National Library of Energy BETA

Sample records for deposition cxs applied

  1. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists perform applied research and laboratory-scale demonstrations of soil and groundwater remediation and treatment technologies. Capabilities Installation, monitoring, and operation of permeable reactive barriers Research of permeable

  2. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. ...

  3. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    SciTech Connect (OSTI)

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R.

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  4. CX-013386: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chemical Vapor Deposition CX(s) Applied: B3.6Date: 01/07/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  5. CX-014651: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Chemical Vapor Deposition CX(s) Applied: B3.6Date: 02/17/2016 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  6. Deposited films with improved microstructures

    DOE Patents [OSTI]

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  7. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  8. Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal This paper reports ...

  9. Particle deposition in ventilation ducts

    SciTech Connect (OSTI)

    Sippola, Mark R.

    2002-09-01

    the experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 {micro}m and complete for particle sizes greater than 50 {micro}m. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  10. Deposition head for laser

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  11. direct_deposit_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby

  12. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz (505)...

  13. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  14. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    SciTech Connect (OSTI)

    Hollis, Kendall J; Pena, Maria I

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.

  15. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  16. Radionuclide deposition control

    DOE Patents [OSTI]

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  17. CX-009311: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Optimization of Reservoir Storage Capacity in Different Depositional Environments (Champaign) CX(s) Applied: A9 Date: 08/30/2012 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  18. CX-009310: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock Sampling) CX(s) Applied: B3.1 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory

  19. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  20. Deposition of copper coatings in a magnetron with liquid target

    SciTech Connect (OSTI)

    Tumarkin, A. V. Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V.

    2015-12-15

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to–400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  1. Applied & Computational Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Computational Math - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare Applied & Computational Math HomeEnergy ...

  2. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader ...

  3. CNEEC - Atomic Layer Deposition Tutorial by Stacey Bent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition

  4. Germanium films by polymer-assisted deposition (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Germanium films by polymer-assisted deposition Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having ...

  5. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  6. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contacts Program Lead Carolyn Connor (505) 665-9891 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email The 2016 application process will commence January 5 through February 13, 2016. Applicants must be U.S. citizens. Required Materials Current resume Official university transcript (with Spring courses posted and/or a copy of Spring 2016

  7. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Apply for Beamtime Print Friday, 28 August 2009 13:23 Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn

  8. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, Raymond A.; Haynes, Tony E.; Golanski, Andrzej

    1994-01-01

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.

  9. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, Raymond A.; Haynes, Tony E.; Golanski, Andrzej

    1999-01-01

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repells the ionized particles.

  10. Apparatus and method for selective area deposition of thin films on electrically biased substrates

    DOE Patents [OSTI]

    Zuhr, R.A.; Haynes, T.E.; Golanski, A.

    1999-06-08

    An ion beam deposition process for selective area deposition on a polarized substrate uses a potential applied to the substrate which allows the ionized particles to reach into selected areas for film deposition. Areas of the substrate to be left uncoated are held at a potential that repels the ionized particles. 3 figs.

  11. Methods for making deposited films with improved microstructures

    DOE Patents [OSTI]

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1982-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or larger planar surfaces.

  12. Applied Cathode Enhancement and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Cathode Enhancement and Robustness Technologies (ACERT) Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials (quantum dots), and shielding application of nanomaterials (graphene and other atomically-thin sheets). Our goal is to develop and demonstrate 'designer' cold cathode electron sources with tunable parameters (bandgap, efficiency, optical

  13. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These colors were

  14. Applied Modern Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world innovations. Contact Us Group Leader (acting) John George Email Deputy Group Leader Larry Schultz Email Group Office (505) 665-2545 Email QkarD Quantum key distribution technology could ensure truly secure commerce, banking, communications and data transfer. Read more... A history of excellence in the development and use of

  15. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOE Patents [OSTI]

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  16. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  17. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  18. Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime Print Available Beamlines Determine which ALS beamlines are suitable for your experiment. To do this, you can review the ALS Beamlines Directory, contact the appropriate beamline scientist listed on the Directory, and/or contact the This e-mail address is being protected from spambots. You need JavaScript enabled to view it . Log In to the ALSHub user portal ALSHub Login For More Information About the Types of Proposals To learn more about the three different types of

  19. Patterned electrochemical deposition of copper using an electron beam

    SciTech Connect (OSTI)

    Heijer, Mark den; Shao, Ingrid; Reuter, Mark C.; Ross, Frances M.; Radisic, Alex

    2014-02-01

    We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  20. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  1. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  2. Deposition System Controller

    Energy Science and Technology Software Center (OSTI)

    2005-10-01

    This software is a complete thin film deposition controller. The software takes as its input a script file that dictates enablinig/disabling of sputtering power supplies, pause times, velocities and distances to move a substrate. An emulator has been created and built into the software package that can debug in advance any deposition script and decide if there is an overrun condition, accidental infinite look, and can estimate a time for completion. All necessary process variablesmore » are data logged and recorded for later inspection. This emulator currently interfaces to a Parker-Compumotor SX6 stepper moror indexer, but the software is written in such a way that it is easily modifiable for interface to othe brand and models of motor drivers. Other process I/O variables may be easily added. The software uses any multifunction DAQ card from National Instruments via their free NIDAQ API package, but again, the software is written such that othe brand DAQ cards may be used.« less

  3. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  4. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los ...

  5. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  6. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  7. Momentum Deposition in Curvilinear Coordinates

    SciTech Connect (OSTI)

    Cleveland, Mathew Allen; Lowrie, Robert Byron; Rockefeller, Gabriel M.; Thompson, Kelly Glen; Wollaber, Allan Benton

    2015-08-03

    The momentum imparted into a material by thermal radiation deposition is an important physical process in astrophysics and inertial confinement fusion (ICF) simulations. In recent work we presented a new method of evaluating momentum deposition that relies on the combination of a time-averaged approximation and a numerical integration scheme. This approach robustly and efficiently evaluates the momentum deposition in spherical geometry. Future work will look to extend this approach to 2D cylindrical geometries.

  8. Biocompatible Coating (Parylene) Deposition System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Containing Diamond-Like Carbon Deposition System Varshni Singh and Jost Goettert Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge, LA-70806 Summary CAMD/LSU received funds from the Board of Regents' Enhancement Program for modifying and upgrading of a diamond like carbon (DLC) deposition system. This included a magnetron with shield, DC power supply and pulsing unit, mass flow controllers and in-situ thin film deposition

  9. Carbonate Deposition | Open Energy Information

    Open Energy Info (EERE)

    Alteration Products Carbonate deposits come in many forms and sometimes develop into spectacular colorful terraces such as these at Mammoth Hot Springs in Yellowstone National...

  10. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  11. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  12. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  13. Applied Optoelectronics | Open Energy Information

    Open Energy Info (EERE)

    optical semiconductor devices, packaged optical components, optical subsystems, laser transmitters, and fiber optic transceivers. References: Applied Optoelectronics1...

  14. Mathematical modeling of silica deposition in Tongonan-I reinjection wells, Philippines

    SciTech Connect (OSTI)

    Malate, R.C.M.; O`Sullivan, M.J.

    1993-10-01

    Mathematical models of silica deposition are derived using the method of characteristics for the problem of variable rate injection into a well producing radially symmetric flow. Solutions are developed using the first order rate equation of silica deposition suggested by Rimstidt and Barnes (1980). The changes in porosity and permeability resulting from deposition are included in the models. The models developed are successfully applied in simulating the changes in injection capacity in some of the reinjection wells in Tongonan geothermal field, Philippines.

  15. Direct Deposit Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Deposit Form Direct Deposit Form Direct Deposit Form (66.61 KB) More Documents & Publications Employee In-Processing Forms Agreement for Minority Financial Institutions Participation in the Bank Deposit Financial Assistance Program Agreement for Minority Financial Institutions Participation in the Bank Deposit Financial Assistance Program

  16. Near-infrared radiation curable multilayer coating systems and methods for applying same

    SciTech Connect (OSTI)

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  17. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unofficial transcripts are acceptable. If transcripts are not in English, provide a translation. If grades are not in the U.S.-traditional lettered (A,B,C), or GPA (out of 4.0)...

  18. MACCS2/Deposition Velocity Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s Chief of Nuclear Safety hosted a MACCS2/Deposition Velocity Workshop on June 5-6, 2012, in Germantown, Maryland. Approximately 70 participants attended. The purpose of...

  19. Applied Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to apply the resulting insights to the design, synthesis, and testing of materials with improved properties and performance, including accident-tolerant and higher burn-up fuels. ...

  20. Applied Materials | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Applied Materials Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Sector: Solar Website: www.appliedmaterials.com...

  1. Chemical enhancement of surface deposition

    DOE Patents [OSTI]

    Patch, K.D.; Morgan, D.T.

    1997-07-29

    A method and apparatus are disclosed for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector. 16 figs.

  2. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  3. Chemical enhancement of surface deposition

    DOE Patents [OSTI]

    Patch, Keith D.; Morgan, Dean T.

    1997-07-29

    A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.

  4. Methods of electrophoretic deposition for functionally graded...

    Office of Scientific and Technical Information (OSTI)

    Methods of electrophoretic deposition for functionally graded porous nanostructures and ... and depositing the material onto surfaces of the particles of the impurity to form ...

  5. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, IV, Jonathan S.; Lawson, Roger L.

    1996-01-01

    A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.

  6. Process for applying control variables having fractal structures

    DOE Patents [OSTI]

    Bullock, J.S. IV; Lawson, R.L.

    1996-01-23

    A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.

  7. A x-ray radiography-densitometry technique for the quantitative determination of metal deposit profiles

    SciTech Connect (OSTI)

    Will, F.G.; Iacovangelo, C.D.

    1984-03-01

    The application of x-ray radiography in conjunction with high resolution optical densitometry for the quantitative determination of metal deposit profiles parallel and perpendicular to the substrate surface is described. The principles of the technique and the range of its applicability are discussed. The technique is applied to the study of zinc deposition on highly porous carbon foams from circulating aqueous zinc bromide solutions. The effect of substrate pore size on the zinc distribution is explored. Zinc is found to deposit predominantly on the porous substrate/electrolyte and substrate/current collector interfaces. Smaller pore size favors smoother and more uniform deposits throughout the substrate.

  8. Implantable devices having ceramic coating applied via an atomic layer deposition method

    DOE Patents [OSTI]

    Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.

    2016-03-08

    Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.

  9. Applied Sedimentology | Open Energy Information

    Open Energy Info (EERE)

    Sedimentology Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Applied Sedimentology Author R.C. Salley Published Academic Press, 2000 DOI Not Provided...

  10. Low Speed Carbon Deposition Process for Hermetic Optical Fibers

    SciTech Connect (OSTI)

    ABRAMCZYK,JAROSLAW; ARTHUR,SARA E. TALLANT,DAVID R.; HIKANSSON,ADAM S.; LINDHOLM,ERIC A.; LO,JIE

    1999-09-29

    For optical fibers used in adverse environments, a carbon coating is frequently deposited on the fiber surface to prevent water and hydrogen ingression that lead respectively to strength degradation through fatigue and hydrogen-induced attenuation. The deposition of a hermetic carbon coating onto an optical fiber during the draw process holds a particular challenge when thermally-cured specialty coatings are subsequently applied because of the slower drawing rate. In this paper, we report on our efforts to improve the low-speed carbon deposition process by altering the composition and concentration of hydrocarbon precursor gases. The resulting carbon layers have been analyzed for electrical resistance, Raman spectra, coating thickness, and surface roughness, then compared to strength data and dynamic fatigue behavior.

  11. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  12. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design» supercomputing into the future Overview Los Alamos Asteroid Killer

  13. Physical Chemistry and Applied Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PCS Physical Chemistry and Applied Spectroscopy We perform basic and applied research in support of the Laboratory's national security mission and serve a wide range of customers. Contact Us Group Leader Kirk Rector Deputy Group Leader Jeff Pietryga Group Office (505) 667-7121 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in

  14. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    SciTech Connect (OSTI)

    Cem Sarica; Michael Volk

    2004-06-01

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

  15. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  16. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  17. Fluidized bed deposition of diamond

    DOE Patents [OSTI]

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  18. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  19. CRC handbook of applied thermodynamics

    SciTech Connect (OSTI)

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    The emphasis of this book is on applied thermodynamics, featuring the stage of development of a process rather than the logical development of thermodynamic principles. It is organized according to the types of problems encountered in industry, such as probing research, process assessment, and process development. The applied principles presented can be used in most areas of industry including oil and gas production and processing, chemical processing, power generation, polymer production, food processing, synthetic fuels production, specialty chemicals and pharmaceuticals production, bioengineered processes, etc.

  20. Deposition

    National Nuclear Security Administration (NNSA)

    Reporting Company 866.488.DEPO www.CapitalReportingCompany.com 1 DEPARTMENT OF ENERGY 1 2 PROPOSED CHANGES FOR DOE PART 810 3 ASSISTANCE TO FOREIGN NUCLEAR ACTIVITIES 4 5 NNSA - SNOPR ROLLOUT MEETING 6 7 Department of Energy 8 1000 Independence Avenue, S.W. 9 Forrestal Building 10 Washington, D.C. 11 12 13 Monday, August 5, 2013 14 1:00 p.m. 15 16 17 18 19 Reported by: Natalia Thomas, 20 Capital Reporting Company 21 22 Capital Reporting Company 866.488.DEPO www.CapitalReportingCompany.com 2 A P

  1. Deposition

    National Nuclear Security Administration (NNSA)

    ... 9 take a look at a rule that really no longer reflected 10 how proliferation was being conducted or how we saw 11 proliferation and, yet, also how industry was moving 12 forward. ...

  2. Applied Films Corporation | Open Energy Information

    Open Energy Info (EERE)

    Place: Longmont, Colorado Zip: 80504 Sector: Services, Solar Product: Provider of thin film deposition equipment and services, particularly to the solar industry....

  3. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  4. Applied Mathematics and Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Applied Mathematics and Plasma Physics Maintaining mathematic, theory, modeling, and simulation capabilities in a broad set of areas Leadership Group Leader Pieter Swart Email Deputy Group Leader (Acting) Luis Chacon Email Contact Us Administrator Charlotte Lehman Email Electron density simulation Electron density from an orbital-free quantum molecular dynamics simulation for a warm dense plasma of deuterium at density 10 g/cc and temperature 10 eV. Mathematical, theory, modeling, and

  5. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  6. Zinc deposition in acid electrolytes

    SciTech Connect (OSTI)

    McBreen, J.; Gannon, E.

    1981-01-01

    In the past decade, two aqueous zinc/halogen batteries, the zinc/chlorine, and the zinc/bromine systems, have been considered for load-leveling and vehicular applications. Even though considerable progress has been made in engineering these batteries, several problems related to the zinc electrode have yet to be solved. These are related to the growth of dendritic zinc and a maldistribution of the zinc deposit that can occur during cycling. Both problems are exacerbated by recharge of the battery after partial discharge of the zinc deposit. A survey of the literature indicates that a more desireable zinc morphology can be achieved by use of inorganic additives, fluorinated surfactants, and A-C modulation of the charging current. In this investigation, the deposition of zinc from zinc bromide and zinc chloride electrolytes was investigated under conditions that precluded dendrite growth. The techniques used were cyclic voltammetry, the potential step technique and scanning electron microscopy. The variables investigated were the substrate (zinc and dense graphite), electrolyte pH, inorganic additives (Pb/sup + +/ and Bi/sup 3 +/) and A-V modulation of the charging potential by superimposed square waves.

  7. Crediting Tritium Deposition in Accident Analysis

    SciTech Connect (OSTI)

    Murphy, C.E. Jr.

    2001-06-20

    This paper describes the major aspects of tritium dispersion phenomenology, summarizes deposition attributes of the computer models used in the DOE Complex for tritium dispersion, and recommends an approach to account for deposition in accident analysis.

  8. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  9. Deposition of biological aerosols on HVAC heat exchangers

    SciTech Connect (OSTI)

    Siegel, Jeffrey; Walker, Ian

    2001-09-01

    Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

  10. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L.; McDonald, Jimmie M.; Lutz, Thomas J.; Gallis, Michail A.

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  11. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  12. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  13. Apparatus and process for deposition of hard carbon films

    DOE Patents [OSTI]

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-01

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  14. Apparatus and process for deposition of hard carbon films

    DOE Patents [OSTI]

    Nyaiesh, Ali R.; Garwin, Edward L.

    1989-01-03

    A process and an apparatus for depositing thin, amorphous carbon films having extreme hardness on a substrate is described. An enclosed chamber maintained at less than atmospheric pressure houses the substrate and plasma producing elements. A first electrode is comprised of a cavity enclosed within an RF coil which excites the plasma. A substrate located on a second electrode is excited by radio frequency power applied to the substrate. A magnetic field confines the plasma produced by the first electrode to the area away from the walls of the chamber and focuses the plasma onto the substrate thereby yielding film deposits having higher purity and having more rapid buildup than other methods of the prior art.

  15. Apply to the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Now Applying for the 2016 NSF-REU Nuclear Physics and Nuclear Chemistry Program at the Cyclotron Institute (APPLICATION DEADLINE HAS PASSED. Please check back in Fall 2016 to apply for Summer 2017)

  16. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    SciTech Connect (OSTI)

    Mackus, A. J. M.; Sanden, M. C. M. van de; Kessels, W. M. M.; Mulders, J. J. L.

    2010-06-15

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure, polycrystalline Pt nanostructures are obtained, the method extends the application possibilities of EBID, whereas compared to other area-selective ALD approaches, a much higher resolution is attainable; potentially down to sub-10 nm lateral dimensions.

  17. Applied Intellectual Capital AIC | Open Energy Information

    Open Energy Info (EERE)

    Intellectual Capital AIC Jump to: navigation, search Name: Applied Intellectual Capital (AIC) Place: California Zip: 94501-1010 Product: Applied Intellectual Capital (AIC) was...

  18. Applied Materials Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Applied Materials Wind Turbine Facility Applied Materials Sector Wind energy Facility Type Community Wind Facility Status In Service...

  19. Building America Expert Meeting: Recommendations for Applying...

    Energy Savers [EERE]

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations for Applying Water Heaters in ...

  20. Applied Ventures LLC | Open Energy Information

    Open Energy Info (EERE)

    Applied Ventures LLC Name: Applied Ventures LLC Address: 3050 Bowers Avenue Place: Santa Clara, California Zip: 95054 Region: Southern CA Area Product: Venture capital. Number...

  1. Modeling particle deposition on HVAC heat exchangers

    SciTech Connect (OSTI)

    Siegel, J.A.; Nazaroff, W.W.

    2002-01-01

    Fouling of fin-and-tube heat exchangers by particle deposition leads to diminished effectiveness in supplying ventilation and air conditioning. This paper explores mechanisms that cause particle deposition on heat exchanger surfaces. We present a model that accounts for impaction, diffusion, gravitational settling, and turbulence. Simulation results suggest that some submicron particles deposit in the heat exchanger core, but do not cause significant performance impacts. Particles between 1 and 10 {micro}m deposit with probabilities ranging from 1-20% with fin edge impaction representing the dominant mechanism. Particles larger than 10 {micro}m deposit by impaction on refrigerant tubes, gravitational settling on fin corrugations, and mechanisms associated with turbulent airflow. The model results agree reasonably well with experimental data, but the deposition of larger particles at high velocities is underpredicted. Geometric factors, such as discontinuities in the fins, are hypothesized to be responsible for the discrepancy.

  2. Other Hydrothermal Deposits | Open Energy Information

    Open Energy Info (EERE)

    Capping Other Hydrothermal Alteration Products Colorful hydrothermal deposits dot the landscape at the Hverir Geothermal Area, Iceland. Photo by Darren Atkins User-specified field...

  3. Giant landslide deposits in northwest Argentina

    SciTech Connect (OSTI)

    Fauque, L.; Strecker, M.R.; Bloom, A.L.

    1985-01-01

    Giant Quaternary landslide deposits occur along mountain fronts in the structural transition zone between the high-angle reverse-fault-bounded Sierras Pampeanas and the low-angle thrust belt of the Sierras Subandinas. There are two modes of occurrence: (1) chaotic masses without distinct geometry, and (2) masses with distinct lobate geometry similar to glacial moraines. Type (1) deposits occur where the moving rock mass followed a narrow valley and blocked the drainage. Many of these caused subsequent formation of lakes and changed the sedimentation processes on pediments at the mountain fronts. In type (2) deposits, lateral and frontal ridges are up to 10 m higher than the interior parts; in some places pressure ridges within the lobes are well preserved. Type (2) deposits show reverse grading and were deposited on relatively smooth pediments or alluvial fans. The lobate geometry strongly suggests that type (2) deposits are a product of flowage and are debris stream or sturzstrom deposits (sense of Heim, 1932 and Hsu, 1975). All investigated deposits occur in areas of demonstrated Quaternary faulting and are interpreted as the result of tectonic movements, although structural inhomogeneities in the source area may have been a significant factor for some of the landslides. No datable materials have yet been found associated with the deposits.

  4. Atmospheric Pressure Deposition for Electrochromic Windows |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Dynamic Windows ...

  5. Hydrothermally Deposited Rock | Open Energy Information

    Open Energy Info (EERE)

    at Paleochori, Milos, Greece. http:www.photovolcanica.comVolcanoInfoMilosMilos.html Hydrothermally deposited rock includes rocks and minerals that have precipitated from...

  6. Selective deposition of nanostructured ruthenium oxide using...

    Office of Scientific and Technical Information (OSTI)

    This content will become publicly available on June 5, 2017 Title: Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in ...

  7. CX-008829: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Proliferation Detection Research for Discovery and Development of Process for Deposition of Pure, Stoichiometric and Conformal Films of Magnesium Diboride at Harvard University CX(s) Applied: A9, A11, B3.6 Date: 08/06/2012 Location(s): Massachusetts Offices(s): NNSA-Defense Science University Programs

  8. CX-100625 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost III-V Photovoltaic Materials by Chloride Vapor Transport Deposition Using Safe Solid Precursors Award Number: DE-EE0007361 CX(s) Applied: A9, B3.6 Solar Energy Technologies Office Date: 03/31/2016 Location(s): OR Office(s): Golden Field Office

  9. Chemical surface deposition of ultra-thin semiconductors

    DOE Patents [OSTI]

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  10. Optical Properties of Zn(O,S) Thin Films Deposited by RF Sputtering, Atomic Layer Deposition, and Chemical Bath Deposition: Preprint

    SciTech Connect (OSTI)

    Li, J.; Glynn, S.; Christensen, S.; Mann, J.; To, B.; Ramanathan, K.; Noufi, R.; Furtak, T. E.; Levi, D.

    2012-06-01

    Zn(O,S) thin films 27 - 100 nm thick were deposited on glass or Cu(InxGa1-x)Se2/Molybdenum/glass with RF sputtering, atomic layer deposition, and chemical bath deposition.

  11. Stabilization of green bodies via sacrificial gelling agent during electrophoretic deposition

    DOE Patents [OSTI]

    Worsley, Marcus A.; Kuntz, Joshua D.; Rose, Klint A.

    2016-03-22

    In one embodiment, a method for electrophoretic deposition of a three-dimensionally patterned green body includes suspending a first material in a gelling agent above a patterned electrode of an electrophoretic deposition (EPD) chamber, and gelling the suspension while applying a first electric field to the suspension to cause desired patterning of the first material in a resulting gelation. In another embodiment, a ceramic, metal, or cermet includes a plurality of layers, wherein each layer includes a gradient in composition, microstructure, and/or density in an x-y plane oriented parallel to a plane of deposition of the plurality of layers along a predetermined distance in a z-direction perpendicular to the plane of deposition.

  12. In situ method for recovering hydrocarbon from subterranean oil shale deposits

    SciTech Connect (OSTI)

    Friedman, R.H.

    1987-11-03

    This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

  13. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition

    SciTech Connect (OSTI)

    Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2010-11-01

    The flux of atomic oxygen generated in a electron cyclotron resonance (ECR) microwave plasma source was quantified by two different methods. The commonly applied approach of monitoring the frequency change of a silver-coated quartz crystal microbalance (QCM) deposition rate monitor as the silver is oxidized was found to underestimate the atomic oxygen flux by an order of magnitude compared to a more direct deposition approach. In the mixed-phase Ag/Ag2O deposition method, silver films were deposited in the presence of the plasma such that the films were partially oxidized to Ag2O; x-ray photoelectron spectroscopy (XPS) was utilized for quantification of the oxidized fraction. The inaccuracy of the QCM oxidation method was tentatively attributed to efficient catalytic recombination of O atoms on the silver surface.

  14. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOE Patents [OSTI]

    Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  15. Method For Plasma Source Ion Implantation And Deposition For Cylindrical Surfaces

    DOE Patents [OSTI]

    Fetherston, Robert P. , Shamim, Muhammad M. , Conrad, John R.

    1997-12-02

    Uniform ion implantation and deposition onto cylindrical surfaces is achieved by placing a cylindrical electrode in coaxial and conformal relation to the target surface. For implantation and deposition of an inner bore surface the electrode is placed inside the target. For implantation and deposition on an outer cylindrical surface the electrode is placed around the outside of the target. A plasma is generated between the electrode and the target cylindrical surface. Applying a pulse of high voltage to the target causes ions from the plasma to be driven onto the cylindrical target surface. The plasma contained in the space between the target and the electrode is uniform, resulting in a uniform implantation or deposition of the target surface. Since the plasma is largely contained in the space between the target and the electrode, contamination of the vacuum chamber enclosing the target and electrodes by inadvertent ion deposition is reduced. The coaxial alignment of the target and the electrode may be employed for the ion assisted deposition of sputtered metals onto the target, resulting in a uniform coating of the cylindrical target surface by the sputtered material. The independently generated and contained plasmas associated with each cylindrical target/electrode pair allows for effective batch processing of multiple cylindrical targets within a single vacuum chamber, resulting in both uniform implantation or deposition, and reduced contamination of one target by adjacent target/electrode pairs.

  16. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  17. Ammonia release method for depositing metal oxides

    DOE Patents [OSTI]

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  18. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  19. Atomic Layer Deposition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition New nanophase thin film materials with properties tailored to specifically meet the needs of industry New software simulates ALD over multiple length scale, saving industry time and money on developing specialized tools PDF icon Atomic_Layer_Deposition

  20. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect (OSTI)

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  1. How to Apply for the ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Join us to learn about applying for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to...

  2. Apply for Beam Time | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All About Proposals Users Home Apply for Beam Time Deadlines Proposal Types Concepts, Definitions, and Help My APS Portal My APS Portal Apply for Beam Time Next Proposal Deadline...

  3. Applying for PMCDP/FPD Certification (initial)

    Broader source: Energy.gov [DOE]

    Certification applicants are nominated by their respective Program Secretarial Office (PSO) to apply for FPD certification – candidates may not apply without program sponsorship. Each participating...

  4. Apparatus for gas-metal arc deposition

    DOE Patents [OSTI]

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1991-01-01

    Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  5. Method for gas-metal arc deposition

    DOE Patents [OSTI]

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  6. Method for gas-metal arc deposition

    DOE Patents [OSTI]

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  7. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    SciTech Connect (OSTI)

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie; Wu, Jian; Han, Ruoyu

    2015-12-28

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion is ∼2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ∼18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.

  8. Photobiomolecular deposition of metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2005-02-08

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  9. Polymer-assisted aqueous deposition of metal oxide films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Polymer-assisted aqueous deposition of metal oxide films Title: Polymer-assisted aqueous deposition of metal oxide films An organic solvent-free process for deposition of metal ...

  10. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, Ronald A. (Albuquerque, NM)

    1988-01-01

    A material source replenishment device for use with a vacuum deposition apparatus. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  11. Source replenishment device for vacuum deposition

    DOE Patents [OSTI]

    Hill, R.A.

    1986-05-15

    A material source replenishment device for use with a vacuum deposition apparatus is described. The source replenishment device comprises an intermittent motion producing gear arrangement disposed within the vacuum deposition chamber. An elongated rod having one end operably connected to the gearing arrangement is provided with a multiarmed head at the opposite end disposed adjacent the heating element of the vacuum deposition apparatus. An inverted U-shaped source material element is releasably attached to the outer end of each arm member whereby said multiarmed head is moved to locate a first of said material elements above said heating element, whereupon said multiarmed head is lowered to engage said material element with the heating element and further lowered to release said material element on the heating element. After vaporization of said material element, second and subsequent material elements may be provided to the heating element without the need for opening the vacuum deposition apparatus to the atmosphere.

  12. Role of diffusion in irreversible deposition

    SciTech Connect (OSTI)

    Luthi, P.O.; Ramsden, J.J.; Chopard, B.

    1997-03-01

    The adsorption of spheres onto solid surfaces is investigated using a cellular automaton model of diffusion deposition. Unlike previous models, the diffusive transport of the particles from the bulk to the surface as well as their interaction with adsorbed particles are explicitly considered at a microscopic level. We study the initial time regime, which determines the subsequent evolution and during which the particle flux at the surface is not constant. We observe that diffusion-driven adsorption differs significantly from random sequential adsorption (RSA) when particles diffuse in a two-dimensional bulk and are adsorbed on a one-dimensional substrate. We also find that the microscopic details of the diffusive motion influence both the kinetics of deposition and the jamming limit of the coverage. The RSA model appears to be a good approximation, especially for two-dimensional deposition, but cannot generally represent diffusion deposition. {copyright} {ital 1997} {ital The American Physical Society}

  13. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  14. Semiconductor assisted metal deposition for nanolithography applications

    SciTech Connect (OSTI)

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  15. Semiconductor assisted metal deposition for nanolithography applications

    SciTech Connect (OSTI)

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  16. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  17. Energy deposition in STARFIRE reactor components

    SciTech Connect (OSTI)

    Gohar, Y.; Brooks, J.N.

    1985-04-01

    The energy deposition in the STARFIRE commercial tokamak reactor was calculated based on detailed models for the different reactor components. The heat deposition and the 14 MeV neutron flux poloidal distributions in the first wall were obtained. The poloidal surface heat load distribution in the first wall was calculated from the plasma radiation. The Monte Carlo method was used for the calculation to allow an accurate modeling for the reactor geometry.

  18. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M.; Burrell; Anthony K.; Jia; Quanxi; Lin; Yuan

    2009-10-20

    A polymer assisted deposition process for deposition of metal oxide films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films and the like. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  19. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan

    2008-04-29

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  20. Finding evidence for density fluctuation effects on electron cyclotron heating deposition profiles on DIII-D

    SciTech Connect (OSTI)

    Brookman, M. W. Austin, M. E.; Petty, C. C.

    2015-12-10

    Theoretical work, computation, and results from TCV [J. Decker “Effect of density fluctuations on ECCD in ITER and TCV,” EPJ Web of Conf. 32, 01016 (2012)] suggest that density fluctuations in the edge region of a tokamak plasma can cause broadening of the ECH deposition profile. In this paper, a GUI tool is presented which is used for analysis of ECH deposition as a first step towards looking for this broadening, which could explain effects seen in previous DIII-D ECH transport studies [K.W. Gentle “Electron energy transport inferences from modulated electron cyclotron heating in DIII-D,” Phys. Plasmas 13, 012311 (2006)]. By applying an FFT to the T{sub e} measurements from the University of Texas’s 40-channel ECE Radiometer, and using a simplified thermal transport equation, the flux surface extent of ECH deposition is determined. The Fourier method analysis is compared with a Break-In-Slope (BIS) analysis and predictions from the ray-tracing code TORAY. Examination of multiple Fourier harmonics and BIS fitting methods allow an estimation of modulated transport coefficients and thereby the true ECH deposition profile. Correlations between edge fluctuations and ECH deposition in legacy data are also explored as a step towards establishing a link between fluctuations and deposition broadening in DIII-D.

  1. Low-temperature plasma-deposited silicon epitaxial films: Growth...

    Office of Scientific and Technical Information (OSTI)

    Low-temperature plasma-deposited silicon epitaxial films: Growth and properties Citation Details In-Document Search Title: Low-temperature plasma-deposited silicon epitaxial films:...

  2. CFD Analysis of Particle Deposition During DPF Filtration Processes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Particle Deposition During DPF Filtration Processes CFD Analysis of Particle Deposition During DPF Filtration Processes A 3-D DPF model is developed to predict ...

  3. Precursors for the polymer-assisted deposition of films (Patent...

    Office of Scientific and Technical Information (OSTI)

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having ...

  4. Spatial atomic layer deposition on flexible substrates using...

    Office of Scientific and Technical Information (OSTI)

    Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor Citation Details In-Document Search Title: Spatial atomic layer deposition on...

  5. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  6. Geology and Mineral Deposits of Churchill County, Nevada | Open...

    Open Energy Info (EERE)

    Mineral Deposits of Churchill County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and Mineral Deposits of Churchill County, Nevada...

  7. Atomic Layer Deposition of Metal Sulfide Materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition of Metal Sulfide Materials Title Atomic Layer Deposition of Metal Sulfide Materials Publication Type Journal Article Year of Publication 2015 Authors...

  8. Applied Field Research Initiative Deep Vadose Zone

    Office of Environmental Management (EM)

    Applied Field Research Initiative Deep Vadose Zone Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of preventing contamination in the deep vadose zone from reaching groundwater. Led by the Pacific Northwest National Laboratory, the Initiative is a collaborative effort that leverages Department of Energy (DOE) investments in basic science and applied

  9. Applied Quantum Technology AQT | Open Energy Information

    Open Energy Info (EERE)

    Quantum Technology AQT Jump to: navigation, search Name: Applied Quantum Technology (AQT) Place: Santa Clara, California Zip: 95054 Product: California-based manufacturer of CIGS...

  10. Applied Energy Management | Open Energy Information

    Open Energy Info (EERE)

    Energy Management Jump to: navigation, search Name: Applied Energy Management Place: Huntersville, North Carolina Zip: 28078 Sector: Efficiency, Renewable Energy Product: North...

  11. Applied Materials Inc AMAT | Open Energy Information

    Open Energy Info (EERE)

    manufacturer of equipment used in solar (silicon, thin-film, BIPV), semiconductor, and LCD markets. References: Applied Materials Inc (AMAT)1 This article is a stub. You can...

  12. Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal

    Broader source: Energy.gov [DOE]

    This paper reports on studies carried out at ORNL to examine the shear force required to remove particles from a well-developed EGR cooler deposit.

  13. Process for metallization of a substrate by curing a catalyst applied thereto

    DOE Patents [OSTI]

    Chen, Ken S.; Morgan, William P.; Zich, John L.

    2002-10-08

    An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by heating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface coated with catalyst solution. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.

  14. Process for metallization of a substrate by irradiative curing of a catalyst applied thereto

    DOE Patents [OSTI]

    Chen, Ken S.; Morgan, William P.; Zich, John L.

    1999-01-01

    An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by irradiating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface having metallic clusters. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.

  15. CX-014313: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13: Categorical Exclusion Determination CX-014313: Categorical Exclusion Determination Development of Dual Purpose Organic Semiconductor Thin Films for Polymer Interface and Electrostatic Applications CX(s) Applied: B3.6 Date: 08/20/2015 Location(s): South Carolina Offices(s): Savannah River Operations Office Sample preparation techniques such as surface and sample modification/deposition and self-assembled monolayer formation will be performed. Sample modification/deposition, self-assembled

  16. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  17. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition.

    SciTech Connect (OSTI)

    Elam, J. W.; Feng, H.; Stair, P. C.; Libera, J. A.; Setthapun, W.; Northwestern Univ.

    2010-05-25

    Atomic layer deposition (ALD) palladium films were deposited at 200 C on various ALD metal oxide surfaces using sequential exposures to Pd(II) hexafluoroacetylacetonate (Pd(hfac)2) and formalin. In situ quartz crystal microbalance measurements as well as ex situ measurements performed on planar substrates revealed that the Pd growth begins with a relatively slow nucleation process and accelerates once an adequate amount of Pd has deposited on the surface. Furthermore, the Pd nucleation is faster on ALD ZnO surfaces compared to ALD Al2O3 surfaces. ALD was utilized to synthesize highly dispersed, uniform Pd nanoparticles (1 to 2 nm in diameter) on ALD ZnO and Al2O3 coated mesoporous silica gel, and the catalytic performances of these samples were compared in the methanol decomposition reaction. The ALD Pd-Al2O3 showed high activity and hydrogen selectivity at relatively low temperatures while the ALD Pd-ZnO showed very low activity as well as quick deactivation. In situ extended X-ray absorption fine structure (EXAFS) measurement revealed that the Pd supported on ZnO 'dissolves' into the substrate during the methanol decomposition reaction which accounts for the gradual disappearance of its catalytic activity. By applying one cycle of ALD Al2O3 on top of the Pd-ZnO catalyst, the activity was enhanced and the catalyst deactivation was mitigated. This Al2O3 overcoating method stabilizes the Pd-ZnO and effectively prevents the dissolution of Pd into the ZnO substrate.

  18. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  19. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  20. Patterns of permeability in eolian deposits

    SciTech Connect (OSTI)

    Goggin, D.J.; Chandler, M.A.; Kocurek, G.; Lake, L.W.

    1988-06-01

    The eolian, Jurassic Page sandstone of northeastern Arizona is marked by a highly ordered heterogeneity. The heterogeneity is expressed by the intricate association of stratification types, which are a direct result of the depositional processes. The dominant stratification types in eolian reservoirs are grainflow, grainfall, and wind-ripple deposits, which form on the lee faces of migrating dunes; interdune deposits, which form between migrating dunes; and extra-erg deposits, which occur sporadically when other depositional environments encroach upon an eolian system. These stratification types each have a unique permeability range, which implies that the fluid migration routes in eolian reservoirs will be dictated by the geometry and types of stratification present. One of the most important aspects of this study is the correlation of qualitative geologic descriptions with quantitative variables such as permeability. About 2,000 measurements were made with a field minipermeameter on an outcrop of the Page sandstone. These data show that three distinct permeability modes directly relate to the different stratification types.

  1. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    SciTech Connect (OSTI)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  2. Characterization of microwave plasmas for deposition of polyparylene

    SciTech Connect (OSTI)

    Franz, Gerhard; Rauter, Florian; Dribinskiy, Stanislav F.

    2009-07-15

    Polyparylene, a noncritical, nontoxic layer material well suited for long-term applications in the human body, has been deposited by plasma-enhanced chemical vapor deposition of the monomeric species. For that end, a microwave discharge in a pulsed mode has been applied. Important plasma parameters have been evaluated by simultaneous application of Langmuir probe and trace rare gas optical emission spectroscopy. Plasma densities and electron temperature have been found to cover values from an almost Langmuir plasma up to some 10{sup 10}/cm{sup 3} and between 1 and 3.5 eV, respectively. The differences in electron temperature between the two methods clearly show the efficiency of microwave fields to excite the high-energy tail of the electron energy distribution function. Due to diffusion loss, the plasma is spatially inhomogenous which has been taken care of by measuring at four different radial positions and different pressures with the Langmuir probe. This holds true for both ambients: argon and parylene-C. However, the plasma density in parylene is lower by a factor of almost 10, indicating that this molecule and/or its fragments exhibit a strong power for electronic attachment or that the process of ionization must compete with other, parasitic reaction paths.

  3. Swimming motility reduces Azotobacter vinelandii deposition to silica surfaces

    SciTech Connect (OSTI)

    Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng; Hu, Dehong; Kamai, Tamir; Ginn, Timothy R.; Zilles, Julie L.; Nguyen, Thanh H.

    2015-09-16

    The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 ?m/s, DJ77 showed impaired swimming averaged at 8.7 ?m/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation point flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 ?m from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.

  4. On coarse projective integration for atomic deposition in amorphous systems

    SciTech Connect (OSTI)

    Chuang, Claire Y. E-mail: meister@unm.edu Sinno, Talid; Han, Sang M. E-mail: meister@unm.edu; Zepeda-Ruiz, Luis A. E-mail: meister@unm.edu

    2015-10-07

    Direct molecular dynamics simulation of atomic deposition under realistic conditions is notoriously challenging because of the wide range of time scales that must be captured. Numerous simulation approaches have been proposed to address the problem, often requiring a compromise between model fidelity, algorithmic complexity, and computational efficiency. Coarse projective integration, an example application of the “equation-free” framework, offers an attractive balance between these constraints. Here, periodically applied, short atomistic simulations are employed to compute time derivatives of slowly evolving coarse variables that are then used to numerically integrate differential equations over relatively large time intervals. A key obstacle to the application of this technique in realistic settings is the “lifting” operation in which a valid atomistic configuration is recreated from knowledge of the coarse variables. Using Ge deposition on amorphous SiO{sub 2} substrates as an example application, we present a scheme for lifting realistic atomistic configurations comprised of collections of Ge islands on amorphous SiO{sub 2} using only a few measures of the island size distribution. The approach is shown to provide accurate initial configurations to restart molecular dynamics simulations at arbitrary points in time, enabling the application of coarse projective integration for this morphologically complex system.

  5. Methods and systems for electrophoretic deposition of energetic materials and compositions thereof

    DOE Patents [OSTI]

    Sullivan, Kyle T.; Gash, Alexander E.; Kuntz, Joshua D.; Worsley, Marcus A.

    2015-06-23

    A product includes: a part including at least one component characterized as an energetic material, where the at least one component is at least partially characterized by physical characteristics of being deposited by an electrophoretic deposition process. A method includes: providing a plurality of particles of an energetic material suspended in a dispersion liquid to an EPD chamber or configuration; applying a voltage difference across a first pair of electrodes to generate a first electric field in the EPD chamber; and depositing at least some of the particles of the energetic material on at least one surface of a substrate, the substrate being one of the electrodes or being coupled to one of the electrodes.

  6. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    SciTech Connect (OSTI)

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja; Chen, Ning; Hadzic, Admir; Williams, Paul; Leivo, Jarkko; Karkkainen, Ari; Schmidt, Jan

    2015-02-02

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies of up to 19.8% on p-type Czochralski silicon.

  7. Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elam, Jeffrey W.; Xiong, Guang; Han, Catherine Y.; Wang, H. Hau; Birrell, James P.; Welp, Ulrich; Hryn, John N.; Pellin, Michael J.; Baumann, Theodore F.; Poco, John F.; et al

    2006-01-01

    Amore » tomic layer deposition ( ALD ) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used ALD to coat two nanoporous solids: anodic aluminum oxide ( AAO ) and silica aerogels. AAO possesses hexagonally ordered pores with diameters d ∼ 40 nm and pore length L ∼ 70 microns. The AAO membranes were coated by ALD to fabricate catalytic membranes that demonstrate remarkable selectivity in the oxidative dehydrogenation of cyclohexane.dditional AAO membranes coated with ALD Pd films show promise as hydrogen sensors. Silica aerogels have the lowest density and highest surface area of any solid material. Consequently, these materials serve as an excellent substrate to fabricate novel catalytic materials and gas sensors by ALD .« less

  8. Method and apparatus for conducting variable thickness vapor deposition

    DOE Patents [OSTI]

    Nesslage, G.V.

    1984-08-03

    A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.

  9. Line-of-sight deposition method

    DOE Patents [OSTI]

    Patten, James W.; McClanahan, Edwin D.; Bayne, Michael A.

    1981-01-01

    A line-of-sight method of depositing a film having substantially 100% of theoretical density on a substrate. A pressure vessel contains a target source having a surface thereof capable of emitting particles therefrom and a substrate with the source surface and the substrate surface positioned such that the source surface is substantially parallel to the direction of the particles impinging upon the substrate surface, the distance between the most remote portion of the substrate surface receiving the particles and the source surface emitting the particles in a direction parallel to the substrate surface being relatively small. The pressure in the vessel is maintained less than about 5 microns to prevent scattering and permit line-of-sight deposition. By this method the angles of incidence of the particles impinging upon the substrate surface are in the range of from about 45.degree. to 90.degree. even when the target surface area is greatly expanded to increase the deposition rate.

  10. Line-of-sight deposition method

    DOE Patents [OSTI]

    Patten, J.W.; McClanahan, E.D.; Bayne, M.A.

    1980-04-16

    A line-of-sight method of depositing a film having substantially 100% of theoretical density on a substrate. A pressure vessel contains a target source having a surface thereof capable of emitting particles therefrom and a substrate with the source surface and the substrate surface positioned such that the source surface is substantially parallel to the direction of the particles impinging upon the substrate surface, the distance between the most remote portion of the substrate surface receiving the particles and the source surface emitting the particles in a direction parallel to the substrate surface being relatively small. The pressure in the vessel is maintained less than about 5 microns to prevent scattering and permit line-of-sight deposition. By this method the angles of incidence of the particles impinging upon the substrate surface are in the range of from about 45/sup 0/ to 90/sup 0/ even when the target surface area is greatly expanded to increase the deposition rate.

  11. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  12. Glow discharge plasma deposition of thin films

    DOE Patents [OSTI]

    Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  13. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, Peter C.; Watkins, Arthur D.

    1999-01-01

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube.

  14. Liquid injection plasma deposition method and apparatus

    DOE Patents [OSTI]

    Kong, P.C.; Watkins, A.D.

    1999-05-25

    A liquid injection plasma torch deposition apparatus for depositing material onto a surface of a substrate may comprise a plasma torch for producing a jet of plasma from an outlet nozzle. A plasma confinement tube having an inlet end and an outlet end and a central bore therethrough is aligned with the outlet nozzle of the plasma torch so that the plasma jet is directed into the inlet end of the plasma confinement tube and emerges from the outlet end of the plasma confinement tube. The plasma confinement tube also includes an injection port transverse to the central bore. A liquid injection device connected to the injection port of the plasma confinement tube injects a liquid reactant mixture containing the material to be deposited onto the surface of the substrate through the injection port and into the central bore of the plasma confinement tube. 8 figs.

  15. Supplemental heating of deposition tooling shields

    DOE Patents [OSTI]

    Ohlhausen, James A. (Albuquerque, NM); Peebles, Diane E. (Albuquerque, NM); Hunter, John A. (Albuquerque, NM); Eckelmeyer, Kenneth H. (Albuquerque, NM)

    2000-01-01

    A method of reducing particle generation from the thin coating deposited on the internal surfaces of a deposition chamber which undergoes temperature variation greater than 100.degree. C. comprising maintaining the temperature variation of the internal surfaces low enough during the process cycle to keep thermal expansion stresses between the coating and the surfaces under 500 MPa. For titanium nitride deposited on stainless steel, this means keeping temperature variations under approximately 70.degree. C. in a chamber that may be heated to over 350.degree. C. during a typical processing operation. Preferably, a supplemental heater is mounted behind the upper shield and controlled by a temperature sensitive element which provides feedback control based on the temperature of the upper shield.

  16. Chemical vapor deposition of fluorinated polymers

    SciTech Connect (OSTI)

    Moore, J.A.; Lang, C.I.; Lu, T.M.; You, L.

    1993-12-31

    An overview of the authors` work directed toward the deposition of fluorinated polymers by condensation of thermally or photochemically generated intermediates directly from the vapor state will be presented. Previously known materials such as Teflon AF{reg_sign} and Parylene AF{sub 4} have been successfully deposited and are being evaluated for microelectronic application as on-chip dielectrics. A novel, one-step route to Parylene AF{sub 4} will be described which obviates the necessity of multistep organic synthesis to prepare precursors. A new, partially fluorinated parylene obtained from tetrafluoro-p-xylene will be described. It has also been observed that ultraviolet irradiation of the vapor of dimethyl tetrafluorobenzocyclobutene causes the deposition of an insoluble film which contains fluorine.

  17. Forming aspheric optics by controlled deposition

    DOE Patents [OSTI]

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  18. Forming aspheric optics by controlled deposition

    DOE Patents [OSTI]

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  19. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  20. Pi in Applied Optics | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside the Applied Optics Lab II Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The sPI CAM: Inside the Applied Optics Lab II The sPI Cam visits the Applied Optics Lab to see how Mark Meyers, a physicist and optical engineer at GE Global Research, uses Pi. You Might Also Like lightning bolt We One-Upped Ben Franklin,

  1. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  2. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  3. Polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey,Thomas M.; Burrell,Anthony K.; Jia,Quanxi; Lin,Yuan

    2012-02-28

    A polymer assisted deposition process for deposition of metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be conformal on a variety of substrates including non-planar substrates. In some instances, the films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  4. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect (OSTI)

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  5. Overview of the NMSEA applied research program

    SciTech Connect (OSTI)

    Stickney, B.; Wilson, A.

    1980-01-01

    Recently the NMSEA has seen the need to augment its other informational programs with a program of in-house applied research. The reasoning behind this move is presented here along with and accounting of past research activities.

  6. Applied Energy Programs, SPO-AE: LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Karl Jonietz 505-663-5539 Program Manager Melissa Fox 505-663-5538 Budget Analyst Fawn Gore 505-665-0224 The Applied Energy Program Office (SPO-AE) manages Los Alamos National...

  7. Dual ion beam assisted deposition of biaxially textured template layers

    DOE Patents [OSTI]

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  8. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email SAGE Class of 2016 SAGE 2016

  9. How to Apply | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How to Apply How to Apply Online Application Available at www.zintellect.com/Posting/Details/1997 Application deadline May 20, 2016. Familiarize yourself with the benefits, obligations, eligibility requirements, and evaluation criteria. Familiarize yourself with the requirements and obligations to determine whether your education and professional goals are well aligned with the EERE Postdoctoral Research Awards. Read the Evaluation Criteria that will be used to evaluate your application. It is

  10. LANSCE | Lujan Center | Apply for Beamtime

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for Beamtime LANSCE User Resources Tips for a Successful Proposal Step 1: Apply for Beam Time 1. Select an Instrument and a Local Contact 2. Submit Your Proposal Step 2: Before You Arrive 1. Complete the LANSCE User Facility Agreement Questionnaire 2. Arrange for Site Access 3. Prepare for Your Experiment: Contact Lujan Experiment Coordinator to arrange shipping of your samples. Talk to the beamline scientist about any electrical equipment you might bring. 4. Complete your training Step 3:

  11. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    SciTech Connect (OSTI)

    Das, Debasish; Basu, Rajendra N.

    2013-09-01

    Graphical abstract: - Highlights: Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. Suspension chemistry and process parameters for electrophoretic deposition optimized. Deposited film quality changed with iodine and water (dispersants) concentration. Dense YSZ film (?5 ?m) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry. Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 C for 6 h a dense YSZ film of thickness ?5 ?m is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer.

  12. Photochemical Deposition of Semiconductor Thin Films and Their Application for Solar Cells and Gas Sensors

    SciTech Connect (OSTI)

    Ichimura, M.; Gunasekaran, M.; Sueyoshi, T.

    2009-06-01

    The photochemical deposition (PCD) technique was applied for solar cells and gas sensors. CdS and Cd{sub 1-x}Zn{sub x}S were deposited by PCD. Thiosulfate ions S{sub 2}O{sub 3}{sup 2-} act as a reductant and a sulfur source. The SnS absorption layer was deposited by three-step pulse electrochemical deposition. For the CdS/SnS structure, the best cell showed an efficiency of about 0.2%, while for the Cd{sub 1-x}Zn{sub x}S/SnS structure, an efficiency of up to 0.7% was obtained. For the gas sensor application, SnO{sub 2} was deposited by PCD from a solution containing SnSO{sub 4} and HNO{sub 3}. To enhance the sensitivity to hydrogen, Pd was doped by the photochemical doping method. The current increased by a factor of 10{sup 4} upon exposure to 5000 ppm hydrogen within 1 min at room temperature. 10{sup 3} times conductivity increase was observed even for 50 ppm hydrogen.

  13. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    SciTech Connect (OSTI)

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  14. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, Auda K. (Albuquerque, NM)

    1986-01-01

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  15. Plasma deposition of amorphous metal alloys

    DOE Patents [OSTI]

    Hays, A.K.

    1979-07-18

    Amorphous metal alloy coatings are plasma-deposited by dissociation of vapors of organometallic compounds and metalloid hydrides in the presence of a reducing gas, using a glow discharge. Tetracarbonylnickel, phosphine, and hydrogen constitute a typical reaction mixture of the invention, yielding a NiPC alloy.

  16. Chemical vapor deposition of aluminum oxide

    DOE Patents [OSTI]

    Gordon, Roy; Kramer, Keith; Liu, Xinye

    2000-01-01

    An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

  17. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect (OSTI)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  18. Defect distributions in weld-deposited cladding

    SciTech Connect (OSTI)

    Li, Y.Y.; Mabe, W.R.

    1998-11-01

    Defect distributions in stainless steel and nickel-chromium alloy weld-deposited cladding over a low alloy steel base were characterized by destructive evaluation (DE). An evaluation of the observed defects was conducted to characterize the defects by type or classification. Size distributions of cladding defect types were developed from the information obtained. This paper presents the results of the cladding evaluation.

  19. Panel 1 - comparative evaluation of deposition technologies

    SciTech Connect (OSTI)

    Fenske, G.R.; Stodolsky, F.; Benson, D.K.; Pitts, R.J.; Bhat, D.G.; Yulin Chen; Gat, R.; Sunkara, M.K.; Kelly, M.; Lawler, J.E.; Nagle, D.C.; Outka, D.; Revankar, G.S.; Subramaniam, V.V.; Wilbur, P.J.; Mingshow Wong; Woolam, W.E.

    1993-01-01

    This working group attempted to evaluate/compare the different types of deposition techniques currently under investigation for depositing diamond and diamond-like carbon films. A table lists the broad types of techniques that were considered for depositing diamond and diamond-like carbon films. After some discussion, it was agreed that any evaluation of the various techniques would be dependent on the end application. Thus the next action was to list the different areas where diamond and DLC films could find applications in transportation. These application areas are listed in a table. The table intentionally does not go into great detail on applications because that subject is dealt with specifically by Panel No. 4 - Applications To Transportation. The next action concentrated on identifying critical issues or limitations that need to be considered in evaluating the different processes. An attempt was then made to rank different broad categories of deposition techniques currently available or under development based on the four application areas and the limitations. These rankings/evaluations are given for diamond and DLC techniques. Finally, the working group tried to identify critical development and research issues that need to be incorporated into developing a long-term program that focuses on diamond/DLC coatings for transportation needs. 5 tabs.

  20. Influence of deposition field on the magnetic anisotropy in epitaxial Co70Fe30 films on GaAs(001)

    SciTech Connect (OSTI)

    Hindmarch, A.T.; Arena, D.; Dempsey, K.J.; Henini, M.; Marrows, C.H.

    2010-03-10

    The effect of the application of a magnetic field during deposition of epitaxial Co{sub 70}Fe{sub 30} onto GaAs(001) is shown; we find an initially counterintuitive result. For field applied along the interfacial uniaxial hard axis the relative effective uniaxial magnetic anisotropy is increased by a factor of two in comparison to both field along the uniaxial easy axis, or no field; usually, application of a deposition field results in a uniaxial easy axis parallel to this field direction. We show that the deposition field changes the maximal projection of the atomic orbital magnetic moments onto the easy axis, which corresponds to a deposition field induced shift in the Helmholtz free-energy landscape of the system.

  1. Categorical Exclusion Determinations: Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reequipping and Engineering CX(s) Applied: B1.31, B5.1 Date: 09062011 ... Aptera All-Electric and Hybrid Electric Vehicles CX(s) Applied: B1.31, B5.1 Date: 0620...

  2. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reconstruction of the V.T. Hanlon Substation CX(s) Applied: B4.11 Date: 03232015 ... Reconstruction of the V.T. Hanlon Substation CX(s) Applied: B4.11 Date: 03232015 ...

  3. Technology Assessment of Dust Suppression Techniques applied During Structural Demolition

    SciTech Connect (OSTI)

    Boudreaux, J.F.; Ebadian, M.A.; Dua, S.K.

    1997-08-06

    Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure and, at the same time, minimize the amount of dust generated by a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology. Thus, the purpose of this research, which was conducted by the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), was to perform an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study specifically targeted the problem of dust suppression during demolition. The resulting data were used in the development of mathematical correlations that can be applied to structural demolition. In the Fiscal Year 1996 (FY96), the effectiveness of different dust suppressing agents was investigated for different types of concrete blocks. Initial tests were conducted in a broad particle size range. In Fiscal Year 1997 (FY97), additional tests were performed in the size range in which most of the particles were detected. Since particle distribution is an important parameter for predicting deposition in various compartments of the human respiratory tract, various tests were aimed at determining the particle size distribution of the airborne dust particles. The effectiveness of dust suppressing agents for particles of various size was studied. Instead of conducting experiments on various types of blocks, it was thought prudent to carry out additional tests on blocks of the same type. Several refinements were also incorporated in the test procedures and data acquisition system used in FY96.

  4. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  5. Method of applying coatings to substrates

    DOE Patents [OSTI]

    Hendricks, Charles D.

    1991-01-01

    A method for applying novel coatings to substrates is provided. The ends of multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hithereto unavailable compositions, are provided.

  6. Method for depositing layers of high quality semiconductor material

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  7. How to Apply for Senior Executive positions

    Broader source: Energy.gov [DOE]

    To apply vacancies for SENIOR EXECUTIVE SERVICE (SES) , SENIOR LEVEL (SL), SCIENTIFIC AND PROFESSIONAL (ST) positions within the Department of Energy please visit OPM's website: http://www.usajobs.gov. From this site, you may download announcements for vacancies of interest to you.

  8. (Applied mass spectrometry in the health sciences)

    SciTech Connect (OSTI)

    Glish, G.L.

    1990-05-03

    The traveler attended the 2nd International Symposium on Applied Mass Spectrometry in the Health Sciences and presented and invited paper. Papers presented that were of interest to ORNL mass spectrometry programs involved ionization of large molecules by electrospray and laser desorption. Other papers of interest included applications of MS/MS for structural elucidation and new instrumentation.

  9. Uniform insulation applied-B ion diode

    DOE Patents [OSTI]

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  10. Filtered cathodic arc deposition apparatus and method

    DOE Patents [OSTI]

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  11. Methods for patterned deposition on a substrate

    DOE Patents [OSTI]

    Rye, R.R.; Ricco, A.J.; Hampden-Smith, M.J.; Kodas, T.T.

    1995-01-10

    A method is described for patterned depositions of a material onto a substrate. A surface of a polymeric substrate is first etched so as to form an etched layer having enhanced adhesions characteristics and then selected portions of the etched layer are removed so as to define a pattern having enhanced and diminished adhesion characteristics for the deposition of a conductor onto the remaining etched layer. In one embodiment, a surface of a PTFE substrate is chemically etched so as to improve the adhesion of copper thereto. Thereafter, selected portions of the etched surface are irradiated with a laser beam so as to remove the etched selected portions of the etched surface and form patterns of enhanced and diminished adhesion of copper thereto. 5 figures.

  12. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  13. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  14. Substrate heater for thin film deposition

    DOE Patents [OSTI]

    Foltyn, Steve R. (111 Beryl St., Los Alamos, NM 87544)

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  15. Methods for patterned deposition on a substrate

    DOE Patents [OSTI]

    Rye, Robert R. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM); Hampden-Smith, M. J. (Albuquerque, NM); Kodas, T. T. (Albuquerque, NM)

    1995-01-01

    A method is described for patterned depositions of a material onto a substrate. A surface of a polymeric substrate is first etched so as to form an etched layer having enhanced adhesions characteristics and then selected portions of the etched layer are removed so as to define a pattern having enhanced and diminished adhesion characteristics for the deposition of a conductor onto the remaining etched layer. In one embodiment, a surface of a PTFE substrate is chemically etched so as to improve the adhesion of copper thereto. Thereafter, selected portions of the etched surface are irradiated with a laser beam so as to remove the etched selected portions of the etched surface and form patterns of enhanced and diminished adhesion of copper thereto.

  16. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C.; Rocheleau, Richard E.

    1987-03-31

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  17. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R.; Lewis, Patrick R.; Dirk, Shawn M.; Trudell, Daniel E.

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  18. Nanotube array controlled carbon plasma deposition

    SciTech Connect (OSTI)

    Qian, Shi; Cao, Huiliang; Liu, Xuanyong; Ding, Chuanxian

    2013-06-17

    Finding approaches to control the elementary processes of plasma-solid interactions and direct the fluxes of matter at nano-scales becomes an important aspect in science. This letter reports that, by taking advantages of the spacing characteristics of discrete TiO{sub 2} nanotube arrays, the flying trajectories and the subsequent implantation and deposition manner of energetic carbon ions can be directed and controlled to fabricate hollow conical arrays. The study provides an alternative method for plasma nano-manufacturing.

  19. DEPOSITION OF METAL ON NONMETAL FILAMENT

    DOE Patents [OSTI]

    Magel, T.T.

    1959-02-10

    A method is described for purifying metallic uranium by passing a halogen vapor continuously over the impure uranium to form uranium halide vapor and immediately passing the halide vapor into contact with a nonmetallic refractory surface which is at a temperature above the melting point of uranium metal. The halide is decomposed at the heated surface depositing molten metal, which collects and falls into a receiver below.

  20. Electrostatic force assisted deposition of graphene

    DOE Patents [OSTI]

    Liang, Xiaogan

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  1. Chemical deposition methods using supercritical fluid solutions

    DOE Patents [OSTI]

    Sievers, Robert E.; Hansen, Brian N.

    1990-01-01

    A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

  2. A method for monitoring deposition at a solid cathode in an electro-refiner for a two-species system using electrode potentials

    SciTech Connect (OSTI)

    Rappleye, D.S.; Simpson, M.F.; Cumberland, R.M.; Yim, M.S.

    2013-07-01

    Currently, process monitoring of spent nuclear fuel electrorefining relies upon sampling and destructive analysis methods coupled with extrapolated thermodynamic process models for non-interrupted operations. An 'inverse' model was developed to predict the product deposition rates on a cathode using the cell current, cathode potential, and fundamental relations of electrochemistry. The model was applied to the following cases: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. The deposition rates predicted by this 'inverse' model were compared to those of a 'forward' model, ERAD. On average, the predicted deposition rates had relative errors of 3.88 % and 2.84 % for U and Pu, respectively, in the case of U/Pu co-deposition and 4.16 % and 7.44 % for U and Zr, respectively, in the case of U/Zr co-deposition. Thus, the 'inverse' model was able to predict the deposition rates without requiring information regarding the feed and salt composition, as the forward model, ERAD, does.

  3. System and Method for Sealing a Vapor Deposition Source - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An apparatus for movably sealing a deposition chamber from the rest of a fabrication ... there is a need to seal the deposition chamber from the rest of the system under vacuum. ...

  4. Precursors for the polymer-assisted deposition of films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Precursors for the polymer-assisted deposition of films Citation Details In-Document Search Title: Precursors for the polymer-assisted deposition of films You are accessing a ...

  5. Polymer-assisted deposition of films and preparation of carbon...

    Office of Scientific and Technical Information (OSTI)

    Polymer-assisted deposition of films and preparation of carbon nanotube arrays using the films Citation Details In-Document Search Title: Polymer-assisted deposition of films and ...

  6. Microsoft Word - Deposition Request Form Rev10-12.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deposition Request Form rev10/12-sm Personal Contact Information Date: ____/____/______ Name:_________________________________ Phone #__________________ E-Mail_____________________________ Project Reference Number: _________________________ Dept _________________ Professor _____________________________ Professor Email ________________________________ Substrate Description ( substrate provided by user) Total Number of Substrates: ________ Deposition Specifications Film

  7. Solvothermal Thin Film Deposition of Electron Blocking Layers | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers

  8. Plasma-based ion implantation and deposition: A review of physics,technology, and applications

    SciTech Connect (OSTI)

    Pelletier, Jacques; Anders, Andre

    2005-05-16

    After pioneering work in the 1980s, plasma-based ion implantation (PBII) and plasma-based ion implantation and deposition (PBIID) can now be considered mature technologies for surface modification and thin film deposition. This review starts by looking at the historical development and recalling the basic ideas of PBII. Advantages and disadvantages are compared to conventional ion beam implantation and physical vapor deposition for PBII and PBIID, respectively, followed by a summary of the physics of sheath dynamics, plasma and pulse specifications, plasma diagnostics, and process modeling. The review moves on to technology considerations for plasma sources and process reactors. PBII surface modification and PBIID coatings are applied in a wide range of situations. They include the by-now traditional tribological applications of reducing wear and corrosion through the formation of hard, tough, smooth, low-friction and chemically inert phases and coatings, e.g. for engine components. PBII has become viable for the formation of shallow junctions and other applications in microelectronics. More recently, the rapidly growing field of biomaterial synthesis makes used of PBII&D to produce surgical implants, bio- and blood-compatible surfaces and coatings, etc. With limitations, also non-conducting materials such as plastic sheets can be treated. The major interest in PBII processing originates from its flexibility in ion energy (from a few eV up to about 100 keV), and the capability to efficiently treat, or deposit on, large areas, and (within limits) to process non-flat, three-dimensional workpieces, including forming and modifying metastable phases and nanostructures. We use the acronym PBII&D when referring to both implantation and deposition, while PBIID implies that deposition is part of the process.

  9. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  10. NREL: Process Development and Integration Laboratory - Materials Deposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Device Fabrication in the Atmospheric Processing Platform Materials Deposition and Device Fabrication in the Atmospheric Processing Platform This page provides details on materials deposition and device fabrication in the Atmospheric Processing platform. The four techniques highlighted are robotic inkjet printing, large-area ultrasonic spray deposition, sputtering, and thermal evaporator deposition. Photo of the shiny back of the glove box behind a close-up of an unenclosed inkjet

  11. Success Story: Chrome Deposit Corporation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chrome Deposit Corporation Success Story: Chrome Deposit Corporation This case study describes how Chrome Deposit Corporation was able to reduce plant-wide energy use, minimize its environmental impact, and improve energy management practices amidst ongoing growth. Success Story: Chrome Deposit Corporation (February 2011) (1.7 MB) More Documents & Publications Energy Exchange 2015 Speaker Biographies Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): University

  12. Formation of amorphous metal alloys by chemical vapor deposition

    DOE Patents [OSTI]

    Mullendore, Arthur W.

    1990-01-01

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures or organometallic compounds and metalloid hydrides, e.g., transition metal carbonyl such as nickel carbonyl, and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit.

  13. Microstructural Evolution of EGR Cooler Deposits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evolution of EGR Cooler Deposits Microstructural Evolution of EGR Cooler Deposits Characterize the thermo-physical properties of the deposit under different operating conditions on model EGR cooler tube and determine the long-term changes in deposit properties due to thermal cycling and water/HC condensation deer09_lance.pdf (5.25 MB) More Documents & Publications Materials Issues Associated with EGR Systems Vehicle Technologies Office Merit Review 2014: Materials Issues Associated with EGR

  14. Applied Mathematics Conferences and Workshops | U.S. DOE Office...

    Office of Science (SC) Website

    ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced ...

  15. Low-Temperature Engineering Algorithm of Deposition Risk

    Energy Science and Technology Software Center (OSTI)

    1992-12-08

    LEADER is designed to qualitatively predict the potential coal ash deposition in an utility boiler in convective pass heat exchange surfaces below 1850 F. This program concentrates on those deposits which develop their strength through sulfation and not silicate sintering. Massive deposits that form on the upstream sides of boiler tubes at higher temperatures are not considered in this model.

  16. Applied Cathode Enhancement and Robustness Technologies (ACERT)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators, Electrodynamics » ACERT Applied Cathode Enhancement and Robustness Technologies (ACERT) World leading experts from fields of accelerator design & testing, chemical synthesis of nanomaterials, and shielding application of nanomaterials. thumbnail of Nathan Moody Nathan Moody Principal Investigator (PI) Email ACERT Logo Team Our project team, a part of Los Alamos National Laboratory (LANL) comprised of world leading experts from fields of accelerator design & testing,

  17. Summer of Applied Geophysical Experience Reading List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geophysical Experience Reading List Summer of Applied Geophysical Experience Reading List A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Keller, R., Khan, M. A., Morgan, P., et al., 1991, A Comparative Study of the Rio Grande and Kenya rifts, Tectonophys.,

  18. Comparisons of wet and dry deposition derived from the first year of trial dry deposition monitoring

    SciTech Connect (OSTI)

    Hicks, B.B.; Hosker, R.P. Jr.; Womack, J.D.

    1986-04-01

    In general, the turbulent exchange of trace gas and aerosol particles cannot always be assumed to be downwards. For many trace gases, the surface constitutes both a source and a sink, leading to wide temporal variations in both the direction and the magnitude of the net exchange. For some chemical species, however, the surface can be assumed to be a continuing sink. Such species include several chemical compounds of current importance, such as sulfur dioxide, nitric acid vapor, and ozone. In such instances, dry deposition fluxes to natural surfaces can be inferred from air concentration data, provided accurate evaluations are available of the efficiency with which the surface scavenges pollutants from the air to which it is exposed. This simple approach is the foundation for the so-called concentration monitoring or inferential method for assessing dry deposition. The inferential method relies upon the availability of accurate concentration data and corresponding deposition velocities. Knowledge of these properties alone does not permit the desired deposition data to be computed. As an extension of dry deposition research programs, a trial network has been set up to test the inferential method. Here, the scientific basis for the network operation is discussed, and preliminary data presented.

  19. Effects of Ar plasma treatment for deposition of ruthenium film by remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Park, Taeyong; Lee, Jaesang; Park, Jingyu; Jeon, Heeyoung; Jeon, Hyeongtag; Lee, Ki-Hoon; Cho, Byung-Chul; Kim, Moo-Sung; Ahn, Heui-Bok

    2012-01-15

    Ruthenium thin films were deposited on argon plasma-treated SiO{sub 2} and untreated SiO{sub 2} substrates by remote plasma atomic layer deposition using bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp){sub 2}] as a Ru precursor and ammonia plasma as a reactant. The results of in situ Auger electron spectroscopy (AES) analysis indicate that the initial transient region of Ru deposition was decreased by Ar plasma treatment at 400 deg. C, but did not change significantly at 300 deg. C The deposition rate exhibited linearity after continuous film formation and the deposition rates were about 1.7 A/cycle and 0.4 A/cycle at 400 deg. C and 300 deg. C, respectively. Changes of surface energy and polar and dispersive components were measured by the sessile drop test. The quantity of surface amine groups was measured from the surface nitrogen concentration with AES. Furthermore, the Ar plasma-treated SiO{sub 2} contained more amine groups and less hydroxyl groups on the surface than on untreated SiO{sub 2}. Auger spectra exhibited chemical shifts by Ru-O bonding, and larger shifts were observed on untreated substrates due to the strong adhesion of Ru films.

  20. In-place stabilization of pond ash deposits by hydrated lime columns

    SciTech Connect (OSTI)

    Chand, S.K.; Subbarao, C.

    2007-12-15

    Abandoned coal ash ponds cover up vast stretches of precious land and cause environmental problems. Application of suitable in situ stabilization methods may bring about improvement in the geotechnical properties of the ash deposit as a whole, converting it to a usable site. In this study, a technique of in-place stabilization by hydrated lime columns was applied to large-scale laboratory models of ash ponds. Samples collected from different radial distances and different depths of the ash deposit were tested to study the improvements in the water content, dry density, particle size distribution, unconfined compressive strength, pH, hydraulic conductivity, and leachate characteristics over a period of one year. The in-place stabilization by lime column technique has been found effective in increasing the unconfined compressive strength and reducing hydraulic conductivity of pond ash deposits in addition to modifying other geotechnical parameters. The method has also proved to be useful in reducing the contamination potential of the ash leachates, thus mitigating the adverse environmental effects of ash deposits.

  1. Apply for a Job | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Answers to frequently asked questions about applying for a job at Argonne A Note About Privacy We do not ask you for personally identifiable information such as birthdate, social security number, or driver's license number. To ensure your privacy, please do not include such information in the documents that you upload to the system A Note About File Size Our application system has a file size limit of 820KB. While this is sufficient for the vast majority of documents, we have found that

  2. Vapor-deposited porous films for energy conversion

    DOE Patents [OSTI]

    Jankowski, Alan F.; Hayes, Jeffrey P.; Morse, Jeffrey D.

    2005-07-05

    Metallic films are grown with a "spongelike" morphology in the as-deposited condition using planar magnetron sputtering. The morphology of the deposit is characterized by metallic continuity in three dimensions with continuous and open porosity on the submicron scale. The stabilization of the spongelike morphology is found over a limited range of the sputter deposition parameters, that is, of working gas pressure and substrate temperature. This spongelike morphology is an extension of the features as generally represented in the classic zone models of growth for physical vapor deposits. Nickel coatings were deposited with working gas pressures up 4 Pa and for substrate temperatures up to 1000 K. The morphology of the deposits is examined in plan and in cross section views with scanning electron microscopy (SEM). The parametric range of gas pressure and substrate temperature (relative to absolute melt point) under which the spongelike metal deposits are produced appear universal for other metals including gold, silver, and aluminum.

  3. 2009 Applied and Environmental Microbiology GRC

    SciTech Connect (OSTI)

    Nicole Dubilier

    2009-07-12

    The topic of the 2009 Gordon Conference on Applied and Environmental Microbiology is: From Single Cells to the Environment. The Conference will present and discuss cutting-edge research on applied and environmental microbiology with a focus on understanding interactions between microorganisms and the environment at levels ranging from single cells to complex communities. The Conference will feature a wide range of topics such as single cell techniques (including genomics, imaging, and NanoSIMS), microbial diversity at scales ranging from clonal to global, environmental 'meta-omics', biodegradation and bioremediation, metal - microbe interactions, animal microbiomes and symbioses. The Conference will bring together investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with extensive discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an ideal setting for scientists from different disciplines to exchange ideas, brainstorm and discuss cross-disciplinary collaborations.

  4. On the dry deposition of submicron particles

    SciTech Connect (OSTI)

    Wesely, M. L.

    1999-10-08

    The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

  5. APPARATUS FOR VACUUM DEPOSITION OF METALS

    DOE Patents [OSTI]

    Milleron, N.

    1962-03-13

    An apparatus and a method are described for continuous vacuum deposition of metals for metallic coatings, for ultra-high vacuum work, for purification of metals, for maintaining high-density electron currents, and for other uses. The apparatus comprises an externally cooled feeder tube extending into a container and adapted to feed metal wire or strip so that it emerges in a generally vertical position therein. The tube also provides shielding from the heat produced by an electron beam therein focused to impinge from a vertical direction upon the tip of the emerging wire. By proper control of the wire feed, coolant feed, and electron beam intensity, a molten ball of metal forms upon the emerging tip and remains self-supported thereon by the interaction of various forces. The metal is vaporized and travels in a line of sight direction, while additional wire is fed from the tube, so that the size of the molten ball remains constant. In the preferred embodiments, the wire is selected from a number of gettering metals and is degassed by electrical resistance in an adjacent chamber which is also partially evacuated. The wire is then fed through the feed tube into the electron beam and vaporizes and adsorbs gases to provide pumping action while being continuously deposited upon surfaces within the chamber. Ion pump electrodes may also be provided within line of sight of the vaporizing metal source to enhance the pumping action. (AEC)

  6. Aerosol deposition in bends with turbulent flow

    SciTech Connect (OSTI)

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  7. Atomic layer deposition of titanium sulfide and its application in extremely thin absorber solar cells

    SciTech Connect (OSTI)

    Mahuli, Neha; Sarkar, Shaibal K.

    2015-01-15

    Atomic layer deposition (ALD) of TiS{sub 2} is investigated with titanium tetrachloride and hydrogen sulfide precursors. In-situ quartz crystal microbalance and ex-situ x-ray reflectivity measurements are carried out to study self-limiting deposition chemistry and material growth characteristics. The saturated growth rate is found to be ca. 0.5 Å/cycle within the ALD temperature window of 125–200 °C. As grown material is found poorly crystalline. ALD grown TiS{sub 2} is applied as a photon harvesting material for solid state sensitized solar cells with TiO{sub 2} as electron transport medium. Initial results with Spiro-OMeTAD as hole conducting layer show ca. 0.6% energy conversion efficiency under 1 sun illumination.

  8. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    DOE Patents [OSTI]

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  9. DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY

    SciTech Connect (OSTI)

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong

    2008-02-28

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

  10. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOE Patents [OSTI]

    Fernandez, Felix E.

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  11. Catalyst deactivation due to deposition of reaction products in macropores during hydroprocessing of petroleum residuals

    SciTech Connect (OSTI)

    Khang, S.J.; Mosby, J.F.

    1986-04-01

    A pore-filling model is proposed to describe deactivation of hydroprocessing catalysts of a wide-pore structure in well-mixed and plug-flow reactors where the catalyst pellets are deactivated due to slow and uniform deposition of reaction products (mostly metal compounds) in their macropores. The model based on no mass-transfer restriction in the main channels of the pores incorporates additional active sites created by metal compounds in the deposited layers and has been shown to have two parameters of the similar type of the Thiele modulus. The model along with lumped reaction kinetics is applied for hydroprocessing reactions in trickle-bed reactors and provides reasonable deactivation curves for desulfurization and demetallation reaction when less than 50% of the original pore volume is filled with metal compounds.

  12. Ultra-low loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels

    SciTech Connect (OSTI)

    King, J S; Wittstock, A; Biener, J; Kucheyev, S O; Wang, Y M; Baumann, T F; Giri, S; Hamza, A V; Baeumer, M; Bent, S F

    2008-04-21

    Using atomic layer deposition (ALD), we show that Pt nanoparticles can be deposited on the inner surfaces of carbon aerogels (CA). The resultant Pt-loaded materials exhibit high catalytic activity for the oxidation of CO even at loading levels as low as {approx}0.05 mg Pt/cm{sup 2}. We observe a conversion efficiency of nearly 100% in the temperatures range 150-250 C, and the total conversion rate seems to be only limited by the thermal stability of our CA support in ambient oxygen. Our ALD approach described here is universal in nature, and can be applied to the design of new catalytic materials for a variety of applications, including fuel cells, hydrogen storage, pollution control, green chemistry, and liquid fuel production.

  13. Electrochemically deposited BiTe-based nanowires for thermoelectric applications

    SciTech Connect (OSTI)

    Ng, Inn-Khuan; Kok, Kuan-Ying; Rahman, Che Zuraini Che Ab; Saidin, Nur Ubaidah; Ilias, Suhaila Hani; Choo, Thye-Foo

    2014-02-12

    Nanostructured materials systems such as thin-films and nanowires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nanowires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nanowires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltanmetry (LSV). Chemical compositions of the nanowires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nanowires indicated that while the Sb content in BiSbTe nanowires increased with more negative deposition potentials, the formation of Te{sup 0} and Bi{sub 2}Te{sub 3} were favorable at more positive potentials.

  14. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    SciTech Connect (OSTI)

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Kim, Jiyoung; Hwang, Hyeon Jun; Ha, Min-Woo

    2015-03-23

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm{sup 2}/V·s and the lowest n-type carrier concentration of approximately 1.0 × 10{sup 18}/cm{sup 3} were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  15. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  16. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles; Sangeeta, D

    2006-04-18

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  17. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOE Patents [OSTI]

    Hasz, Wayne Charles; Sangeeta, D

    2002-01-01

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  18. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, J.D.

    1995-03-07

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  19. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, John D. (Richland, WA)

    1993-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  20. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, John D. (Kennewick, WA)

    1995-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  1. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, J.D.

    1993-11-09

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  2. Electro-deposition of superconductor oxide films

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  3. Method and apparatus for electrospark deposition

    DOE Patents [OSTI]

    Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.

    2004-12-28

    A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.

  4. Nanostructure templating using low temperature atomic layer deposition

    DOE Patents [OSTI]

    Grubbs, Robert K.; Bogart, Gregory R.; Rogers, John A.

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  5. Pulsed laser deposition of AlMgB14 thin films

    SciTech Connect (OSTI)

    Britson, Jason Curtis

    2008-11-18

    Hard, wear-resistant coatings of thin film borides based on AlMgB14 have the potential to be applied industrially to improve the tool life of cutting tools and pump vanes and may account for several million dollars in savings as a result of reduced wear on these parts. Past work with this material has shown that it can have a hardness of up to 45GPa and be fabricated into thin films with a similar hardness using pulsed laser deposition. These films have already been shown to be promising for industrial applications. Cutting tools coated with AlMgB14 used to mill titanium alloys have been shown to substantially reduce the wear on the cutting tool and extend its cutting life. However, little research into the thin film fabrication process using pulsed laser deposition to make AlMgB14 has been conducted. In this work, research was conducted into methods to optimize the deposition parameters for the AlMgB14 films. Processing methods to eliminate large particles on the surface of the AlMgB14 films, produce films that were at least 1m thick, reduce the surface roughness of the films, and improve the adhesion of the thin films were investigated. Use of a femtosecond laser source rather than a nanosecond laser source was found to be effective in eliminating large particles considered detrimental to wear reduction properties from the films. Films produced with the femtosecond laser were also found to be deposited at a rate 100 times faster than those produced with the nanosecond laser. However, films produced with the femtosecond laser developed a relatively high RMS surface roughness around 55nm. Attempts to decrease the surface roughness were largely unsuccessful. Neither increasing the surface temperature of the substrate during deposition nor using a double pulse to ablate the material was found to be extremely successful to reduce the surface roughness. Finally, the adhesion of the thin films to M2 tool steel

  6. Energy Department Extends Deadline to Apply for START Tribal...

    Energy Savers [EERE]

    Extends Deadline to Apply for START Tribal Renewable Energy Project Development Assistance to May 22, 2015 Energy Department Extends Deadline to Apply for START Tribal Renewable...

  7. An exact general remeshing scheme applied to physically conservative...

    Office of Scientific and Technical Information (OSTI)

    Published Article: An exact general remeshing scheme applied to physically conservative voxelization Title: An exact general remeshing scheme applied to physically conservative ...

  8. Identifying a cooperative control mechanism between an applied...

    Office of Scientific and Technical Information (OSTI)

    Identifying a cooperative control mechanism between an applied field and the environment ... Title: Identifying a cooperative control mechanism between an applied field and the ...

  9. Building America Webinar: Opportunities to Apply Phase Change...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by ...

  10. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  11. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  12. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science ...

  13. James Webb Space Telescope: PM Lessons Applied - Eric Smith,...

    Energy Savers [EERE]

    James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director, NASA James Webb Space Telescope: PM Lessons Applied - Eric Smith, Deputy Program Director,...

  14. ADR LUNCHTIME PROGRAM: "Crisis Negotiation: Apply the Skills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apply the Skills Used By Law Enforcement In Resolving Conflict Situations" ADR LUNCHTIME PROGRAM: "Crisis Negotiation: Apply the Skills Used By Law Enforcement In Resolving ...

  15. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  16. Reduction of particle deposition on substrates using temperature gradient control

    DOE Patents [OSTI]

    Rader, Daniel J.; Dykhuizen, Ronald C.; Geller, Anthony S.

    2000-01-01

    A method of reducing particle deposition during the fabrication of microelectronic circuitry is presented. Reduction of particle deposition is accomplished by controlling the relative temperatures of various parts of the deposition system so that a large temperature gradient near the surface on which fabrication is taking place exists. This temperature gradient acts to repel particles from that surface, thereby producing cleaner surfaces, and thus obtaining higher yields from a given microelectronic fabrication process.

  17. Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ozone | Argonne National Laboratory Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone Title Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone Publication Type Journal Article Year of Publication 2016 Authors Mane, AU, Allen, AJ, Kanjolia, RK, Elam, JW Journal Journal of Physical Chemistry C Volume 120 Start Page 9874 Issue 18 Pagination 10 Date Published 04182016 Abstract We investigated the atomic layer deposition (ALD)

  18. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  19. Image processing applied to laser cladding process

    SciTech Connect (OSTI)

    Meriaudeau, F.; Truchetet, F.

    1996-12-31

    The laser cladding process, which consists of adding a melt powder to a substrate in order to improve or change the behavior of the material against corrosion, fatigue and so on, involves a lot of parameters. In order to perform good tracks some parameters need to be controlled during the process. The authors present here a low cost performance system using two CCD matrix cameras. One camera provides surface temperature measurements while the other gives information relative to the powder distribution or geometric characteristics of the tracks. The surface temperature (thanks to Beer Lambert`s law) enables one to detect variations in the mass feed rate. Using such a system the authors are able to detect fluctuation of 2 to 3g/min in the mass flow rate. The other camera gives them information related to the powder distribution, a simple algorithm applied to the data acquired from the CCD matrix camera allows them to see very weak fluctuations within both gaz flux (carriage or protection gaz). During the process, this camera is also used to perform geometric measurements. The height and the width of the track are obtained in real time and enable the operator to find information related to the process parameters such as the speed processing, the mass flow rate. The authors display the result provided by their system in order to enhance the efficiency of the laser cladding process. The conclusion is dedicated to a summary of the presented works and the expectations for the future.

  20. Hanford Waste Vitrification Plant applied technology plan

    SciTech Connect (OSTI)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs.

  1. Spatial correlation of energy deposition events in irradiated...

    Office of Scientific and Technical Information (OSTI)

    events in irradiated liquid water Citation Details In-Document Search Title: Spatial correlation of energy deposition events in irradiated liquid water You are accessing a ...

  2. Spatial correlation of energy deposition events in irradiated...

    Office of Scientific and Technical Information (OSTI)

    events in irradiated liquid water Citation Details In-Document Search Title: Spatial correlation of energy deposition events in irradiated liquid water Monte Carlo electron ...

  3. Remote Detection of Quaternary Borate Deposits with ASTER Satellite...

    Open Energy Info (EERE)

    Deposits with ASTER Satellite Imagery as a Geothermal Exploration Tool Abstract In the Great Basin of the western United States, geothermal fluids are sometimes associated with...

  4. Analysis Of Hot Springs And Associated Deposits In Yellowstone...

    Open Energy Info (EERE)

    Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne VisibleIR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the...

  5. Atomic Layer Deposition for Stabilization of Amorphous Silicon...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode ...

  6. Rhyolites and Associated Deposits of the Valles-Toledo Caldera...

    Open Energy Info (EERE)

    Complex Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rhyolites and Associated Deposits of the Valles-Toledo Caldera Complex Abstract...

  7. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  8. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED...

    Office of Scientific and Technical Information (OSTI)

    to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited ...

  9. Atomic Layer Deposition and in Situ Characterization of Ultraclean...

    Office of Scientific and Technical Information (OSTI)

    Hydroxide Citation Details In-Document Search Title: Atomic Layer Deposition and in Situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide Authors: Kozen,...

  10. Evaluation of Wax Deposition and Its Control During Production...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils Due to increasing oil demand, oil companies are moving into arctic environments and ...

  11. EGR Cooler Fouling- Visualization of Deposition and Removal Mechanis

    Broader source: Energy.gov [DOE]

    Presents experimental data on exhaust gas recirculation(EGR) cooler fouling using new test apparatus that allows for in-situ observation of deposition and removal processes

  12. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

    1999-06-29

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

  13. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  14. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect (OSTI)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  15. Quick, Efficient Film Deposition for Nanomaterials - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Quick, Efficient Film Deposition for Nanomaterials Oak Ridge National Laboratory Contact ORNL About This ...

  16. Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Metal Heat Exchanger for Geologic Deposits Oak Ridge National Laboratory Contact ... The apparatus provides more efficient heat transfer than existing technologies for ...

  17. Active Geothermal Systems And Associated Gold Deposits In The...

    Open Energy Info (EERE)

    Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Active Geothermal Systems...

  18. Eulerian CFD Models to Predict Thermophoretic Deposition of Soot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This paper describes an Eulerian axisymmetric method in Fluent(R) to predict the overall heat transfer reduction of a surrogate tube due to thermophoretic deposition of submicron ...

  19. Method of depositing a high-emissivity layer

    DOE Patents [OSTI]

    Wickersham, Charles E.; Foster, Ellis L.

    1983-01-01

    A method of depositing a high-emissivity layer on a substrate comprising RF sputter deposition of a carbide-containing target in an atmosphere of a hydrocarbon gas and a noble gas. As the carbide is deposited on the substrate the hydrocarbon gas decomposes to hydrogen and carbon. The carbon deposits on the target and substrate causing a carbide/carbon composition gradient to form on the substrate. At a sufficiently high partial pressure of hydrocarbon gas, a film of high-emissivity pure carbon will eventually form over the substrate.

  20. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY...

    Energy Savers [EERE]

    high-performance deposition technology that addresses two major aspects of this manufacturing cost: the expense of organic materials per area of useable product, and the...

  1. Electroless Atomic Layer Deposition: A Scalable Approach to Surface...

    Office of Scientific and Technical Information (OSTI)

    Title: Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; El Gabaly ...

  2. CFD Analysis of Particle Deposition During DPF Filtration Processes

    Broader source: Energy.gov [DOE]

    A 3-D DPF model is developed to predict thermo-physical properties during filtration processes and to quantitatively investigate particle deposition regarding its size and number distribution.

  3. Liquid-Phase Deposition of Silicon Nanocrystal Films - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Phase Deposition of Silicon Nanocrystal Films University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Silicon ...

  4. A radon progeny deposition model (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    by the long half life (22 y) of sup 210Pb on sensitive locations of a detector. ... RADIATION; CLEAN ROOMS; DEPOSITION; HALF-LIFE; PROGENY; RADIATION DETECTORS; RADON; ...

  5. EGR Cooler Fouling - Visualization of Deposition and Removal...

    Broader source: Energy.gov (indexed) [DOE]

    Presents experimental data on exhaust gas recirculation(EGR) cooler fouling using new test apparatus that allows for in-situ observation of deposition and removal processes ...

  6. Characterization of CZTSSe photovoltaic device with an atomic layer-deposited passivation layer

    SciTech Connect (OSTI)

    Wu, Wei Cao, Yanyan; Caspar, Jonathan V.; Guo, Qijie; Johnson, Lynda K.; Mclean, Robert S.; Malajovich, Irina; Choudhury, Kaushik Roy

    2014-07-28

    We describe a CZTSSe (Cu{sub 2}ZnSn(S{sub 1−x},Se{sub x}){sub 4}) photovoltaic (PV) device with an ALD (atomic layer deposition) coated buffer dielectric layer for CZTSSe surface passivation. An ALD buffer layer, such as TiO{sub 2}, can be applied in order to reduce the interface recombination and improve the device's open-circuit voltage. Detailed characterization data including current-voltage, admittance spectroscopy, and capacitance profiling are presented in order to compare the performance of PV devices with and without the ALD layer.

  7. Fabrication of Conductive Paths on a Fused Deposition Modeling Substrate using Inkjet Deposition

    SciTech Connect (OSTI)

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E.; Babu, Sudarsanam Suresh

    2015-01-15

    Inkjet deposition is one of the most attractive fabrication techniques for producing cost efficient and lightweight electronic devices on various substrates with low environmental impact. Fused Deposition Modeling (FDM) is one of the most used and reliable additive manufacturing processes by extrusion of wire-shaped thermoplastic materials, which provides an opportunity for embedding printed electronics into mechanical structures during the building process and enables the design of compact smart structures that can sense and adapt to their own state and the environment. This paper represents one of the first explorations of integrating inkjet deposition of silver nanoparticle inks with the FDM process for making compact electro-mechanical structures. Three challenges have been identified and investigated, including the discontinuity of the printed lines resulting from the irregular surface of the FDM substrate, the non-conductivity of the printed lines due to the particle segregation during the droplet drying process, and the slow drying process caused by the skinning effect . Two different techniques are developed in this paper to address the issue of continuity of the printed lines, including surface ironing and a novel thermal plow technique that plows a channel in the FDM substrate to seal off the pores in the substrate and contain the deposited inks. Two solutions are also found for obtaining conductivity from the continuous printed lines, including porous surface coating and using a more viscous ink with larger nanoparticle size. Then the effects of the printing and post-processing parameters on the conductivity are examined. It is found that post-processing is a dominant factor in determining the conductivity of the printed lines.

  8. Fabrication of Conductive Paths on a Fused Deposition Modeling Substrate using Inkjet Deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E.; Babu, Sudarsanam Suresh

    2015-01-15

    Inkjet deposition is one of the most attractive fabrication techniques for producing cost efficient and lightweight electronic devices on various substrates with low environmental impact. Fused Deposition Modeling (FDM) is one of the most used and reliable additive manufacturing processes by extrusion of wire-shaped thermoplastic materials, which provides an opportunity for embedding printed electronics into mechanical structures during the building process and enables the design of compact smart structures that can sense and adapt to their own state and the environment. This paper represents one of the first explorations of integrating inkjet deposition of silver nanoparticle inks with the FDMmore » process for making compact electro-mechanical structures. Three challenges have been identified and investigated, including the discontinuity of the printed lines resulting from the irregular surface of the FDM substrate, the non-conductivity of the printed lines due to the particle segregation during the droplet drying process, and the slow drying process caused by the skinning effect . Two different techniques are developed in this paper to address the issue of continuity of the printed lines, including surface ironing and a novel thermal plow technique that plows a channel in the FDM substrate to seal off the pores in the substrate and contain the deposited inks. Two solutions are also found for obtaining conductivity from the continuous printed lines, including porous surface coating and using a more viscous ink with larger nanoparticle size. Then the effects of the printing and post-processing parameters on the conductivity are examined. It is found that post-processing is a dominant factor in determining the conductivity of the printed lines.« less

  9. Patterns and perspectives in applied fracture mechanics

    SciTech Connect (OSTI)

    Merkle, J.G.

    1994-12-31

    This lecture begins with a overview of applied fracture mechanics pertinent to safety of pressure vessels. It then progresses to a chronological panorama of experimental and analytical results. To be useful and dependable in safety analysis of real structures, new analysis developments must be physically realistic, which means that they must accurately describe physical cause and effect. Consequently, before mathematical modeling can begin, cause and effect must be established from experimental data. This can be difficult and time consuming, but worth the effort. Accordingly, the theme of this paper is that the search for patterns is constant and vital. This theme is illustrated by the development of small, single-specimen, fracture toughness testing techniques. It is also illustrated by the development, based on two different published large-strain, elastic-plastic, three-dimensional finite-element analyses, of a hypothesis concerning three-dimensional loss of constraint. When a generalization of Irwin`s thickness-normalized plastic-zone parameter, reaches a value close to 2{pi}, the through-thickness contraction strain at the apex of the near-tip logarithmic-spiral slip-line region becomes the dominant negative strain accommodating crack opening. Because slip lines passing from the midplane to the stress-free side surfaces do not have to curve, once these slip lines are established, stresses near the crack tip are only elevated by strain hardening and constraint becomes significantly relaxed. This hypothesis, based on published three-dimensional elastic-plastic analyses, provides a potentially valuable means for gaining additional insight into constraint effects on fracture toughness by considering the roles played by the plastic strains as well as the stresses that develop near a crack tip.

  10. Germanium films by polymer-assisted deposition

    DOE Patents [OSTI]

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  11. Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran

    SciTech Connect (OSTI)

    Behnia, Pouran [Geological Survey of Iran, Geomatics Department (Iran, Islamic Republic of)], E-mail: pouranb@yahoo.com

    2007-06-15

    The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 'nondeposits' were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input data showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area.

  12. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect (OSTI)

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200?C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.221.5 MV/m), Schottky emission (23.639.5 MV/m), Frenkel-Poole emission (63.8211.8 MV/m), trap-assisted tunneling (226280 MV/m), and Fowler-Nordheim tunneling (290447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  13. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  14. Method of depositing epitaxial layers on a substrate

    SciTech Connect (OSTI)

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  15. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, Alan R.; Auciello, Orlando

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  16. Electrophoretic deposition of composite hydroxyapatite-silica-chitosan coatings

    SciTech Connect (OSTI)

    Grandfield, K.; Zhitomirsky, I.

    2008-01-15

    Electrophoretic deposition (EPD) method has been developed for the fabrication of nanocomposite silica-chitosan coatings. Cathodic deposits were obtained on various conductive substrates using suspensions of silica nanoparticles in a mixed ethanol-water solvent, containing dissolved chitosan. Co-deposition of silica and hydroxyapatite (HA) nanoparticles resulted in the fabrication of HA-silica-chitosan coatings. The deposition yield has been studied at a constant voltage mode at various deposition durations. The method enabled the formation of coatings of different thickness in the range of up to 100 {mu}m. Deposit composition, microstructure and porosity can be varied by variation of HA and silica concentration in the suspensions. It was demonstrated that EPD can be used for the fabrication of HA-silica-chitosan coatings of graded composition and laminates. The method enabled the deposition of coatings containing layers of silica-chitosan and HA-chitosan nanocomposites using suspensions with different HA and silica content. Obtained coatings were studied by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and energy dispersive spectroscopy. The mechanism of deposition is discussed.

  17. Electroplating method for producing ultralow-mass fissionable deposits

    DOE Patents [OSTI]

    Ruddy, Francis H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit.

  18. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, Richard A.

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  19. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  20. Method of and apparatus for determining deposition-point temperature

    DOE Patents [OSTI]

    Mansure, Arthur J.; Spates, James J.; Martin, Stephen J.

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  1. How to make deposition of images a reality

    SciTech Connect (OSTI)

    Guss, J. Mitchell; McMahon, Brian

    2014-10-01

    An analysis is performed of the technical and financial challenges to be overcome if deposition of primary experimental data is to become routine. The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositories that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.

  2. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    SciTech Connect (OSTI)

    Orlov, Andrey; Degueldre, Claude; Kaufmann, Wilfried

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  3. Risk assessment based on point source deposition

    SciTech Connect (OSTI)

    Chadwick, G.F.

    1997-12-31

    The International Joint Commission (IJC) in a recently published report states that various clean-up techniques have resulted in significantly cleaner lakes than 20 years ago. Both the US EPA and Environment Canada have passed laws that require emissions controls on significant sources of contaminants. Improved emission controls have played a large part in the reduced pollution levels to the Great Lakes. Improved controls have significantly reduced the pollutants deposited to both land and water. This paper will discuss a Risk Analysis for the emissions from a Hospital in Rochester, New York. Current New York Department of Environmental Conservation (DEC) regulations require emission controls on such incinerators. This hospital has added both a scrubber and a bag house to control emissions. Twenty years ago, such incinerators, like many other emission sources would not have had control devices. New York`s Department of Environmental Conservation requires, as part of the Permitting process, that an Impact Analysis and if required, a multipathway Health Risk Assessment (HRA) be performed for all Medical Waste Incinerators before a Permit can be issued. This insures that the emissions will not create a health hazard to humans. Such an analysis was performed for a new 1,000 lb/hr Medical Waste Incinerator (MWI) installed in the North-East part of Rochester, New York. An Air Quality Impact Assessment (AQIA) based on an actual stack test indicated that this facility`s dioxin emissions would exceed the NY DEC Guideline levels. The Carcinogenic Risk (of death) for our most exposed individual (MEI) was calculated to be 8.75 E{sup {minus}06} (<1:100,000). The Hazard Index calculated for this MEI was 0.43. Hazard Index`s less then 1 are considered a reasonable risk. Health risk assessments are by design, very conservative. EPA sources have concluded that calculated death risks between one (1) and one hundred (100) per million are not excessive.

  4. Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition

    SciTech Connect (OSTI)

    An Jihwan; Beom Kim, Young; Sun Park, Joong; Hyung Shim, Joon; Guer, Turgut M.; Prinz, Fritz B.

    2012-01-15

    The authors have investigated the change of chemical composition, crystallinity, and ionic conductivity in fluorine contaminated yttrium-doped barium zirconate (BYZ) fabricated by atomic layer deposition (ALD). It has been identified that fluorine contamination can significantly affect the conductivity of the ALD BYZ. The authors have also successfully established the relationship between process temperature and contamination and the source of fluorine contamination, which was the perfluoroelastomer O-ring used for vacuum sealing. The total removal of fluorine contamination was achieved by using all-metal sealed chamber instead of O-ring seals.

  5. In situ spectroscopic ellipsometry growth studies on the Al-doped ZnO films deposited by remote plasma-enhanced metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Volintiru, I.; Creatore, M.; Sanden, M. C. M. van de

    2008-02-01

    In situ spectroscopic ellipsometry (SE) was applied to study the pyramidlike and pillarlike growth of Al doped ZnO (AZO) films deposited by means of remote plasma-enhanced metalorganic chemical vapor deposition for transparent conductive oxide applications. Real time SE studies in the visible region allowed discerning between the two growth modes by addressing the time evolution of the bulk and surface roughness layer thickness. While the pillarlike mode is characterized by a constant growth rate, a slower rate in the initial stage (up to 150-200 nm film thickness), compared to the bulk, is observed for the growth of pyramidlike AZO films. The two modes differ also in terms of surface roughness development: a saturation behavior is observed for film thickness above 150-200 nm in the case of the pyramidlike films, while a slow linear increase with film thickness characterizes the pillarlike mode. By extending the SE analysis of the AZO films to the near infrared region, valuable information about the in grain properties could be extracted: excellent in grain mobility values, i.e., larger than 100 and 50 cm{sup 2}/V s, are determined for the pyramidlike and pillarlike AZO layers, respectively. The comparison between the outcome of the in situ real time SE studies and the ex situ electrical and chemical characterization highlights the limitations in the electron transport occurring in both types of films and allows one to address routes toward further improvement in AZO conductivity.

  6. Vacuum deposited polymer/metal films for optical applications

    SciTech Connect (OSTI)

    Affinito, J.D.; Martin, P.M.; Gross, M.E.; Coronado, C.; Greenwell, E.

    1995-04-01

    Vacuum deposited Polymer/Silver/Polymer reflectors and Tantalum/Polymer/Aluminum Fabry-Perot interference filters were fabricated in a vacuun web coating operation on polyester substrates with a new, high speed deposition process. Reflectivities were measured in the wavelength range from 0.3 to 0.8{mu}m. This new vacuum processing technique has been shown to be capable of deposition line speeds in excess of 500 linear meters/minute. Central to this technique is a new position process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process -- for Polymer Multi-Layer. Also, vacuum deposited, index matched, polymer/CaF{sub 2} composites were fabricated from monomer slurries that were subsequently cured with LTV light. This second technique is called the Liquid Multi-Layer (or LML) process. Each of these polymer processes is compatible with each other and with conventional vacuum deposition processes such as sputtering or evaporation.

  7. Atomic and molecular layer deposition for surface modification

    SciTech Connect (OSTI)

    Vh-Nissi, Mika; Sievnen, Jenni; Salo, Erkki; Heikkil, Pirjo; Kentt, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gassolid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin even non-uniform atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: ALD/MLD can be used to adjust surface characteristics of films and fiber materials. Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. Different film growth and oxidation potential with different precursors. Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  8. DOE - Office of Legacy Management -- Case School of Applied Science...

    Office of Legacy Management (LM)

    Case School of Applied Science Ohio State University - OH 0-01 Site ID (CSD Index Number): OH.0-01 Site Name: Case School of Applied Science, Ohio State University Site Summary: Site ...

  9. Kerry Vahala: Jenkins Professor and Professor of Applied Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Physics, California Institute of Technology Nov 6, 2013 | 4:00 PM - 5:00 PM Kerry Vahala Jenkins Professor and Professor of Applied Physics, California Institute of ...

  10. Oregon Learning About and Applying for Water Rights Webpage ...

    Open Energy Info (EERE)

    Learning About and Applying for Water Rights Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Learning About and Applying for Water...

  11. Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Abbasi-Firouzjah, M.; Shokri, B.; Physics Department, Shahid Beheshti University G.C., Evin, Tehran

    2013-12-07

    Low dielectric constant (low-k) silica based films were deposited on p-type silicon and polycarbonate substrates by radio frequency (RF) plasma enhanced chemical vapor deposition method at low temperature. A mixture of tetraethoxysilane vapor, oxygen, and tetrafluoromethane (CF{sub 4}) was used for the deposition of the films in forms of two structures called as SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z}. Properties of the films were controlled by amount of porosity and fluorine content in the film matrix. The influence of RF power and CF{sub 4} flow on the elemental composition, deposition rate, surface roughness, leakage current, refractive index, and dielectric constant of the films were characterized. Moreover, optical emission spectroscopy was applied to monitor the plasma process at the different parameters. Electrical characteristics of SiO{sub x}C{sub y} and SiO{sub x}C{sub y}F{sub z} films with metal-oxide-semiconductor structure were investigated using current-voltage analysis to measure the leakage current and breakdown field, as well as capacitance-voltage analysis to obtain the film's dielectric constant. The results revealed that SiO{sub x}C{sub y} films, which are deposited at lower RF power produce more leakage current, meanwhile the dielectric constant and refractive index of these films decreased mainly due to the more porosity in the film structure. By adding CF{sub 4} in the deposition process, fluorine, the most electronegative and the least polarized atom, doped into the silica film and led to decrease in the refractive index and the dielectric constant. In addition, no breakdown field was observed in the electrical characteristics of SiO{sub x}C{sub y}F{sub z} films and the leakage current of these films reduced by increment of the CF{sub 4} flow.

  12. Deposition and diagenesis in a marine-to-evaporite sequence

    SciTech Connect (OSTI)

    Fisher, R.S.; Posey, H.H.

    1990-01-01

    The Wolfcamp-to-Wichita lithologic transition provides an excellent record of the depositional and diagenetic processes that occur as depositional environments change from normal marine to marine evaporite. In this book, depositional and diagenetic sequences were established from lithologic and mineralogic examinations of core and thin section, and geochemical conditions were interpreted from isotopic (C, O, S, and Sr) compositions of calcite, dolomite, and anhydrite. The age of the Wolfcamp-Wichita transition was determined using sulfur and strontium isotopic chronostratigraphy. The timing of formation of various types of anhydrite was inferred from textural and isotopic relations between anhydrite varieties and the host carbonate rocks.

  13. Cathodic deposition of amorphous alloys of silicon, carbon, and fluorine

    SciTech Connect (OSTI)

    Lee, C.H.; Kroger, F.A.

    1982-05-01

    Amorphous silicon containing fluorine and carbon, pure and doped with boron or phosphorus, was deposited cathodically from solutions of K/sub 2/SiF/sub 6/ in acetone with HF. The conditions for optimum deposition were determined, and the deposits were characterized by electron microprobe x-ray emission, electrical conductivity, and infrared absorption. Doping with phosphorus causes a change from p- to n-type semiconductor behavior, with a maximum of resistivity >10/sup 13/ /OMEGA/ cm at the compensation point. 48 refs.

  14. Method for depositing high-quality microcrystalline semiconductor materials

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  15. Attenuation-Based Remedies in the Subsurface Applied Field Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative (ABRS AFRI) | Department of Energy Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) Located at the Savannah River Site in Aiken, South Carolina, the Attenuation-Based Remedies in the Subsurface Applied Field Research Initiative (ABRS AFRI) was established to

  16. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  17. Register to Apply for EERE Funding Opportunities | Department of Energy

    Office of Environmental Management (EM)

    Apply for Funding » Register to Apply for EERE Funding Opportunities Register to Apply for EERE Funding Opportunities Before applying to an EERE financial opportunity, potential applicants must complete specific registration requirements. Of the registrations listed below, the EERE Exchange registration does not have a delay; however, the remaining registration requirements could take several weeks to process and are necessary before a potential applicant can receive an award. To be eligible to

  18. Aachen University of Applied Sciences | Open Energy Information

    Open Energy Info (EERE)

    Aachen University of Applied Sciences Place: Germany Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Aachen...

  19. Applied Process Engineering Laborotory APEL | Open Energy Information

    Open Energy Info (EERE)

    Engineering Laborotory (APEL) Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Applied Process...

  20. Ultrasonically assisted deposition of colloidal crystals

    SciTech Connect (OSTI)

    Wollmann, Sabine; Patel, Raj B.; Wixforth, Achim; Krenner, Hubert J.

    2014-07-21

    Colloidal particles are a versatile physical system which have found uses across a range of applications such as the simulation of crystal kinetics, etch masks for fabrication, and the formation of photonic band-gap structures. Utilization of colloidal particles often requires a means to produce highly ordered, periodic structures. One approach is the use of surface acoustic waves (SAWs) to direct the self-assembly of colloidal particles. Previous demonstrations using standing SAWs were shown to be limited in terms of crystal size and dimensionality. Here, we report a technique to improve the spatial alignment of colloidal particles using traveling SAWs. Through control of the radio frequency power, which drives the SAW, we demonstrate enhanced quality and dimensionality of the crystal growth. We show that this technique can be applied to a range of particle sizes in the ?m-regime and may hold potential for particles in the sub-?m-regime.

  1. PLURAL METALLIC COATINGS ON URANIUM AND METHOD OF APPLYING SAME

    DOE Patents [OSTI]

    Gray, A.G.

    1958-09-16

    A method is described of applying protective coatings to uranlum articles. It consists in applying chromium plating to such uranium articles by electrolysis in a chromic acid bath and subsequently applying, to this minum containing alloy. This aluminum contalning alloy (for example one of aluminum and silicon) may then be used as a bonding alloy between the chromized surface and an aluminum can.

  2. Applied Mathematics | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Mathematics Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics Conferences And Workshops Computer Science Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of

  3. CX-009418: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  4. CX-009419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  5. CX-009420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office

  6. Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition

    SciTech Connect (OSTI)

    Borkar, Tushar; Chang, Won Seok; Hwang, Jun Yeon; Shepherd, Nigel D.; Banerjee, Rajarshi

    2012-10-15

    Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.

  7. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  8. High-rate reactive sputter deposition of zirconium dioxide (Journal...

    Office of Scientific and Technical Information (OSTI)

    The films are deposited by sputtering a Zr target in an oxygen--argon plasma. The Zr target remains in the metallic state. The films are characterized by measuring the ...

  9. Electrostatic particle trap for ion beam sputter deposition

    DOE Patents [OSTI]

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  10. Precursors for the polymer-assisted deposition of films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Precursors for the polymer-assisted deposition of films Citation Details ... DOE Contract Number: AC52-06NA25396 Resource Type: Patent Research Org: LANL (Los Alamos ...

  11. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  12. Method of depositing buffer layers on biaxially textured metal...

    Office of Scientific and Technical Information (OSTI)

    eu; gd; tb; tm; resup1subx; resup2sub1-xsub2; osub3; buffer; layer; deposited; sol-gel; metal-organic; decomposition; laminate; article; layer; ybco; resup1subx; ...

  13. Surface treatment of nanocrystal quantum dots after film deposition

    DOE Patents [OSTI]

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  14. Methods of coping with silica deposition - the PNOC experience

    SciTech Connect (OSTI)

    Candelaria, M.N.R.; Garcia, S.E.; Baltazar, A.D.J. Jr.; Solis, R.P.

    1996-12-31

    Several methods of coping with silica deposition from geothermal waters have been undertaken by PNOC-EDC to maximize Power Output from these fluids. Initially, the problem of amorphous silica deposition in surface pipelines and the reinjection well was prevented by operating the production separators at pressures higher or equal to amorphous silica saturation. However, increasing demands for additional power and stringent environmental controls have dictated the need to find alternative methods of coping with silica deposition. Several options have been studied and tested to be able to optimize fluid utilization for production. These include: acid treatment polymerization and deposition of silica in surface ponds or sumps, and chemical inhibition. As each brine is unique, methodologies used for mitigation of the silica problem have been varied.

  15. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Pershing County, Nevada, in: Gold and Silver Deposits of Western Nevada Authors Hastings, J.S., Burkhart, T.H., and Richardson and R.E. Published Geological Society of Nevada 1993...

  16. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  17. Programmable nanometer-scale electrolytic metal deposition and depletion

    DOE Patents [OSTI]

    Lee, James Weifu; Greenbaum, Elias

    2002-09-10

    A method of nanometer-scale deposition of a metal onto a nanostructure includes the steps of: providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart; and depositing metal on at least one of the nanostructures by electric field-directed, programmable, pulsed electrolytic metal deposition. Moreover, a method of nanometer-scale depletion of a metal from a nanostructure includes the steps of providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart, at least one of the nanostructures having a metal disposed thereon; and depleting at least a portion of the metal from the nanostructure by electric field-directed, programmable, pulsed electrolytic metal depletion. A bypass circuit enables ultra-finely controlled deposition.

  18. Vanadium dioxide film protected with an atomic-layer-deposited...

    Office of Scientific and Technical Information (OSTI)

    In this work, the authors deposited an ultrathin Alsub 2Osub 3 film with atomic layer ... heated at 350 C. However, in a humid environment at prolonged durations, a thicker ALD ...

  19. Evaluation of Wax Deposition and Its Control During Production...

    Office of Scientific and Technical Information (OSTI)

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin ...

  20. Particle deposition in ventilation ducts: Connectors, bends anddeveloping flow

    SciTech Connect (OSTI)

    Sippola, Mark R.; Nazaroff, William W.

    2004-03-01

    In ventilation duct flow the turbulent flow profile is commonly disturbed or not fully developed and these conditions are likely to influence particle deposition to duct surfaces. Particle deposition rates at eight S-connectors, in two 90{sup o} duct bends and in two ducts where the turbulent flow profile was not fully developed were measured in a laboratory duct system with both galvanized steel and internally insulated ducts with hydraulic diameters of 15.2 cm. In the steel duct system, experiments with nominal particle diameters of 1, 3, 5, 9 and 16 {micro}m were conducted at each of three nominal air speeds: 2.2, 5.3 and 9.0 m/s. In the insulated duct system, deposition of particles with nominal diameters of 1, 3, 5, 8 and 13 {micro}m was measured at nominal air speeds of 2.2, 5.3 and 8.8 m/s. Fluorescent techniques were used to directly measure the deposition velocities of monodisperse fluorescent particles to duct surfaces. Deposition at S-connectors, in bends and in straight ducts with developing turbulence was often greater than deposition in straight ducts with fully developed turbulence for equal particle sizes, air speeds and duct surface orientations. Deposition rates at all locations were found to increase with an increase in particle size or air speed. High deposition rates at S-connectors resulted from impaction and these rates were nearly independent of the orientation of the S-connector. Deposition rates in the two 90{sup o} bends differed by more than an order of magnitude in some cases, probably because of the difference in turbulence conditions at the bend inlets. In straight steel ducts where the turbulent flow profile was developing, the deposition enhancement relative to fully developed turbulence generally increased with air speed and decreased with downstream distance from the duct inlet. This enhancement was greater at the duct ceiling and wall than at the duct floor. In insulated ducts, deposition enhancement was less pronounced overall

  1. Process for thin film deposition of cadmium sulfide

    DOE Patents [OSTI]

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  2. Precursors for the polymer-assisted deposition of films

    DOE Patents [OSTI]

    McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan

    2013-09-10

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  3. Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Wind Energy Wind Energy Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (825 KB) Technology Marketing SummarySandia has developed a method and apparatus for depositing thermal barrier coatings on gas turbine

  4. Innovative High-Performance Deposition Technology for Low-Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of OLED Lighting | Department of Energy Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Lead Performer: OLEDWorks, LLC - Rochester, NY DOE Total Funding: $1,046,452 Cost Share: $1,046,452 Project Term: October 1, 2013 - December 31, 2015 Funding Opportunity: SSL Manufacturing R&D Funding Opportunity Announcement (FOA) DE-FOA-000079

  5. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, R.A.

    1994-04-05

    A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

  6. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    SciTech Connect (OSTI)

    Talkenberg, Florian Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir; Radnóczi, György Zoltán; Pécz, Béla; Dikhanbayev, Kadyrjan; Mussabek, Gauhar; Gudovskikh, Alexander

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  7. 1987 wet deposition temporal and spatial patterns in North America

    SciTech Connect (OSTI)

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.

  8. 1986 wet deposition temporal and spatial patterns in North America

    SciTech Connect (OSTI)

    Olsen, A.R.

    1989-07-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1986 and spatial patterns for 1986. The report provides statistical distribution summaries of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. The data in the report are from the Acid Depositing System (ADS) for the statistical reporting of North American deposition data. Isopleth maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1986 annual, winter, and summer periods. The temporal pattern analyses use a subset of 30 sites over an 8-year (1979-1986) period and an expanded subset of 137 sites with greater spatial coverage over a 5-year (1982-1986) period. The 8-year period represents the longest period with wet deposition monitoring data unavailable that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. 19 refs., 105 figs., 29 tabs.

  9. Process maps for plasma spray. Part II: Deposition and properties

    SciTech Connect (OSTI)

    XIANGYANG,JIANG; MATEJICEK,JIRI; KULKARNI,ANAND; HERMAN,HERBERT; SAMPATH,SANJAY; GILMORE,DELWYN L.; NEISER JR.,RICHARD A

    2000-03-28

    This is the second paper of a two part series based on an integrated study carried out at the State University of New York at Stony Brook and Sandia National Laboratories. The goal of the study is the fundamental understanding of the plasma-particle interaction, droplet/substrate interaction, deposit formation dynamics and microstructure development as well as the deposit property. The outcome is science-based relationships, which can be used to link processing to performance. Molybdenum splats and coatings produced at 3 plasma conditions and three substrate temperatures were characterized. It was found that there is a strong mechanical/thermal interaction between droplet and substrate, which builds up the coatings/substrate adhesion. Hardness, thermal conductivity, and modulus increase, while oxygen content and porosity decrease with increasing particle velocity. Increasing deposition temperature resulted in dramatic improvement in coating thermal conductivity and hardness as well as increase in coating oxygen content. Indentation reveals improved fracture resistance for the coatings prepared at higher deposition temperature. Residual stress was significantly affected by deposition temperature, although not significant by particle energy within the investigated parameter range. Coatings prepared at high deposition temperature with high-energy particles suffered considerably less damage in wear tests. Possible mechanisms behind these changes are discussed within the context of relational maps which are under development.

  10. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect (OSTI)

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  11. Depositional patterns of kerogen, Atlantic Margin, North America

    SciTech Connect (OSTI)

    Armentrout, J.M.

    1985-02-01

    Geochemical and biostratigraphic data from offshore wells along the Atlantic margin of North America define a depositional history dominated by coastal-plain and shallow-shelf facies containing degraded and residual continent-derived kerogen. Exceptions to this generalization are 4 depositional facies containing hydrogen-rich amorphous kerogen assemblages. The rocks containing hydrogen-rich amorphous kerogen assemblages are: (1) Upper Jurassic inner-shelf facies probably deposited in algal-rich lagoonlike environments, (2) Lower Cretaceous nonmarine coaly facies, probably deposited in algal-rich swamplike environments, (3) middle Cretaceous abyssal-plain facies probably deposited by turbidity currents that originated on an algal-rich slope, and (4) Miocene outer-shelf to upper-slope facies probably deposited under algal-rich upwelling systems. Correlations of these facies to seismic packages allows for extrapolation of probable organic facies distribution throughout the continental margin. Such modeling of organic facies distributions in conjunction with plate-tectonic and ocean-circulation models permits refinement of strategies for hydrocarbon exploration.

  12. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  13. Multi-model mean nitrogen and sulfur deposition from the Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate ... Title: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and ...

  14. Underpotential Deposition-Mediated Layer-by-Layer Growth of Thin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First a monolayer of a sacrificial base metal such as copper or lead is deposited onto a ... Description This invention utilizes copper underpotential deposition (UPD) potential ...

  15. Deposition of cobalt atoms onto Alq 3 films: A molecular dynamics...

    Office of Scientific and Technical Information (OSTI)

    Deposition of cobalt atoms onto Alq 3 films: A molecular dynamics study Prev Next Title: Deposition of cobalt atoms onto Alq 3 films: A molecular dynamics study Authors: ...

  16. Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes

    DOE Patents [OSTI]

    Tsuo, Simon; Langford, Alison A.

    1989-01-01

    Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate.

  17. Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes

    DOE Patents [OSTI]

    Tsuo, S.; Langford, A.A.

    1989-03-28

    Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate. 3 figs.

  18. Quantitation of absorbed or deposited materials on a substrate that measures energy deposition

    DOE Patents [OSTI]

    Grant, Patrick G.; Bakajin, Olgica; Vogel, John S.; Bench, Graham

    2005-01-18

    This invention provides a system and method for measuring an energy differential that correlates to quantitative measurement of an amount mass of an applied localized material. Such a system and method remains compatible with other methods of analysis, such as, for example, quantitating the elemental or isotopic content, identifying the material, or using the material in biochemical analysis.

  19. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    SciTech Connect (OSTI)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  20. Opportunities to Apply Phase Change Materials to Building Enclosures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar | Department of Energy Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Opportunities to Apply Phase Change Materials to Building Enclosures Webinar Slides from the Building America webinar on November 11, 2011. webinar_pcm_enclosures_20111111.pdf (2.99 MB) More Documents & Publications Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures Vehicle Technologies Office Merit Review 2016: ePATHS - electrical PCM

  1. 2008 Annual Merit Review Results Summary - 2. Applied Battery Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-1 2. Applied Battery Research Introduction Applied battery research focuses on addressing the cross-cutting barriers facing the lithium-ion systems that are closest to meeting all of the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, the applied battery research activity concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and

  2. Apply for the Parallel Computing Summer Research Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Apply Apply for the Parallel Computing Summer Research Internship Creating next-generation leaders in HPC research and applications development Program Co-Lead Robert (Bob) Robey Email Program Co-Lead Gabriel Rockefeller Email Program Co-Lead Hai Ah Nam Email Professional Staff Assistant Nicole Aguilar Garcia (505) 665-3048 Email Current application deadline is February 5, 2016 with notification by early March 2016. Who can apply? Upper division undergraduate students and early graduate

  3. Where to Apply for Weatherization Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Weatherization Assistance Program » Where to Apply for Weatherization Assistance Where to Apply for Weatherization Assistance To apply for weatherization assistance you need to contact your state weatherization agency. The U.S. Department of Energy (DOE) does not provide weatherization services or services of any kind to individuals. DOE also does not process applications-this process is handled by each state. How to Determine if You Are Eligible for Weatherization

  4. Building America Webinar: Opportunities to Apply Phase Change Materials to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Enclosures | Department of Energy to Apply Phase Change Materials to Building Enclosures Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures This webinar, presented by research team Fraunhofer Center for Sustainable Energy Systems (CSE), reviewed basic physical characteristics and thermal properties of phase change materials (PCMs) and provided guidance on how to effectively apply PCMs in buildings in the United States.

  5. Apply: Funding Opportunity - Advancing Solutions to Improve Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancing Solutions to Improve Energy Efficiency of Commercial Buildings Apply: Funding Opportunity - Advancing Solutions to Improve Energy Efficiency of Commercial Buildings ...

  6. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager.

  7. Identification of multi-modal plasma responses to applied magnetic...

    Office of Scientific and Technical Information (OSTI)

    Title: Identification of multi-modal plasma responses to applied magnetic ... Type: Publisher's Accepted Manuscript Journal Name: Physics of Plasmas Additional Journal ...

  8. Apply: Building Energy Efficiency Frontiers and Incubator Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Apply: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - ...

  9. Attenuation-Based Remedies in the Subsurface Applied Field Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The mission of the Attenuation Based Remedies in the Subsurface Applied Field Research Initiative is to seek holistic solutions to DOE's groundwater contamination problems that ...

  10. The generalized finite element method applied to the dynamic...

    Office of Scientific and Technical Information (OSTI)

    Title: The generalized finite element method applied to the dynamic response of heterogeneous media. Authors: Robbins, Joshua ; Voth, Thomas E. Publication Date: 2013-02-01 OSTI ...

  11. BLM Manual 2804: Applying for FLPMA Grants | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: BLM Manual 2804: Applying for FLPMA GrantsPermittingRegulatory...

  12. Apply: Small Business Funding Opportunity for Lighting, Integrated...

    Office of Environmental Management (EM)

    Small Business Funding Opportunity for Lighting, Integrated Storage, and Distributed Generation Apply: Small Business Funding Opportunity for Lighting, Integrated Storage, and ...

  13. Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest...

    Office of Scientific and Technical Information (OSTI)

    folding via divide-and-conquer optimization Oliva, Ricardo; Crivelli, Silvia; Meza, Juan 60 APPLIED LIFE SCIENCES Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA...

  14. Modular Applied General Equilibrium Tool (MAGNET) | Open Energy...

    Open Energy Info (EERE)

    Related Tools CRiSTAL Forests MCA4Climate - Guidance for scientifically sound climate change planning Environmental Impact and Sustainability Applied General Equilibrium Model...

  15. Applied Solar LLC formerly Open Energy Corp and Barnabus Energy...

    Open Energy Info (EERE)

    Open Energy Corp and Barnabus Energy Inc Jump to: navigation, search Name: Applied Solar LLC (formerly Open Energy Corp and Barnabus Energy Inc) Place: San Diego, California...

  16. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America ...

  17. Overview of Applied Battery Research | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    4_henriksen.pdf (802.95 KB) More Documents & Publications Overview of Applied Battery Research Electrochemistry Diagnostics at LBNL ELECTROCHEMISTRY DIAGNOSTICS AT LBNL

  18. Applied Studies and Technology (AS&T) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Applied Studies and Technology (AS&T) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists ...

  19. Applied Materials Switzerland SA Formerly HCT Shaping Systems...

    Open Energy Info (EERE)

    Switzerland SA Formerly HCT Shaping Systems SA Jump to: navigation, search Name: Applied Materials Switzerland SA (Formerly HCT Shaping Systems SA) Place: Chezeaux, Switzerland...

  20. D&D Toolbox Project - Technology Demonstration of Fixatives Applied...

    Broader source: Energy.gov (indexed) [DOE]

    D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms (215.59 KB) More Documents & Publications Demonstration of ...

  1. Expert Meeting Report: Recommendations for Applying Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i ...

  2. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: ...

  3. Solar Applied Materials Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Name: Solar Applied Materials Technology Corp Place: Tainan, Taiwan Product: Taiwan's material process specialists with over 20 years experience and in the areas of sputtering...

  4. Energy Department Announces Up to $14 Million for Applying Landscape...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applying landscape design to bioenergy production systems is a promising approach for meeting multiple environmental, social, and economic objectives, such as maintaining or ...

  5. Webinar "Applying High Performance Computing to Engine Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar "Applying High Performance Computing to Engine Design Using Supercomputers" Share ... Study Benefits of Bioenergy Crop Integration Video: Biofuel technology at Argonne

  6. D&D Toolbox Project - Technology Demonstration of Fixatives Applied...

    Office of Environmental Management (EM)

    D&D activities, performed by Florida International University's Applied Research Center ... and selected for integration with a commercially available remotely operated platform. ...

  7. Am Shav Technological Applied Development Center | Open Energy...

    Open Energy Info (EERE)

    Technological Applied Development Center Place: Israel Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Am-Shav...

  8. Simulation of Coal Ash Particle Deposition Experiments (Copyright 2011, American Chemical Society)

    SciTech Connect (OSTI)

    Ai, Weiguo; Kuhlman, John M

    2011-01-20

    Existing experimental ash particle deposition measurements from the literature have been simulated using the computational fluid dynamics (CFD) discrete phase model (DPM) Lagrangian particle tracking method and an existing ash particle deposition model based on the Johnson−Kendall−Roberts (JKR) theory, in the Fluent commercial CFD code. The experimental heating tube was developed to simulate ash temperature histories in a gasifier; ash-heating temperatures ranged from 1873 to 1573 K, spanning the ash-melting temperature. The present simulations used the realizable k−ε turbulence model to compute the gas flow field and the heat transfer to a cooled steel particle impact probe and DPM particle tracking for the particle trajectories and temperatures. A user-defined function (UDF) was developed to describe particle sticking/rebounding and particle detachment on the impinged wall surface. Expressions for the ash particle Young’s modulus in the model, E, versus the particle temperature and diameter were developed by fitting to the E values that were required to match the experimental ash sticking efficiencies from several particle size cuts and ash-heating temperatures for a Japanese bituminous coal. A UDF that implemented the developed stiffness parameter equations was then used to predict the particle sticking efficiency, impact efficiency, and capture efficiency for the entire ash-heating temperature range. Frequency histogram comparisons of adhesion and rebound behavior by particle size between model and experiments showed good agreement for each of the four ash-heating temperatures. However, to apply the present particle deposition model to other coals, a similar validation process would be necessary to develop the effective Young’s modulus versus the particle diameter and temperature correlation for each new coal.

  9. Uranium deposition study on aluminum: results of early tests

    SciTech Connect (OSTI)

    Hughes, M.R.; Nolan, T.A.

    1984-06-19

    Laboratory experiments to quantify uranium compound deposition on Aluminum 3003 test coupons have been initiated. These experiments consist of exposing the coupons to normal assay UF/sub 6/ (0.7% /sup 235/U) in nickel reaction vessels under various conditions of UF/sub 6/ pressure, temperature, and time. To-date, runs from 5 minutes to 2000 hr have been completed at a UF/sub 6/ pressure of 100 torr and at a temperature of 60/sup 0/C. Longer exposure times are in progress. Initial results indicated that a surface film of uranium, primarily as uranyl fluoride (UO/sub 2/F/sub 2/), is deposited very soon after exposure to UF/sub 6/. In a five minute UF/sub 6/ exposure at a temperature of 60/sup 0/C, an average of 2.9 ..mu..g U/cm/sup 2/ was deposited; after 24 hr the deposit typically increased to 5.0 ..mu..g/cm/sup 2/ and then increased to 10.4 ..mu..g/cm/sup 2/ after 2000 hr. This amount of deposit (at 2000 hr exposure) would contribute roughly 10 to 20% to the total 186 keV gamma signal obtained from a GCEP product header pipe being operated at UF/sub 6/ pressures of 2 to 5 torr. The amount of isotopic exchange which would occur in the deposit in the event that HEU and LEU productions were alternated is considered. It is felt that isotopic exchange would not occur to any significant amount within the fixed deposit during relatively short HEU production periods since the HEU would be present primarily as adsorbed UF/sub 6/ molecules on the surface of the deposit. The adsorbed HEU molecules would be removed by evacuation and diluted by LEU production. Major increases in the deposit count would be observed if a leak occurred or moisture was introduced into the system while HEU was being produced.

  10. Concept for lightweight spaced-based deposition technology

    SciTech Connect (OSTI)

    Fulton, Michael; Anders, Andre

    2006-02-28

    In this contribution we will describe a technology path to very high quality coatings fabricated in the vacuum of space. To accomplish the ambitious goals set out in NASA's Lunar-Mars proposal, advanced thin-film deposition technology will be required. The ability to deposit thin-film coatings in the vacuum of lunar-space could be extremely valuable for executing this new space mission. Developing lightweight space-based deposition technology (goal:<300 g, including power supply) will enable the future fabrication and repair of flexible large-area space antennae and fixed telescope mirrors for lunar-station observatories. Filtered Cathodic Arc (FCA) is a proven terrestrial energetic thin-film deposition technology that does not need any processing gas but is well suited for ultra-high vacuum operation. Recently, miniaturized cathodic arcs have already been developed and considered for space propulsion. It is proposed to combine miniaturized pulsed FCA technology and robotics to create a robust, enabling space-based deposition system for the fabrication, improvement, and repair of thin films, especially of silver and aluminum, on telescope mirrors and eventually on large area flexible substrates. Using miniature power supplies with inductive storage, the typical low-voltage supply systems used in space are adequate. It is shown that high-value, small area coatings are within the reach of existing technology, while medium and large area coatings are challenging in terms of lightweight technology and economics.

  11. Electron microscopy study of direct laser deposited IN718

    SciTech Connect (OSTI)

    Ding, R.G.; Huang, Z.W.; Li, H.Y.; Mitchell, I.; Baxter, G.; Bowen, P.

    2015-08-15

    The microstructure of direct laser deposited (DLD) IN718 has been investigated in detail using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results confirm that the dendrite core microstructure can be linked to the cooling rate experienced during the deposition. A ~ 100 μm wide δ partially dissolved region in the IN718 substrate was observed close to the substrate/deposit boundary. In the deposited IN718, γ/Laves eutectic constituent is the predominant minor microconstituent. Irregular and regular (small) (Nb,Ti)C carbides and a mixture of the carbides and Laves were observed. Most M{sub 3}B{sub 2} borides were nucleated around a (Nb,Ti)C carbide. Needles of δ phase precipitated from the Laves phase were also observed. A complex constituent (of Laves, δ, α-Cr, γ″, and γ matrix) is reported in IN718 for the first time. The formation of α-Cr particles could be related to Cr rejection during the formation and growth of Cr-depleted δ phase. - Highlights: • Secondary phases in IN718 deposits were identified using electron diffraction and EDS. • MC, M{sub 3}B{sub 2}, γ/Laves eutectic and γ/NbC/Laves eutectic were observed. • Needle-like δ phases were precipitated from the Laves phase. • A complex constituent (Laves, δ, α-Cr, γ″ and γ) was reported for the first time.

  12. MODELING OF THERMOPHORETIC SOOT DEPOSITION ANDHYDROCARBON CONDENSATION IN EGR COOLERS

    SciTech Connect (OSTI)

    Abarham, Mehdi; Hoard, John W.; Assanis, Dennis; Styles, Dan; Curtis, Eric W.; Ramesh, Nitia; Sluder, Scott; Storey, John Morse

    2009-01-01

    EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40-90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature. Thermal properties of fouled layer are calculated based on mass fraction of deposited soot and hydrocarbons. The experiments with the same conditions ran to validate the model. Hot EGR gases flow through the inner pipe and the coolant circulates around it in the outer pipe to keep a constant wall temperature. Effectiveness, deposited soot mass, condensed hydrocarbon mass, and pressure drop across the cooler are the parameters that have been compared. The results of the model are in a reasonably good agreement with the experimental results although there are some fields that need to be studied in future to improve the model.

  13. Hydrogen Sensor Based on Pd/GeO{sub 2} Using a Low Cost Electrochemical Deposition

    SciTech Connect (OSTI)

    Jawad, M. J.; Hashim, M. R.; Ali, N. K.

    2011-05-25

    This work reports on a synthesis of sub micron germanium dioxide (GeO{sub 2}) on porous silicon (PS) by electrochemical deposition. n-type Si (100) wafer was used to fabricate (PS) using conventional method of electrochemical etching in HF based solution. A GeCl{sub 4} was directly hydrolyzed by hydrogen peroxide to produce pure GeO{sub 2}, and then electrochemically deposited on PS. Followed by palladium (Pd) contact on GeO{sub 2} /PS was achieved by using RF sputtering technique. The grown GeO{sub 2} crystals were characterized using SEM and EDX. I-V characteristics of Pd/ GeO{sub 2} were recorded before and after hydrogen gas exposure as well as with different H{sub 2} concentrations and different applied temperatures. The sensitivity of Pd/ GeO{sub 2} also has been investigated it could be seen to increase significantly with increased hydrogen concentration while it decreased with increase temperature.

  14. Electrospray deposition of titanium dioxide (TiO{sub 2}) nanoparticles

    SciTech Connect (OSTI)

    Halimi, Siti Umairah Bakar, Noor Fitrah Abu Ismail, Siti Norazian Hashib, Syafiza Abd; Naim, M. Nazli

    2014-02-24

    Deposition of titanium dioxide (TiO{sub 2}) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO{sub 2} droplet size decrease from 247–116 nm to show droplet fission occur during the experiment.

  15. From plasma immersion ion implantation to deposition: A historical perspective on principles and trends

    SciTech Connect (OSTI)

    Anders, Andre

    2001-06-14

    Plasma immersion techniques of surface modification are known under a myriad of names. The family of techniques reaches from pure plasma ion implantation, to ion implantation and deposition hybrid modes, to modes that are essentially plasma film deposition with substrate bias. In the most general sense, all plasma immersion techniques have in common that the surface of a substrate (target) is exposed to plasma and that relatively high substrate bias is applied. The bias is usually pulsed. In this review, the roots of immersion techniques are explored, some going back to the 1800s, followed by a discussion of the groundbreaking works of Adler and Conrad in the 1980s. In the 1990s, plasma immersion techniques matured in theoretical understanding, scaling, and the range of applications. First commercial facilities are now operational. Various immersion concepts are compiled and explained in this review. While gas (often nitrogen) ion implantation dominated the early years, film-forming immersion techniques and semiconductor processing gained importance. In the 1980s and 1990s we have seen exponential growth of the field but signs of slowdown are clear since 1998. Nevertheless, plasma immersion techniques have found, and will continue to have, an important place among surface modification techniques.

  16. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    SciTech Connect (OSTI)

    Sun, Xinxing Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  17. Composition for applying antireflective coating on solar cell

    SciTech Connect (OSTI)

    Whitehouse, D.L.

    1983-10-25

    A method is disclosed, and the composition, for the application of an antireflective coating on solar cells and the subsequent application of metal contacts comprising applying a screen to the surface of a solar cell, applying a paste comprising a metal alkoxide over the screen, heat treating the cell and metal alkoxide paste, and nickel plating the resultant cell.

  18. Method for applying antireflective coating on solar cell

    SciTech Connect (OSTI)

    Whitehouse, D.L.

    1982-05-04

    A method for the application and the composition of an antireflective coating on solar cells and the subsequent application of metal contacts comprises applying a screen to the surface of a solar cell, applying a paste comprising a metal alkoxide over the screen, heat treating the cell and metal alkoxide paste, and nickel plating the resultant cell.

  19. Computational Advances in Applied Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Advances in Applied Energy Computational Advances in Applied Energy Friedmann-LLNL-SEAB.10.11.pdf (19.92 MB) More Documents & Publications Director's Perspective by George Miller Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) QER - Comment of Canadian Hydropower Association

  20. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to help your property get from application to award.

  1. Applied research in the solar thermal-energy-systems program

    SciTech Connect (OSTI)

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  2. Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) - Overview

    SciTech Connect (OSTI)

    2011-02-01

    The Deep Vadoze Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources and to address the challenge of preventing contamination in the deep vadose zone from reaching groundwater. This factsheet provides an overview of the initiative and the approach to integrate basic science and needs-driven applied research activities with cleanup operations.

  3. ENERGY STAR Webinar: How to Apply for ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) ENERGY STAR is hosting a webinar on how to apply for ENERGY STAR Certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see the step-by-step process of applying, and gain tips to help your property get from application to award.

  4. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOE Patents [OSTI]

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  5. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    SciTech Connect (OSTI)

    Sueske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-15

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248 nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  6. Recovery Act: A Low Cost Spray Deposited Solar PV Anti-Reflection Coating Final Technical Report

    SciTech Connect (OSTI)

    Harvey, Michael D.

    2010-08-30

    PV module glass is typically low iron glass which exhibits extremely low absorption of light at solar wavelengths. However, reflection losses from typical high quality solar glass are about 4.5% of the input solar energy. By applying an antireflection coating to the cover glass of their modules, a PV module maker will gain at least a 3% increase in the light passing through the glass and being converted to electricity. Thus achieving an increase of >3% in electricity output from the modules. This Project focussed on developing a process that deposits a layer of porous silica (SiO2) on glass or plastic components, and testing the necessary subcomponents and subsystems required to demonstrate the commercial technology. This porous layer acts as a broadband single layer AR coating for glass and plastics, with the added benefit of being a hydrophilic surface for low surface soiling.

  7. Plasma deposited diamond-like carbon films for large neutralarrays

    SciTech Connect (OSTI)

    Brown, I.G.; Blakely, E.A.; Bjornstad, K.A.; Galvin, J.E.; Monteiro, O.R.; Sangyuenyongpipat, S.

    2004-07-15

    To understand how large systems of neurons communicate, we need to develop methods for growing patterned networks of large numbers of neurons. We have found that diamond-like carbon thin films formed by energetic deposition from a filtered vacuum arc carbon plasma can serve as ''neuron friendly'' substrates for the growth of large neural arrays. Lithographic masks can be used to form patterns of diamond-like carbon, and regions of selective neuronal attachment can form patterned neural arrays. In the work described here, we used glass microscope slides as substrates on which diamond-like carbon was deposited. PC-12 rat neurons were then cultured on the treated substrates and cell growth monitored. Neuron growth showed excellent contrast, with prolific growth on the treated surfaces and very low growth on the untreated surfaces. Here we describe the vacuum arc plasma deposition technique employed, and summarize results demonstrating that the approach can be used to form large patterns of neurons.

  8. The NSLS-II Multilayer Laue Lens Deposition System

    SciTech Connect (OSTI)

    Conley, R.; Bouet, N.; Biancarosa, J.; Shen, Q.; Boas, L.; Feraca, J.; Rosenbaum, L.

    2009-08-02

    The NSLS-II[1] program has a requirement for an unprecedented level of x-ray nanofocusing and has selected the wedged multilayer Laue lens[2,3] (MLL) as the optic of choice to meet this goal. In order to fabricate the MLL a deposition system is required that is capable of depositing depth-graded and laterally-graded multilayers with precise thickness control over many thousands of layers, with total film growth in one run up to 100?m thick or greater. This machine design expounds on the positive features of a rotary deposition system[4] constructed previously for MLLs and will contain multiple stationary, horizontally-oriented magnetron sources where a transport will move a substrate back and forth in a linear fashion over shaped apertures at well-defined velocities to affect a multilayer coating.

  9. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  10. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  11. Influence of substrate temperature and deposition rate on the structure of erbium films deposited on glass and a -C substrates

    SciTech Connect (OSTI)

    Savaloni, H.; Player, M.A.; Gu, E.; Marr, G.V. )

    1992-01-01

    The structure of erbium films of 600 nm thickness deposited onto carbon ({ital a}-C) and glass substrates at 0.55 and 2.5 nm/s deposition rates for varying substrate temperatures is investigated. The cross section and surface structures are examined by electron microscope. Energy-dispersive x-ray diffraction is utilized for the structure analysis of these films. Results are compared with the results presented in H. Savaloni, M. A. Player, E. Gu, and G. V. Marr (to be published), for erbium films on molybdenum substrates. It is found that to produce films with strong preferred orientation on glass substrates low deposition rate (0.55 nm/s) is favorable. This is opposite to erbium on molybdenum substrates. The grain size of erbium films produced at higher deposition rate is much larger than those at lower deposition rate. The structure of thin films has implications for performance of multilayer reflectors, and preferred orientation may have other applications to x-ray instrumentation.

  12. Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico

    SciTech Connect (OSTI)

    M. Fayek; M. Ren

    2007-02-14

    Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue of spent nuclear fuel.

  13. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  14. Microstructure and tribological performance of nanocomposite Ti-Si-C-N coatings deposited using hexamethyldisilazane precursor

    SciTech Connect (OSTI)

    Wei Ronghua; Rincon, Christopher; Langa, Edward; Yang Qi

    2010-09-15

    Thick nanocomposite Ti-Si-C-N coatings (20-30 {mu}m) were deposited on Ti-6Al-4V substrate by magnetron sputtering of Ti in a gas mixture of Ar, N{sub 2}, and hexamethyldisilazane (HMDSN) under various deposition conditions. Microstructure and composition of the coatings were studied using scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy, while the mechanical and tribological properties of these coatings were studied using Rc indentation, and micro- and nanoindentations, solid particle erosion testing, and ball-on-disk wear testing. It has been observed that the Si concentration of these coatings is varied from 0% (TiN) to 15% (Ti-Si-C-N), while the structure of these coatings is similar to the nanocomposite Ti-Si-N coatings and consists of nanocrystalline B1 structured Ti(C,N) in an amorphous matrix of SiC{sub x}N{sub y} with the grain size of 5->100 nm, depending on the coating preparation process. These coatings exhibit excellent adhesion when subjected to Rc indentation tests. The microhardness of these coatings varies from 1200 to 3400 HV25, while the nanohardness varies from 10 to 26 GPa. Both the microhardness and nanohardness are slightly lower than those of similar coatings prepared using trimethylsilane. However, the erosion test using a microsand erosion tester at both 30 deg. and 90 deg. incident angles shows that these coatings have very high erosion resistance and up to a few hundred times of improvement has been observed. These coatings also exhibit very high resistance to sliding wear with a low coefficient of friction of about 0.2 in dry sliding. There are a few advantages of using the HMDSN precursor to prepare the Ti-Si-C-N coatings over conventional magnetron sputtered deposition of Ti-Si-N coatings including composition uniformity, precursor handling safety, and high deposition rate. The coatings can be applied to protect gas turbine compressor blades from solid particle erosion and steam turbine blades

  15. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    SciTech Connect (OSTI)

    Bartlome, Richard De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe; Amanatides, Eleftherios; Mataras, Dimitrios

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  16. A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition

    SciTech Connect (OSTI)

    Zhang, Qinglin; Xiao, Xingcheng Verbrugge, Mark W.; Cheng, Yang-Tse

    2014-08-11

    The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

  17. A Method for Monitoring Deposition at a Solid Cathode in an Electrorefiner for a Two-Species System Using Electrode Potentials

    SciTech Connect (OSTI)

    D.S. Rappleye; M.-S. Yim; M.F. Simpson; R.M. Cumberland

    2013-10-01

    Currently, process monitoring of spent nuclear fuel electrorefining relies upon sampling and destructive analysis methods coupled with extrapolative thermodynamic process models for non-interrupted operations. Corrections to those models are performed infrequently, jeopardizing both the control of the process and safeguarding of nuclear material. Furthermore, the timeliness of obtaining the results is inadequate for application of international safeguards protocol. Alternatively, a system that dynamically utilizes electrical data such as electrode potentials and cell current can hypothetically be used to achieve real-time process monitoring and more robust control as well as improved safeguards. Efforts to develop an advanced model of the electrorefiner to date have focused on a forward modeling approach by using feed and salt compositions to determine the product composition, cell current and electrode potential response. Alternatively, an inverse model was developed, and reported here, to predict the product deposition rates on a cathode using the cell current, cathode potential, and fundamental relations of electrochemistry. The model was applied to the following cases: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. The deposition rates predicted by the inverse model were compared to those of a forward model, ERAD.

  18. Method of deposition of silicon carbide layers on substrates

    DOE Patents [OSTI]

    Angelini, P.; DeVore, C.E.; Lackey, W.J.; Blanco, R.E.; Stinton, D.P.

    1982-03-19

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at 800 to 1050/sup 0/C when the substrates have been confined within a suitable coating environment.

  19. Enhanced selectivity of zeolites by controlled carbon deposition

    DOE Patents [OSTI]

    Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

    2006-05-09

    A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

  20. Tritium labeling of organic compounds deposited on porous structures

    DOE Patents [OSTI]

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  1. Molecular layer deposition of alucone films using trimethylaluminum and hydroquinone

    SciTech Connect (OSTI)

    Choudhury, Devika; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-01

    A hybrid organicinorganic polymer film grown by molecular layer deposition (MLD) is demonstrated here. Sequential exposures of trimethylaluminum [Al(CH{sub 3}){sub 3}] and hydroquinone [C{sub 6}H{sub 4}(OH){sub 2}] are used to deposit the polymeric films, which is a representative of a class of aluminum oxide polymers known as alucones. In-situ quartz crystal microbalance (QCM) studies are employed to determine the growth characteristics. An average growth rate of 4.1 per cycle at 150?C is obtained by QCM and subsequently verified with x-ray reflectivity measurements. Surface chemistry during each MLD-half cycle is studied in depth by in-situ Fourier transform infrared (FTIR) vibration spectroscopy. Self limiting nature of the reaction is confirmed from both QCM and FTIR measurements. The conformal nature of the deposit, typical for atomic layer deposition and MLD, is verified with transmission electron microscopy imaging. Secondary ion mass spectroscopy measurements confirm the uniform elemental distribution along the depth of the films.

  2. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1991-10-29

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figures.

  3. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, P.L.; Giammarise, A.W.

    1995-02-21

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice`s interior surfaces by the vapor deposited coating formed from the reaction gas. 2 figs.

  4. Apparatus for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L.; Giammarise, Anthony W.

    1995-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance to erosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  5. Nuclear stopping and energy deposition into the central rapidity region

    SciTech Connect (OSTI)

    Zingman, J.A.

    1987-08-03

    Nuclear stopping and energy deposition into the central rapidity region of ultrarelativistic heavy-ion collisions are studied through the application of a model incorporating hydrodynamic baryon flow coupled to a self-consistent field calculated in the flux tube model. Ultrarelativistic heavy ion collisions are modeled in which the nuclei have passed through each other and as a result are charged and heated.

  6. Nitrogen Deposition: A Component of Global Change Analyses

    SciTech Connect (OSTI)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the development of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.

  7. R&D ERL: Photocathode Deposition and Transport System

    SciTech Connect (OSTI)

    Pate, D.; Ben-Zvi, I.; Rao, T.; Burrill, R.; Todd, R.; Smedley, J.; Holmes, D.

    2010-01-01

    The purpose of the photocathode deposition and transport system is to (1) produce a robust, high yield multialkali photocathode and (2) have a method of transporting the multialkali photocathode for insertion into a super conducting RF electron gun. This process is only successful if a sufficient quantum efficiency lifetime of the cathode, which is inserted in the SRF electron gun, is maintained. One important element in producing a multialkali photocathode is the strict vacuum requirements of 10{sup -11} torr to assure success in the production of longlived photocathodes that will not have their QE or lifetime depleted due to residual gas poisoning in a poor vacuum. A cutaway view of our third generation deposition system is shown in figure 1. There are certain design criteria and principles required. One must be able to install, remove, rejuvenate and replace a cathode without exposing the source or cathode to atmosphere. The system must allow one to deposit Cs, K, and Sb on a cathode tip surface at pressures in the 10{sup -10} to 10{sup -9} torr range. The cathode needs to be heated to as high as 850 C for cleaning and maintained at 130 C to 150 C during deposition. There should also be the capability for in-situ QE measurements. In addition the preparation of dispenser photocathodes must be accounted for, thus requiring an ion source for cathode cleaning. Finally the transport cart must be mobile and be able to negotiate the ERL facility labyrinth.

  8. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOE Patents [OSTI]

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  9. An Optimized Nanoparticle Separator Enabled by Electron Beam Induced Deposition

    SciTech Connect (OSTI)

    Fowlkes, Jason Davidson [ORNL; Doktycz, Mitchel John [ORNL; Rack, P. D. [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Size based separations technologies will inevitably benefit from advances in nanotechnology. Direct write nanofabrication provides a useful mechanism to deposit/etch nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition (EBID) was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam interaction region (BIR). Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub 50nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects), (2) preserved the fidelity of spacing between nanopillars (which maximizes the size based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  10. Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

  11. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  12. Deposition of cesium iodide on Parylene-N pellicles

    SciTech Connect (OSTI)

    Tassano, P.L.

    1985-09-01

    During the development of a photocathode for a streak camera, Cesium Iodide was vacuum coated onto Parylene-N pellicles. This paper outlines the handling and vacuum evaporation coating techniques which were used to deposit CsI upon Parylene-N and presents a comparison of results between Lawrence Livermore National Laboratory produced foils and those which were commercially available. (AIP)

  13. Process for depositing hard coating in a nozzle orifice

    DOE Patents [OSTI]

    Flynn, Paul L.; Giammarise, Anthony W.

    1991-01-01

    The present invention is directed to a process for coating the interior surfaces of an orifice in a substrate that forms a slurry fuel injection nozzle. In a specific embodiment, the nozzle is part of a fuel injection system for metering a coal-water slurry into a large, medium-speed, multi-cylinder diesel engine. In order to retard erosion of the orifice, the substrate is placed in a chemical vapor deposition (CVD) reaction chamber. A reaction gas is passed into the chamber at a gas temperature below its reaction temperature and is directed through the orifice in the substrate. The gas reaction temperature is a temperature at and above which the reaction gas deposits as a coating, and the reaction gas is of a composition whereby improved resistance toerosion by flow of the particulates in the slurry fuel is imparted by the deposited coating. Only the portion of the substrate in proximity to the orifice to be coated is selectively heated to at least the gas reaction temperature for effecting coating of the orifice's interior surfaces by the vapor deposited coating formed from the reaction gas.

  14. Method of depositing wide bandgap amorphous semiconductor materials

    DOE Patents [OSTI]

    Ellis, Jr., Frank B.; Delahoy, Alan E.

    1987-09-29

    A method of depositing wide bandgap p type amorphous semiconductor materials on a substrate without photosensitization by the decomposition of one or more higher order gaseous silanes in the presence of a p-type catalytic dopant at a temperature of about 200.degree. C. and a pressure in the range from about 1-50 Torr.

  15. Computational Model of Magnesium Deposition and Dissolution for Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination via Cyclic Voltammetry - Joint Center for Energy Storage Research June 23, 2016, Research Highlights Computational Model of Magnesium Deposition and Dissolution for Property Determination via Cyclic Voltammetry Top: Example distributions of the charge transfer coefficient and standard heterogeneous rate constant, obtained from fitting Bottom: Comparison between experimental and simulated voltammograms, demonstrating good agreement Scientific Achievement A computationally

  16. Polymer-assisted aqueous deposition of metal oxide films

    DOE Patents [OSTI]

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  17. Prevention of deleterious deposits in a coal liquefaction system

    DOE Patents [OSTI]

    Carr, Norman L.; Prudich, Michael E.; King, Jr., William E.; Moon, William G.

    1984-07-03

    A process for preventing the formation of deleterious coke deposits on the walls of coal liquefaction reactor vessels involves passing hydrogen and a feed slurry comprising feed coal and recycle liquid solvent to a coal liquefaction reaction zone while imparting a critical mixing energy of at least 3500 ergs per cubic centimeter of reaction zone volume per second to the reacting slurry.

  18. Chemical vapor deposition of fluorine-doped zinc oxide

    DOE Patents [OSTI]

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  19. Webinar: Understanding and Applying TM-30-15

    Broader source: Energy.gov [DOE]

    The IES recently approved TM-30-15, a new method for evaluating light source color rendition. This webinar, “Understanding and Applying TM-30-15, the IES Method for Evaluating Light Source Color...

  20. Mission Driven and Applied Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating for Materials Technology, Engineering, Education, and Research (i-MatTER) i-MatTER matches our centers with applied activities in WDTS, EERE, FE, ARPA-E, technology ...

  1. How to Apply for Weatherization Assistance | Department of Energy

    Energy Savers [EERE]

    The funds announced earlier this month allow for people who make up to 200% of the federal poverty level to apply for weatherization-which is about 44,000 for a family of four in ...

  2. ENERGY STAR Webinar: How to Apply for the ENERGY STAR

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting a webinar on how to apply for ENERGY STAR certification in Portfolio Manager. Understand the value of the ENERGY STAR certification, see...

  3. Apply: Increase Residential Energy Code Compliance Rates (DE...

    Office of Environmental Management (EM)

    Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) Apply: Increase Residential Energy Code Compliance Rates (DE-FOA-0000953) April 21, 2014 - 12:32pm Addthis This ...

  4. Sandian Named Fellow of the Society for Industrial and Applied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Kolda and the other members of the 2015 class of SIAM fellows will be honored in August at the International Congress on Industrial and Applied Mathematics in Beijing. Read the ...

  5. Deep Vadose Zone Applied Field Research Initiative (DVZ-AFRI)

    Broader source: Energy.gov [DOE]

    Located on the Hanford Site in Richland, Washington, the Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources by addressing the challenge of...

  6. Rational Catalyst Design Applied to Development of Advanced Oxidation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysts for Diesel Emission Control | Department of Energy Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Rational Catalyst Design Applied to Development of Advanced Oxidation Catalysts for Diesel Emission Control Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and

  7. Applying for EERE Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You are here Home » Applying for EERE Funding Opportunities Applying for EERE Funding Opportunities EERE uses Funding Opportunity Announcements (FOAs) to solicit applications in specific program areas and selects projects based on a merit review process that includes industry and technology experts. What to Expect During the Application Process Illustration showing the funding and approval process. The application process may include multiple phases: letter of intent, concept paper, full

  8. Behavioral Economics Applied to Energy Demand Analysis: A Foundation

    U.S. Energy Information Administration (EIA) Indexed Site

    Behavioral Economics Applied to Energy Demand Analysis: A Foundation October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Behavioral Economics Applied to Energy Demand Analysis i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  9. Bridging the Gap between Fundamental Physics and Chemistry and Applied

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models for HCCI Engines | Department of Energy Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_assanis.pdf (1.42 MB) More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Modeling of HCCI and PCCI

  10. Optical Diagnostics and Modeling Tools Applied to Diesel HCCI | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine Research 2002_deer_choi.pdf (954.08 KB) More Documents & Publications Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines 3-D Combustion Simulation

  11. 2008 Annual Merit Review Results Summary - 2. Applied Battery Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2. Applied Battery Research 2008 Annual Merit Review Results Summary - 2. Applied Battery Research DOE Vehicle Technologies Annual Merit Review 2008_merit_review_2.pdf (1.85 MB) More Documents & Publications 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research 2011 Annual Merit Review Results Report - Energy Storage Technologies

  12. Statistical and Domain Analytics Applied to PV Module Lifetime and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Science | Department of Energy Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_casewestern_bruckman.pdf (6.77 MB) More Documents & Publications Literature Review of the Effects of UV Exposure on PV Modules Failure Rates from Certification Testing to UL

  13. Applying Risk Communication to the Transportation of Radioactive Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Applying Risk Communication to the Transportation of Radioactive Materials Applying Risk Communication to the Transportation of Radioactive Materials Participants should expect to gain the following skills: How to recognize how the stakeholders prefer to receive information How to integrate risk communication principles into individual communication How to recognize the importance of earning trust and credibility How to identify stakeholders How to answer questions

  14. Applying an Experimental Design Loop to Shape Memory Alloys (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Applying an Experimental Design Loop to Shape Memory Alloys Citation Details In-Document Search Title: Applying an Experimental Design Loop to Shape Memory Alloys Authors: Hogden, John Edward [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2016-06-01 OSTI Identifier: 1257099 Report Number(s): LA-UR-16-23811 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Data Science and Optimal Learning

  15. CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS: APPLYING THE FINAL RULE TO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EXISTING CONTRACTS | Department of Energy CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS: APPLYING THE FINAL RULE TO EXISTING CONTRACTS CONTRACTOR LEGAL MANAGEMENT REQUIREMENTS: APPLYING THE FINAL RULE TO EXISTING CONTRACTS The Department issued a Final Rule revising the regulations covering contractor legal management requirements at 10 C.F.R. 719 (Federal Register May 3, 2013; http://www.gpo.gov/fdsys/pkg/FR-2013-05-03/pdf/2013-10485.pdf). It requires Contracting Officers to attempt to execute

  16. Conference Proceedings Available - The Smart Grid Experience: Applying

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results, Reaching Beyond | Department of Energy Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond Conference Proceedings Available - The Smart Grid Experience: Applying Results, Reaching Beyond March 23, 2015 - 10:55am Addthis In October 2014, the Electric Power Research Institute (EPRI) and the U.S. Department of Energy's (DOE's) Office of Electricity Delivery and Energy Reliability (OE) held a conference to assess progress, impacts, benefits,

  17. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  18. Re-refinement from deposited X-ray data can deliver improved models for most PDB entries

    SciTech Connect (OSTI)

    Joosten, Robbie P.; Womack, Thomas; Vriend, Gert; Bricogne, Gérard

    2009-02-01

    An evaluation of validation and real-space intervention possibilities for improving existing automated (re-)refinement methods. The deposition of X-ray data along with the customary structural models defining PDB entries makes it possible to apply large-scale re-refinement protocols to these entries, thus giving users the benefit of improvements in X-ray methods that have occurred since the structure was deposited. Automated gradient refinement is an effective method to achieve this goal, but real-space intervention is most often required in order to adequately address problems detected by structure-validation software. In order to improve the existing protocol, automated re-refinement was combined with structure validation and difference-density peak analysis to produce a catalogue of problems in PDB entries that are amenable to automatic correction. It is shown that re-refinement can be effective in producing improvements, which are often associated with the systematic use of the TLS parameterization of B factors, even for relatively new and high-resolution PDB entries, while the accompanying manual or semi-manual map analysis and fitting steps show good prospects for eventual automation. It is proposed that the potential for simultaneous improvements in methods and in re-refinement results be further encouraged by broadening the scope of depositions to include refinement metadata and ultimately primary rather than reduced X-ray data.

  19. Growth mechanism and optical properties of Ti thin films deposited onto fluorine-doped tin oxide glass substrate

    SciTech Connect (OSTI)

    Einollahzadeh-Samadi, Motahareh; Dariani, Reza S.

    2015-03-15

    In this work, a detailed study of the influence of the thickness on the morphological and optical properties of titanium (Ti) thin films deposited onto rough fluorine-doped tin oxide glass by d.c. magnetron sputtering is carried out. The films were characterized by several methods for composition, crystallinity, morphology, and optical properties. Regardless of the deposition time, all the studied Ti films of 400, 1500, 2000, and 2500?nm in thickness were single crystalline in the ?-Ti phase and also very similar to each other with respect to composition. Using the atomic force microscopy (AFM) technique, the authors analyzed the roughness evolution of the Ti films characteristics as a function of the film thickness. By applying the dynamic scaling theory to the AFM images, a steady growth roughness exponent ??=?0.72??0.02 and a dynamic growth roughness exponent ??=?0.22??0.02 were determined. The value of ? and ? are consistent with nonlinear growth model incorporating random deposition with surface diffusion. Finally, measuring the reflection spectra of the samples by a spectrophotometer in the spectral range of 3001100?nm allowed us to investigate the optical properties. The authors observed the increments of the reflection of Ti films with thickness, which by employing the effective medium approximation theory showed an increase in thickness followed by an increase in the volume fraction of metal.

  20. Fundamental studies of the mechanisms of slag deposit formation: Final report

    SciTech Connect (OSTI)

    Austin, L.G.; Benson, S.; Rabinovich, A.; Tangsathitkulchai, M.; Schobert H.H.

    1987-07-01

    The kinetics of ash deposition on utility boilers have been studied. A heated tube furnace system was used in the study. Areas of consideration in the deposition mechanics were: close space knowledge of chemical composition and distribution of inorganic constituents in coal, transformations and reactions of the inorganic constituents in the flame, ash transport mechanisms, initial adhesion of ash particles to heat transfer surfaces and subsequently to each other to form a deposit, and further interactions of the deposited ash to grow a strong deposit. Interactions of deposited ash that cause changes in physical and chemical properties in an aged deposit are due to processes such as sintering, chemical reactions, and melting. The degree of these changes increases as the deposit grows from the heat transfer surfaces where it forms. All of these changes during the deposit formation process are coal-specific and are strongly dependent on the boiler configuration and operating conditions. 18 refs., 55 figs., 42 tabs.

  1. Electroactive polyaniline film deposited from nonaqueous media; Effect of mixed organic solvent on polyaniline deposition and its battery performance

    SciTech Connect (OSTI)

    Osaka, T.; Nakajima, T.; Shiota, K.; Momma, T. )

    1991-10-01

    This paper reports on electroactive polyaniline (PAn) films which were deposited from PC (propylene carbonate)-Ec (thylene carbonate) and PC-DME (1, 2-dimethoxyethane) mixed polymerization solutions containing aniline, CF{sub 3}COOH, and LiClO{sub 4}. Higher dielectric constant solvents are necessary to deposit the PAn film where protons, dissociated from the acid, initiate the polymerization of aniline. Various PAn films deposited in the PC, the PC-EC (50 mole percent), and the PC-DME (50 volume percent) solutions were used for the cathode materials of the rechargeable lithium batteries. Charge capacity and discharge ability of the Li/PAn batteries in the PC-LiClO{sub 4} electrolyte solution are almost the same, regardless of the polymerization solvents such as PC {approx} PC-EC {ge} PC-DME and PC-EC {ge} PC-DME {approx} PC. The mixed solvent electrolyte solution effect on the Li/PAn (polymerized in the PC solution) batteries becomes much larger such as PC-DME {gt} PC-EC {gt} PC. Moreover, the electrochemical kinetic factors of the PAn films deposited in the various mixed polymerization solutions and also in the different electrolytes were experimentally determined by measuring the ac impedance. The results of the ac impedance analysis of each PAn film correlate well with the battery performances of Li/PAn cells.

  2. Supported plasma sputtering apparatus for high deposition rate over large area

    DOE Patents [OSTI]

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  3. Effects of depositional facies and diagenesis on calculating petrophysical properties for wireline logs in Permian carbonate reservoirs of west Texas

    SciTech Connect (OSTI)

    Holtz, M.H.; Major, R.P. )

    1994-03-01

    The complex interplay between depositional facies and diagenesis in carbonate rocks presents numerous problems for calculating petrophysical properties from wireline logs. If carbonate reservoirs are divided into flow units of similar depositional and diagenetic textures, empirical equations that apply specifically to that geologically identified flow unit can be developed to accurately measure porosity and water saturation. In Guadalupian and Leonardian reservoirs, carbonate mudstones deposited in subtidal marine settings are predominantly dolomite, although they contain some shale. The shale in these rocks can be detected with gamma-ray logs and empirical equations for calculation of porosity from log must include a gamma-ray component to compensate for the presence of shale. Because porosity in these rocks is dominantly intercrystalline, capillary pressure characteristics are predictable and saturations can be calculated with the Archie equation. Subtidal carbonate packstones and grainstones are composed of dolomite, anhydrite, and gypsum. The matrix acoustic transit times of these three minerals are similar, and acoustic logs are the best tool for measuring porosity. Neutron logs are the least accurate porosity tools if gypsum is present. Photo-electric density logs can distinguish gypsum from anhydrite. Because porosity in these rocks is dominantly interparticle and/or moldic, dual porosity cementation exponent corrections are needed to calculate saturations with the Archie equation, and capillary pressure saturation relationships are variable. Carbonates deposited in tidal-flat environments are generally composed of dolomite, sulfate minerals, and quartz silt, requiring a full suite of open-hole logs to make reliable porosity measurements. Diagenesis influences reservoir mineralogy and pore types. A common style of burial diagenesis in Guadalupian and Leonardian reservoirs is hydration of anhydrite to gypsum and leaching of sulfate cement and dolomite matrix.

  4. CX-010375: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Existing Firehouse CX(s) Applied: B1.15 Date: 09/20/2011 Location(s): California Offices(s): Berkeley Site Office

  5. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8, 2011 CX-006459: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 08082011 Location(s): Albany, Oregon...

  6. CX-012231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-009515: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tide Creek Property Funding CX(s) Applied: B1.25 Date: 11/08/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  8. CX-011215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Nepese Marsh Upgrades CX(s) Applied: B2.5 Date: 10/17/2013 Location(s): Illinois Offices(s): Fermi Site Office

  9. CX-012606: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Preparing of Environmental Samples for Analysis CX(s) Applied: B3.6Date: 41810 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  10. CX-012581: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Demolition of Outfall Sampling Station CX(s) Applied: B1.23Date: 41844 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  11. CX-012572: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    H-Area Vehicle Barrier Installation CX(s) Applied: B1.15Date: 41862 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  12. CX-012566: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Z-Area Fire Tank Painting CX(s) Applied: B1.3Date: 41865 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  13. CX-012628: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Deactivation and Decommissioning of 711-L CX(s) Applied: B1.23Date: 41793 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  14. CX-012559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Seal Access Plugs at 105-C CX(s) Applied: B1.3Date: 41872 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  15. CX-012587: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    HB-Line Security Upgrades CX(s) Applied: B1.3Date: 41835 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  16. CX-011194: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Particle Physics Division Outback Garage CX(s) Applied: B1.15 Date: 09/19/2013 Location(s): Illinois Offices(s): Fermi Site Office

  17. CX-010195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Polymer Synthesis Lab - Modification CX(s) Applied: B3.6 Date: 04/15/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  18. CX-010241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrogen Pathway Analyses CX(s) Applied: A9 Date: 02/28/2013 Location(s): Virginia Offices(s): Golden Field Office

  19. CX-012310: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  20. CX-012437: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Energy Density Lithium Battery CX(s) Applied: B3.6Date: 41878 Location(s): New YorkOffices(s): National Energy Technology Laboratory