shielded Cells and left unopened until intermediate dilutions were made on July 24, 2015 using 1.00 mL of sample diluted to 100.00 mL with deionized H2O. A 30 mL Teflon® bottle was rinsed twice with the diluted tank sample and then filled leaving as little headspace as possible. It was immediately removed from the Shielded Cells and transferred to refrigerated storage where it remained at 4 °C until final dilutions were made on October 20. A second portion of the cells diluted tank sample was poured into a shielded polyethylene bottle and transferred to Analytical Development for radiochemical analysis data needed for Hazardous Material Transportation calculations.

    16. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

      SciTech Connect (OSTI)

      Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.

      2014-10-15

      A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

    17. Effect of cold drawing ratio on γ′ precipitation in Inconel X-750

      SciTech Connect (OSTI)

      Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Yoo, Young Soo; Choi, Yoon Suk; Kang, Namhyun

      2014-10-15

      Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawing ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.

    18. Heavy Oil Process Monitor: Automated On-Column Asphaltene Precipitation and Re-Dissolution

      SciTech Connect (OSTI)

      John F. Schabron; Joseph F. Rovani; Mark Sanderson

      2007-03-31

      An automated separation technique was developed that provides a new approach to measuring the distribution profiles of the most polar, or asphaltenic components of an oil, using a continuous flow system to precipitate and re-dissolve asphaltenes from the oil. Methods of analysis based on this new technique were explored. One method based on the new technique involves precipitation of a portion of residua sample in heptane on a polytetrafluoroethylene-packed (PTFE) column. The precipitated material is re-dissolved in three steps using solvents of increasing polarity: cyclohexane, toluene, and methylene chloride. The amount of asphaltenes that dissolve in cyclohexane is a useful diagnostic of the thermal history of oil, and its proximity to coke formation. For example, about 40 % (w/w) of the heptane asphaltenes from unpyrolyzed residua dissolves in cyclohexane. As pyrolysis progresses, this number decrease to below 15% as coke and toluene insoluble pre-coke materials appear. Currently, the procedure for the isolation of heptane asphaltenes and the determination of the amount of asphaltenes soluble in cyclohexane spans three days. The automated procedure takes one hour. Another method uses a single solvent, methylene chloride, to re-dissolve the material that precipitates on heptane on the PTFE-packed column. The area of this second peak can be used to calculate a value which correlates with gravimetric asphaltene content. Currently the gravimetric procedure to determine asphaltenes takes about 24 hours. The automated procedure takes 30 minutes. Results for four series of original and pyrolyzed residua were compared with data from the gravimetric methods. Methods based on the new on-column precipitation and re-dissolution technique provide significantly more detail about the polar constituent's oils than the gravimetric determination of asphaltenes.

    19. Chemistry of western Atlantic precipitation at the mid-Atlantic coast and on Bermuda

      SciTech Connect (OSTI)

      Church, T.M.; Galloway, J.N.; Jickells, T.D.; Knap, A.H.

      1982-12-20

      The major ion composition of western Atlantic precipitation falling at the coast of eastern United States (Lewes, Delaware) and at the Sargasso Sea (Bermuda Island) has been measured by event year round (May 1980 to April 1981) to assess the influence of the ocean on precipitation from storms that leave the North American continent and transit over the western Atlantic. Particular attention is paid to the oceanic influence on the sulfur and nitrogen precursors of acid rains. While sea salt contributes over half (by weight) of the salt in precipitation at the coast and over three quarters at Bermuda, most of the sulfate (90% at the coast and 50% at Bermuda) is in excess to sea salt sodium. Since Bermuda precipitation is still acidified some factor of 8 relative to pure equilibrium with atmospheric carbon dioxide, this strong acidity has been attributed to the long-range transport sulfur and nitrogen precursors in the marine troposphere during which the sulfuric acid component dominates. A sulfur budget for the western Atlantic troposphere shows that of the total amount of sulfur exported from the North American continent (>3.9 TgS/yr) less than 3% (0.1 TgS/yr) is from natural sources, the rest being from anthropogenic emissions. If Bermuda precipitation is taken as typical of wet fallout of sulfur over the western Atlantic, then no more than half (<2 TgS/yr) of North American excess (nonsea salt) sulfur export falls out to the western Atlantic and at least half undergoes potential transoceanic transport as acid rain precursors to the east of Bermuda.

    20. Chemistry of Western Atlantic Precipitation at the Mid-Atlantic Coast and on Bermuda

      SciTech Connect (OSTI)

      Church, T.M.; Galloway, J.N.; Jickells, T.D.; Knap, A.H.

      1982-12-20

      The major ion composition of western Atlantic precipitation falling at the coast of eastern United States (Lewes, Delaware) and at the Sargasso Sea (Bermuda Island) has been measured by event year round (May 1980 to April 1981) to assess the influence of the ocean on precipitation from storms that leave the North American continent and transit over the western Atlantic. Particular attention is paid to the oceanic influence on the sulfur and nitrogen precursors of 'acid rains.' While sea salt contributes over half (by weight) of the salt in precipitation at the coast and over three quarters at Bermuda, most of the sulfate (90% at the coast and 50% at Bermuda) is in excess to sea salt sodium. Since Bermuda precipitation is still acidified some factor of 8 relative to pure equilibrium with atmospheric carbon dioxide, this strong acidity has been attributed to the long-range transport sulfur and nitrogen precursors in the marine troposphere during which the sulfuric acid component dominates. A sulfur budget for the western Atlantic troposphere shows that of the total amount of sulfur exported from the North American continuent (>3.9 TgS/yr) less than 3% (0.1 TgS/yr) is from natural sources, the rest being from anthropogenic emissions. If Bermuda precipitation is taken as typical of wet fallout of sulfur over the western Atlantic, then no more than half (<2 TgS/yr) of north American excess (nonsea salt) sulfur export falls out to the western Atlantic and at least half undergoes potential transoceanic tranport as acid rain precursors to the east of Bermuda.

    1. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

      SciTech Connect (OSTI)

      Woods, J.; Winkler, J.; Christensen, D.

      2013-01-01

      This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

    2. Apparatus for in-situ calibration of instruments that measure fluid depth

      DOE Patents [OSTI]

      Campbell, Melvin D.

      1994-01-01

      The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.

    3. Apparatus for in-situ calibration of instruments that measure fluid depth

      DOE Patents [OSTI]

      Campbell, M.D.

      1994-01-11

      The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position. 8 figures.

    4. DOE/SC-ARM/TR-133 Aerosol Optical Depth Value-Added

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      3 Aerosol Optical Depth Value-Added Product for the SAS-He Instrument B Ermold CJ Flynn J Barnard September 2013 Version 1.0 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

    5. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

      SciTech Connect (OSTI)

      Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

      2011-06-24

      The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

    6. HLW flowsheet material balance for DWPF rad operation with Tank 51 sludge and ITP Cycle 1 precipitate

      SciTech Connect (OSTI)

      Choi, A.S.

      1995-04-19

      This document presents the details of the Savannah River Plant Flowsheet for the Rad Operation with Tank Sludge and ITP Cycle 1 Precipitate. Topics discussed include: material balance; radiolysis chemistry of tank precipitates; algorithm for ESP washing; chemistry of hydrogen and ammonia generation in CPC; batch sizes for processing feed; and total throughput of a streams during one cycle of operation.

    7. Waters LANL Protects

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

    8. September 2004 Water Sampling

      Office of Legacy Management (LM)

      4 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites .........7 Water Sampling Field Activities Verification ...

    9. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Green River, Utah, Disposal Site August 2014 LMSGRN.........7 Water Sampling Field Activities Verification ...

    10. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

    11. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and May 2014 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal .........9 Water Sampling Field Activities Verification ...

    12. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2014 LMSRBLS00514 .........5 Water Sampling Field Activities Verification ...

    13. September 2004 Water Sampling

      Office of Legacy Management (LM)

      Natural Gas and Produced Water Sampling at the Rulison, Colorado, Site November 2014 LMS.........3 Water Sampling Field Activities Verification ...

    14. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........9 Water Sampling Field Activities Verification ... Data Durango Processing Site Surface Water Quality Data Equipment Blank Data Static ...

    15. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Natural Gas Analysis Data ...

    16. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrographs Time-Concentration ...

    17. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Hydrograph Time-Concentration ...

    18. September 2004 Water Sampling

      Office of Legacy Management (LM)

      5 Groundwater and Surface Water Sampling at the Rulison, Colorado, Site October 2015 LMS.........5 Water Sampling Field Activities Verification ...

    19. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graph ...

    20. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Monticello, Utah, Processing Site July 2015 LMSMNT.........7 Water Sampling Field Activities Verification ...

    1. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........5 Water Sampling Field Activities Verification ... Quality Data Equipment Blank Data Static Water Level Data Time-Concentration Graphs ...

    2. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Static Water Level Data Time-Concentration Graphs ...

    3. September 2004 Water Sampling

      Office of Legacy Management (LM)

      2015 Groundwater and Surface Water Sampling at the Shiprock, New Mexico, Disposal Site .........9 Water Sampling Field Activities Verification ...

    4. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Rio Blanco, Colorado, Site October 2015 LMSRBLS00515 .........5 Water Sampling Field Activities Verification ...

    5. September 2004 Water Sampling

      Office of Legacy Management (LM)

      5 Produced Water Sampling at the Rulison, Colorado, Site May 2015 LMSRULS00115 Available .........3 Water Sampling Field Activities Verification ...

    6. September 2004 Water Sampling

      Office of Legacy Management (LM)

      Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site December 2013 .........5 Water Sampling Field Activities Verification ...

    7. September 2004 Water Sampling

      Office of Legacy Management (LM)

      Produced Water Sampling at the Rulison, Colorado, Site January 2016 LMSRULS00915 .........3 Water Sampling Field Activities Verification ...

    8. September 2004 Water Sampling

      Office of Legacy Management (LM)

      3 Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site .........7 Water Sampling Field Activities Verification ...

    9. September 2004 Water Sampling

      Office of Legacy Management (LM)

      July 2015 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing .........5 Water Sampling Field Activities Verification ...

    10. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Monticello, Utah, Processing Site July 2014 LMSMNT.........7 Water Sampling Field Activities Verification ...

    11. September 2004 Water Sampling

      Office of Legacy Management (LM)

      3 Water Sampling at the Monticello, Utah, Processing Site January 2014 LMSMNTS01013 This .........7 Water Sampling Field Activities Verification ...

    12. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Naturita, Colorado Processing Site October 2013 LMSNAP.........5 Water Sampling Field Activities Verification ...

    13. September 2004 Water Sampling

      Office of Legacy Management (LM)

      4 Groundwater and Surface Water Sampling at the Gunnison, Colorado, Processing Site .........5 Water Sampling Field Activities Verification ...

    14. September 2004 Water Sampling

      Office of Legacy Management (LM)

      and Surface Water Sampling at the Tuba City, Arizona, Disposal Site November 2013 LMSTUB.........9 Water Sampling Field Activities Verification ...

    15. September 2004 Water Sampling

      Office of Legacy Management (LM)

      5 Groundwater and Surface Water Sampling at the Monticello, Utah, Processing Site January .........7 Water Sampling Field Activities Verification ...

    16. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........3 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Time-Concentration Graphs ...

    17. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........7 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

    18. September 2004 Water Sampling

      Office of Legacy Management (LM)

      .........5 Water Sampling Field Activities Verification ... Groundwater Quality Data Surface Water Quality Data Equipment Blank Data Static ...

    19. Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal

      Broader source: Energy.gov [DOE]

      Defense-in-Depth, How Department of Energy Implements Radiation Protection in Low Level Waste Disposal Linda Suttora*, U.S. Department of Energy ; Andrew Wallo, U.S. Department of Energy Abstract: The United States Department of Energy (DOE) has adopted an integrated protection system for the safety of radioactive waste disposal similar to the concept of a safety case that is used internationally. This approach has evolved and been continuously improved as a result of many years of experience managing low-level waste (LLW) and mixed LLW from on-going operations, decommissioning and environmental restoration activities at 29 sites around the United States. The integrated protection system is implemented using a defense-in-depth approach taking into account the combination of natural and engineered barriers, performance objectives, long-term risk assessments, maintenance of those assessments based on the most recent information to ascertain continued compliance, site-specific waste acceptance criteria based on the risk assessment and a commitment to continuous improvement. There is also a strong component of stakeholder involvement. The integrated protection system approach will be discussed to demonstrate the commitment to safety for US DOE disposal.

    20. Stochastic Seismic Response of an Algiers Site with Random Depth to Bedrock

      SciTech Connect (OSTI)

      Badaoui, M.; Mebarki, A.; Berrah, M. K.

      2010-05-21

      Among the important effects of the Boumerdes earthquake (Algeria, May 21{sup st} 2003) was that, within the same zone, the destructions in certain parts were more important than in others. This phenomenon is due to site effects which alter the characteristics of seismic motions and cause concentration of damage during earthquakes. Local site effects such as thickness and mechanical properties of soil layers have important effects on the surface ground motions.This paper deals with the effect of the randomness aspect of the depth to bedrock (soil layers heights) which is assumed to be a random variable with lognormal distribution. This distribution is suitable for strictly non-negative random variables with large values of the coefficient of variation. In this case, Monte Carlo simulations are combined with the stiffness matrix method, used herein as a deterministic method, for evaluating the effect of the depth to bedrock uncertainty on the seismic response of a multilayered soil. This study considers a P and SV wave propagation pattern using input accelerations collected at Keddara station, located at 20 km from the epicenter, as it is located directly on the bedrock.A parametric study is conducted do derive the stochastic behavior of the peak ground acceleration and its response spectrum, the transfer function and the amplification factors. It is found that the soil height heterogeneity causes a widening of the frequency content and an increase in the fundamental frequency of the soil profile, indicating that the resonance phenomenon concerns a larger number of structures.

    1. Device and method for the measurement of depth of interaction using co-planar electrodes

      DOE Patents [OSTI]

      DeGeronimo, Gianluigi

      2007-09-18

      A device and method for measuring a depth of interaction of an ionizing event and improving resolution of a co-planar grid sensor (CPG) are provided. A time-of-occurrence is measured using a comparator to time the leading edge of the event pulse from the non-collecting or collecting grid. A difference signal between the grid signals obtained with a differential amplifier includes a pulse with a leading edge occurring at the time-of-detection, measured with another comparator. A timing difference between comparator outputs corresponds to the depth of interaction, calculated using a processor, which in turn weights the difference grid signal to improve spectral resolution of a CPG sensor. The device, which includes channels for grid inputs, may be integrated into an Application Specific Integrated Circuit. The combination of the device and sensor is included. An improved high-resolution CPG is provided, e.g., a gamma-ray Cadmium Zinc Telluride CPG sensor operating at room temperature.

    2. An in-depth longitudinal analysis of mixing patterns in a small scientific collaboration network

      SciTech Connect (OSTI)

      Rodriguez, Marko A; Pepe, Alberto

      2009-01-01

      Many investigations of scientific collaboration are based on large-scale statistical analyses of networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a small-scale network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortativity mixing of these node characteristics: academic department, affiliation, position, and country of origin of the individuals in the network. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.

    3. Evolution of carbide precipitates in 2.25Cr-1Mo steel during long-term service in a power plant.

      SciTech Connect (OSTI)

      Yang, Y.; Chen, Y.; Sridharan, K.; Allen, T. R.; Nuclear Engineering Division; Univ. of Wisconsin at Madison

      2010-06-01

      Carbide precipitation from the steel matrix during long-term high-temperature exposure can adversely affect the fracture toughness and high-temperature creep resistance of materials with implications on the performance of power plant components. In the present work, carbide evolution in 2.25Cr-1Mo steel after long-term aging during service was investigated. Boiler pipe samples of this steel were removed from a supercritical water-cooled coal-fired power plant after service times of 17 and 28 years and a mean operational temperature of 810 K (537C). The carbide precipitation and coarsening effects were studied using the carbon extraction replica technique followed by analysis using transmission electron microscopy and energy dispersive X-ray spectroscopy. The carbides extracted using an electrolytic technique were also analyzed using X-ray diffraction to evaluate phase transformations of the carbides during long-term service. Small ball punch and Vickers hardness were used to evaluate the changes in mechanical performance after long-term aging during service.

    4. Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel using Atom Probe Tomography

      SciTech Connect (OSTI)

      Pereloma, E. V.; Stohr, R A; Miller, Michael K; Ringer, S. P.

      2009-01-01

      We describe the full decomposition sequence in an Fe-Ni-Mn-Ti-Al maraging steel during isothermal annealing at 550 C. Following significant pre-precipitation clustering reactions within the supersaturated martensitic solid solution, (Ni,Fe){sub 3}Ti and (Ni,Fe){sub 3}(Al,Mn) precipitates eventually form after isothermal aging for {approx}60 seconds. The morphology of the (Ni,Fe){sub 3}Ti particles changes gradually during aging from predominantly plate-like to rod-like, and, importantly, Mn and Al were observed to segregate to these precipitate/matrix interfaces. The (Ni,Fe){sub 3}(Al,Mn) precipitates occurred at two main locations: uniformly within the matrix and at the periphery of the (Ni,Fe){sub 3}Ti particles. We relate this latter mode of precipitation to the Mn-Al segregation.

    5. Coagulation chemistries for silica removal from cooling tower water.

      SciTech Connect (OSTI)

      Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

      2010-02-01

      The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

    6. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Maria Cadeddu

      Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    7. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

      DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

      Maria Cadeddu

      2004-02-19

      Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    8. Detection of Historical and Future Precipitation Variations and Extremes Over the Continental United States

      SciTech Connect (OSTI)

      Anderson, Bruce T.

      2015-12-11

      Problem: The overall goal of this proposal is to detect observed seasonal-mean precipitation variations and extreme event occurrences over the United States. Detection, e.g. the process of demonstrating that an observed change in climate is unusual, first requires some means of estimating the range of internal variability absent any external drivers. Ideally, the internal variability would be derived from the observations themselves, however generally the observed variability is a confluence of both internal variability and variability in response to external drivers. Further, numerical climate models—the standard tool for detection studies—have their own estimates of intrinsic variability, which may differ substantially from that found in the observed system as well as other model systems. These problems are further compounded for weather and climate extremes, which as singular events are particularly ill-suited for detection studies because of their infrequent occurrence, limited spatial range, and underestimation within global and even regional numerical models. Rationale: As a basis for this research we will show how stochastic daily-precipitation models—models in which the simulated interannual-to-multidecadal precipitation variance is purely the result of the random evolution of daily precipitation events within a given time period—can be used to address many of these issues simultaneously. Through the novel application of these well-established models, we can first estimate the changes/trends in various means and extremes that can occur even with fixed daily-precipitation characteristics, e.g. that can occur simply as a result of the stochastic evolution of daily weather events within a given climate. Detection of a change in the observed climate—either naturally or anthropogenically forced—can then be defined as any change relative to this stochastic variability, e.g. as changes/trends in the means and extremes that could only have occurred

    9. Migration depths of adult steelhead Oncorhynchus mykiss in relation to dissolved gas supersaturation in a regulated river system

      SciTech Connect (OSTI)

      Johnson, Eric L.; Clabough, Tami S.; Caudill, Christopher C.; keefer, matthew L.; Peery, Christopher A.; Richmond, Marshall C.

      2010-04-01

      Adult steelhead tagged with archival transmitters primarily migrated through a large river corridor at depths > 2 m, interspersed with frequent but short (< 5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the encountered supersaturated dissolved gas conditions and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon study, except steelhead experienced greater seasonal variability and were more likely to have depth-uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.

    10. How do rubber (Hevea brasiliensis) plantations behave under seasonal water stress in northeastern Thailand and central Cambodia?

      SciTech Connect (OSTI)

      Kumagai, Tomo'omi; Mudd, Ryan G.; Giambelluca, Thomas W.; Kobayashi, Nakako; Miyazawa, Yoshiyuki; Lim, Tiva Khan; Liu, Wen; Huang, Maoyi; Fox, Jefferson M.; Ziegler, Alan D.; Yin, Song; Mak, Sophea Veasna; Kasemsap, Poonpipope

      2015-11-01

      Plantation rubber (Hevea brasiliensis Mll. Arg.) is a viable economic resource for Southeast Asian countries. Consequently, rubber plantations are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially changing the partitioning of water, energy, and carbon at multiple scales, compared with the traditional land covers they are replacing. Delineating the characteristics of biosphere-atmosphere exchange in rubber plantations is therefore important to understanding the impacts of such land use change on environmental processes. We have conducted eddy flux measurements in two rubber plantation sites: (1) Som Sanuk (SS), located northern Thailand; and (2) Cambodian Rubber Research Institute (CRRI), central Cambodia. Both sites have a distinct dry season. Measurements were made over a 3-year period. We used combination of actual evapotranspiration (ET) flux measurements and an inversed version of a simple 2-layer ET model for estimating the mean canopy stomatal conductances (gs), which is among the most effective measures for describing water and energy exchanges and tree water use characteristics. A main novelty in this analysis is that the rubber canopy conductance can be extracted from total surface conductance (including the canopy and the vegetation floor effects) and hence environmental and biological controls on rubber tree gs are explicitly compared at each site in different seasons and years. It is demonstrated how each studied rubber plantation copes with each strong seasonal drought via tree water use strategies. Potential tree water use deficit (precipitation (P) potential evaporation (ET_POT)) for each season (i.e., December-February: DJF, March-May: MAM, June-August: JJA, and September-November: SON) revealed in which season and how the water use should be controlled. We found that in seasons when actual tree water use deficit (P E

    11. Model studies of oscillating water column wave-energy device

      SciTech Connect (OSTI)

      Koola, P.M.; Ravindran, M.; Narayana, P.A.A.

      1995-04-01

      A harbor oscillating water column wave-energy device has been selected for the Indian pilot wave-energy program. The site has a water depth of about 12 m and an average annual wave-power potential of 13 kW/m. Such sites are attractive locations for fishing breakwaters. Due to the relatively low power potential, these oscillating water column devices arc intended to be modules of a multifunctional breakwater. The present paper highlights the results of the scale-model experiments carried out on a prototype wave-energy caisson.

    12. Water Heating | Department of Energy

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

    13. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

      DOE Patents [OSTI]

      Reinhart, G.M.; Collopy, T.J.

      1962-11-13

      A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

    14. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

      DOE Patents [OSTI]

      Kydd, Paul H.

      1984-01-01

      The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

    15. MULTI-POLLUTANT CONTROL USING MEMBRANE-BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

      SciTech Connect (OSTI)

      James Reynolds

      2003-01-01

      This is the first quarterly report of the ''Multi-Pollutant Control Using Membrane--Based Upflow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members will conduct detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. Test results performed on the existing metallic WESP during November of 2002 showed consistent results with previous test results. Average collection efficiency of 89% on SO{sub 3} mist was achieved. Additionally, removal efficiencies of 62% were achieved at very high velocity, greater than 15 ft./sec.

    16. MULTI-POLLUTANT CONTROL USING MEMBRANE--BASED UP-FLOW WET ELECTROSTATIC PRECIPITATION

      SciTech Connect (OSTI)

      James Reynolds

      2003-04-30

      This is the second quarterly report of the ''Multi-Pollutant Control Using Membrane-Based Upflow Wet Electrostatic Precipitation'' project funded by the US Department of Energy's National Energy Technology Laboratory under DOE Award No. DE-FC26-02NT41592 to Croll-Reynolds Clean Air Technologies (CRCAT). In this 18 month project, CRCAT and its team members will conduct detailed emission tests of metallic and new membrane collection material within a wet electrostatic precipitator (WESP) at First Energy's Penn Power's Bruce Mansfield (BMP) plant in Shippingport, Pa. Test results performed on the existing metallic WESP during November of 2002 showed consistent results with previous test results. Average collection efficiency of 89% on SO{sub 3} mist was achieved. Additionally, removal efficiencies of 62% were achieved at very high velocity, greater than 15 ft./sec. During the first quarter of 2003 final design and start of fabrication of the membrane wet ESP was undertaken.

    17. A continuum-scale model of hydrogen precipitate growth in tungsten plasma-facing materials.

      SciTech Connect (OSTI)

      Causey, Rion A.; Cowgill, Donald F.; Kolasinski, Robert D.

      2010-05-01

      The low solubility of hydrogen in tungsten leads to the growth of near-surface hydrogen precipitates during high-flux plasma exposure, strongly affecting migration and trapping in the material. We have developed a continuum-scale model of precipitate growth that leverages existing techniques for simulating the evolution of {sup 3}He gas bubbles in metal tritides. The present approach focuses on bubble growth by dislocation loop punching, assuming a diffusing flux to nucleation sites that arises from ion implantation. The bubble size is dictated by internal hydrogen pressure, the mechanical properties of the material, as well as local stresses. In this article, we investigate the conditions required for bubble growth. Recent focused ion beam (FIB) profiling studies that reveal the sub-surface damage structure provide an experimental database for comparison with the modeling results.

    18. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

      DOE Patents [OSTI]

      Buck, R.F.

      1994-05-10

      An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

    19. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

      DOE Patents [OSTI]

      Buck, Robert F.

      1994-01-01

      An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

    20. Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity

      SciTech Connect (OSTI)

      Adams, A; Brazier, R; Nyblade, A; Rodgers, A; Al-Amri, A

      2009-02-23

      Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have been studied to determine their source parameters. These events were selected for study because they were reported in open catalogs to have lower crustal or upper mantle source depths and because they occurred within an area of the Zagros Mountains where crustal velocity structure has been constrained by previous studies. Moment tensor inversion of regional broadband waveforms have been combined with forward modeling of depth phases on short period teleseismic waveforms to constrain source depths and moment tensors. Our results show that all six events nucleated within the upper crust (<11 km depth) and have thrust mechanisms. This finding supports other studies that call into question the existence of lower crustal or mantle events beneath the Zagros Mountains.