Powered by Deep Web Technologies
Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

2

Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

3

HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO 2 ). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability.

4

Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel Vitaly T. Gotovchikov a , Victor A. Seredenko a , Valentin V. Shatalov a , Vladimir N. Kaplenkov a , Alexander S. Shulgin a , Vladimir K. Saranchin a , Michail A. Borik a∗ , Charles W. Forsberg b , All-Russian Research Institute of Chemical Technology (ARRICT) 33, Kashirskoe ave., Moscow, Russia, 115409, E-mail: chem.conv@ru.net Oak Ridge National Laboratory (ORNL) Bethel Wall Road, P.O. Box 2008, MS-6165, Oak Ridge, TN, USA, 37831 Abstract - Induction cold crucible melters (ICCM) have the potential to be a very-low-cost high-throughput method for the production of DUO 2 for SNF casks. The proposed work would develop these melters for this specific application. If a

5

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

6

Depleted Uranium Health Effects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

7

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

8

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

9

Depleted Uranium (DU) Cermet Waste Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

10

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

11

Los Alamos probes mysteries of uranium dioxide's thermal conductivity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nuclear materials into the hands of terrorists and other non-state actors. The depleted uranium dioxide crystals used for the thermal conductivity measurements were...

12

What is Depleted Uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

13

Depleted Uranium Hexafluoride Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

14

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

15

Polyethylene Encapsulated Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

16

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Broader source: Energy.gov (indexed) [DOE]

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

17

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

18

FAQ 7-How is depleted uranium produced?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

19

Potential Uses of Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

20

Depleted Uranium Uses Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat,” says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

22

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb…

2002-01-01T23:59:59.000Z

23

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

24

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

25

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

26

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

27

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of µg), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting  1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

28

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

29

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

30

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

31

Description of the Canadian Particulate-Fill WastePackage (WP) System for Spent-Nuclear Fuel (SNF) and its Applicability to Ligh-Water Reactor SNF WPS with Depleted Uranium-Dioxide Fill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3502 3502 Chemical Technology Division DESCRIPTION OF THE CANADIAN PARTICULATE-FILL WASTE-PACKAGE (WP) SYSTEM FOR SPENT-NUCLEAR FUEL(SNF) AND ITS APPLICABILITY TO LIGHT- WATER REACTOR SNF WPS WITH DEPLETED URANIUM-DIOXIDE FILL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (423) 574-6783 Fax: (423) 574-9512 Email: forsbergcw@ornl.gov October 20, 1997 _________________________ Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the * U.S. Department of Energy. iii CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

33

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

34

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

35

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

36

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

37

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

38

Overview of Depleted Uranium Hexafluoride Management Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

39

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...transmission of genetic damage by depleted uranium and tungsten alloy Alexandra Miller...The radioactive heavy metal, depleted uranium (DU), an alpha-particle emitter...fragments will affect the long-term health of offspring conceived by these...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

40

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 May 2005...Proc Amer Assoc Cancer Res, Volume 46, 2005 Depleted uranium internal contamination...Proc Amer Assoc Cancer Res, Volume 46, 2005] 2080 Depleted uranium is a heavy metal...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Proc Amer Assoc Cancer Res, Volume 47, 2006 Depleted uranium - induced malignant...Proc Amer Assoc Cancer Res, Volume 47, 2006] 5215 Depleted uranium (DU) has been...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

42

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

43

Numerical simulation for formed projectile of depleted uranium alloy  

Science Journals Connector (OSTI)

The numerical simulation for forming projectile of depleted uranium alloy with the SPH (Smooth Particle Hydrodynamic ... . To describe the deformed behaviors of the depleted uranium alloy under high pressure and ...

Song Shun-cheng; Gao Ping; Cai Hong-nian

2003-09-01T23:59:59.000Z

44

Depleted uranium plasma reduction system study  

SciTech Connect (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

45

Depleted uranium hexafluoride: Waste or resource?  

SciTech Connect (OSTI)

the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

1995-07-01T23:59:59.000Z

46

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS  

E-Print Network [OSTI]

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

Winfree, Erik

47

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

48

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

49

Depleted Uranium Uses: Regulatory Requirements and Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

50

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

51

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

52

Uranio impoverito: perché? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-05-28T23:59:59.000Z

53

The health effects of depleted uranium  

Science Journals Connector (OSTI)

There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU) munitions. In response to this concern the Royal Society set up an independent, expert working group to investigate the health effects of DU munitions. The Royal Society has now produced two reports, and this summary covering the key conclusions and recommendations from both reports. The part I report considered the increased risks of radiation-induced cancer from exposures to DU on the battlefield. Part II dealt with the risks from the chemical toxicity of uranium, non-malignant radiation effects from DU intakes, the long-term environmental consequences of the deployment of DU munitions and responses to part I including issues arising at a public meeting to discuss the part I report.

The Royal Society Working Group on the Health Hazards of

2002-01-01T23:59:59.000Z

54

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Science Journals Connector (OSTI)

During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most...

Mirjana B. Radenkovi?; Svjetlana A. Cupa?…

2008-01-01T23:59:59.000Z

55

Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115  

Science Journals Connector (OSTI)

Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a ... TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. T...

K. J. Mathew; G. L. Singleton; R. M. Essex…

2013-04-01T23:59:59.000Z

56

Chemical and radiochemical characterization of depleted uranium in contaminated soils  

Science Journals Connector (OSTI)

The main results of chemical and radiochemical characterization and fractionation of depleted uranium in soils contaminated during the Balkan conflict ... the paper. Alpha-spectrometric analysis of used depleted

M. B. Radenkovi?; A. B. Kandi?; I. S. Vukana?…

2007-09-01T23:59:59.000Z

57

Retrieval of buried depleted uranium from the T-1 trench  

SciTech Connect (OSTI)

The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

Burmeister, M. [Rocky Mountain Remediation Services, Golden, CO (United States); Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Greengard, T. [Kaiser-Hill Co., Golden, CO (United States)]|[Science Applications International Corp. (United States); Hull, C. [S.M. Stoller Corp., Boulder, CO (United States); Barbour, D.; Quapp, W.J. [Starmet Corp. (United States)

1998-07-01T23:59:59.000Z

58

Subsurface transformations of depleted uranium at Aberdeen Proving Ground, Maryland.  

E-Print Network [OSTI]

?? Approximately 130,000 kg of depleted uranium (DU) from ammunition testing have been deposited in soils since 1974 and remain in the environment at Aberdeen… (more)

Oxenberg, Tanya Palmateer

2007-01-01T23:59:59.000Z

59

Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.  

SciTech Connect (OSTI)

This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

2001-01-24T23:59:59.000Z

60

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect (OSTI)

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Regulation of New Depleted Uranium Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-5 2-5 Regulation of New Depleted Uranium Uses Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

62

Depleted uranium waste assay at AWE  

SciTech Connect (OSTI)

The Atomic Weapons Establishment (AWE) at Aldermaston has recently conducted a Best Practical Means (BPM) study, for solid Depleted Uranium (DU) waste assay, in order to satisfy key stakeholders that AWE is applying best practice. This study has identified portable passive High Resolution Gamma Spectrometry (HRGS), combined with an analytical software package called Spectral Nondestructive Assay Platform (SNAP), as the preferred option with the best balance between performance and costs. HRGS/SNAP performance has been assessed by monitoring 200 l DU waste drum standards and also heterogeneous, high density drums from DU firing trials. Accuracy was usually within 30 % with Detection Limits (DL) in the region of 10 g DU for short count times. Monte Carlo N-Particle (MCNP) calculations have been used to confirm the shape of the calibration curve generated by the SNAP software procured from Eberline Services Inc. (authors)

Miller, T.J. [AWE, Aldermaston, Reading, Berkshire, England, RG7 4PR (United Kingdom)

2007-07-01T23:59:59.000Z

63

Processing depleted uranium quad alloy penetrator rods  

SciTech Connect (OSTI)

Two depleted uranium (DU) quad alloys were cast, extruded and rolled to produce penetrator rods. The two alloy combinations were (1) 1 wt % molybdenum (Mo), 1 wt % niobium (Nb), and 0.75 wt % titanium (Ti); and (2) 1 wt % tantalum (Ta), 1 wt % Nb, and 0.75 wt % Ti. This report covers the processing and results with limited metallographic information available. The two alloys were each vacuum induction melted (VIM) into an 8-in. log, extruded into a 3-in. log, then cut into 4 logs and extruded at 4 different temperatures into 0.8-in. bars. From the 8 conditions (2 alloys, 4 extrusion temperatures each), 10 to 13 16-in. rods were cut for rolling and swaging. Due to cracking problems, the final processing changed from rolling and swaging to limited rolling and heat treating. The contracted work was completed with the delivery of 88 rods to Dr. Zabielski. 28 figs.

Bokan, S.L.

1987-02-19T23:59:59.000Z

64

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......I (2009) Depleted uranium: properties, military...Teratogenicity of depleted uranium aerosols: a review...expression in female breast cancer among an Iraqi population exposed to depleted uranium. J Carcinog 7: 8......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

65

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations...and Jadranko SIMIC2 Health risks/Depleted uranium/Chromosome aberrations...Institute symposia "The Health Effects of Depleted Uranium." Remarks and slides......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

66

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......Society. The Health Hazards of Depleted Uranium Munitions-Part...Carpenter D. O. Depleted uranium contamination...implications for health assessment...Sunder S. Depleted uranium dust from fired...properties. Health Phys (2004......

Marcelo Valdés

2009-02-01T23:59:59.000Z

67

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......War about the health significance of exposure to depleted uranium (DU), the...perforated by depleted uranium ammunition...War about the health significance of exposure to depleted uranium (DU), the......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

68

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...the study was hit by depleted uranium projectiles during...M. , Haldimann M. Depleted uranium in Kosovo: an assessment...exposure for aid workers. Health Phys. (2002) 82......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

69

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Fairlie I (2009) Depleted uranium: properties, military use and health risks. Med Confl...et al (2002) Health effects of embedded depleted uranium. Mil Med 167...et al (2000) Health effects of depleted uranium on exposed Gulf......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

70

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......Abou-Donia, M. Depleted and natural uranium: chemistry...Environ. Health B Crit...et al. Health effects of embedded depleted uranium. Mil. Med...determinations in depleted uranium exposed Gulf...veterans. Health Phys. 77......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

71

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Association for Cancer Research April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

72

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

73

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Carefree, AZ Abstract B41: Depleted uranium-induced oxidative stress in...as occupational exposures to depleted uranium via military action. Cellular...to evaluate the toxicity of depleted uranium (DU) in its soluble and insoluble...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

74

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......from exposure to aerosols of depleted uranium Marcelo Valdes * * Corresponding...Following exposure to aerosols of depleted uranium (DU), biological samples...uranyl phosphates. INTRODUCTION Depleted uranium (DU) is a waste product of......

Marcelo Valdés

2009-02-01T23:59:59.000Z

75

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......armoured vehicles perforated by depleted uranium ammunition M. A. Parkhurst...significance of exposure to depleted uranium (DU), the US Department of...armoured vehicles perforated by depleted uranium ammunition. | In response to......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

76

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......the Terrains Contaminated with Depleted Uranium Snezana Milacic 1 * Jadranko...originated from ammunition containing depleted uranium (DU). The studied population...ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations| J......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

77

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to Low-dose Depleted Uranium Yuhui Hao Rong Li * Yanbing...study evaluated the effects of depleted uranium (DU) on reproduction in rats...effects were obvious in F1 rats. Depleted uranium|Ingestion|Reproductive effects......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

78

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......villages in Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric 2...included in the study was hit by depleted uranium projectiles during the North...1999. Although no impact of depleted uranium on radon levels has been observed......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

79

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......intramuscularly injected with depleted uranium S. Fukuda 1 M. Ikeda 1 M...related to kidney and bone in depleted uranium (DU)-injected rats were...injected is low. INTRODUCTION Depleted uranium (DU) accumulates like natural......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

80

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect (OSTI)

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......chemical forms of the uranium in the body after intake...REFERENCES 1 Mould R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J...Abou-Donia M. B. Depleted and natural uranium: chemistry and toxicological......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

82

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......contaminated accidentally with uranium. INTRODUCTION Depleted uranium (DU) can affect human health via chemical and radiation...B. Teratogenicity of depleted uranium aerosols: a review from...perspective. Environ. Health (2005) 4:17-35......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

83

Depleted Uranium: Exposure and Possible Health Effects  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a by-product of the enrichment process of 235U used for fission in nuclear reactors and nuclear weapons. It has both civilian and military applications. The military use of DU is of defensive as well as of offensive nature, being mainly employed as armor-piercing ammunition. So far, the usage of ammunitions containing DU has been officially confirmed in four military conflicts: Iraq (1991), Bosnia (1994), Kosovo (1999), and again Iraq (2003). During their deployment in the military actions, most penetrators are thought to have missed their intended targets. Therefore, a substantial amount of DU is still present in the environment and may act as a source of contamination for the environment and the population. The possible effects of this radioactive and chemically toxic material have attracted particular notice. To evaluate these consequences, it is important to have accurate methods to assess the exposure to DU in both environmental and biological samples. This article is therefore intended to point out the problematic nature of the experimental techniques and of the analytical methods so far used to quantify the exposure to DU in the light of possible health effects of DU.

U. Oeh

2011-01-01T23:59:59.000Z

84

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

85

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

86

Machining of depleted uranium using coated cutting tools  

Science Journals Connector (OSTI)

The machining of depleted uranium and its alloys are discussed in this...1-x-y-z Al x Cr y Y2N alloys, with y=0.03 and z=0.02, h...

M. J. Jackson; G. M. Robinson

2006-04-01T23:59:59.000Z

87

Lichens as Biomonitors of Depleted Uranium in Kosovo  

Science Journals Connector (OSTI)

This paper reports the results of a study using lichens as biomonitors to investigate the environmental distribution of depleted uranium (DU) at selected Kosovo sites as...235U/238U measurements did not indicate ...

S. Loppi; L. A. Di Lella; L. Frati; G. Protano…

2004-11-01T23:59:59.000Z

88

Depleted uranium: a contemporary controversy for the teaching of radioactivity  

Science Journals Connector (OSTI)

Depleted uranium has been used in recent military conflicts and the media have reported the danger from radioactivity. This context provides a good way to keep students' attention when introducing the subject of radioactivity at GCSE or advanced level.

Mark Whalley

2006-01-01T23:59:59.000Z

89

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector  

E-Print Network [OSTI]

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

1980-01-01T23:59:59.000Z

90

Brain accumulation of depleted uranium in rats following 3- or 6-month treatment with implanted depleted uranium pellets  

Science Journals Connector (OSTI)

Depleted uranium (DU) is used to reinforce armor ... were weighed weekly as a measure of general health, with no statistically significant differences observed among ... midbrain, hippocampus, striatum, and corte...

Vanessa A. Fitsanakis; Keith M. Erikson…

2006-01-01T23:59:59.000Z

91

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model.  

E-Print Network [OSTI]

??Texture evolution of depleted uranium is investigated using a viscoplastic self-consistent model. Depleted uranium, which has the same structure as alpha-uranium, is difficult to model… (more)

Ho, John

2012-01-01T23:59:59.000Z

92

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......M. Depleted and natural uranium: chemistry and toxicological...internal contamination with uranium. Croat. Med. J. 40...1999). 5. Mould, R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

93

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Science of Cancer Health Disparities- Feb...AZ Abstract B41: Depleted uranium-induced oxidative...Science of Cancer Health Disparities- Feb...high deposits of uranium or tailings. There...occupational exposures to depleted uranium via military...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

94

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 February...The Science of Cancer Health Disparities...Abstract B41: Depleted uranium-induced oxidative...Carefree, AZ Cancer and mortality...deposits of uranium or tailings...exposures to depleted uranium via...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

95

Depleted uranium hexafluoride – technogenic raw material for obtaining high-purity inorganic fluorides  

Science Journals Connector (OSTI)

The problem of handling depleted uranium hexafluoride is discussed. An effective and ecologically safe variant of complex recycling of depleted uranium hexafluoride with uranium oxides, organic compounds, and hig...

E. P. Magomedbekov; S. V. Chizhevskaya; O. M. Klimenko; A. V. Davydov…

2012-02-01T23:59:59.000Z

96

Impact of carbon dioxide sequestration in depleted gas-condensate reservoirs.  

E-Print Network [OSTI]

??Depleted gas-condensate reservoirs are becoming important targets for carbon dioxide sequestration. Since depleted below the dew point, retrograde condensate has been deposited in the pore… (more)

Ramharack, Richard M.

2010-01-01T23:59:59.000Z

97

An analysis of the impact of having uranium dioxide mixed in with plutonium dioxide  

SciTech Connect (OSTI)

An assessment was performed to show the impact on airborne release fraction, respirable fraction, dose conversion factor and dose consequences of postulated accidents at the Plutonium Finishing Plant involving uranium dioxide rather than plutonium dioxide.

MARUSICH, R.M.

1998-10-21T23:59:59.000Z

98

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

99

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

100

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents [OSTI]

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Depleted uranium instead of lead in munitions: the lesser evil  

Science Journals Connector (OSTI)

Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment.

Sergei V Jargin

2014-01-01T23:59:59.000Z

102

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......A. (2001) Depleted uranium and public health. BMJ. 322...phenotype by depleted uranium-uranyl chloride. Environ. Health Perspect 106...radiological risk from depleted uranium in war scenarious. Health Phys. 82: 1420......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

103

Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Hong Xie; Carolyne LaCerte; and John P. Wise

2010-04-15T23:59:59.000Z

104

Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank  

Science Journals Connector (OSTI)

......Characterisation and dissolution of depleted uranium aerosols produced during impacts...Aerosols produced during impacts of depleted uranium (DU) penetrators against the...Characterisation and dissolution of depleted uranium aerosols produced during impacts......

V. Chazel; P. Gerasimo; V. Debouis; P. Laroche; F. Paquet

2003-07-01T23:59:59.000Z

105

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to a Low Dose of Depleted Uranium Yuhui Hao Rong Li * Yanbing...by chronic oral exposure to depleted uranium (DU). Materials and methods...exposure to a low dose of DU. Depleted uranium|Ingestion|Genotoxicity......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

106

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network [OSTI]

that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA...

Humrickhouse, Carissa Joy

2012-07-16T23:59:59.000Z

107

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra Miller

2007-05-01T23:59:59.000Z

108

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......p 105185. 5. UNEP. (2001) Depleted Uranium in Kosovo. Post Conflict Environmental...pp 98115. 6. UNEP. (2002) Depleted Uranium in Serbia and Montenegro Post...Lundin, A. (2004) Incidence of cancer among Swedish military and civil......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

109

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Epigenetic mechanism is involved in depleted uranium-induced transformation in human...Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military...research information on the potential health hazards of DU exposure. In our...

Alexandra Miller

2007-05-01T23:59:59.000Z

110

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...American Association for Cancer Research April 15, 2010...mechanism is involved in depleted uranium-induced transformation...Maine, Portland, ME. Depleted uranium (DU) is commonly...American Association for Cancer Research; 2010 Apr 17-21...

Alexandra Miller

2007-05-01T23:59:59.000Z

111

Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium  

SciTech Connect (OSTI)

This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

Ivan R. Thomas

2011-11-01T23:59:59.000Z

112

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect (OSTI)

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

113

Renal dysfunction induced by long-term exposure to depleted uranium in rats  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a kind of radioactive ... euthanized and tissue samples were collected, and uranium levels were measured in a variety of ... to analyze the dynamic changes and distribution of uranium in ...

Guoying Zhu; Xiqiao Xiang; Xiao Chen; Lihua Wang; Heping Hu…

2009-01-01T23:59:59.000Z

114

Ultrafiltration evaluation with depleted uranium oxide  

SciTech Connect (OSTI)

Scientists at the Los Alamos National Laboratory Plutonium Facility are using electrodissolution in neutral to alkaline solutions to decontaminate oralloy parts that have surface plutonium contamination. Ultrafiltration of the electrolyte stream removes precipitate so that the electrolyte stream to the decontamination fixture is precipitate free. This report describes small-scale laboratory ultrafiltration experiments that the authors performed to determine conditions necessary for full-scale operation of an ultrafiltration module. Performance was similar to what they observed in the ferric hydroxide system. At 12 psi transmembrane pressure, a shear rate of 12,000 sec{sup {minus}1} was sufficient to sustain membrane permeability. Ultrafiltration of uranium(VI) oxide appears to occur as easily as ultrafiltration of ferric hydroxide. Considering the success reported in this study, the authors plan to add ultrafiltration to the next decontamination system for oralloy parts.

Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

1998-03-01T23:59:59.000Z

115

Depleted Uranium Report from the Health Council of the Netherlands  

Science Journals Connector (OSTI)

The Health Council of the Netherlands, which is an independent scientific advisory body established in 1902 `to advise the government and Parliament on the current level of knowledge with respect to public health issues', has recently published an overview report on depleted uranium. The title of the report is `Health risks of exposure to depleted uranium' and it is freely available in both English and the original Dutch language. A brief summary of the report that was published on 16 May 2001 is presented here. The use of ammunition containing depleted uranium (DU) in Kosovo and elsewhere in the Balkans has provoked disquiet in Europe. In the Netherlands, concern over the release of this material had already been aroused previously following the crash of the El-Al airliner in the Bijlmermeer district of Amsterdam in 1992. It was against this background that the President of the Health Council decided to set up a Committee charged with the task of reviewing the health risks of exposure to DU and the preventive measures required for individuals present in areas where DU has been released into the environment. After reviewing the properties of uranium in general and depleted uranium in particular, and presenting data on the occurrence of the element in the environment and biological tissues, the committee assessed the chemical and radiological health effect of uranium and uranium compounds. The Health Council Committee concludes that radioactive contamination of the lungs is the principal health risk to be considered in connection with exposure to slightly soluble uranium compounds in the atmosphere. For soluble compounds, the chemical toxic effect in the kidneys is the primary consideration. The toxicological effects are to some extent concordant with those of other heavy metals. For relevant exposure scenarios the Committee does not anticipate that exposure to DU will result in a demonstrable increased risk of diseases and symptoms among exposed individuals as a result of a radiological or chemical toxic effect exerted by this substance. Cancer In view of the fact that DU emits ionising radiation in the form of alpha particles, the induction of cancer, in principle, needs to be taken into account in relation to individuals exhibiting internal contamination with DU. In case of inhalation of slightly soluble DU compounds, attention will in particular need to be focused on the lungs. The radiation dose caused by incidental exposure to DU in the exposure scenarios considered is limited compared with the radiation dose received during a lifetime of exposure to natural uranium. As at the common levels of exposure to natural uranium a contribution to the induction of cancer in the population cannot be demonstrated, the Committee concludes that the same is true for exposure to DU. This general conclusion is also valid for the appearance of lung cancer and for the appearance of leukaemia after the inhalation of dust containing slightly soluble uranium compounds. Renal damage For soluble compounds, the risk posed by exposure to DU is principally of a chemical toxic nature. In the case of increasing exposure, abnormalities will first of all appear in the kidneys. Exposure to small amounts (milligrams) of uranium over short periods will therefore result in changes in the kidneys, which lead to acute, usually reversible, renal impairment. No such dose-dependency has been observed, however, in the frequency of chronic renal disorders among population groups who are chronically exposed to enhanced quantities of natural uranium. Nor have studies involving workers in the uranium industry and ex-military personnel (including the group with shrapnel in the body) to date produced any evidence that uranium can cause renal impairment. Thus the present body of scientific data tends to suggest an absence of irreparable renal damage as a result of the intake of DU in the exposure scenarios considered. Prevention Although the risks associated with exposure to DU for the exposure scenarios considered appear to be very limited, the fundamental prin

W F Passchier; J W N Tuyn

2002-01-01T23:59:59.000Z

116

Depleted uranium residual radiological risk assessment for Kosovo sites  

Science Journals Connector (OSTI)

During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 ?Sv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity.

Marco Durante; Mariagabriella Pugliese

2003-01-01T23:59:59.000Z

117

Microstructure of depleted uranium under uniaxial strain conditions  

Science Journals Connector (OSTI)

Uranium samples of two different purities were used for spall strength measurements. Samples of depleted uranium were taken from very high purity material (38 ppm of carbon) and from material containing 280 ppm carbon. Experimental conditions were chosen to effectively arrest the microstructural damage at two places in the development to full spall separation. Samples were soft recovered and characterized with respect to the microstructure and the form of damage. This allowed determination of the dependence of spall mechanisms on stress level stress state and sample purity. This information is used in developing a model to predict the mode of fracture.

A. K. Zurek; J. D. Embury; A. Kelly; W. R. Thissell; R. L. Gustavsen; J. E. Vorthman; R. S. Hixson

1998-01-01T23:59:59.000Z

118

Shock induced multi-mode damage in depleted uranium  

SciTech Connect (OSTI)

Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

Koller, Darcie D [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

119

Safety evaluation for packaging (onsite) depleted uranium waste boxes  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

McCormick, W.A.

1997-08-27T23:59:59.000Z

120

Uranio impoverito: perch'e? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of the author of understanding the reasons of the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

D'Abramo, G

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

122

Selection of a management strategy for depleted uranium hexafluoride  

SciTech Connect (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

123

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...major cause of lung cancer, second only to cigarette...Kosovo was initiated by uranium prospecting in the period...the study was hit by depleted uranium projectiles during the......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

124

The distribution of depleted uranium contamination in Colonie, NY, USA  

Science Journals Connector (OSTI)

Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7–2.1 ?g g? 1, with a weighted geometric mean of 1.05 ?g g? 1; the contaminated soil samples comprise uranium up to 500 ± 40 ?g g? 1. A plot of 236U/238U against 235U/238U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05 ± 0.06) × 10? 3 235U/238U, (3.2 ± 0.1) × 10? 5 236U/238U, and (7.1 ± 0.3) × 10? 6 234U/238U. The analytical method is sensitive to as little as 50 ng g? 1 DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5.1 km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes.

N.S. Lloyd; S.R.N. Chenery; R.R. Parrish

2009-01-01T23:59:59.000Z

125

Inhalation class for depleted uranium at a major uranium applications facility  

SciTech Connect (OSTI)

A primary concern in determining internal dose from inhalation of radioactive material is the half-time of the material within the human body. Inhalation classes have been established by the ICRP for radioactive materials with half-times of a few days (Class D), several weeks (Class W), or periods up to one year (Class Y). Bioassay data at a facility using large quantities of depleted uranium have been collected for several years. These data have been analyzed to estimate the first order decay constant. From the decay constant, the half-time for retention (biological half-life) is determined. This half-time is used to identify the inhalation class for depleted uranium and its oxides. The data presented demonstrate that the retention half-time for depleted uranium and its oxides ranges from about 7 d to about 6 wk, depending on the quantity of material inhaled and the subject`s metabolism. This shows that the correct inhalation class for depleted uranium is Class W.

Barg, D.C.; Grewing, H.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1996-06-01T23:59:59.000Z

126

DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION  

SciTech Connect (OSTI)

This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

OGDEN DM; KIRCH NW

2007-10-31T23:59:59.000Z

127

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

128

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

129

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

130

Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions  

Broader source: Energy.gov (indexed) [DOE]

Background Fact Sheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions At the direction of Energy Secretary Steven Chu, over many months, the Energy Department (DOE) has been working closely with Energy Northwest (ENW), the Tennessee Valley Authority (TVA), and USEC Inc. (USEC) to develop a plan to address the challenges at USEC's Paducah Gaseous Diffusion Plant (GDP) that advances America's national security interests, protects taxpayers, and provides benefits for TVA and the Bonneville Power Administration's (BPA's) electric ratepayers and business operations. BPA is ENW's sole customer, purchasing 100 percent of ENW's Columbia Generating Station's electric power as part of BPA's overall

131

Depleted Uranium Disturbs Immune Parameters in Zebrafish, Danio rerio: An Ex Vivo/In Vivo Experiment  

Science Journals Connector (OSTI)

In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system...Danio rerio, using flow cytometry. Several im...

Béatrice Gagnaire; Anne Bado-Nilles…

2014-10-01T23:59:59.000Z

132

Biological monitoring and surveillance results of Gulf War I veterans exposed to depleted uranium  

Science Journals Connector (OSTI)

Objective: To relate medical surveillance outcomes to uranium biomonitoring results in a group of depleted uranium (DU)-exposed, Gulf War I veterans...Methods...: Thirty-two veterans of Gulf War ...

Melissa A. McDiarmid; Susan M. Engelhardt…

2006-01-01T23:59:59.000Z

133

Effects of depleted uranium after short-term exposure on vitamin D metabolism in rat  

Science Journals Connector (OSTI)

Uranium is a natural radioactive heavy metal. Its ... brain. Effects of an acute contamination by depleted uranium (DU) were investigated in vivo on...3 biosynthetic pathway. Rats received an intragastric adminis...

E. Tissandie; Y. Guéguen; J. M. A. Lobaccaro; F. Paquet…

2006-08-01T23:59:59.000Z

134

Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride  

Science Journals Connector (OSTI)

The production of enriched uranium used in nuclear weapons and fuel for ... power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually ... DU mass is stored as environ-men...

N. P. Laverov; V. I. Velichkin; B. I. Omel’yanenko…

2010-08-01T23:59:59.000Z

135

Effects of Depleted Uranium on Oxidative Stress, Detoxification, and Defence Parameters of Zebrafish Danio rerio  

Science Journals Connector (OSTI)

In this study, we investigated the effects of depleted uranium (DU), the by-product of nuclear enrichment of uranium, on several parameters related to oxidative stress...Danio rerio. Several parameters were recor...

Beatrice Gagnaire; Isabelle Cavalie…

2013-01-01T23:59:59.000Z

136

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

137

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

138

Alloy of depleted uranium: Material for ?-protection of shipment packing sets  

Science Journals Connector (OSTI)

The effect of thermal action on the structure and physical and mechanical properties of an alloy based on depleted uranium and used for biological protection from ionizing...

V. K. Orlov; V. M. Sergeev; A. G. Semenov; V. V. Noskov…

139

Radiological air quality in a depleted uranium storage vault  

SciTech Connect (OSTI)

The radiological air quality of two storage vaults, one with depleted uranium (DU) and one without, was evaluated and compared. The intent of the study was to determine if the presence of stored DU would significantly contribute to the gaseous/airborne radiation level compared to natural background. Both vaults are constructed out of concrete and are dimensionally similar. The vaults are located on the first floor of the same building. Neither vault has air supply or air exhaust. The doors to both vaults remained closed during the evaluation period, except for brief and infrequent access by the operational group. One vault contained 700 KG of depleted uranium, and the other vault contained documents inside of file cabinets. Radon detectors and giraffe air samplers were used to gather data on the quantity of gaseous/airborne radionuclides in both vaults. The results of this study indicated that there was no significant difference in the quantity of gaseous/airborne radionuclides in the two vaults. This paper gives a discussion of the effects of the stored DU on the air quality, and poses several theories supporting the results.

Robinson, T.; Cucchiara, A.L.

1999-03-01T23:59:59.000Z

140

SHOCKWAVE PROFILE AND BAUSCHINGER EFFECT IN DEPLETED URANIUM  

Science Journals Connector (OSTI)

Dynamic damage evolution in materials is of growing interest in particular the role of defect structure on material strength during a dynamic experiment. Many studies in the past have seen strong correlations between the shockwave profile and the defect structure during dynamic experiments such as quasi?elastic release behavior. Bauschinger effect is a microstructurally controlled process in which a material displays a change in stress?strain characterisitics due to a change in the defect structure. Studies on depleted uranium have revealed indications of Bauschinger effect being a mechanism present during quasi?static experiments which could be a result of the large amount of twinning observed in these materials. As work continues to improve strength models it becomes imperitive to understand the role of defect structure on the properties of materials under dynamic conditions. The study reported here is an observation of the release wave behavior in depleted uranium that first undergoes compressive shock loading followed by a reversal of the loading direction upon release.

D. D. Koller; G. T. Gray III; R. S. Hixson

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Depleted-Uranium Weapons the Whys and Wherefores  

E-Print Network [OSTI]

The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

Gsponer, A

2003-01-01T23:59:59.000Z

142

Kr ion irradiation study of the depleted-uranium alloys.  

SciTech Connect (OSTI)

Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M. (Materials Science Division); (INL); (Univ. of Wisconsin)

2010-12-01T23:59:59.000Z

143

Kr Ion Irradiation Study of the Depleted-Uranium Alloys  

SciTech Connect (OSTI)

Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200ºC to ion doses up to 2.5 × 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 × 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

2010-12-01T23:59:59.000Z

144

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Broader source: Energy.gov (indexed) [DOE]

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

145

Repository Applications: Potential Benefits of Using Depleted Uranium (DU)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Repository Applications Repository Applications Repository Applications: Potential Benefits of Using Depleted Uranium (DU) in a Geological Repository The United States is investigating the Yucca Mountain (YM) site in Nevada for the disposal of radioactive spent nuclear fuel (SNF)—the primary waste from nuclear power plants. The SNF would be packaged and then emplaced 200 to 300 m underground in parallel disposal tunnels. The repository isolates the SNF from the biosphere until the radionuclides decay to safe levels. DU may improve the performance of geological repositories for disposal of SNF via three mechanisms: Radiation shielding for waste packages to protect workers Lowering the potential for long-term nuclear criticality in the repository Reducing the potential for releases of radionuclides from the SNF

146

Military use of depleted uranium assessment of prolonged population exposure  

E-Print Network [OSTI]

This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

Giannardi, C

2001-01-01T23:59:59.000Z

147

Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial cells  

Science Journals Connector (OSTI)

...Epigenetic mechanism is involved in depleted uranium-induced transformation in human...Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military...research information on the potential health hazards of DU exposure. In our...

Hong Xie; Carolyne LaCerte; and John P. Wise

2010-04-15T23:59:59.000Z

148

Assessment of depleted uranium in South-Western Iran  

Science Journals Connector (OSTI)

Abstract Depleted uranium (DU) has been used in a number of conflicts most notably during the Gulf War in Iraq and existence of it has been reported in Kuwait by IAEA experts. Due to heavy sand storms prevailing into the direction to South West of Iran transporting sand originating from Iraq, the probability that DU could be moved is considered high. Therefore it was decided to take some air and soil samples near border line and some nearest cities. The study was focused on finding DU in air and soil of these south-west provinces. 22 air samples and 20 soil samples were collected and analyzed on their contents of uranium isotopes by alpha, beta and gamma spectrometry. The air and soil samples have been measured by use of an alpha-beta counter and by a gamma spectrometer, respectively. Results showed that there is no radiation impact from DU and so no DU has been transported via sand storms since all results were obtained below the detection limit.

Hossein Yousefi; Abdullah Najafi

2013-01-01T23:59:59.000Z

149

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect (OSTI)

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

150

FEASIBILITY STUDY OF DUPOLY TO RECYCLE DEPLETED URANIUM.  

SciTech Connect (OSTI)

DUPoly, depleted uranium (DU) powder microencapsulated in a low-density polyethylene binder, has been demonstrated as an innovative and efficient recycle product, a very durable high density material with significant commercial appeal. DUPoly was successfully prepared using uranium tetrafluoride (UF{sub 4}) ''green salt'' obtained from Fluor Daniel-Fernald, a U.S. Department of Energy reprocessing facility near Cincinnati, Ohio. Samples containing up to 90 wt% UF{sub 4} were produced using a single screw plastics extruder, with sample densities of up to 3.97 {+-} 0.08 g/cm{sup 3} measured. Compressive strength of as-prepared samples (50-90 wt% UF4 ) ranged from 1682 {+-} 116 psi (11.6 {+-} 0.8 MPa) to 3145 {+-} 57 psi (21.7 {+-} 0.4 MPa). Water immersion testing for a period of 90 days produced no visible degradation of the samples. Leach rates were low, ranging from 0.02 % (2.74 x 10{sup {minus}6} gm/gm/d) for 50 wt% UF{sub 4} samples to 0.72 % (7.98 x 10{sup {minus}5} gm/gm/d) for 90 wt% samples. Sample strength was not compromised by water immersion. DUPoly samples containing uranium trioxide (UO{sub 3}), a DU reprocessing byproduct material stockpiled at the Savannah River Site, were gamma irradiated to 1 x 10{sup 9} rad with no visible deterioration. Compressive strength increased significantly, however: up to 200% for samples with 90 wt% UO{sub 3}. Correspondingly, percent deformation (strain) at failure was decreased for all samples. Gamma attenuation data on UO{sub 3} DUPoly samples yielded mass attenuation coefficients greater than those for lead. Neutron removal coefficients were calculated and shown to correlate well with wt% of DU. Unlike gamma attenuation, both hydrogenous and nonhydrogenous materials interact to attenuate neutrons.

ADAMS,J.W.; LAGERAAEN,P.R.; KALB,P.D.; RUTENKROGER,S.P.

1998-02-01T23:59:59.000Z

151

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model  

SciTech Connect (OSTI)

Ductility and fracture toughness is a major stumbling block in using depleted uranium as a structural material. The ability to correctly model deformation of uranium can be used to create process path methods to improve its structural design ability. The textural evolution of depleted uranium was simulated using a visco-plastic self consistent model and analyzed by comparing pole figures of the simulations and experimental samples. Depleted uranium has the same structure as alpha uranium, which is an orthorhombic phase of uranium. Both deformation slip and twin systems were compared. The VPSC model was chosen to simulate this material because the model encompasses both low-symmetry materials as well as twinning in materials. This is of particular interest since depleted uranium has a high propensity for twinning, which dominates deformation and texture evolution. Simulated results were compared to experimental results to measure the validity of the model. One specific twin system, the {l_brace}176{r_brace}[512] twin, was of specific notice. The VPSC model was used to simulate the influence of this twin on depleted uranium and was compared with a mechanically shocked depleted uranium sample. Under high strain rate shock deformation conditions, the {l_brace}176{r_brace}[512] twin system appears to be a dominant deformation system. By simulating a compression process using the VPSC model with the {l_brace}176{r_brace}[512] twin as the dominant deformation mode, a favorable comparison could be made between the experimental and simulated textures. (authors)

Ho, J.; Garmestani, H. [Georgia Inst. of Technology, Atlanta, GA 30332-0245 (United States); Burrell, R.; Belvin, A. [Y-12 National Security Complex, Oak Ridge, TN (United States); Li, D. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); McDowell, D. [Woodruff School of Mechanical Engineering, Atlanta, GA 30332-0245 (United States); Rollett, A. [Dept. of Materials Science and Engineering, Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States)

2012-07-01T23:59:59.000Z

152

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading  

E-Print Network [OSTI]

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading

1985-01-01T23:59:59.000Z

153

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

154

Modifications of the Expression of Genes Involved in Cerebral Cholesterol Metabolism in the Rat Following Chronic Ingestion of Depleted Uranium  

Science Journals Connector (OSTI)

Depleted uranium results from the enrichment of natural uranium for energetic purpose. Its potential dispersion in ... at risk of being contaminated through ingestion. Uranium can build up in the brain and ... as...

Radjini Racine; Yann Gueguen; Patrick Gourmelon…

2009-06-01T23:59:59.000Z

155

Dupoly process for treatment of depleted uranium and production of beneficial end products  

DOE Patents [OSTI]

The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

2000-02-29T23:59:59.000Z

156

Properties, use and health effects of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) has been claimed to contribute to health problems both in military personnel directly involved in war actions as well in military and civilian individuals who resided in areas where DU ammunition was expended. Due to the low specific radioactivity and the dominance of alpha-radiation, no acute health risk can be attributed to external exposure to DU. Internalised DU is both chemo- and radio-toxic. The major risk is from inhalation of DU dust or particles with less than 10 ?m aerodynamic-equivalent diameter, formed when DU ammunitions hit hard targets (aerosol formation) or during weathering of DU penetrators. One major conclusion is that for all post-conflict situations, the inhaled DU quantities (central estimates) produced radiation doses that would be only a fraction of those normally received by the lung from natural radiation. Hence no long term lung effects due to these DU amounts can be expected. These conclusions also hold for whole-body exposure from ingestion of DU in local food and water.

W. Burkart; P.R. Danesi; J.H. Hendry

2005-01-01T23:59:59.000Z

157

Effect of catechins and tannins on depleted uranium-induced DNA strand breaks  

Science Journals Connector (OSTI)

The effects of polyphenols on plasmid DNA strand breaks by depleted uranium were studied using four catechins: (+)...2 2+) with hydrogen peroxide (H2O2) were strongly enhanced by EGC, EGCG, MMT, a...

Emiko Matsuda; Akira Nakajima

2012-08-01T23:59:59.000Z

158

Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium.  

E-Print Network [OSTI]

??The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and… (more)

Stone, Joseph C.

2012-01-01T23:59:59.000Z

159

Effects of hydroxyl radicals generated from the depleted uranium-hydrogen peroxide systems  

Science Journals Connector (OSTI)

A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxy...

A. Nakajima; Y. Ueda

2007-05-01T23:59:59.000Z

160

Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium  

E-Print Network [OSTI]

The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and thermal neutron fluxes. The relative abundances (alphas) for the first...

Stone, Joseph C.

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Leukemic transformation of hematopoietic cells in mice internally exposed to depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a dense heavy metal ... have been wounded by DU shrapnel. The health effects of embedded DU are unknown. Published...in vitro can transform immortalized human osteoblast cells (HOS) to th...

Alexandra C. Miller; Catherine Bonait-Pellie…

2005-11-01T23:59:59.000Z

162

Teratogenicity of depleted uranium aerosols: A review from an epidemiological perspective  

Science Journals Connector (OSTI)

Depleted uranium is being used increasingly often as a component of munitions in military conflicts. Military personnel, civilians and the DU munitions producers are being exposed to the DU aerosols that are g...

Rita Hindin; Doug Brugge; Bindu Panikkar

2005-08-01T23:59:59.000Z

163

Evaluation of Environmental and Health Consequences of Depleted Uranium Armor use in Yugoslavia  

Science Journals Connector (OSTI)

In the paper there is discussed a possible radiation effect a combat application of armor - piercing ammunitions with a “depleted uranium” (DU) in Iraqian and Yugoslavian conflicts ... a noticeable additional inf...

V. A. Vetrov; O. A. Pavlovsky

2003-01-01T23:59:59.000Z

164

Long-term corrosion and leaching of depleted uranium (DU) in soil  

Science Journals Connector (OSTI)

Corrosion and leaching of depleted uranium (DU) was investigated for 3 years...238U was determined in the effluents by inductively coupled plasma mass spectrometry. In addition, 235U was measured occasionally to ...

W. Schimmack; U. Gerstmann; W. Schultz; G. Geipel

2007-08-01T23:59:59.000Z

165

Leaching of depleted uranium in soil as determined by column experiments  

Science Journals Connector (OSTI)

The basic features of the leachability of depleted uranium (DU) projectiles in soil was investigated...235U and 238U were determined by inductively coupled plasma mass spectrometry. The leaching rates of 238U fro...

W. Schimmack; U. Gerstmann; U. Oeh; W. Schultz…

2005-12-01T23:59:59.000Z

166

Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium  

Science Journals Connector (OSTI)

We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064?nm) and femtosecond Ti:sapphire (800?nm) laser pulses. The latter pulses produce...

Emmert, Luke A; Chinni, Rosemarie C; Cremers, David A; Jones, C Randy; Rudolph, Wolfgang

2011-01-01T23:59:59.000Z

167

Depleted uranium is not toxic to rat brain endothelial (RBE4) cells  

Science Journals Connector (OSTI)

Studies on Gulf War veterans with depleted uranium (DU) fragments embedded in their soft...3O8 uranyl chloride form of DU into RBE4 cells is efficient, but there are little or no resulting cytotoxic effects on th...

Allison W. Dobson; Anna K. Lack; Keith M. Erikson…

2006-04-01T23:59:59.000Z

168

Interaction of uranium dioxide with molten zircaloy  

SciTech Connect (OSTI)

Laboratory experiments in which gram quantities of molten Zircaloy were held in contact with UO/sub 2/ for known times (20-600 s) and temperatures (1900-2200/sup 0/C) were conducted. Following each experiment, polished sections of the specimen were examined by optical microscopy, electron microprobe, scanning Auger microscopy, and x-ray fluorescence spectroscopy. Three closely-related experiments were conducted. In the first, the molten metal was contained in a UO/sub 2/ crucible. The dissolution rate in this system was found to be dominated by natural convection in the melt driven by density gradients established by the dissolving uranium. The mechanism of the interaction also was observed to involve penetration and detachment of the grains of the oxide by the molten metal. Similar tests with single-crystal UO/sub 2/ specimens showed similar dissolution behavior. Less severe attack occurred because of the absence of grain boundaries, although subgrain boundaries or dislocations provided high-diffusivity pathways for preferential oxygen removal. In the third type of test, a disk of UO/sub 2/ was placed at the bottom of a ThO/sub 2/ crucible. This arrangement prevented establishment of unstable density gradients in the liquid phase, resulting in a purely diffusion-controlled interaction.

Kim, K.T.

1987-01-01T23:59:59.000Z

169

Isotopic investigation of the colloidal mobility of depleted uranium in a podzolic soil  

Science Journals Connector (OSTI)

Abstract The mobility and colloidal migration of uranium were investigated in a soil where limited amounts of anthropogenic uranium (depleted in the 235U isotope) were deposited, adding to the naturally occurring uranium. The colloidal fraction was assumed to correspond to the operational fraction between 10 kDa and 1.2 ?m after (ultra)filtration. Experimental leaching tests indicate that approximately 8–15% of uranium is desorbed from the soil. Significant enrichment of the leachate in the depleted uranium (DU) content indicates that uranium from recent anthropogenic DU deposit is weakly bound to soil aggregates and more mobile than geologically occurring natural uranium (NU). Moreover, 80% of uranium in leachates was located in the colloidal fractions. Nevertheless, the percentage of DU in the colloidal and dissolved fractions suggests that NU is mainly associated with the non-mobile coarser fractions of the soil. A field investigation revealed that the calculated percentages of DU in soil and groundwater samples result in the enhanced mobility of uranium downstream from the deposit area. Colloidal uranium represents between 10% and 32% of uranium in surface water and between 68% and 90% of uranium in groundwater where physicochemical parameters are similar to those of the leachates. Finally, as observed in batch leaching tests, the colloidal fractions of groundwater contain slightly less DU than the dissolved fraction, indicating that DU is primarily associated with macromolecules in dissolved fraction.

S. Harguindeguy; P. Crançon; F. Pointurier; M. Potin-Gautier; G. Lespes

2014-01-01T23:59:59.000Z

170

Radiological and Depleted Uranium Weapons: Environmental and Health Consequences  

Science Journals Connector (OSTI)

The effects of nuclear weapons are due to the release of blast and thermal energy and the immediate and residual ionizing radiation energy. Most of the short-term damages to the environment and the human health are caused by the blast and thermal energies. Ionizing radiation energy received in large doses at high dose rates (victims of nuclear explosions) can produce acute radiation sickness and can even be lethal. Individuals having received lower radiation doses, or even high doses at low dose rates, may suffer from stochastic effects, primarily, the induction of cancer. Studies of exposed populations suggest the probability of developing a lethal cancer following low dose rate exposure is increased by approximately 5% for each Sv the whole-body receives. This risk is added, of course, to the risk of dying from cancer without exposure to radiation, which is more than 20% worldwide. For radiological weapons (radiological dispersion devices or dirty bombs), the health effects due to radiation are expected to be minor in most cases. Casualties will mainly occur due to the conventional explosive. Fear, panic, and decontamination costs will be the major effects. Significant radiation damage to individuals would likely be limited to very few persons. Depleted uranium (DU) weapons leave in the battlefield fragmented or intact DU penetrators as well as DU dust. The latter, if inhaled, could represent a radiological risk, especially to individuals spending some time in vehicles hit by DU munitions. All studies conducted so far have shown the outdoors doses to be so low not to represent a significant risk. For those spending 10 h per year in vehicles hit by DU munitions, the risk of developing a lethal cancer is slightly higher (?0.2%).

P.R. Danesi

2011-01-01T23:59:59.000Z

171

Radiological Risk Assessment of Capstone Depleted Uranium Aerosols  

SciTech Connect (OSTI)

Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-yr doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. The methodologies of the ICRP International Steering Committee on Radiation Standards (ISCORS) were used for determining the whole body cancer risk. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.

Hahn, Fletcher; Roszell, Laurie E.; Daxon, Eric G.; Guilmette, Ray A.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

172

The corrosion of depleted uranium in terrestrial and marine environments  

Science Journals Connector (OSTI)

Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm?2 y?1 and 2.5–48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area.

C. Toque; A.E. Milodowski; A.C. Baker

2014-01-01T23:59:59.000Z

173

SFR with once-through depleted uranium breed & burn blanket  

Science Journals Connector (OSTI)

Abstract This paper assesses the feasibility of Sodium-cooled Fast Reactor (SFR) cores that have TRU recycled seeds and once-through depleted uranium blankets. The design objective of these Seed-and-Blanket (S&B) cores is to maximize the power generated by the blanket. As the blanket fuel cost is significantly lower than the cost of the seed fuel and does not need reprocessing, increasing the fraction of reactor power generated by the blanket will reduce the total fuel cycle cost and the fuel reprocessing capacity required per unit of electricity generated. The S&B core is designed to have a prolate (“cigar”) shape seed (“driver”) to maximize the fraction of neutrons that radially leak into the subcritical blanket and reduce neutron loss via axial leakage. Both seed and blanket contain multiple batches; the blanket batches are gradually shuffled inward, while one third of the fuel batches in the seed are recycled. The preliminary study found that it is possible to design the seed to accommodate a wide range of TRU conversion ratios (CR) without significantly penalizing the burnup reactivity swing. The relatively small burnup reactivity swing enables to design the S&B core to operate at longer cycles and discharge its fuel at a higher burnup relative to conventional TRU transmutation cores with identical CR. The S&B cores can generate 1000 \\{MWth\\} and fit within the S-PRISM reactor vessel. The fraction of core power generated by the blanket is between 40% and 50% without exceeding the radiation damage constraint of 200 Displacements per Atom (DPA); this fraction increases when the seed is designed to have a smaller CR. These features are expected to improve the economics of SFR.

Guanheng Zhang; Ehud Greenspan; Alejandra Jolodosky; Jasmina Vujic

2014-01-01T23:59:59.000Z

174

Toxicity of depleted uranium on isolated rat kidney mitochondria  

Science Journals Connector (OSTI)

Background Kidney is known as the most sensitive target organ for depleted uranium (DU) toxicity in comparison to other organs. Although the oxidative stress and mitochondrial damage induced by DU has been well investigated, the precise mechanism of DU-induced nephrotoxicity has not been thoroughly recognized yet. Methods Kidney mitochondria were obtained using differential centrifugation from Wistar rats and mitochondrial toxicity endpoints were then determined in both in vivo and in vitro uranyl acetate (UA) exposure cases. Results Single injection of UA (0, 0.5, 1 and 2 mg/kg, i.p.) caused a significant increase in blood urea nitrogen and creatinine levels. Isolated mitochondria from the UA-treated rat kidney showed a marked elevation in oxidative stress accompanied by mitochondrial membrane potential (MMP) collapse as compared to control group. Incubation of isolated kidney mitochondria with UA (50, 100 and 200 ?M) manifested that UA can disrupt the electron transfer chain at complex II and III that leads to induction of reactive oxygen species (ROS) formation, lipid peroxidation, and glutathione oxidation. Disturbances in oxidative phosphorylation were also demonstrated through decreased ATP concentration and ATP/ADP ratio in UA-treated mitochondria. In addition, UA induced a significant damage in mitochondrial outer membrane. Moreover, MMP collapse, mitochondrial swelling and cytochrome c release were observed following the UA treatment in isolated mitochondria. General significance Both our in vivo and in vitro results showed that UA-induced nephrotoxicity is linked to the impairment of electron transfer chain especially at complex II and III which leads to subsequent oxidative stress.

Fatemeh Shaki; Mir-Jamal Hosseini; Mahmoud Ghazi-Khansari; Jalal Pourahmad

2012-01-01T23:59:59.000Z

175

Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure  

Science Journals Connector (OSTI)

Because of its toxicity and its ubiquity within aquatic compartments, uranium (U) represents a significant hazard to aquatic species such as fish. In a previous study, we investigated some biological responses in zebrafish either exposed to depleted or to enriched U (i.e., to different radiological activities). However, results required further experiments to better understand biological responses. Moreover, we failed to clearly demonstrate a significant relationship between biological effects and U radiological activity. We therefore chose to herein examine U bioaccumulation and induced effects in zebrafish according to a chemical dose–response approach. Results showed that U is highly bioconcentrated in fish, according to a time- and concentration-dependent model. Additionally, hepatic antioxidant defenses, red blood cells DNA integrity and brain acetylcholinesterase activity were found to be significantly altered. Generally, the higher the U concentration, the sooner and/or the greater the effect, suggesting a close relationship between accumulation and effect.

Sabrina Barillet; Christelle Adam-Guillermin; Olivier Palluel; Jean-Marc Porcher; Alain Devaux

2011-01-01T23:59:59.000Z

176

Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany  

Science Journals Connector (OSTI)

The Erzgebirge (‘Ore Mountains’) area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called ‘Schneeberg’ disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 109 Euro. A comparison with concentrations of depleted uranium at certain sites is given.

A Meinrath; P Schneider; G Meinrath

2003-01-01T23:59:59.000Z

177

The chemical-induced genotoxicity of depleted uranium.  

E-Print Network [OSTI]

?? Uranium has been mined for many years and used for fuel for nuclear reactors and materials for atomic weapons, ammunition, and armor. While the… (more)

Yellowhair, Monica

2011-01-01T23:59:59.000Z

178

Depleted uranium human health risk assessment, Jefferson Proving Ground, Indiana  

SciTech Connect (OSTI)

The risk to human health from fragments of depleted uranium (DU) at Jefferson Proving Ground (JPG) was estimated using two types of ecosystem pathway models. A steady-state, model of the JPG area was developed to examine the effects of DU in soils, water, and vegetation on deer that were hunted and consumed by humans. The RESRAD code was also used to estimate the effects of farming the impact area and consuming the products derived from the farm. The steady-state model showed that minimal doses to humans are expected from consumption of deer that inhabit the impact area. Median values for doses to humans range from about 1 mrem ({plus_minus}2.4) to 0.04 mrem ({plus_minus}0.13) and translate to less than 1 {times} 10{sup {minus}6} detriments (excess cancers) in the population. Monte Carlo simulation of the steady-state model was used to derive the probability distributions from which the median values were drawn. Sensitivity analyses of the steady-state model showed that the amount of DU in airborne dust and, therefore, the amount of DU on the vegetation surface, controlled the amount of DU ingested by deer and by humans. Human doses from the RESRAD estimates ranged from less than 1 mrem/y to about 6.5 mrem/y in a hunting scenario and subsistence fanning scenario, respectively. The human doses exceeded the 100 mrem/y dose limit when drinking water for the farming scenario was obtained from the on-site aquifer that was presumably contaminated with DU. The two farming scenarios were unrealistic land uses because the additional risk to humans due to unexploded ordnance in the impact area was not figured into the risk estimate. The doses estimated with RESRAD translated to less than 1 {times} 10{sup {minus}6} detriments to about 1 {times} 10{sup {minus}3} detriments. The higher risks were associated only with the farming scenario in which drinking water was obtained on-site.

Ebinger, M.H.; Hansen, W.R.

1994-04-29T23:59:59.000Z

179

Depleted and Recyclable Uranium in the United States: Inventories and Options  

SciTech Connect (OSTI)

International consumption of uranium currently outpaces production by nearly a factor of two. Secondary supplies from dismantled nuclear weapons, along with civilian and governmental stockpiles, are being used to make up the difference but supplies are limited. Large amounts of {sup 235}U are contained in spent nuclear fuel as well as in the tails left over from past uranium enrichment. The usability of these inhomogeneous uranium supplies depends on their isotopics. We present data on the {sup 235}U content of spent nuclear fuel and depleted uranium tails in the US and discuss the factors that affect its marketability and alternative uses. (authors)

Schneider, Erich; Scopatza, Anthony [The University of Texas at Austin, 1 University Station C2200, Austin TX 78712 (United States); Deinert, Mark [The University of Texas at Austin, 1 University Station C2200, Austin TX 78712 (United States); Cornell University, Ithaca NY 14853 (United States)

2007-07-01T23:59:59.000Z

180

Analysis of heat-labile sites generated by reactions of depleted uranium and ascorbate in plasmid DNA  

Science Journals Connector (OSTI)

The goal of this study was to characterize how depleted uranium (DU) causes DNA damage. Procedures were ... Radical scavengers did not affect the formation of uranium-induced SSB, suggesting that SSB arose from.....

Janice Wilson; Ashley Young…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FAQ 15-What are the dimensions of a depleted uranium hexafluoride cylinder?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the dimensions of a depleted uranium hexafluoride cylinder? are the dimensions of a depleted uranium hexafluoride cylinder? What are the dimensions of a depleted uranium hexafluoride cylinder? Several different cylinder types are in use, although the vast majority of cylinders are designed to contain 14-tons (12-metric tons) of depleted UF6. The 14-ton-capacity cylinders are 12 ft (3.7 m) long by 4 ft (1.2 m) in diameter, with most having an initial wall thickness of 5/16 in. (0.79 cm) of steel. The cylinders have external stiffening rings that provide support. Lifting lugs for handling are attached to the stiffening rings. A small percentage of the cylinders have skirted ends (extensions of the cylinder walls past the rounded ends of the cylinder). Each cylinder has a single valve for filling and emptying located on one end at the 12 o'clock position. Similar, but slightly smaller, cylinders designed to contain 10 tons (9 metric tons) of depleted UF6 are also in use. Cylinders are manufactured in accordance with an American National Standards Institute standard (ANSI N14.1, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport) as specified in 49 CFR 173.420, the federal regulations governing transport of depleted UF6.

182

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...Environmental Management Project (Fernald Environmental Management Project 1997; McDiarmid...Lyon, France:International Agency for Research...following exposure to radon daughters and uranium...Environmental Management Project (FEMP). 1997...

2006-01-01T23:59:59.000Z

183

Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect (OSTI)

The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

Dubrin, J.W., Rahm-Crites, L.

1997-09-01T23:59:59.000Z

184

Depleted uranium munitions—where are we now?  

Science Journals Connector (OSTI)

Kinetic energy weapons that contain a penetrator of depleted uranium (DU) were first used in the Gulf War of 1991 and were subsequently used in the Balkans. DU penetrators are considered to have significant operational advantages over those made of tungsten as they are capable of penetrating the heavy armour of the modern battle tank. The use of DU rounds in military conflicts has, however, provoked a wide debate about the health consequences for soldiers and the local population since DU is a toxic metal and is radioactive. The Royal Society became involved in the debate about the health hazards of DU munitions as a result of public concern, to produce an independent view on the science and the uncertainties, uninfluenced by the conflicting interests of governments and the military, who consider that the risks are very slight, and of other individuals and organisations, some of whom have suggested that hundreds of thousands of deaths from cancer may result from the use of DU in the Gulf War. Large quantities of DU rounds were deployed in the Gulf War (about 340 tonnes) and much smaller amounts in the Balkans (about 11 tonnes). In both conflicts the majority of the DU rounds were fired from aircraft in strafing attacks where most of the penetrators miss their target and penetrate several metres into the soil. Consequently, large numbers of DU penetrators are believed to remain buried in the ground. Corrosion of these penetrators will occur with the possibility of a gradual rise in the uranium levels in local water supplies. About 10,000 larger calibre DU rounds were fired from tanks during the Gulf War, although these were not used in the Balkans. DU rounds that penetrate a target vehicle may pass straight through or, particularly if they hit heavy armour, may release a variable proportion of the penetrator as DU particles which ignite to produce an aerosol of DU oxides. The DU particles released during such impacts will be inhaled by those surviving within a struck tank or by those in the path of the DU aerosol. Unless adequate respiratory protection is used, DU particles will also be inhaled by those charged with cleaning up DU-contaminated vehicles. The fraction of a DU penetrator that is aerosolised and the fraction of the particles of DU oxides that are within the respirable range, as well as the solubility properties of the DU oxides, are not well documented and depend on the type of impact, but a range of values is available from test firings of DU rounds. A number of exposure scenarios were considered in the two Royal Society reports on the Health Hazards of DU Munitions [1, 2] and central and worst-case intakes of DU were estimated from the range of values obtained from test firings. These estimated intakes, and the range of reported values of the properties of the DU oxides released during an impact or fire, were used to produce central estimates and worst-case estimates of risks for soldiers on the battlefield. Although there are uncertainties about the intakes of DU, and of the properties of the DU oxides, there is a clear view among radiation biologists that, given the equivalent doses to tissues, the excess lifetime risks of various fatal cancers can be estimated, perhaps with an order of magnitude of uncertainty. Therefore if the intakes of DU, or the properties of DU oxides, are in future better defined, the estimates of risk given in the Royal Society reports can be adjusted appropriately. There are very different views on the health hazards of DU munitions. Most of the concerns of veterans and their advisors focus on the radiological effects of DU and consequently these are the focus of this editorial. Effects on the kidney and environmental consequences are, however, considered in the second of the Royal Society reports [2] and the main conclusions of both of the reports are outlined in the summary document published in this issue of the journal (page 131). The main radiological concerns focus on the irradiation of lung tissues from inhaled DU particles and irradiation resulting from the translocation

Brian G Spratt

2002-01-01T23:59:59.000Z

185

Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium  

SciTech Connect (OSTI)

We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064 nm) and femtosecond Ti:sapphire (800 nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.

Emmert, Luke A.; Chinni, Rosemarie C.; Cremers, David A.; Jones, C. Randy; Rudolph, Wolfgang

2011-01-20T23:59:59.000Z

186

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

187

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

188

DOE/EA-1607: Final Environmental Assessment for Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium (June 2009)  

Broader source: Energy.gov (indexed) [DOE]

μCi/cc microcuries per cubic centimeter μCi/cc microcuries per cubic centimeter MAP mitigation action plan MEI maximally exposed individual mg/kg milligrams per kilogram mrem millirem mSv millisievert MT metric ton MTCA Model Toxics Control Act MTU metric tons of uranium N/A not applicable Final Environmental Assessment: Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium vi NAAQS National Ambient Air Quality Standards NEF National Enrichment Facility NEPA National Environmental Policy Act NRC U.S. Nuclear Regulatory Commission NU natural uranium NUF 6 natural uranium hexafluoride pCi/g picocuries per gram PEIS programmatic environmental impact statement PM 2.5 particulate matter with a diameter of 2.5 microns or less PM 10 particulate matter with a diameter of 10 microns or less

189

Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size  

SciTech Connect (OSTI)

During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

2009-03-01T23:59:59.000Z

190

Disposal Options for Depleted Uranium Trioxide (DU03) Study  

SciTech Connect (OSTI)

There exists at SRS 50 million pounds of depleted UO3 (DUO) stored in 55-gallon drums stacked three high in several buildings. This storage configuration does not allow access to the individual drums for monitoring drum integrity and material accountability.

Jones, T.M.

2002-08-02T23:59:59.000Z

191

Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2)  

Science Journals Connector (OSTI)

Depleted uranium (DU) and heavy-metal tungsten alloys ... in military applications. Chemically similar to natural uranium, but depleted of the higher activity 235U and 234U...in vitro. Using insoluble DU-UO2 and ...

Alexandra C. Miller; Kia Brooks; Jan Smith…

2004-01-01T23:59:59.000Z

192

D0 Decomissioning : Storage of Depleted Uranium Modules Inside D0 Calorimeters after the Termination of D0 Experiment  

SciTech Connect (OSTI)

Dzero liquid Argon calorimeters contain hadronic modules made of depleted uranium plates. After the termination of DO detector's operation, liquid Argon will be transferred back to Argon storage Dewar, and all three calorimeters will be warmed up. At this point, there is no intention to disassemble the calorimeters. The depleted uranium modules will stay inside the cryostats. Depleted uranium is a by-product of the uranium enrichment process. It is slightly radioactive, emits alpha, beta and gamma radiation. External radiation hazards are minimal. Alpha radiation has no external exposure hazards, as dead layers of skin stop it; beta radiation might have effects only when there is a direct contact with skin; and gamma rays are negligible - levels are extremely low. Depleted uranium is a pyrophoric material. Small particles (such as shavings, powder etc.) may ignite with presence of Oxygen (air). Also, in presence of air and moisture it can oxidize. Depleted uranium can absorb moisture and keep oxidizing later, even after air and moisture are excluded. Uranium oxide can powder and flake off. This powder is also pyrographic. Uranium oxide may create health problems if inhaled. Since uranium oxide is water soluble, it may enter the bloodstream and cause toxic effects.

Sarychev, Michael; /Fermilab

2011-09-21T23:59:59.000Z

193

Assessing the Renal Toxicity of Capstone Depleted Uranium Oxides and Other Uranium Compounds  

SciTech Connect (OSTI)

The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiation Protection (ICRP) value of 3 µg U/g kidney, a value that is based largely upon chronic studies in animals. In the present effort, we have developed a risk model equation to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to +++) and then placed into an Effect Group. A discriminant analysis was used to build a model equation to predict the Effect Group based on the amount of uranium in the kidneys. The model equation was able to predict the Effect Group with 85% accuracy. The risk model was used to predict the Effect Group for Soldiers exposed to DU as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the Effect Group of new cases in which acute exposures to uranium have occurred.

Roszell, Laurie E.; Hahn, Fletcher; Lee, Robyn B.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

194

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

195

Methods Used to Calculate Doses Resulting from Inhalation of Capstone Depleted Uranium Aerosols  

SciTech Connect (OSTI)

The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a United States Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions is described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.

Miller, Guthrie; Cheng, Yung-Sung; Traub, Richard J.; Little, Thomas T.; Guilmette, Ray A.

2009-02-26T23:59:59.000Z

196

Radiological assessment of depleted uranium migration offsite from an ordnance range  

SciTech Connect (OSTI)

The military utilizes ordnance loaded with depleted uranium in order to maximize armor penetrating capabilities. These weapons are tested on open ranges where the weapons are fired through a cloth target and impact into the soil. This paper examines the potential environmental impact from use of depleted uranium in an open setting. A preliminary pathway analysis was performed to examine potential routes of exposure to nonhuman species in the vicinity and ultimately to man. Generic data was used in the study to estimate the isotopic mix and weight of the ordnance. Key factors in the analysis included analyzing the physics of weapon impact on soil, chemical changes in material upon impact, and mechanisms of offsite transport (including atmospheric and overland transport). Non-standard exposure scenarios were investigated, including the possibility of offsite contaminant transport due to range grassfires. Two radiological assessment codes, MEPAS (Multi media Environmental Pollutant Assessment System) and RESRAD were used to help analyze the scenarios.

Rynders, D.G. [Oregon State Univ., Corvallis, OR (United States)

1996-06-01T23:59:59.000Z

197

Summary of the Preliminary Analysis of Savannah River Depleted Uranium Trioxide  

SciTech Connect (OSTI)

This report summarizes a preliminary special analysis of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 2). The analysis is considered preliminary because a final waste profile has not been submitted for review. The special analysis is performed to determine the acceptability of the waste stream for shallow land burial at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The Savannah River Depleted Uranium Trioxide waste stream requires a special analysis because the waste stream’s sum of fractions exceeds one. The 99Tc activity concentration is 98 percent of the NNSS Waste Acceptance Criteria and the largest single contributor to the sum of fractions.

NSTec Environmental Management

2010-10-13T23:59:59.000Z

198

Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

2007-01-22T23:59:59.000Z

199

A-Bomb Tests; Three Mile Island and Other Incidents; NPPs Under Normal Operation; Depleted Uranium Bombs  

Science Journals Connector (OSTI)

A few more examples will be given here on the health effects of radiation due to nuclear weapons...14 Bq per year. The health effects of depleted uranium munitions are also serious, and are likely due to radiatio...

Eiichiro Ochiai

2014-01-01T23:59:59.000Z

200

Effects of Depleted Uranium on Soil Microbial Activity: A Bioassay Approach Using 14C-labeled Glucose  

Science Journals Connector (OSTI)

The short and long term influence of depleted uranium (DU) on soil microbial populations remains...14C-labeled glucose. Two soils of contrasting texture (Eurtic cambisol and Haplic podzol) were amended with incre...

Rizwan Ahmad; David L. Jones

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Physicochemical characterisation of depleted uranium (DU) particles at a UK firing test range  

Science Journals Connector (OSTI)

Depleted uranium (DU) particles were isolated from soils at Eskmeals, UK, where DU munitions have been tested against hard targets and unfired DU buried in soils for corrosion studies. Using electron microscopy and X-ray analyses, three classes of particles were identified: (1) DU aerosols and fragments, typically 1–20 ?m diameter, composed mainly of uranium as UO2 and U3O8, (2) solidified molten particles, typically 200–500 ?m diameter, composed of U, mixed with Fe from target materials and (3) deposits and coatings, often of metaschoepite on sand grains up to 500 ?m diameter. The first two particle types are derived from firing impacts, the last from corrosion of buried uranium metal. Alpha and mass spectrometry allowed quantitative elemental and isotopic characterisation of DU-containing particulate environmental samples.

Mustafa Sajih; Francis R. Livens; Rebeca Alvarez; Mathew Morgan

2010-01-01T23:59:59.000Z

202

Measuring Aerosols Generated Inside Armoured Vehicles Perforated by Depleted Uranium Ammunition  

SciTech Connect (OSTI)

In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), a study was initiated to provide an improved scientific basis for assessment of possible health effects of soldiers in vehicles struck by these munitions. As part of this experimental study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterized. The aerosol sampling system designed for these tests consisted of filter cassettes, cascade impactors, a five-stage cyclone, and a moving filter. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. The aerosol samples were also analyzed for uranium oxide phases, particle morphology, and in vitro solubility. These data will provide input for use in future prospective and retrospective dose and health risk assessments of DU aerosols.

Parkhurst, MaryAnn

2003-01-01T23:59:59.000Z

203

Biological effects of embedded depleted uranium (DU): summary of Armed Forces Radiobiology Research Institute research  

Science Journals Connector (OSTI)

The Persian Gulf War resulted in injuries of US Coalition personnel by fragments of depleted uranium (DU). Fragments not immediately threatening the health of the individuals were allowed to remain in place, based on long-standing treatment protocols designed for other kinds of metal shrapnel injuries. However, questions were soon raised as to whether this approach is appropriate for a metal with the unique radiological and toxicological properties of DU. The Armed Forces Radiobiology Research Institute (AFRRI) is investigating health effects of embedded fragments of DU to determine whether current surgical fragment removal policies remain appropriate for this metal. These studies employ rodents implanted with DU pellets as well as cultured human cells exposed to DU compounds. Results indicate uranium from implanted DU fragments distributed to tissues far-removed from implantation sites, including bone, kidney, muscle, and liver. Despite levels of uranium in the kidney that were nephrotoxic after acute exposure, no histological or functional kidney toxicity was observed. However, results suggest the need for further studies of long-term health impact, since DU was found to be mutagenic, and it transformed human osteoblast cells to a tumorigenic phenotype. It also altered neurophysiological parameters in rat hippocampus, crossed the placental barrier, and entered fetal tissue. This report summarizes AFRRI's depleted uranium research to date.

D.E McClain; K.A Benson; T.K Dalton; J Ejnik; C.A Emond; S.J Hodge; J.F Kalinich; M.A Landauer; A.C Miller; T.C Pellmar; M.D Stewart; V Villa; J Xu

2001-01-01T23:59:59.000Z

204

Effect of Gadolinium Doping on the Air Oxidation of Uranium Dioxide  

SciTech Connect (OSTI)

Researchers at the Pacific Northwest National Laboratory (PNNL) investigated the effects of gadolinia concentration on the air oxidization of gadolinia-doped uranium dioxide using thermogravimetry and differential scanning calorimetry to determine if such doping could improve uranium dioxide's stability as a nuclear fuel during potential accident scenarios in a nuclear reactor or during long-term disposal. We undertook this study to determine whether the resistance of the uranium dioxide to oxidation to the orthorhombic U3O8 with its attendant crystal expansion could be prevented by addition of gadolinia. Our studies found that gadolinium has little effect on the thermal initiation of the first step of the reported two-step air oxidation of UO2; however, increasing gadolinia content does stabilize the initial tetragonal or cubic product allowing significant oxidation before the second expansive step to U3O8 begins.

Scheele, Randall D.; Hanson, Brady D.; Cumblidge, Stephen E.; Jenson, Evan D.; Kozelisky, Anne E.; Sell, Rachel L.; MacFarlan, Paul J.; Snow, Lanee A.

2004-12-04T23:59:59.000Z

205

Properties, use and health effects of depleted uranium (DU): a general overview  

Science Journals Connector (OSTI)

Depleted uranium (DU), a waste product of uranium enrichment, has several civilian and military applications. It was used as armor-piercing ammunition in international military conflicts and was claimed to contribute to health problems, known as the Gulf War Syndrome and recently as the Balkan Syndrome. This led to renewed efforts to assess the environmental consequences and the health impact of the use of DU. The radiological and chemical properties of DU can be compared to those of natural uranium, which is ubiquitously present in soil at a typical concentration of 3 mg/kg. Natural uranium has the same chemotoxicity, but its radiotoxicity is 60% higher. Due to the low specific radioactivity and the dominance of alpha-radiation no acute risk is attributed to external exposure to DU. The major risk is DU dust, generated when DU ammunition hits hard targets. Depending on aerosol speciation, inhalation may lead to a protracted exposure of the lung and other organs. After deposition on the ground, resuspension can take place if the DU containing particle size is sufficiently small. However, transfer to drinking water or locally produced food has little potential to lead to significant exposures to DU. Since poor solubility of uranium compounds and lack of information on speciation precludes the use of radioecological models for exposure assessment, biomonitoring has to be used for assessing exposed persons. Urine, feces, hair and nails record recent exposures to DU. With the exception of crews of military vehicles having been hit by DU penetrators, no body burdens above the range of values for natural uranium have been found. Therefore, observable health effects are not expected and residual cancer risk estimates have to be based on theoretical considerations. They appear to be very minor for all post-conflict situations, i.e. a fraction of those expected from natural radiation.

A Bleise; P.R Danesi; W Burkart

2003-01-01T23:59:59.000Z

206

Spall wave-profile and shock-recovery experiments on depleted uranium  

Science Journals Connector (OSTI)

Depleted Uranium of two different purity levels has been studied to determine spall strength under shock wave loading. A high purity material with approximately 30 ppm of carbon impurities was shock compressed to two different stress levels 37 and 53 kbar. The second material studied was uranium with about 300 ppm of carbon impurities. This material was shock loaded to three different final stress level 37 53 and 81 kbar. Two experimental techniques were used in this work. First time-resolved free surface particle velocity measurements were done using a VISAR velocity interferometer. The second experimental technique used was soft recovery of samples after shock loading. These two experimental techniques will be briefly described here and VISAR results will be shown. Results of the spall recovery experiments and subsequent metallurgical analyses are described in another paper in these proceedings.

Robert S. Hixson; John E. Vorthman; R. L. Gustavsen; A. K. Zurek; W. R. Thissell; D. L. Tonks

1998-01-01T23:59:59.000Z

207

Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility  

SciTech Connect (OSTI)

Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] using the indirect drive configuration [J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L, Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric, energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss, depleted uranium is incorporated into the traditional gold hohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura, T. Endo, H. Shiraga, U. Kato, and S. Nakai, Appl. Phys. Lett. 62, 1344 (1993)]. Multilayered depleted uranium (DU) and gold hohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice, exposed DU oxidizes in air and other chemicals necessary to hohlraum production, so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques, including characterization by Auger electron spectroscopy, which is used to verify sample composition and the amount of oxygen uptake over time.

Wilkens, H. L.; Nikroo, A.; Wall, D. R.; Wall, J. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2007-05-15T23:59:59.000Z

208

Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facilitya)  

Science Journals Connector (OSTI)

Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner E. M. Campbell and W. J. Hogan Fusion Technol.26 755 (1994)] using the indirect drive configuration [J. D. Lindl P. Amendt R. L. Berger S. G. Glendinning S. H. Glenzer S. W. Haan R. L Kauffman O. L. Landen and L. J. Suter Phys. Plasmas11 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss depleted uranium is incorporated into the traditional goldhohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura T. Endo H. Shiraga U. Kato and S. Nakai Appl. Phys. Lett.62 1344 (1993)]. Multilayered depleted uranium (DU) and goldhohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice exposed DU oxidizes in air and other chemicals necessary to hohlraum production so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques including characterization by Auger electron spectroscopy which is used to verify sample composition and the amount of oxygen uptake over time.

H. L. Wilkens; A. Nikroo; D. R. Wall; J. R. Wall

2007-01-01T23:59:59.000Z

209

Using k0-UNAA for the determination of depleted uranium in the moss biomonitoring technique  

Science Journals Connector (OSTI)

The use of ammunition containing depleted uranium (DU) in several military actions is of growing health concern to the population related to the risk arising from contamination of the environment with DU penetrators and dust. Environmental monitoring of uranium and its isotopic ratios therefore become important parameters since they allow for source identification. Neutron activation analysis according to the k0-standardisation not only allows for quantification of trace elements including uranium, but it can also provide information about the 235U/238U isotope ratio. The application of this method as a screening technique to moss samples, as a bio-indicator for this atmospheric pollution, was evaluated for samples spiked with different 235U/238U isotope ratios. Detection limits of about 0.6 ng/g and 6 ng/g were obtained for 235U and 238U, respectively. The concentration of natural uranium found in moss samples is however the limiting factor, reducing the quantification limit for DU to 400 ng/g.

Peter Vermaercke; Liesel Sneyers; Fulvio Farina Arbocco; Yulia Aleksiayenak

2011-01-01T23:59:59.000Z

210

Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium  

Science Journals Connector (OSTI)

The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg?1. Five biological endpoints: mortality, animals’ weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

Anna Giovanetti; Sergey Fesenko; Maria L. Cozzella; Lisbet D. Asencio; Umberto Sansone

2010-01-01T23:59:59.000Z

211

Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time  

SciTech Connect (OSTI)

The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.; Parkhurst, MaryAnn

2009-03-01T23:59:59.000Z

212

Assessing the risk from the depleted uranium weapons used in Operation Allied Force  

E-Print Network [OSTI]

The conflict in Yugoslavia has been a source of great concern for the neighboring countries, about the radiological and toxic hazard posed by the alleged presence of depleted uranium in NATO weapons. In the present study a worst-case scenario is assumed mainly to assess the risk for Greece and other neighboring countries of Yugoslavia at similar distances . The risk of the weapons currently in use is proved to be negligible at distances greater than 100 Km. For shorter distances classified data of weapons composition are needed to obtain a reliable assessment.

Liolios, T E

1999-01-01T23:59:59.000Z

213

Investigations on the solubility of corrosion products on depleted uranium projectiles by simulated body fluids and the consequences on dose assessment  

Science Journals Connector (OSTI)

Ingestion and inhalation of corrosion products covering weathered penetrators made of depleted uranium (DU) represent potential radiological exposure pathways. ... juices. About 75 and 36% of the uranium in the c...

Udo C. Gerstmann; Wilfried Szymczak…

2008-04-01T23:59:59.000Z

214

Determination of Young's modulus and mechanical damping as a function of temperature for depleted uranium-0.75 wt% titanium using the PUCOT  

E-Print Network [OSTI]

[3f. The components fabricated from depleted uranium offer substantial size and cost savings over all other available materials. Large containers of depleted uranium, weighing up to several thousand kilograms each, are used to transport and store...DETERMINATION OF YOUNG'S MODULUS AND MECHANICAL DAMPING AS A FUNCTION OF TEMPERATURE FOR DEPLETED URANIUM-0. 75 WT% TITANIUM USING THE PUCOT A Thesis bY KEITH HOWARD KEENE Submitted to the Graduate College of Texas A&M University in partial...

Keene, Keith Howard

2012-06-07T23:59:59.000Z

215

Refinement in the ultrasonic velocity data and estimation of the critical parameters for molten uranium dioxide  

E-Print Network [OSTI]

the reactor and its vicinity. A reliable equation of state for the nuclear fuel, therefore, necessitates, reliable data on the sound prop- agation velocity in molten uranium dioxide have been obtained. An equation reserved. 1. Introduction The analysis of hypothetical and undesirable yet highly improbable accidents

Azad, Abdul-Majeed

216

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 experiment  

E-Print Network [OSTI]

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 experiment

1986-01-01T23:59:59.000Z

217

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 calorimeter upgrading  

E-Print Network [OSTI]

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 calorimeter upgrading

1986-01-01T23:59:59.000Z

218

Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses  

SciTech Connect (OSTI)

The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth; Arey, Bruce W.; Jenson, Evan D.; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

219

Packaging and Disposal of a Radium-beryllium Source using Depleted Uranium Polyethylene Composite Shielding  

SciTech Connect (OSTI)

Two, 111-GBq (3 Curie) radium-beryllium (RaBe) sources were in underground storage at the Brookhaven National Laboratory (BNL) since 1988. These sources originated from the Princeton Plasma Physics Laboratory (PPPL) where they were used to calibrate neutron detection diagnostics. In 1999, PPPL and BNL began a collaborative effort to expand the use of an innovative pilot-scale technology and bring it to full-scale deployment to shield these sources for eventual transport and burial at the Hanford Burial site. The transport/disposal container was constructed of depleted uranium oxide encapsulated in polyethylene to provide suitable shielding for both gamma and neutron radiation. This new material can be produced from recycled waste products (depleted uranium and polyethylene), is inexpensive, and can be disposed with the waste, unlike conventional lead containers, thus reducing exposure time for workers. This paper will provide calculations and information that led to the initial design of the shielding. We will also describe the production-scale processing of the container, cost, schedule, logistics, and many unforeseen challenges that eventually resulted in the successful fabrication and deployment of this shield. We will conclude with a description of the final configuration of the shielding container and shipping package along with recommendations for future shielding designs.

Keith Rule; Paul Kalb; Pete Kwaschyn

2003-02-11T23:59:59.000Z

220

Examination of the health status of populations from depleted-uranium-contaminated regions  

Science Journals Connector (OSTI)

During the NATO air strikes on the Federal Republic of Yugoslavia (Serbia and Montenegro) in 1999, depleted-uranium ammunition was used on 112 locations, mainly Kosovo, in the south of Serbia, and one location in Montenegro. Blood samples of residents from depleted-uranium-contaminated areas were gathered and blood cell and chromosomal aberrations were analyzed. During the last 3 years blood samples from 21 residents of Kosovo (Štrpce), from 29 residents from the south of Serbia (the Vranje and Bujanovac regions), and from 19 technical television workers from the site of Plja?kovica, in the vicinity of Vranje, were collected. Blood samples from 33 residents of central Serbia and 46 occupational workers exposed to X-rays were used as controls. All subjects studied were without any clinical symptoms of disease. The examinations included general clinical assessment; urine samples for ?-and ?-spectrometry analysis; complete blood counts; ratio-percentages of blood cells in stained (Giemsa) capillary smears, individual leukocyte line elements; morphological changes observed under a microscope; the presence of immature forms or blasts; and leukocyte enzyme activity [alkaline phosphatase leukocyte (APL)]. Chromosomal aberrations were evaluated in 200 peripheral blood lymphocytes in mitosis. An increased incidence of rogue cells and chromosomal aberrations was found in the blood of the residents of Vranje and Bujanovac, but this was below the incidence of chromosomal aberrations in individuals occupationally exposed to ionizing irradiation. Blast cells were not found. Blood counts were decreased in only a few samples, while morphological changes of both nuclei and cytoplasm were marked in individuals in south and central Serbia. Enzymatic activity (as measured by the APL score) was decreased in samples with chromosomal aberrations and cyto-morphological changes in subjects from the south of Serbia. The contamination level measured by this examination was low. Because of the presence of depleted uranium (uranium-238) in the soil and in plants, the prevention of consequences necessitates the identification of the initial biological effects on sensitive tissues. Early identification of serious blood cell changes is important for appropriate medical treatment.

Snežana Mila?i?; Dragana Petrovi?; Dubravka Jovi?i?; Radomir Kova?evi?; Jadranko Simi?

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Measuring Aerosols Generated Inside Armoured Vehicles Perforated by Depleted Uranium Ammunition  

SciTech Connect (OSTI)

In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), the U.S. Department of Defense initiated a study designed to provide an improved scientific basis for assessment of possible health effects of soldiers in vehicles struck by these munitions. As part of this study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterized. A robust sampling system was designed to collect aerosols in this difficult environment and to monitor continuously the sampler flow rates. Interior aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. These data will provide input for future prospective and retrospective dose and health risk assessments of inhaled or ingested DU aerosols. This paper briefly discusses the target vehicles, firing trajectories, aerosol samplers and instrumentation control systems, and the types of analyses conducted on the samples.

Parkhurst, MaryAnn (BATTELLE (PACIFIC NW LAB))

2003-01-01T23:59:59.000Z

222

Environmental and health consequences of depleted uranium use in the 1991 Gulf War  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a by-product of the 235U radionuclide enrichment processes for nuclear reactors or nuclear weapons. DU in the metallic form has high density and hardness as well as pyrophoric properties, which makes it superior to the classical tungsten armour-piercing munitions. Military use of DU has been recently a subject of considerable concern, not only to radioecologists but also public opinion in terms of possible health hazards arising from its radioactivity and chemical toxicity. In this review, the results of uranium content measurements in different environmental samples performed by authors in Kuwait after Gulf War are presented with discussion concerning possible environmental and health effects for the local population. It was found that uranium concentration in the surface soil samples ranged from 0.3 to 2.5 ?g g?1 with an average value of 1.1 ?g g?1, much lower than world average value of 2.8 ?g g?1. The solid fallout samples showed similar concentrations varied from 0.3 to 1.7 ?g g?1 (average 1.47 ?g g?1). Only the average concentration of U in solid particulate matter in surface air equal to 0.24 ng g?1 was higher than the usually observed values of ?0.1 ng g?1 but it was caused by the high dust concentration in the air in that region. Calculated on the basis of these measurements, the exposure to uranium for the Kuwait and southern Iraq population does not differ from the world average estimation. Therefore, the widely spread information in newspapers and Internet (see for example: [CADU NEWS, 2003. http://www.cadu.org.uk/news/index.htm (3–13)]) concerning dramatic health deterioration for Iraqi citizens should not be linked directly with their exposure to DU after the Gulf War.

Henryk Bem; Firyal Bou-Rabee

2004-01-01T23:59:59.000Z

223

Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site in Support of Site-Specific NEPA Requirements for Continued Cylinder Storage, Cylinder Preparation, Conversion, and Long-Term Storage Activities Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

224

Using Hydro-Cutting to Aid in Remediation of a Firing Range Contaminated with Depleted Uranium  

SciTech Connect (OSTI)

This paper describes the challenges encountered in decommissioning a firing range that had been used to test fire depleted uranium rounds in the late 1950's and early 1960's. The paper details the operational challenges and innovative solutions involved in remediating and decommissioning a firing range bullet catcher once unexploded ordnance was discovered. It also discusses how the Army dealt with an intertwining web of regulatory and permit issues that arose in treating and disposing of multiple waste streams. The paper will show how the use of a Resource Conservation and Recovery Act (RCRA) Temporary Authorization allowed the Army to deal with the treatment of a variety of waste streams and how hydro-cutting process was used to demilitarize the potentially unexploded rounds.

Styvaert, Michael S.; Conley, Richard D.; Watters, David J.

2003-02-24T23:59:59.000Z

225

Conclusions of the Capstone Depleted Uranium Aerosol Characterization and Risk Assessment Study  

SciTech Connect (OSTI)

The rationale for the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Program and its results and applications have been examined in the previous 13 articles of this special issue. This paper summarizes the results and discusses its successes and lessons learned. The robust data from the Capstone DU Aerosol Study have provided a sound basis for assessing the inhalation exposure to DU aerosols and the dose and risk to personnel in combat vehicles at the time of perforation and to those entering immediately after perforation. The Human Health Risk Assessment provided a technically sound process for evaluating chemical and radiological doses and risks from DU aerosol exposure using well-accepted biokinetic and dosimetric models innovatively applied. An independent review of the study process and results is summarized, and recommendations for possible avenues of future study by the authors and by other major reviews of DU health hazards are provided.

Parkhurst, MaryAnn; Guilmette, Raymond A.

2009-02-26T23:59:59.000Z

226

Depleted Uranium—Experience of the United Nations Environmental Programme Missions  

Science Journals Connector (OSTI)

Depleted Uranium (DU) is used in ammunition designed for armour?piercing. DU was used in the Gulf war 1991 wars in Bosnia 1994–1995 Kosovo 1999 and Iraq 2003. The United Nations Environmental Programme (UNEP) Post?Conflict Branch investigated sites where DU was used and evaluated health and environmental risks during missions to Kosovo Serbia and Bosnia. During a mission to Lebanon in 2006 UNEP also sampled areas where DU was supposed to have been used but did not find any DU. Due to the grave risks to the lives of UN personnel no UNEP mission was carried out in Iraq. UNEP has provided training for personnel engaged in decontamination of DU in Bosnia and Iraq.

Gustav Åkerblom

2008-01-01T23:59:59.000Z

227

Particulate depleted uranium is cytotoxic and clastogenic to human lung epithelial cells  

Science Journals Connector (OSTI)

Depleted uranium (DU) is commonly used in military applications and consequently exposure to soldiers and non-combatants is potentially frequent and widespread. DU is suspected to be a carcinogen, potentially affecting the bronchial cells of the lung. Few studies have considered DU in human bronchial cells. Accordingly, we determined the cytotoxicity and clastogenicity of particulate DU in human bronchial epithelial cells (BEP2D cells). DU-induced concentration-dependent cytotoxicity in human bronchial epithelial cells, and was not clastogenic after 24 h but induced chromosomal aberrations after 48 h. These data indicate that if DU is a human bronchial carcinogen, it is likely acting through a mechanism that involves DNA breaks after longer exposures.

Carolyne LaCerte; Hong Xie; AbouEl-Makarim Aboueissa; John Pierce Wise Sr.

2010-01-01T23:59:59.000Z

228

A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a by-product of nuclear fuel enrichment and is used in antitank penetrators due to its high density, self-sharpening, and pyrophoric properties. Military activities have left a legacy of DU waste in terrestrial and marine environments, and there have been only limited attempts to clean up affected environments. Ten years ago, very little information was available on the dispersion of DU as penetrators hit their targets or the fate of DU penetrators left behind in environmental systems. However, the marked increase in research since then has improved our knowledge of the environmental impact of firing DU and the factors that control the corrosion of DU and its subsequent migration through the environment. In this paper, the literature is reviewed and consolidated to provide a detailed overview of the current understanding of the environmental behaviour of DU and to highlight areas that need further consideration.

Stephanie Handley-Sidhu; Miranda J. Keith-Roach; Jonathan R. Lloyd; David J. Vaughan

2010-01-01T23:59:59.000Z

229

A Process for Reducing the Licensing Burden for New Products Containing Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-01 3-01 A Process for Reducing the Licensing Burden for New Products Containing Depleted Uranium Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes

230

Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants  

SciTech Connect (OSTI)

One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

Jones, E

1999-07-26T23:59:59.000Z

231

Environmental acceptability of high-performance alternatives for depleted uranium penetrators  

SciTech Connect (OSTI)

The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

Kerley, C.R.; Easterly, C.E.; Eckerman, K.F. [and others

1996-08-01T23:59:59.000Z

232

Estimation of 235U concentration in some depleted uranium samples by high resolution gamma-ray spectrometry using 185 keV and 1001 keV gamma-energies of 235U and 234mPa  

Science Journals Connector (OSTI)

The identification of isotopic composition of depleted uranium obtained after the reprocessing of spent fuel...235U in the reprocessed uranium will be lower and their depletion depends ... of the reactor and burn...

S. Anilkumar; A. K. Deepa; K. Narayani…

2007-10-01T23:59:59.000Z

233

Closure report for CAU Number 430: Buried Depleted Uranium Artillery Round Number 1, Tonopah Test Range  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 430 consists of the Buried Depleted Uranium (DU) Artillery Round No. 1. This Closure Report presents the information obtained from investigate actions performed to justify the decision for clean closure of CAU 430 through ``No Further Action``. The site was thought to consist of a potentially unexploded W-79 Joint Test Assembly (JTA) test artillery projectile with high explosives (HE) and DU. The DU was substituted for Special Nuclear Materials to prevent a nuclear explosion and yet retain the physical characteristics of uranium for ballistic and other mechanical tests. The projectile was reportedly buried in one pit, approximately 5 to 10 feet (ft) deep. The objectives of the activities were to prepare the site for closure through locating and identifying the projectile, destroying the projectile and any remaining components, collecting soil samples to detect residual contamination resulting from projectile destruction, and finally, remediating residual contamination. This report contains the following five sections. Section 1.0 introduces the CAU and scope of work. Section 2.0 of this report presents the closure activities performed as part of this investigation. Waste disposition is discussed in Section 3.0. Closure investigation results are presented in Section 4.0, and references are presented in Section 5.0.

NONE

1997-02-01T23:59:59.000Z

234

ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.  

SciTech Connect (OSTI)

Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 12 at.% and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV, approximately 20.3% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specificationsa and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 11 began in early January 1958, and the Assembly 11 program ended in late January 1958. The core consisted of highly enriched uranium (HEU) plates and depleted uranium plates loaded into stainless steel drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, six columns of 0.125 in.-wide (3.175 mm) depleted uranium plates and one column of 1.0 in.-wide (25.4 mm) depleted uranium plates. The length of each column was 10 in. (254.0 mm) in each half of the core. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the depleted uranium radial blanket was approximately 14 in. (355.6 mm), and the length of the radial blanket in each half of the matrix was 22 in. (558.8 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/11, the reference critical configuration was loading 10 which was critical on January 21, 1958. Subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/11 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. A very accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/11 loading 10. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must do this without increasing the total uncertain

Lell, R. M.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; National Security; Inst. of Physics and Power Engineering

2010-09-30T23:59:59.000Z

235

BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL  

SciTech Connect (OSTI)

Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

2003-02-27T23:59:59.000Z

236

Alteration of mouse oocyte quality after a subchronic exposure to depleted Uranium  

Science Journals Connector (OSTI)

Gametes and embryo tissues are known to represent a sensitive target to environmental toxicants exposure. Oocyte quality can impact subsequent developmental competence, pregnancy course and even adult health. The major health concern from depleted uranium (DU) is mainly centred on its chemotoxic properties as a heavy metal. Little attention was paid to the impact of uranium on female gamete quality. The aim of this research was to evaluate the effect of DU on mouse oocyte quality after 49 days of subchronic contamination in drinking water and to correlate the observed effects with the amount of DU accumulated in organs. Four different DU concentrations were investigated: 0 (control), 10 (DU10), 20 (DU20) and 40 mg L?1 (DU40). DU did not influence the intensity of ovulation but affected oocyte quality. The proportion of healthy oocytes was reduced by half (P < 0.001) from 20 mg L?1 compared with control group (0.537; 0.497; 0.282 and 0.239 in control, DU10, DU20 and DU40 groups respectively) whereas no accumulation of DU was recorded in the ovaries whatever the dose tested. Abnormal perivitelline space (P < 0.001) or absence of the 1st polar body (P < 0.001) was identified as the main characteristic of DU impact. In the context of this study, the NOAEL for oocyte quality was determined at 10 mg L?1 in drinking water (1.9 mg kg?1 day?1). An increase in the dose of contamination over 20 mg L?1 did not amplify the proportion of oocytes contracting a specific alteration but conducted to a diversification in oocytes abnormalities. Further investigations are necessary to correlate morphologic assessment of female gamete with its developmental competence.

Alexandre Feugier; Sandrine Frelon; Patrick Gourmelon; Marie Claraz

2008-01-01T23:59:59.000Z

237

Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium  

SciTech Connect (OSTI)

Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

Gillas, D. L.; Chambers, B. K.

2002-02-26T23:59:59.000Z

238

THERMODYNAMIC MODEL FOR URANIUM DIOXIDE BASED NUCLEAR FUEL  

SciTech Connect (OSTI)

Many projects involving nuclear fuel rest on a quantitative understanding of the co-existing phases at various stages of burnup. Since the many fission products have considerably different abilities to chemically associate with oxygen, and the oxygen-to-metal molar ratio is slowly changing, the chemical potential of oxygen is a function of burnup. Concurrently, well-recognized small fractions of new phases such as inert gas, noble metals, zirconates, etc. also develop. To further complicate matters, the dominant UO2 fuel phase may be non-stoichiometric and most of the minor phases themselves have a variable composition dependent on temperature and possible contact with the coolant in the event of a sheathing breach. A thermodynamic fuel model to predict the phases in partially burned CANDU (CANada Deuterium Uranium) nuclear fuel containing many major fission products has been under development. The building blocks of the model are the standard Gibbs energies of formation of the many possible compounds expressed as a function of temperature. To these data are added mixing terms associated with the appearance of the component species in particular phases. In operational terms, the treatment rests on the ability to minimize the Gibbs energy in a multicomponent system, in our case using the algorithms developed by Eriksson. The model is capable of handling non-stoichiometry in the UO2 fluorite phase, dilute solution behaviour of significant solute oxides, noble metal inclusions, a second metal solid solution U(Pd-Rh-Ru)3, zirconate, molybdate, and uranate solutions as well as other minor solid phases, and volatile gaseous species.

Thompson, Dr. William T. [Royal Military College of Canada; Lewis, Dr. Brian J [Royal Military College of Canada; Corcoran, E. C. [Royal Military College of Canada; Kaye, Dr. Matthew H. [Royal Military College of Canada; White, S. J. [Royal Military College of Canada; Akbari, F. [Atomic Energy of Canada Limited, Chalk River Laboratories; Higgs, Jamie D. [Atomic Energy of Canada Limited, Point Lepreau; Thompson, D. M. [Praxair Inc.; Besmann, Theodore M [ORNL; Vogel, S. C. [Los Alamos National Laboratory (LANL)

2007-01-01T23:59:59.000Z

239

Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein e-deficient mice  

Science Journals Connector (OSTI)

Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a “pathological model” such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L?1) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXR?, FXR, PPAR?, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as \\{HMGCoA\\} Reductase and \\{HMGCoA\\} Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (?23%) and nuclear receptors LXR? (?24%), RXR (?32%), HNF4? (?21%) when compared to unexposed ones. These modifications on cholesterol metabolism did not lead to increased disturbances that are specific for apolipoprotein E-deficient mice, suggesting that chronic DU exposure did not worsen the pathology in this experimental model. In conclusion, the results of this study indicate that even for a sensitive pathologic model the exposure to a low dose of DU has no relevant impact. The results confirm the results of our first study carried out on healthy laboratory rodents where a sub-chronic contamination with low dose DU did not affect in vivo the metabolism of cholesterol.

M. Souidi; R. Racine; L. Grandcolas; S. Grison; J. Stefani; P. Gourmelon; P. Lestaevel

2012-01-01T23:59:59.000Z

240

Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities  

SciTech Connect (OSTI)

A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

NONE

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Applications of Capstone Depleted Uranium Aerosol Risk Data to Military Combat Risk Management  

SciTech Connect (OSTI)

Risks to personnel engaged in military operations include not only the threat of enemy firepower but also risks from exposure to other hazards such as radiation. Combatant commanders of the U. S. Army carefully weigh risks of casualties before implementing battlefield actions using an established paradigm that take these risks into consideration. As a result of the inclusion of depleted uranium (DU) anti-armor ammunition in the conventional (non-nuclear) weapons arsenal, the potential for exposure to DU aerosols and its associated chemical and radiological effects becomes an element of the commanders’ risk assessment. The Capstone DU Aerosol Study measured the range of likely DU oxide aerosol concentrations created inside a combat vehicle perforated with a DU munition, and the Capstone Human Health Risk Assessment (HHRA) estimated the associated doses and calculated risks. This paper focuses on the development of a scientific approach to adapt the risks from DU’s non uniform dose distribution within the body using the current U.S. Department of Defense (DoD) radiation risk management approach. The approach developed equates the Radiation Exposure Status (RES) categories to the estimated radiological risks of DU and makes use of the Capstone-developed Renal Effects Group (REG) as a measure of chemical risk from DU intake. Recommendations are provided for modifying Army guidance and policy in order to better encompass the potential risks from DU aerosol inhalation during military operations.

Daxon, Eric G.; Parkhurst, MaryAnn; Melanson, Mark A.; Roszell, Laurie E.

2009-03-01T23:59:59.000Z

242

An alternative for cost-effective remediation of depleted uranium (DU) at certain environmental restoration sites  

SciTech Connect (OSTI)

Numerous sites in the United States and around the world are contaminated with depleted uranium (DU) in various forms. A prevalent form is fragmented DU originating from various scientific tests involving high explosives and DU during weapon development programs, at firing practice ranges, or war theaters where DU was used in armor-piercing projectiles. The contamination at these sites is typically very heterogeneous, with discreet, visually identifiable DU fragments mixed with native soil. That is, the bulk-averaged DU activity is quite low, while specific DU fragments, which are distinct from the soil matrix, have much higher specific activity. DU is best known as a dark, black metal that is nearly twice as dense as lead, but DU in the environment readily weathers to a distinctive bright yellow color that is readily visible. While the specific activity of DU is relatively low and presents only a minor radiological hazard, the fact that it is radioactive and visually identifiable makes it desirable to remove the DU contamination from the environment.

Miller, M.; Galloway, B.; VanDerpoel, G.; Johnson, E.; Copland, J.; Salazar, M.

2000-02-01T23:59:59.000Z

243

A screening model for depleted uranium testing using environmental radiation monitoring data  

SciTech Connect (OSTI)

Information from an ecological risk assessment of depleted uranium test areas at Yuma Proving Ground (YPG) was used to update the required environmental radiation monitoring (ERM) plan. Data to be collected for the ERM can also be used to evaluate the potential for adverse radiological and toxicological effects to terrestrial reptiles and mammals in the affected areas. We developed a spreadsheet-based screening model that incorporates the ERM data and associated uncertainties. The purpose of the model is to provide a conservative estimate of radiological exposure of terrestrial, biota to DU using the ERM data. The uncertainty in the estimate is also predicted so that the variation in the radiological exposure can be used in assessing potential adverse effects from DU testing. Toxicological effects are evaluated as well as radiological effects in the same program using the same data. Our presentation shows an example data set, model calculations, and the report of expected radiation dose rates and probable kidney burdens of select mammals and reptiles. The model can also be used in an inverse mode to calculate the soil concentration required to give either a radiological dose that would produce a potential adverse effect such as fatal cancer or a toxicological dose that would result in nephrotoxic effects in mammals.

Dunfrund, F.L. [Yuma Proving Ground, AZ (United States); Ebinger, M.H.; Hansen, W.R. [Los Alamos National Laboratory, NM (United States)] [and others

1996-06-01T23:59:59.000Z

244

Depleted uranium and cancer in Danish Balkan veterans deployed 1992–2001  

Science Journals Connector (OSTI)

In a population based retrospective cohort study we studied cancer risk in Danish soldiers deployed to the war in the Balkans. In particular, leukaemia, earlier linked to ammunition enforced with depleted uranium (DU) in other deployed soldiers, was a concern. Military personnel, 13,552 men and 460 women, without known cancer at first deployment to the Balkans, January 1, 1992 to December 31, 2001 were followed through December 2002. We found 96 cases of cancer, 84 among men (standardised incidence ratio (SIR) 0.9) and 12 among women (SIR 1.7). Only four male bone cancers (SIR 6.0), with three during the first year of follow-up, exceeded expectations. Earlier reports on increased risk of leukaemia and testis cancer among deployed military personnel to the Balkans are not corroborated by our study. Quick and open communication about potential risks, a health check, a telephone counselling line and careful monitoring, and diminished anxiety all helped contain the ‘Balkan syndrome’ in Denmark.

Hans H. Storm; Hans Ole Jørgensen; Anne Mette T. Kejs; Gerda Engholm

2006-01-01T23:59:59.000Z

245

Modeling exposure to depleted uranium in support of decommissioning at Jefferson Proving Ground, Indiana  

SciTech Connect (OSTI)

Jefferson Proving Ground was used by the US Army Test and Evaluation Command for testing of depleted uranium munitions and closed in 1995 under the Base Realignment and Closure Act. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This paper integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

Ebinger, M.H. [Los Alamos National Lab., NM (United States); Oxenburg, T.P. [Army Test and Evaluation Command, Aberdeen Proving Ground, MD (United States)

1997-02-01T23:59:59.000Z

246

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

247

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PORTSMOUTH, OHIO, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Portsmouth DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

248

Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493  

SciTech Connect (OSTI)

A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)

Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

2012-07-01T23:59:59.000Z

249

Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process  

SciTech Connect (OSTI)

The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

Collins, Robert T [ORNL] [ORNL; Collins, Jack Lee [ORNL] [ORNL; Hunt, Rodney Dale [ORNL] [ORNL; Ladd-Lively, Jennifer L [ORNL] [ORNL; Patton, Kaara K [ORNL] [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL] [NASA Marshall Space Flight Center, Huntsville, AL

2014-01-01T23:59:59.000Z

250

Determination of Depleted Uranium in Environmental Bio-monitor Samples and Soil from Target sites in Western Balkan Region  

SciTech Connect (OSTI)

Lichen and Moss are widely used to assess the atmospheric pollution by heavy metals and radionuclides. In this paper, we report results of uranium and its isotope ratios using mass spectrometric measurements (followed by chemical separation procedure) for mosses, lichens and soil samples from a depleted uranium (DU) target site in western Balkan region. Samples were collected in 2003 from Han Pijesak (Republika Srpska in Bosnia and Hercegovina). Inductively coupled plasma mass spectrometry (ICP-MS) measurements show the presence of high concentration of uranium in some samples. Concentration of uranium in moss samples ranged from 5.2-755.43 Bq/Kg. We have determined {sup 235}U/{sup 238}U isotope ratio using thermal ionization mass spectrometry (TIMS) from the samples with high uranium content and the ratios are in the range of 0.002097-0.002380. TIMS measurement confirms presence of DU in some samples. However, we have not noticed any traces of DU in samples containing lesser amount of uranium or from any samples from the living environment of same area.

Sahoo, Sarata K.; Enomoto, Hiroko; Tokonami, Shinji; Ishikawa, Tetsuo [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ujic, Predrag; Celikovic, Igor; Zunic, Zora S. [Institute of Nuclear Sciences, Vinca, Mike Petrovica Alasa 12-14, 11000 Belgrade (Serbia)

2008-08-07T23:59:59.000Z

251

Determination of Depleted Uranium in Environmental Bio?monitor Samples and Soil from Target sites in Western Balkan Region  

Science Journals Connector (OSTI)

Lichen and Moss are widely used to assess the atmospheric pollution by heavy metals and radionuclides. In this paper we report results of uranium and its isotope ratios using mass spectrometric measurements (followed by chemical separation procedure) for mosses lichens and soil samples from a depleted uranium (DU) target site in western Balkan region. Samples were collected in 2003 from Han Pijesak (Republika Srpska in Bosnia and Hercegovina). Inductively coupled plasma mass spectrometry (ICP?MS) measurements show the presence of high concentration of uranium in some samples. Concentration of uranium in moss samples ranged from 5.2–755.43 Bq/Kg. We have determined 235 U / 238 U isotope ratio using thermal ionization mass spectrometry (TIMS) from the samples with high uranium content and the ratios are in the range of 0.002097–0.002380. TIMS measurement confirms presence of DU in some samples. However we have not noticed any traces of DU in samples containing lesser amount of uranium or from any samples from the living environment of same area.

Sarata K. Sahoo; Hiroko Enomoto; Shinji Tokonami; Tetsuo Ishikawa; Predrag Uji?; Igor ?elikovi?; Zora S. Žuni?

2008-01-01T23:59:59.000Z

252

Experimental determination of dynamic Young's modulus and mechanical damping, and theoretical prediction of dislocation density for depleted uranium-0.75 wt% titanium using the PUCOT  

Science Journals Connector (OSTI)

Dynamic Young's modulus (E) and mechanical damping (Q ?1) measurements were made for three microstructures (?, ? + ?, and ??) of a depleted uranium-0.75 wt% titanium alloy. The...E and Q ...

K. H. Keene; A. Wolfenden; G. M. Ludtka

1988-08-01T23:59:59.000Z

253

Exposure to depleted uranium does not alter the co-expression of HER-2/neu and p53 in breast cancer patients  

Science Journals Connector (OSTI)

Amongst the extensive literature on immunohistochemical profile of breast cancer, very little is found on populations exposed to a potential risk factor such as depleted uranium. This study looked at the immunohi...

Mais M Al-Mumen; Asad A Al-Janabi; Alaa S Jumaa; Kaswer M Al-Toriahi…

2011-03-01T23:59:59.000Z

254

A process for reducing the licensing burden for new products containing depleted uranium.  

SciTech Connect (OSTI)

This report is intended to provide guidance on the process for petitioning the U.S. Nuclear Regulatory Commission (NRC) to initiate a rulemaking that could reduce the licensing burden for new products containing depleted uranium (DU), which are being investigated by the DU Uses Research and Development (R&D) Program at Oak Ridge National Laboratory (ORNL). The focus is on requirements of the NRC rulemaking process applicable to establishing new exemptions or general licenses for products and devices containing source material. NRC policies and guidance regarding such requirements are described, including a 1965 policy statement on approval of new exemptions for products containing radionuclides (''Federal Register'', Volume 30, page 3462 [30 FR 3462]; March 16, 1965) and Regulatory Guide 6.7, which addresses the contents of environmental reports that support rulemaking petitions seeking exemptions for radionuclide-containing products. Methodologies for calculating radiological and nonradiological impacts on human health (i.e., risks) associated with distributing, using, and disposing of DU-containing products are presented. Also, methodologies for completing assessments of the potential effects of accidents involving new DU-containing products and of product misuse are described. The report recommends that the U.S. Department of Energy formulate a regulatory plan for deployment of DU-containing products in areas that are not already radiologically controlled. Such a plan is needed because deployment of new DU-containing products may be difficult under existing NRC licensing requirements. To provide a basis for the regulatory plan, it is recommended that detailed assessments of the radiological and nonradiological risks of distributing, using, and disposing of DU-containing products be conducted. Such assessments should be initiated as soon as sufficient data are available from the ongoing DU Uses R&D Program at ORNL to support the analyses.

Ranek, N. L.; Kamboj, S.; Hartmann, H. M.; Avci, H.

2004-01-06T23:59:59.000Z

255

Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground  

SciTech Connect (OSTI)

This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation.

Ebinger, M.H.; Hansen, W.R.

1994-05-11T23:59:59.000Z

256

Immunological changes of chronic oral exposure to depleted uranium in mice  

Science Journals Connector (OSTI)

Abstract Direct ingestion of contaminated soil by depleted uranium (DU) might lead to internal exposure to DU by local populations through hand contamination. The purpose of this study was to assess the immunological changes of long-term exposure to various doses of DU in mice. Three-week-old Kunming mice were divided into the following 4 groups based on the various feeding doses (containing DU): 0 (control group), 3 (DU3 group), 30 (DU30 group), and 300 mg/kg feed (DU300 group). After 4 months of exposure, in the DU300 group, the innate immune function decreased, manifesting as decreased secretion of nitric oxide, interleukin (IL)-1?, IL-18, and tumour necrosis factor (TNF)-? in the peritoneal macrophages, as well as reduced cytotoxicity of the splenic natural killer cells. Moreover, the cellular and humoral immune functions were abnormal, as manifested by decreased proliferation of the splenic T cells, proportion of the cluster of differentiation (CD) 3+ cells, ratio of CD4+/CD8+ cells and delayed-type hypersensitivity, and increased proliferation of the splenic B cells, total serum immunoglobin (Ig) G and IgE, and proportion of splenic mIgM+mIgD+ cells. Through stimulation, the secretion levels of interferon (IFN)-? and TNF-? in the splenic cells were reduced, and the levels of IL-4 and IL-10 were increased. By comparison, in the DU30 and DU3 groups, the effects were either minor or indiscernible. In conclusions, chronic intake of higher doses of DU (300 mg/kg) had a significant impact on the immune function, most likely due to an imbalance in T helper (Th) 1 and Th2 cytokines.

Yuhui Hao; Jiong Ren; Jing Liu; Zhangyou Yang; Cong Liu; Rong Li; Yongping Su

2013-01-01T23:59:59.000Z

257

Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs  

E-Print Network [OSTI]

he feasibility of sequestering supercritical CO2 in depleted gas reservoirs. The experimental runs involved the following steps. First, the 1 ft long by 1 in. diameter carbonate core is inserted into a viton Hassler sleeve and placed inside...

Seo, Jeong Gyu

2004-09-30T23:59:59.000Z

258

DOE Announces Transfer of Depleted Uranium to Advance the U.S...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

transactions under the project would not have an adverse material impact on the domestic uranium mining, enrichment, or conversion industry. The completed analysis, conducted by...

259

Measurements of daily urinary uranium excretion in German peacekeeping personnel and residents of the Kosovo region to assess potential intakes of depleted uranium (DU)  

Science Journals Connector (OSTI)

Following the end of the Kosovo conflict, in June 1999, a study was instigated to evaluate whether there was a cause for concern of health risk from depleted uranium (DU) to German peacekeeping personnel serving in the Balkans. In addition, the investigations were extended to residents of Kosovo and southern Serbia, who lived in areas where DU ammunitions were deployed. In order to assess a possible DU intake, both the urinary uranium excretion of volunteer residents and water samples were collected and analysed using inductively coupled plasma-mass spectrometry (ICP-MS). More than 1300 urine samples from peacekeeping personnel and unexposed controls of different genders and age were analysed to determine uranium excretion parameters. The urine measurements for 113 unexposed subjects revealed a daily uranium excretion rate with a geometric mean of 13.9 ng/d (geometric standard deviation (GSD) = 2.17). The analysis of 1228 urine samples from the peacekeeping personnel resulted in a geometric mean of 12.8 ng/d (GSD = 2.60). It follows that both unexposed controls and peacekeeping personnel excreted similar amounts of uranium. Inter-subject variation in uranium excretion was high and no significant age-specific differences were found. The second part of the study monitored 24 h urine samples provided by selected residents of Kosovo and adjacent regions of Serbia compared to controls from Munich, Germany. Total uranium and isotope ratios were measured in order to determine DU content. 235U/238U ratios were within ± 0.3% of the natural value, and 236U/238U was less than 2 × 10? 7, indicating no significant DU in any of the urine samples provided, despite total uranium excretion being relatively high in some cases. Measurements of ground and tap water samples from regions where DU munitions were deployed did not show any contamination with DU, except in one sample. It is concluded that both peacekeeping personnel and residents serving or living in the Balkans, respectively, were not exposed to significant amounts of DU.

U. Oeh; N.D. Priest; P. Roth; K.V. Ragnarsdottir; W.B. Li; V. Höllriegl; M.F. Thirlwall; B. Michalke; A. Giussani; P. Schramel; H.G. Paretzke

2007-01-01T23:59:59.000Z

260

Long-term criticality control in radioactive waste disposal facilities using depleted uranium  

SciTech Connect (OSTI)

Plant photosynthesis has created a unique planetary-wide geochemistry - an oxidizing atmosphere with oxidizing surface waters on a planetary body with chemically reducing conditions near or at some distance below the surface. Uranium is four orders of magnitude more soluble under chemically oxidizing conditions than it is under chemically reducing conditions. Thus, uranium tends to leach from surface rock and disposal sites, move with groundwater, and concentrate where chemically reducing conditions appear. Earth`s geochemistry concentrates uranium and can separate uranium from all other elements except oxygen, hydrogen (in water), and silicon (silicates, etc). Fissile isotopes include {sup 235}U, {sup 233}U, and many higher actinides that eventually decay to one of these two uranium isotopes. The potential for nuclear criticality exists if the precipitated uranium from disposal sites has a significant fissile enrichment, mass, and volume. The earth`s geochemistry suggests that isotopic dilution of fissile materials in waste with {sup 238}U is a preferred strategy to prevent long-term nuclear criticality in and beyond the boundaries of waste disposal facilities because the {sup 238}U does not separate from the fissile uranium isotopes. Geological, laboratory, and theoretical data indicate that the potential for nuclear criticality can be minimized by diluting fissile materials with-{sup 238}U to 1 wt % {sup 235}U equivalent.

Forsberg, C.W.

1997-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Equations of state and phase transformation of depleted uranium DU-238 by high pressure-temperature diffraction studies  

Science Journals Connector (OSTI)

We have conducted in situ high-pressure diffraction experiments on depleted uranium (DU-238) at pressures up to 8.5GPa and temperatures up to 1123K. From the pressure (P)-volume (V)-temperature (T) measurements, thermoelastic parameters were derived for ?-uranium based on a modified high-T Birch-Murnaghan equation of state and a thermal-pressure approach. With the pressure derivative of the bulk modulus K0? fixed at 4.0, we obtained ambient bulk modulus K0=117(2)GPa, temperature derivative of bulk modulus at constant pressure (?K??T)P=?3.4(4)×10?2GPa?K and at constant volume (?K??T)v=?1.1(6)×10?2GPa?K, volumetric thermal expansivity ?T=a+bT, with a=1.2(±0.4)×10?5K?1 and b=8.0(±0.7)×10?8K?2, and the pressure derivative of thermal expansion (????P)T=?2.5(5)×10?6GPa?1K?1. Within the experimental errors, the ambient bulk modulus and volumetric thermal expansion derived from this work are in good agreement with previous experimental results, whereas all other thermoelastic parameters represent the first determinations for the ? phase of uranium. We also studied the ?-? phase transformation and obtained a phase boundary described by T (inK)=1032+7.4P(inGPa). Although the ?-phase uranium cannot be pressure quenched to ambient conditions, it was observed to be stable upon cooling from 1123to300K at pressures of 7–8GPa. These observations indicate that pressure, in addition to the commonly utilized alloying techniques, provides an alternative route for stabilizing the ?-uranium at room temperature.

Yusheng Zhao; Jianzhong Zhang; Donald W. Brown; Deniece R. Korzekwa; Robert S. Hixson; Liping Wang

2007-05-11T23:59:59.000Z

262

Characteristics of a Mixed Thorium-Uranium Dioxide High-Burnup Fuel  

SciTech Connect (OSTI)

Future nuclear fuels must satisfy three sets of requirements: longer times between refueling; concerns for weapons proliferation; and development of a spent fuel form more suitable for direct geologic disposal. This project has investigated a fuel consisting of mixed thorium and uranium dioxide to satisfy these requirements. Results using the SCALE 4.3 code system indicated that the mixed Th-U fuel could be burned to 72 MWD/kg or 100 MWD/kg using 25% of 35% UO2 respectively. The uranium remained below 20% total fissile fraction throughout the cycle, making it unusable for weapons. Total plutonium production per MWD was a factor of 4.5 less in the Th-U fuel than in the conventional fuel; Pu-239 production per MWD was a factor of 6.5 less; and the plutonium produced was high in Pu-238, leading to a decay heat 5 times greater than that from plutonium derived from conventional fuel and 40 times greater than weapons grade plutonium. High decay heat would require active cooling of any crude weapon, lest the components surrounding the plutonium be melted. Spontaneous neutron production for plutonium from Th-U fuel was 2.3 times greater than that from conventional fuel and 15 times greater than that from weapons grade plutonium. High spontaneous neutron production drastically limits the probable yield of a crude weapon. Because ThO2 is the highest oxide of thorium, while UO2 can be oxidized further to U3O8, ThO2-UO2 fuel may be a superior wasteform if the spent fuel is ever to be exposed to oxygenated water. Even if the cost of fabricating the mixed Th-U fuel is $100/kg greater, the cost of the Th-U fuel is 13% to 15% less than that of the fuels using uranium only.

J. S. Herring; P. E. MacDonald

1999-06-01T23:59:59.000Z

263

Characteristics of a Mixed Thorium - Uranium Dioxide High-Burnup Fuel  

SciTech Connect (OSTI)

Future nuclear fuel must satisfy three sets of requirements: longer times between refueling; concerns for weapons proliferation; and development of a spent fuel form more suitable for direct geologic disposal. This project has investigated a fuel consisting of mixed thorium and uranium dioxide to satisfy these requirements. Results using the SCALE 4.3 code system indicated that the mixed Th-U fuel could be burned to 72 MWD/kg or 100 MWD/kg using 25% and 35% UO2 respectively. The uranium remained below 20 % total fissile fraction throughout the cycle, making it unusable for weapons. Total plutonium production per MWD was a factor of 4.5 less in the Th-U fuel than in the conventional fuel; Pu-239 production per MWD was a factor of 6.5 less; and the plutonium produced was high in Pu-238, leading to a decay heat 5 times greater than that from plutonium derived from conventional fuel and 40 times greater than weapons grade plutonium. High decay heat would require active cooling of any crude weapon, lest the components surrounding the plutonium be melted. Spontaneous neutron production for plutonium from Th-U fuel was 2.3 times greater than that from conventional fuel and 15 times greater than that from weapons grade plutonium. High spontaneous neutron production drastically limits the probable yield of a crude weapon. Because ThO2 is the highest oxide of thorium, while UO2 can be oxidized further to U3O8, ThO2- UO2 fuel may be a superior wasteform if the spent fuel is ever to be exposed to oxygenated water. Even if the cost of fabricating the mixed Th-U fuel is $100/kg greater, the cost of the Th-U fuel is 13% to 25% less than that of the fuels using uranium only.

Herring, James Stephen; Mac Donald, Philip Elsworth

1999-06-01T23:59:59.000Z

264

On the Use of Depleted Uranium Dioxide as a Neutron Filter  

Science Journals Connector (OSTI)

A simple additive formula is given which, for neutron energies in the range 10-4 < E...<10 eV, permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections of a crystalline mate...

M. Adib; N. Habib

2003-04-01T23:59:59.000Z

265

Fluorination of a depleted uranium-plutonium-nitride fuel with elemental fluorine  

Science Journals Connector (OSTI)

A physical and a mathematical model have been developed to describe the physicochemical process of torch fluorination of an uranium-plutonium-nitride fuel. An algorithm for calculating the velocity, temperatur...

V. A. Karelin; V. N. Brendakov; M. V. Popadeikin

266

Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida  

SciTech Connect (OSTI)

Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

1995-05-01T23:59:59.000Z

267

Protective effects of ion-imprinted chitooligosaccharides as uranium-specific chelating agents against the cytotoxicity of depleted uranium in human kidney cells  

Science Journals Connector (OSTI)

Occupational internal contamination with depleted uranium (DU) compounds can induce radiological and chemical toxicity, and an effective and specific uranium-chelating agent for clinical use is urgently needed. The purpose of this study was to investigate whether a series of synthesized water-soluble metal-ion-imprinted chitooligosaccharides can be used as uranium-specific chelating agents, because the chitooligosaccharides have excellent heavy metal ion chelation property and the ion-imprinting technology can improve the selective recognition of template ions. DU-poisoned human renal proximal tubule epithelium cells (human kidney 2 cells, HK-2) were used to assess the detoxification of these chitooligosaccharides. The DU-chelating capacity and selectivity of the chitooligosaccharides were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Cell viability, cellular accumulation of DU, membrane damage, DNA damage, and morphological changes in the cellular ultrastructure were examined to assess the detoxification of these chitooligosaccharides. The results showed that the Cu2+-imprinted chitooligosaccharides, especially the Cu2+-imprinted glutaraldehyde-crosslinked carboxymethyl chitooligosaccharide (Cu-Glu-CMC), chelated DU effectively and specifically, and significantly reduced the loss of cell viability induced by DU and reduced cellular accumulation of DU in a dose-dependent manner, owing to their chelation of DU outside cells and their prevention of DU internalization. The ultrastructure observation clearly showed that Cu-Glu-CMC-chelated-DU precipitates, mostly outside cells, were grouped in significantly larger clusters, and they barely entered the cells by endocytosis or in any other way. Treatment with Cu-Glu-CMC also increased the activity of antioxidant enzymes, and reduced membrane damage and DNA damage induced by DU oxidant injury. Cu-Glu-CMC was more effective than the positive control drug, diethylenetriaminepentaacetic acid (DTPA), in protection of HK-2 cells against DU cytotoxicity, as a result of its chelation of UO22+ to prevent the DU internalization and its antioxidant activity.

Xiao-fei Zhang; Chun-lei Ding; He Liu; Li-hong Liu; Chang-qi Zhao

2011-01-01T23:59:59.000Z

268

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

269

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

1 1 Paducah DUF 6 DEIS: December 2003 SUMMARY S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth,

270

Deformation of depleted uranium ? 0.78 Ti under shock compression to 11.0 GPa at room temperature  

Science Journals Connector (OSTI)

The present work on depleted uranium alloyed with 0.78% titanium by weight (i.e. U?0.8 Ti) describes the nature of deformation it undergoes when subjected to shock compression at room temperature. The principal results emerging out of the present work are: (1) The stress limits of elastic deformation are dependent on the thickness of U?0.8Ti. The stress limit decreases from over 3.0 GPa at the impact surface to 1.2 GPa at a depth of 9 mm in U?0.8 Ti; (2) The lower limit of the stress agrees with the static yield stress in U?0.8 Ti; (3) Above the elastic stress limit the deformation of U?0.8 Ti proceeds in a manner of the ideal plastic solid; and (4) The pressure derivative of Lame’s parameter of U?0.8 Ti is estimated to be 3.8.

Dattatraya P. Dandekar; Anthony G. Martin; John V. Kelley

1980-01-01T23:59:59.000Z

271

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network [OSTI]

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

272

Depleted uranium ( U 238 92 ) induced preionization for enhanced and reproducible x-ray emission from plasma focus  

Science Journals Connector (OSTI)

The effect of preionization induced by depleted uranium ( U 238 92 ) around the insulator sleeve on the x-ray emission of ( 2.3 – 3.9 kJ ) plasma focusdevice is investigated by employing Quantrad Si p - i - n diodes and a multipinhole camera. X-ray emission in 4 ? geometry is measured as a function of charging voltage with and without preionization. It is found that the preionization enhances Cu K ? and total x-ray yield about 100% broadens the x-ray emission pressure range and x-ray pulse width and improves shot to shot reproducibility of plasma focus operation. The pinhole images of x-ray emitting zones indicate that dominant x-ray emission is from the anode tip.

S. Ahmad; M. Shafiq; M. Zakaullah; A. Waheed

2006-01-01T23:59:59.000Z

273

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

274

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Paducah DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process,

275

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Paducah DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

276

Depleted uranium contamination by inhalation exposure and its detection after ? 20 years: Implications for human health assessment  

Science Journals Connector (OSTI)

Inhaled depleted uranium (DU) aerosols are recognised as a distinct human health hazard and DU has been suggested to be responsible in part for illness in both military and civilian populations that may have been exposed. This study aimed to develop and use a testing procedure capable of detecting an individual's historic milligram-quantity aerosol exposure to DU up to 20 years after the event. This method was applied to individuals associated with or living proximal to a DU munitions plant in Colonie New York that were likely to have had a significant DU aerosol inhalation exposure, in order to improve DU-exposure screening reliability and gain insight into the residence time of DU in humans. We show using sensitive mass spectrometric techniques that when exposure to aerosol has been unambiguous and in sufficient quantity, urinary excretion of DU can be detected more than 20 years after primary DU inhalation contamination ceased, even when DU constitutes only ? 1% of the total excreted uranium. It seems reasonable to conclude that a chronically DU-exposed population exists within the contamination ‘footprint’ of the munitions plant in Colonie, New York. The method allows even a modest DU exposure to be identified where other less sensitive methods would have failed entirely. This should allow better assessment of historical exposure incidence than currently exists.

Randall R. Parrish; Matthew Horstwood; John G. Arnason; Simon Chenery; Tim Brewer; Nicholas S. Lloyd; David O. Carpenter

2008-01-01T23:59:59.000Z

277

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

SciTech Connect (OSTI)

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

278

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

279

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

280

A comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium  

E-Print Network [OSTI]

of this thesis. I would also like i. o express m/ appreciation to Dr. Richard Cuddihy ai the inhalation Toxicology Research Inst. itute for his assisiance in tIIe development of th1S thesis. I wou'Id also 11ke to thanl: Nr. I loyd wheat and Nr. Kev1n Durgett... uranium (OU) in lung f)uid simulani. in a efi'ort to gather data which r ouId be used to determine the pulmonary to blood t ransfer rate of inhaled oxidized OU. This information was taken one step further by utilizing the data in two biomathematical...

Crist, Kevin Craig

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Feasibility study on consolidation of Fernald Environmental Management Project depleted uranium materials  

SciTech Connect (OSTI)

In 1991, the DOE made a decision to close the FMPC located in Fernald, Ohio, and end its production mission. The site was renamed FEMP to reflect Fernald`s mission change from uranium production to environmental restoration. As a result of this change, the inventory of strategic uranium materials maintained at Fernald by DOE DP will need to be relocated to other DOE sites. Although considered a liability to the Fernald Plant due to its current D and D mission, the FEMP DU represents a potentially valuable DOE resource. Recognizing its value, it may be important for the DOE to consolidate the material at one site and place it in a safe long-term storage condition until a future DOE programmatic requirement materializes. In August 1995, the DOE Office of Nuclear Weapons Management requested, Lockheed Martin Energy Systems (LMES) to assess the feasibility of consolidating the FEMP DU materials at the Oak Ridge Reservation (ORR). This feasibility study examines various phases associated with the consolidation of the FEMP DU at the ORR. If useful short-term applications for the DU fail to materialize, then long-term storage (up to 50 years) would need to be provided. Phases examined in this report include DU material value; potential uses; sampling; packaging and transportation; material control and accountability; environmental, health and safety issues; storage; project management; noneconomic factors; schedule; and cost.

NONE

1995-11-30T23:59:59.000Z

282

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network [OSTI]

problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

Hwang, Chiachi

2009-01-01T23:59:59.000Z

283

ZPR-3 Assembly 12 : A cylindrical assembly of highly enriched uranium, depleted uranium and graphite with an average {sup 235}U enrichment of 21 atom %.  

SciTech Connect (OSTI)

Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 12 (ZPR-3/12) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 21 at.%. Approximately 68.9% of the total fissions in this assembly occur above 100 keV, approximately 31.1% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 9 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 12 began in late Jan. 1958, and the Assembly 12 program ended in Feb. 1958. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates and graphite plates loaded into stainless steel drawers which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, seven columns of 0.125 in.-wide depleted uranium plates and seven columns of 0.125 in.-wide graphite plates. The length of each column was 9 in. (228.6 mm) in each half of the core. The graphite plates were included to produce a softer neutron spectrum that would be more characteristic of a large power reactor. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the radial blanket was approximately 12 in. and the length of the radial blanket in each half of the matrix was 21 in. (533.4 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/12, the reference critical configuration was loading 10 which was critical on Feb. 5, 1958. The subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/12 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. An accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/12 loading 10. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must d

Lell, R. M.; McKnight, R. D.; Perel, R. L.; Wagschal, J. J.; Nuclear Engineering Division; Racah Inst. of Physics

2010-09-30T23:59:59.000Z

284

A novel hohlraum with ultrathin depleted-uranium-nitride coating layer for low hard x-ray emission and high radiation temperature  

E-Print Network [OSTI]

An ultra-thin layer of uranium nitrides (UN) has been coated on the inner surface of the depleted uranium hohlraum (DUH), which has been proved by our experiment can prevent the oxidization of Uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on Shenguang III prototype laser facility. Under the laser intensity of 6*10^14 W/cm2, we observe that, the hard x-ray (> 1.8 keV) fraction of this uranium hohlraum decreases by 61% and the peak intensity of total x-ray flux (0.1 keV ~ 5 keV) increases by 5%. Two dimensional radiation hydrodynamic code LARED are exploited to interpret the above observations. Our result for the first time indicates the advantage of the UN-coated DUH in generating the uniform x-ray field with a quasi Planckian spectrum and thus has important implications in optimizing the ignition hohlraum design.

Guo, Liang; Xing, Peifeng; Li, Sanwei; Yi, Taimin; Kuang, Longyu; Li, Zhichao; Li, Renguo; Wu, Zheqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Bobi; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

2014-01-01T23:59:59.000Z

285

Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds: Human health and ecological risk assessments  

SciTech Connect (OSTI)

The purpose of this study was to evaluate the immediate and long-term consequences of depleted uranium (DU) in the environment at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) for the Test and Evaluation Command (TECOM) of the US Army. Specifically, we examined the potential for adverse radiological and toxicological effects to humans and ecosystems caused by exposure to DU at both installations. We developed contaminant transport models of aquatic and terrestrial ecosystems at APG and terrestrial ecosystems at YPG to assess potential adverse effects from DU exposure. Sensitivity and uncertainty analyses of the initial models showed the portions of the models that most influenced predicted DU concentrations, and the results of the sensitivity analyses were fundamental tools in designing field sampling campaigns at both installations. Results of uranium (U) isotope analyses of field samples provided data to evaluate the source of U in the environment and the toxicological and radiological doses to different ecosystem components and to humans. Probabilistic doses were estimated from the field data, and DU was identified in several components of the food chain at APG and YPG. Dose estimates from APG data indicated that U or DU uptake was insufficient to cause adverse toxicological or radiological effects. Dose estimates from YPG data indicated that U or DU uptake is insufficient to cause radiological effects in ecosystem components or in humans, but toxicological effects in small mammals (e.g., kangaroo rats and pocket mice) may occur from U or DU ingestion. The results of this study were used to modify environmental radiation monitoring plans at APG and YPG to ensure collection of adequate data for ongoing ecological and human health risk assessments.

Ebinger, M.H.; Beckman, R.J.; Myers, O.B. [Los Alamos National Lab., NM (United States); Kennedy, P.L.; Clements, W.; Bestgen, H.T. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1996-09-01T23:59:59.000Z

286

Evaluation of the effect of implanted depleted uranium on male reproductive success, sperm concentration, and sperm velocity  

SciTech Connect (OSTI)

Depleted uranium (DU) projectiles have been used in battle in Iraq and the Balkans and will continue to be a significant armor-penetrating munition for the US military. As demonstrated in the Persian Gulf War, battle injury from DU projectiles and shrapnel is a possibility, and removal of embedded DU fragments from the body is not always practical because of their location in the body or their small size. Previous studies in rodents have demonstrated that implanted DU mobilizes and translocates to the gonads, and natural uranium may be toxic to spermatazoa and the male reproductive tract. In this study, the effects of implanted DU pellets on sperm concentration, motility, and male reproductive success were evaluated in adult (P1) Sprague-Dawley rats implanted with 0, 12, or 20, DU pellets of 1x2 mm or 12 or 20 tantalum (Ta) steel pellets of 1x2 mm. Twenty DU pellets of 1x2 mm (760 mg) implanted in a 500-g rat are equal to approximately 0.2 pound of DU in a 154-lb (70-kg) person. Urinary analysis found that male rats implanted with DU were excreting uranium at postimplantation days 27 and 117 with the amount dependent on dose. No deaths or evidence of toxicity occurred in P1 males over the 150-day postimplantation study period. When assessed at postimplantation day 150, the concentration, motion, and velocity of sperm isolated from DU-implanted animals were not significantly different from those of sham surgery controls. Velocity and motion of sperm isolated from rats treated with the positive control compound {alpha}-chlorohydrin were significantly reduced compared with sham surgery controls. There was no evidence of a detrimental effect of DU implantation on mating success at 30-45 days and 120-145 days postimplantation. The results of this study suggest that implantation of up to 20 DU pellets of 1x2 mm in rats for approximately 21% of their adult lifespan does not have an adverse impact on male reproductive success, sperm concentration, or sperm velocity.

Arfsten, Darryl P. [Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson AFB, OH 45433 (United States)]. E-mail: darryl.arfsten@wpafb.af.mil; Schaeffer, David J. [Department of Veterinary Biosciences, University of Illinois at Urbana Champaign, Urbana, IL 61802 (United States); Johnson, Eric W. [Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson AFB, OH 45433 (United States); Robert Cunningham, J. [Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson AFB, OH 45433 (United States); Still, Kenneth R. [Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson AFB, OH 45433 (United States); Wilfong, Erin R. [Naval Health Research Center Detachment, Environmental Health Effects Laboratory, Wright-Patterson AFB, OH 45433 (United States)

2006-02-15T23:59:59.000Z

287

Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report  

SciTech Connect (OSTI)

This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

Ebinger, M.H.; Hansen, W.R.

1996-10-01T23:59:59.000Z

288

Global transcriptional analysis of short-term hepatic stress responses in Atlantic salmon (Salmo salar) exposed to depleted uranium  

Science Journals Connector (OSTI)

Abstract Potential environmental hazards of radionuclides are often studied at the individual level. Sufficient toxicogenomics data at the molecular/cellular level for understanding the effects and modes of toxic action (MoAs) of radionuclide is still lacking. The current article introduces transcriptomic data generated from a recent ecotoxicological study, with the aims to characterize the MoAs of a metallic radionuclide, deplete uranium (DU) in an ecologically and commercially important fish species, Atlantic salmon (Salmo salar). Salmon were exposed to three concentrations (0.25, 0.5 and 1.0 mg/L) of DU for 48 h. Short-term global transcriptional responses were studied using Agilent custom-designed high density 60,000-feature (60 k) salmonid oligonucleotide microarrays (oligoarray). The microarray datasets deposited at Gene Expression Omnibus (GEO ID: GSE58824) were associated with a recently published study by Song et al. (2014) in BMC Genomics. The authors describe the experimental data herein to build a platform for better understanding the toxic mechanisms and ecological hazard of radionuclides such as DU in fish.

You Song; Brit Salbu; Hans-Christian Teien; Lene Sørlie Heier; Bjørn Olav Rosseland; Tore Høgåsen; Knut Erik Tollefsen

2014-01-01T23:59:59.000Z

289

Paducah DUF6 Conversion Final EIS - Appendix C: Scoping Summary Report for Depleted Uranium Hexafluoride Conversion Facilities - Environmental Impact Statement Scoping Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX C: SCOPING SUMMARY REPORT FOR DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITIES ENVIRONMENTAL IMPACT STATEMENT SCOPING PROCESS Scoping Summary Report C-2 Paducah DUF 6 Conversion Final EIS Scoping Summary Report C-3 Paducah DUF 6 Conversion Final EIS APPENDIX C This appendix contains the summary report prepared after the initial public scoping period for the depleted uranium hexafluoride conversion facilities environmental impact statement (EIS) project. The scoping period for the EIS began with the September 18, 2001, publication of a Notice of Intent (NOI) in the Federal Register (66 FR 23213) and was extended to January 11, 2002. The report summarizes the different types of public involvement opportunities provided and the content of the comments received.

290

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

291

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

292

Concentration, distribution and characteristics of depleted uranium (DU) in the Kosovo ecosystem: A comparison with the uranium behavior in the environment uncontaminated by DU  

Science Journals Connector (OSTI)

The smear samples of the penetrator were analyzed for the determination of the uranium composition. The obtained relative composition (m/m) of uranium isotopes in all the smear samples is...238U, 0.000659-0.00069...

Guogang Jia; M. Belli; U. Sansone…

293

Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio)  

Science Journals Connector (OSTI)

Abstract Despite the well-characterized occurrence of uranium (U) in the aquatic environment, very little is known about the chronic exposure of fish to low levels of U and its potential effect on reproduction. Therefore, this study was undertaken to investigate the effects of environmental concentrations of depleted U on the reproductive output of zebrafish (Danio rerio) and on survival and development of the F1 embryo-larvae following parental exposure to U. For that purpose, sexually mature male and female zebrafish were exposed to 20 and 250 ?g/L of U for 14 days and allowed to reproduce in clean water during a further 14-day period. At all sampling times, whole-body vitellogenin concentrations and gonad histology were analyzed to investigate the effects of U exposure on these reproductive endpoints. In addition, accumulation of U in the gonads and its genotoxic effect on male and female gonad cells were quantified. The results showed that U strongly affected the capability of fish to reproduce and to generate viable individuals as evidenced by the inhibition of egg production and the increased rate of mortality of the F1 embryos. Interestingly, U exposure resulted in decreased circulating concentrations of vitellogenin in females. Increased concentrations of U were observed in gonads and eggs, which were most likely responsible for the genotoxic effects seen in fish gonads and in embryos exposed maternally to U. Altogether, these findings highlight the negative effect of environmentally relevant concentrations of U which alter the reproductive capability of fish and impair the genetic integrity of F1 embryos raising further concern regarding its effect at the population level.

Stéphanie Bourrachot; François Brion; Sandrine Pereira; Magali Floriani; Virginie Camilleri; Isabelle Cavalié; Olivier Palluel; Christelle Adam-Guillermin

2014-01-01T23:59:59.000Z

294

Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes  

E-Print Network [OSTI]

coordination chemistry is depleted uranium, a by-product innuclear reactors. Depleted uranium Figure 1-1. The periodic

Lam, Oanh Phi

2010-01-01T23:59:59.000Z

295

Transcript of Public Scoping Meeting for Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities at Portsmouth, Ohio, and Paducah, Kentucky, held Nov. 28, 2001, Piketon, Ohio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. DEPARTMENT OF ENERGY ENVIRONMENTAL 2 IMPACT STATEMENT 3 FOR DEPLETED URANIUM HEXAFLUORIDE 4 CONVERSION FACILITIES 5 AT PORTSMOUTH, OHIO AND PADUCAH, KENTUCKY 6 7 SCOPING MEETING 8 9 November 28, 2001. 10 11 6:00 p.m. 12 13 Riffe Beavercreek Vocational School 14 175 Beavercreek Road 15 Piketon, Ohio 45661 16 17 FACILITATORS: Darryl Armstrong 18 Harold Munroe 19 Kevin Shaw 20 Gary Hartman 21 22 23 24 Professional Reporters, Inc. (614) 460-5000 or (800) 229-0675 2 1 -=0=- 2 PROCEEDINGS 3 -=0=- 4 MR. ARMSTRONG: I have 6:00, 5 according to my watch. Good evening, ladies 6 and gentlemen. If you'll please take your 7 seats, we'll get started. This meeting is 8 now officially convened. 9 On behalf of DOE, we thank you for 10 attending the environmental impact 11 statement, or EIS, scoping meeting this 12 evening for the depleted uranium conversion 13 facilities. My name is Darryl Armstrong. I 14

296

Long term depleted uranium exposure in Gulf War I veterans does not cause elevated numbers of micronuclei in peripheral blood lymphocytes  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a high density heavy metal that has been used in military munitions since the 1991 Gulf War. DU is weakly radioactive and chemically toxic. Long term exposure can cause adverse health effects. This study assessed genotoxic effects in DU exposed Gulf War I veterans as a function of uranium (U) body burden. Levels of urine U were used to categorize the cohort into low and high exposure groups. Exposure to DU occurred during friendly fire incidents in 1991 involving DU munitions resulting in inhalation and ingestion exposure to small particles of DU and soft tissue DU fragments from traumatic injuries. All of these Veterans are enrolled in a long term health surveillance program at the Baltimore Veterans Administration Medical Center. Blood was drawn from 35 exposed male veterans aged 36–59 years, then cultured and evaluated for micronuclei (MN) using the cytokinesis block method. The participants were divided into two exposure groups, low and high, based on their mean urine uranium (uU) concentrations. Poisson regression analyses with mean urine U concentrations, current smoking, X-rays in the past year and donor age as dependent variables revealed no significant relationships with MN frequencies. Our results indicate that on-going systemic exposure to DU occurring in Gulf War I Veterans with DU embedded fragments does not induce significant increases in MN in peripheral blood lymphocytes compared to MN frequencies in Veterans with normal U body burdens.

M.V. Bakhmutsky; M.S. Oliver; M.A. McDiarmid; K.S. Squibb; J.D. Tucker

2011-01-01T23:59:59.000Z

297

Extraction of Uranium from Aqueous Solutions Using Ionic Liquid and Supercritical Carbon Dioxide in Conjunction  

SciTech Connect (OSTI)

Uranyl ions (UO2)2+ in aqueous nitric acid solutions can be extracted into supercritical CO2 (sc-CO2) via an imidazolium-based ionic liquid using tri-n-butylphosphate (TBP) as a complexing agent. The transfer of uranium from the ionic liquid to the supercritical fluid phase was monitored by UV/Vis spectroscopy using a high-pressure fiberoptic cell. The form of the uranyl complex extracted into the supercritical CO2 phase was found to be UO2(NO3)2(TBP)2. The extraction results were confirmed by UV/Vis spectroscopy and by neutron activation analysis. This technique could potentially be used to extract other actinides for applications in the field of nuclear waste management.

Wang, Joanna S.; Sheaff, Chrystal N.; Yoon, Byunghoon; Addleman, Raymond S.; Wai, Chien M.

2009-01-01T23:59:59.000Z

298

Transcript of Public Scoping Meeting for Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities at Portsmouth, Ohio, and Paducah, Kentucky, held Dec. 4, 2001, Oak Ridge, Tennessee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRANSCRIPT TRANSCRIPT OF MEETING ______________________________________________________ FACILITATOR: MR. DARRYL ARMSTRONG SPEAKER: MR. DALE RECTOR SPEAKER: MR. NORMAN MULVENON SPEAKER: MS. SUSAN GAWARECKI SPEAKER: MR. GENE HOFFMAN DECEMBER 4, 2001 ____________________________________________________ JOAN S. ROBERTS COURT REPORTER P.O. BOX 5924 OAK RIDGE, TENNESSEE 37831 (865-457-4027) 2 1 MR. ARMSTRONG: TAKE YOUR SEATS AND WE 2 WILL BEGIN THE MEETING. GOOD EVENING, LADIES 3 AND GENTLEMEN. IF YOU WILL, WE WILL START, THE 4 TIME IS NOW 6:02 P.M. THE MEETING IS 5 OFFICIALLY CONVENED. ON BEHALF OF THE 6 DEPARTMENT OF ENERGY, WE THANK YOU FOR 7 ATTENDING THIS ENVIRONMENTAL IMPACT STATEMENT 8 SCOPING MEETING, ALSO KNOWN AS AN EIS SCOPING 9 MEETING, FOR THE DEPLETED URANIUM CONVERSION 10 FACILITIES. MY NAME IS DARRYL ARMSTRONG. I'M 11 AN INDEPENDENT AND NEUTRAL FACILITATOR HIRED BY 12 AGENCIES

299

Streamlined approach for environmental restoration plan for corrective action unit 430, buried depleted uranium artillery round No. 1, Tonopah test range  

SciTech Connect (OSTI)

This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) and the Resource Conservation and Recovery Act (RCRA) Industrial Sites Quality Assurance Project Plan.

NONE

1996-09-01T23:59:59.000Z

300

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Safety analysis report for packaging: the ORNL DOT specification 6M - tritium trap package. [Tritium absorbed as solid uranium tritide in depleted uranium trap  

SciTech Connect (OSTI)

The ORNL DOT Specification 6M--Tritium Trap Package was fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of Type B quantities of tritium as solid uranium tritide. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container, a drop test performed by the ORNL Operations Division, and International Atomic Energy Agency (IAEA) approvals on a similar tritium transport container. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities of tritium. 4 references, 8 figures.

DeVore, J.R.

1984-04-01T23:59:59.000Z

302

Long-term exposure to depleted uranium in Gulf-War veterans does not induce chromosome aberrations in peripheral blood lymphocytes  

Science Journals Connector (OSTI)

Abstract Depleted uranium (DU) is a high-density heavy metal that has been used in munitions since the 1991 Gulf War. DU is weakly radioactive and chemically toxic, and long-term exposure may cause adverse health effects. This study evaluates genotoxic effects of exposure to DU by measuring chromosome damage in peripheral blood lymphocytes with fluorescence in situ hybridization whole-chromosome painting. Study participants are Gulf War-I Veterans with embedded DU fragments and/or inhalation exposure due to involvement in friendly-fire incidents; they are enrolled in a long-term health surveillance program at the Baltimore Veterans Administration Medical Center. Blood was drawn from 35 exposed male veterans aged 39 to 62 years. Chromosomes 1, 2, and 4 were painted red and chromosomes 3, 5, and 6 were simultaneously labeled green. At least 1800 metaphase cells per subject were scored. Univariate regression analyses were performed to evaluate the effects of log(urine uranium), age at time of blood draw, log(lifetime X-rays), pack-years smoked and alcohol use, against frequencies of cells with translocated chromosomes, dicentrics, acentric fragments, color junctions and abnormal cells. No significant relationships were observed between any cytogenetic endpoint and log(urine uranium) levels, smoking, or log(lifetime X-rays). Age at the time of blood draw showed significant relationships with all endpoints except for cells with acentric fragments. Translocation frequencies in these Veterans were all well within the normal range of published values for healthy control subjects from around the world. These results indicate that chronic exposure to DU does not induce significant levels of chromosome damage in these Veterans.

Marina V. Bakhmutsky; Katherine Squibb; Melissa McDiarmid; Marc Oliver; James D. Tucker

2013-01-01T23:59:59.000Z

303

The Concentration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll  

SciTech Connect (OSTI)

Re-entry vehicles on missiles launched at Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An environmental Assessment (EA) was written at the beginning of the program to assess potential impact of Depleted Uranium (DU) and Beryllium (Be), the major RV materials of interest from a health and environmental perspective. The chemical and structural form of DU and Be in RVs is such that they are insoluble in soil water and sea water. Consequently, residual concentrations of DU and Be observed in soil on the island are not expected to be toxic to plant life because there is essentially no soil to plant uptake. Similarly, due to their insolubility in sea water there is no uptake of either element by marine biota including fish, mollusks, shellfish and sea mammals. No increase in either element has been observed in sea life around Illeginni Island where deposition of DU and Be has occurred. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Lindman, T R; Yakuma, S C

2006-04-27T23:59:59.000Z

304

Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body  

Science Journals Connector (OSTI)

...surrounded the adverse health effects of depleted uranium (DU) munitions...Society. 2001 The health hazards of depleted uranium munitions-Part 1...Society. 2002 The health effects of depleted uranium munitions-Part 2...

2010-01-01T23:59:59.000Z

305

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......UK The impact of depleted uranium (DU) on human health has been the subject...977-985. 11 World Health Organization. Depleted uranium: sources, exposure...Royal Society. The health hazards of depleted uranium munitions-Part I......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

306

Daily uranium excretion in German peacekeeping personnel serving on the Balkans compared to ICRP model prediction  

Science Journals Connector (OSTI)

......assess a possible health risk of depleted uranium (DU) for residents...119-122. 10 WHO. Depleted uranium: Sources, exposure and health effects. (2001...assess a possible health risk of depleted uranium (DU) for residents......

U. Oeh; W. B. Li; V. Höllriegl; A. Giussani; P. Schramel; P. Roth; H. G. Paretzke

2007-11-01T23:59:59.000Z

307

The reliability of dose coefficients for inhalation and ingestion of uranium by members of the public  

Science Journals Connector (OSTI)

......of bioassay data for depleted uranium. (2007) Health Protection Agency. Report...doses from inhalation of depleted uranium. Health Phys. (2008) 95...of bioassay data for depleted uranium. (2007) Health Protection Agency. Report......

M. Puncher; G. Burt

2013-12-01T23:59:59.000Z

308

A Monte Carlo analysis of possible cell dose enhancement effects by uranium microparticles in photon fields  

Science Journals Connector (OSTI)

......dangers from depleted uranium have focused...significant health risk(1...studies on depleted uranium have not found...detrimental to health(1). One...R. L. The health hazards of depleted uranium munitions......

J. S. Eakins; J. Th. M. Jansen; R. J. Tanner

2011-02-01T23:59:59.000Z

309

Normalisation of spot urine samples to 24-h collection for assessment of exposure to uranium  

Science Journals Connector (OSTI)

......exposed to depleted uranium. Intern...Environ. Health (2006...concentrations of depleted uranium and radiation...shrapnel. Health Phys (2005...Haldimann M. Depleted uranium in Kosovo...workers. Health Phys (2002......

R. Marco; E. Katorza; R. Gonen; U. German; A. Tshuva; O. Pelled; O. Paz-Tal; A. Adout; Z. Karpas

2008-06-01T23:59:59.000Z

310

The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation  

Science Journals Connector (OSTI)

Abstract Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

Amie L. Holmes; Kellie Joyce; Hong Xie; Carolyne Falank; John M. Hinz; John Pierce Wise Sr.

2014-01-01T23:59:59.000Z

311

Systems engineering approach to environmental risk management: A case study of depleted uranium at test area C-64, Eglin Air Force Base, Florida. Master`s thesis  

SciTech Connect (OSTI)

Environmental restoration is an area of concern in an environmentally conscious world. Much effort is required to clean up the environment and promote environmentally sound methods for managing current land use. In light of the public consciousness with the latter topic, the United States Air Force must also take an active role in addressing these environmental issues with respect to current and future USAF base land use. This thesis uses the systems engineering technique to assess human health risks and to evaluate risk management options with respect to depleted uranium contamination in the sampled region of Test Area (TA) C-64 at Eglin Air Force Base (AFB). The research combines the disciplines of environmental data collection, DU soil concentration distribution modeling, ground water modeling, particle resuspension modeling, exposure assessment, health hazard assessment, and uncertainty analysis to characterize the test area. These disciplines are required to quantify current and future health risks, as well as to recommend cost effective ways to increase confidence in health risk assessment and remediation options.

Carter, C.M.; Fortmann, K.M.; Hill, S.W.; Latin, R.M.; Masterson, E.J.

1994-12-01T23:59:59.000Z

312

Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk  

SciTech Connect (OSTI)

The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

Parkhurst, MaryAnn; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

313

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......higher fraction of depleted uranium (DU). These...in mandibular cancer patients following...Reprocessed uranium exposure and lung cancer risk. Health...and risks from uranium are not increased...The impact of depleted uranium (DU......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

314

Sizing particles of natural uranium and nuclear fuels using poly-allyl-diglycol carbonate autoradiography  

Science Journals Connector (OSTI)

......particles of natural uranium and nuclear fuels...low enriched, depleted and natural uranium and also aged...committed doses and cancer risks(4...Bristol, UK, sized uranium fragments found...nuclear fuels of depleted uranium (depUO2......

G. Hegyi; R. B. Richardson

2008-07-01T23:59:59.000Z

315

Standard specification for uranium oxides with a 235U content of less than 5 % for dissolution prior to conversion to nuclear-grade uranium dioxide  

E-Print Network [OSTI]

1.1 This specification covers uranium oxides, including processed byproducts or scrap material (powder, pellets, or pieces), that are intended for dissolution into uranyl nitrate solution meeting the requirements of Specification C788 prior to conversion into nuclear grade UO2 powder with a 235U content of less than 5 %. This specification defines the impurity and uranium isotope limits for such urania powders that are to be dissolved prior to processing to nuclear grade UO2 as defined in Specification C753. 1.2 This specification provides the nuclear industry with a general standard for such uranium oxide powders. It recognizes the diversity of conversion processes and the processes to which such powders are subsequently to be subjected (for instance, by solvent extraction). It is therefore anticipated that it may be necessary to include supplementary specification limits by agreement between the buyer and seller. 1.3 The scope of this specification does not comprehensively cover all provisions for prevent...

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

316

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents [OSTI]

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

317

Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes  

E-Print Network [OSTI]

greater than 99% U-238 (depleted uranium), which has no neturanium, since this actinide element offers minimal radioactivity (in depleted

Rinehart, Jeffrey Dennis

2010-01-01T23:59:59.000Z

318

Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat  

Science Journals Connector (OSTI)

The toxicity of uranium has been demonstrated in different organs, including ... few works have investigated the biological effects of uranium contamination on important metabolic function in the ... in the rat l...

Y. Guéguen; M. Souidi; C. Baudelin; N. Dudoignon; S. Grison…

2006-04-01T23:59:59.000Z

319

Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications  

SciTech Connect (OSTI)

Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

2013-02-01T23:59:59.000Z

320

Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Long-term accumulation of uranium in bones of Wistar rats as a function of intake dosages  

Science Journals Connector (OSTI)

......1997). 2. Depleted uranium: sources, exposures and health effects. WHO...Society. The health hazards of depleted uranium munitions, Part...Society. The health hazards of depleted uranium munitions, Part......

J. D. T. Arruda-Neto; M. V. Manso Guevara; G. P. Nogueira; M. Saiki; A. C. Cestari; K. Shtejer; A. Deppman; J. W. Pereira Filho; F. Garcia; L. P. Geraldo; A. N. Gouveia; F. Guzmán; J. Mesa; O. Rodriguez; R. Semmler; V. R. Vanin

2004-12-01T23:59:59.000Z

322

Long-term accumulation of uranium in bones of Wistar rats as a function of intake dosages  

Science Journals Connector (OSTI)

......consequence of the military use of depleted uranium (DU) weapons by NATO and other...221 , 97-104 (1997). 2. Depleted uranium: sources, exposures and health...information/radiation/depleted_uranium.htm (2001). 3. The Royal......

J. D. T. Arruda-Neto; M. V. Manso Guevara; G. P. Nogueira; M. Saiki; A. C. Cestari; K. Shtejer; A. Deppman; J. W. Pereira Filho; F. Garcia; L. P. Geraldo; A. N. Gouveia; F. Guzmán; J. Mesa; O. Rodriguez; R. Semmler; V. R. Vanin

2004-12-01T23:59:59.000Z

323

Controlling uranium reactivity March 18, 2008  

E-Print Network [OSTI]

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

324

Safe Operating Procedure SAFETY PROTOCOL: URANIUM  

E-Print Network [OSTI]

involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

Farritor, Shane

325

Inositol hexaphosphate: a potential chelating agent for uranium  

Science Journals Connector (OSTI)

......and staining pigments. Depleted uranium, a by-product of uranium...177-193. 2 World Health Organization (WHO). Uranium in drinking-water...the lethal effect of oral uranium poisoning. Health Phys. (2000) 78(6......

D. Cebrian; A. Tapia; A. Real; M. A. Morcillo

2007-11-01T23:59:59.000Z

326

Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy  

Science Journals Connector (OSTI)

...Molecular design for uranium neutron-capture therapy (cancer/immunotherapy...methodology for cancer therapy. Boron...system using uranium, as described...800 to =400 uranium atoms per apoferritin...uranyl ions were depleted, and loading...

J F Hainfeld

1992-01-01T23:59:59.000Z

327

Carbon sequestration in depleted oil shale deposits  

SciTech Connect (OSTI)

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

328

Uranium Hexafluoride (UF6)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

329

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......iranium in urine of uranium miners as a tool for...230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45...Measurement of daily urinary uranium excretion in German...potential intakes of depleted uranium(DU). Sci......

I. Malátová; V. Becková; L. Tomásek; M. Slezáková-Marusiaková; J. Hulka

2013-04-01T23:59:59.000Z

330

Estimation of internal exposure to uranium with uncertainty from urinalysis data using the InDEP computer code  

Science Journals Connector (OSTI)

......assumed specific activity of uranium from depleted (0.2 wt.% 235U) to low...Natural Uranium (Bq d1) Depleted Uranium (Bq d1) Enriched Uranium...calculated assuming exposure to depleted uranium and exposure to 2.0 % enriched......

Jeri L. Anderson; A. Iulian Apostoaei; Brian A. Thomas

2013-01-01T23:59:59.000Z

331

Uranyl Protoporphyrin: a New Uranium Complex  

Science Journals Connector (OSTI)

...received 3 times the LD50 of uranium as uranyl protoporphyrin...nitrate, had showed livers depleted of glycogen and kidneys...destruc-tion typical of uranium poisoning. The uranium-damaged...T. Godwin et al., Cancer 8, 601 (1954). 5...excretion of hexavalent uranium in man," in Proc...

ROBERT E. BASES

1957-07-26T23:59:59.000Z

332

Electron Emission from Slightly Oxidized Depleted Uranium Generated by its Own Radioactivity Measured by Electron Spectroscopy, and Electron-Induced Dissociation and Ionization of Hydrogen Near its Surface.  

SciTech Connect (OSTI)

Energy dependent electron emission (counts per second) between zero and 1.4 keV generated by the natural reactivity of uranium was measured by an electrostatic spectrometer with known acceptance angle and acceptance area. The electron intensity decreases continuously with energy, but at different rates in different energy regimes, suggesting that a variety of processes may be involved in producing the observed electron emission. The spectrum was converted to energy dependent electron flux (e-/cm{sup 2} s) using the assumption that the emission has a cosine angular distribution. The flux decreased rapidly from {approx}10{sup 6}/cm{sup 2}s to {approx}10{sup 5}/cm{sup 2}s in the energy range from zero to 200 eV, and then more slowly from {approx}10{sup 5}/cm{sup 2}s to {approx}3*10{sup 4}/cm{sup 2} s in the range from 200 to 1400 eV. The energy dependent electron mean free path in gases together with literature cross sections for electron induced reactions were used to determine the number of ionization and dissociation reactions per cm{sup 2}s within the inelastic mean free path of electrons, and found to be about 1.3*10{sup 8}/cm{sup 2}s and 1.5*10{sup 7}/cm{sup 2}s, respectively, for hydrogen. An estimate of the number of ionization and dissociation reactions occurring within the total range, rather than the mean free path of electrons in gases resulted in 6.2*10{sup 9}/cm{sup 2}s and 1.3*10{sup 9}/cm{sup 2}s, respectively. The total energy flux carried by electrons from the surface is suspiciously close to the total possible energy generated by one gram of uranium. A likely source of error is the assumption that the electron emission has a cosine distribution. Angular distribution measurements of the electron emission would check that assumption, and actual measurement of the total current emanating from the surface are needed to confirm the value of the current calculated in section II. These results must therefore be used with caution - until they are confirmed by other measurements.

Siekhaus, W J; Nelson, A J

2011-10-26T23:59:59.000Z

333

A Monte Carlo analysis of possible cell dose enhancement effects by uranium microparticles in photon fields  

Science Journals Connector (OSTI)

......R. L. The health hazards of depleted uranium munitions - Part I. J. Radiol...2001) 21:331. 2 Busby C. Depleted uranium weapons, metal particles, and...O. How war debris could cause cancer. New Scientist (2008) 195......

J. S. Eakins; J. Th. M. Jansen; R. J. Tanner

2011-02-01T23:59:59.000Z

334

Sizing particles of natural uranium and nuclear fuels using poly-allyl-diglycol carbonate autoradiography  

Science Journals Connector (OSTI)

......University Health Center, Montreal...Biology and Health Physics Branch...enriched, depleted and natural uranium and also aged...fiberglass filter. Health Phys (2000...of natural uranium and nuclear...enriched, depleted and natural......

G. Hegyi; R. B. Richardson

2008-07-01T23:59:59.000Z

335

Assessment of uranium exposure from total activity and 234U:238U activity ratios in urine  

Science Journals Connector (OSTI)

......9 Priest N. D. Toxicity of depleted uranium. Lancet (2001) 357:244-245. 10 Betti M. Civil use of depleted uranium. J. Environ. Radioact. (2003...the kidney: a reassessment. Health Phys. (1989) 57:365-383......

T. Nicholas; D. Bingham

2011-03-01T23:59:59.000Z

336

Distribution of uranium and some selected trace metals in human scalp hair from Balkans  

Science Journals Connector (OSTI)

......1023/A:1016031726512 . 2 World Health Organization report. Depleted uranium: sources, exposure and health effects. (2001) Department of...3 Birchard K. Does Iraq's depleted uranium pose a health risk? Lancet (1998) 351:657......

Z. S. Zunic; S. Tokonami; S. Mishra; H. Arae; R. Kritsananuwat; S. K. Sahoo

2012-11-01T23:59:59.000Z

337

Percutaneous penetration of uranium in rats after a contamination on intact or wounded skin  

Science Journals Connector (OSTI)

......Hoover M. D. Implanted depleted uranium fragments cause soft...muscles of rats. Environ. Health Perspect (2002) 110...Biokinetics and dosimetry of depleted uranium (DU) in rats implanted...international conference on Health Effects of Incorporated......

F. Petitot; C. Gautier; A. M. Moreels; S. Frelon; F. Paquet

2007-11-01T23:59:59.000Z

338

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......the occurrence of lung cancers(1). External gamma...been measured in Czech uranium mines since 1960s(2...Measurement of daily urinary uranium excretion in German peacekeeping...potential intakes of depleted uranium(DU). Sci. Total......

I. Malátová; V. Becková; L. Tomásek; M. Slezáková-Marusiaková; J. Hulka

2013-04-01T23:59:59.000Z

339

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......238U and 230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45(3...Measurement of daily urinary uranium excretion in German peacekeeping...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Malátová; V. Becková; L. Tomásek; J. Hulka

2011-11-01T23:59:59.000Z

340

Summary of the Special Analysis of Savannah River Depleted Uranium Trioxide Demonstrating the Before and After Impacts on the DOE Order 435.1 Performance Objective and the Peak Dose  

SciTech Connect (OSTI)

This report summarizes the special analysis (SA) of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 1) demonstrating the before and after impacts of the waste stream to the DOE Order 435.1 performance objective at the disposal facility, and the peak dose. The Nevada Division of Environmental Protection (NDEP) requested this SA and asked the Nevada Site Office (NSO) to run the SA deterministically and assume that all the model conditions remain the same regardless of the length of time to the peak dose. Although the NDEP accepts that DOE Order 435.1 requires a compliance period of 1,000 years, it also requested to know what year, if any, the specific DOE performance objectives will be exceeded. Given the NDEP’s requested model conditions, the SA demonstrates the Rn-222 peak dose will occur in about 2 million years and will exceed the performance objective in about 6,000 years. The 0.25 mSv y-1 all-pathway performance objective was not exceeded for the resident scenario after reaching the 4 million year peak dose.

Shott, G.J.

2011-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Improving Repository Performance by Using DU Dioxide Fill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DU Dioxide Fill DU Dioxide Fill Improving Repository Performance by Using DU Dioxide Fill Fills may improve repository performance by acting as sacrificial materials, which delay the degradation of SNF uranium dioxide. Because fill and SNF have the same chemical form of uranium (uranium dioxide), the DU dioxide in a repository is the only fill which has the same behavior as that of the SNF. In the natural environment, some uranium ore deposits have remained intact for very long periods of time. The outer parts of the ore deposit degrade while the inner parts of the deposit are protected. The same approach is proposed herein for protecting SNF. The application could use half or more of the DU inventory in the United States. Behavior of Uranium and Potential Behavior of a Waste Package with SNF and Fill

342

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......radiological scenario around uranium mines in Singhbhum East...The Health Hazards of Depleted Uranium Munitions (2001) The...in soil and lifetime cancer risk due to gamma radioactivity...radiological scenario around uranium mines in Singhbhum East......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

343

Distribution of uranium and some selected trace metals in human scalp hair from Balkans  

Science Journals Connector (OSTI)

......Balkan conflict zones, uranium isotopic measurement...blood and urine. Natural uranium (NU) comprises 0...27 % of 238U, whereas depleted uranium (DU), produced in...incidence of several cancers (including childhood......

Z. S. Zunic; S. Tokonami; S. Mishra; H. Arae; R. Kritsananuwat; S. K. Sahoo

2012-11-01T23:59:59.000Z

344

A Bayesian analysis of uncertainties on lung doses resulting from occupational exposures to uranium  

Science Journals Connector (OSTI)

......lung dose and lung cancer incidence resulting...occupational exposures to uranium. These calculations...from inhalation of uranium ignore significant...estimates of lung cancer are based on PEs...from inhalation of depleted uranium. Health Phys......

M. Puncher; A. Birchall; R. K. Bull

2013-09-01T23:59:59.000Z

345

A Bayesian analysis of uncertainties on lung doses resulting from occupational exposures to uranium  

Science Journals Connector (OSTI)

......dose coefficients of uranium compounds handled during...fabrication in France. Health Phys. (2002) 82...bioassays measurements: uranium dose assessment: a...doses from inhalation of depleted uranium. Health Phys. (2008) 95......

M. Puncher; A. Birchall; R. K. Bull

2013-09-01T23:59:59.000Z

346

Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic Metallosphaera species  

Science Journals Connector (OSTI)

...2005 ) Oxidation states of uranium in depleted uranium particles from Kuwait . J Environ...HDTR-09-0300 and National Institutes of Health Grant R01 GM090209-01. The...Supporting Information (PDF) Uranium extremophily is an adaptive...

Arpan Mukherjee; Garrett H. Wheaton; Paul H. Blum; Robert M. Kelly

2012-01-01T23:59:59.000Z

347

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......radiological scenario around uranium mines in Singhbhum East district...radiological scenario around uranium-mining sites in the Singhbhum...3 The Royal Society. The Health Hazards of Depleted Uranium Munitions (2001) The Royal......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

348

Assessment of occupational exposure to uranium by indirect methods needs information on natural background variations  

Science Journals Connector (OSTI)

......contamination is due to natural, depleted or enriched uranium. The exposure to natural...Gastrointestinal absorption of uranium in humans. Health Phys. (2002) 83...indicators for ingestion of uranium in drinking water. Health Phys. (2005) 88......

M. Muikku; T. Heikkinen; M. Puhakainen; T. Rahola; L. Salonen

2007-07-01T23:59:59.000Z

349

Uranium dose assessment: a Bayesian approach to the problem of dietary background  

Science Journals Connector (OSTI)

......03-1.05 19.8-22.2 Depleted uranium 0.15-0.37 10-19...material is assumed to be depleted uranium, with an assumed isotopic...uranium lung clearance at a uranium processing plant. Health Phys (1995) 68:661-669......

Tom Little; Guthrie Miller; Raymond Guilmette; Luiz Bertelli

2007-11-01T23:59:59.000Z

350

Charge Depleting:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.5 seconds 0.5 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 83.2 MPH Acceleration 1 Mile Maximum Speed: 100.6 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 10.6 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 82.8 MPH Acceleration 1 Mile Maximum Speed: 101.9 MPH Brake Test @ 60 MPH Distance Required: 145.1 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6,10 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 10 118.5 2.85 10 53.0 1.80 20 116.8 5.49 20 56.6 3.37 40 116.0 10.50 40 58.0 6.38 60 90.7 11.34 60 55.3 9.48 80 76.6 11.34 80 51.4 11.11 100 68.0 11.34 100 47.2 11.13 200 50.9 11.34 200 38.7 11.13 Fuel Economy with A/C Off 1 Cold Start Charge Depleting 2 : Fuel Economy: 119.7 MPG AC kWh Consumed 7 : 0.282 kWh/mi Charge Depleting

351

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the...

352

Depleted Uranium (DU ) — Chemo- and Radiotoxicity  

Science Journals Connector (OSTI)

DU metal used for civil or military purpose reacts with water, undergoes radiolysis, dissolves and contaminates soil and ground water. DU is pyrophoric and burns on impact (3000°C). DU oxide particles (mainly U6+

Albrecht Schott; Richard A. Brand; Joachim Kaiser…

2006-01-01T23:59:59.000Z

353

Tritium Transport Vessel Using Depleted Uranium  

Science Journals Connector (OSTI)

Tritium Storage, Distribution, and Transportation / Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

L. K. Heung

354

Depleted Uranium Hexafluoride Materials Use Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 U.S. Department of Energy DUF 6 MATERIALS USE ROADMAP Edited by: M. Jonathan Haire Allen G. Croff August 27, 2001 DUF 6 Materials Use Workshop Participants August 24-25, 1999 Name Organization Halil Avci ANL Bob Bernero Consultant Lavelle Clark PNNL Carl Cooley DOE/EM-50 Allen Croff ORNL Juan Ferrada ORNL Charles Forsberg ORNL John Gasper ANL Bob Hightower ORNL Julian Hill PNNL Ed Jones LLNL Asim Khawaja PNNL George Larson Consultant Paul Lessing INEEL Dan O'Connor ORNL Robert Price DOE/NE-30 Nancy Ranek ANL Mark Senderling DOE/RW-46 Roger Spence ORNL John Tseng DOE/EM-21 John Warren DOE/NE-30 Ken Young LLNL iii CONTENTS ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . .

355

Uranium isotopic ratio determination in urine using flow-injection ICP-MS: a tool for emergency monitoring  

Science Journals Connector (OSTI)

......Biological monitoring of uranium exposure in south central...determination of low uranium isotopes ratios in small...Carpenter D. O. Depleted uranium contamination by inhalation...implication for human health assessment. Sci. Total......

Maria Luiza D. P. Godoy; Ligia M. Q. C. Julião; José Marcus Godoy

2009-02-01T23:59:59.000Z

356

Estimation of internal exposure to uranium with uncertainty from urinalysis data using the InDEP computer code  

Science Journals Connector (OSTI)

......Uranium (Bq d1) Depleted Uranium (Bq d1) Enriched...the current NIOSH uranium mortality study...industrial hygiene, and health physics. A single chronic exposure to uranium over the course...facility varied between depleted and less than 2-wt......

Jeri L. Anderson; A. Iulian Apostoaei; Brian A. Thomas

2013-01-01T23:59:59.000Z

357

Extraction of uranium from spent fuels using liquefied gases  

SciTech Connect (OSTI)

For reprocessing of spent nuclear fuels, a novel method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. As a fundamental study, the nitrate conversion with liquefied nitrogen dioxide and the nitrate extraction with supercritical carbon dioxide were demonstrated by using uranium dioxide powder, uranyl nitrate and tri-n-butylphosphate complex in the present study. (authors)

Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan)

2007-07-01T23:59:59.000Z

358

Bisphosphine dioxides  

DOE Patents [OSTI]

A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

Moloy, K.G.

1990-02-20T23:59:59.000Z

359

Uranium: Environmental Pollution and Health Effects  

Science Journals Connector (OSTI)

Uranium is found ubiquitously in nature in low concentrations in soil, rock, and water. Naturally occurring uranium contains three isotopes, namely 238U, 235U, and 234U. All uranium isotopes have the same chemical properties, but they have different radiological properties. The main civilian use of uranium is to fuel nuclear power plants, whereas high enriched (in 235U) uranium is used in the military sector as nuclear explosives and depleted uranium (DU) as penetrators or tank shielding. Exposure to uranium may cause health problems due to its radiological (uranium is predominantly emitting alpha-particles) and chemical actions (heavy metal toxicity). Uranium uptake may occur by ingestion, inhalation, contaminated wounds, and embedded fragments especially for soldiers. Inhalation of dust is considered the major pathway for uranium uptake in workplaces. Soluble uranium compounds tend to quickly pass through the body, whereas insoluble uranium compounds pose a more serious inhalation exposure hazard. The kidney is the most sensitive organ for uranium chemotoxicity. An important indirect radiological effect of uranium is the increased risk of lung cancers from inhalation of the daughter products of radon, a noble gas in the uranium decay chains that transports uranium-derived radioactivity from soil into the indoor environment. No direct evidence about the carcinogenic effect of DU in humans is available yet.

D. Melo; W. Burkart

2011-01-01T23:59:59.000Z

360

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......modelling. In: Quantification of cancer and non-cancer risks associated with multiple...distribution in the air of the uranium mine, Rozna, Czech Republic...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Malátová; V. Becková; L. Tomásek; J. Hulka

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Uranium Metal: Potential for Discovering Commercial Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

362

Caulobacter crescentus as a Whole-Cell Uranium Biosensor  

Science Journals Connector (OSTI)

...results, we constructed a uranium reporter that places...strongly upregulated under uranium stress conditions. MATERIALS...Pb(NO3)2], and depleted uranyl nitrate [UO2...and by Damon Runyon Cancer Research Foundation fellowship...specificity for chelated uranium(VI): isolation and...

Nathan J. Hillson; Ping Hu; Gary L. Andersen; Lucy Shapiro

2007-09-28T23:59:59.000Z

363

Assessment of age-dependent uranium intake due to drinking water in Hyderabad, India  

Science Journals Connector (OSTI)

......60 microg d1. The mean daily uranium intake through tap water, which...Dr A. K. Ghosh, Director, Health, Safety and Environment Group...colleagues. REFERENCES 1 US DOE. Depleted Uranium. Human Health Fact Sheet (2001) ANL. 2 Essien......

A. Y. Balbudhe; S. K. Srivastava; K. Vishwaprasad; G. K. Srivastava; R. M. Tripathi; V. D. Puranik

2012-03-01T23:59:59.000Z

364

Microbiological and Geochemical Heterogeneity in an In Situ Uranium Bioremediation Field Site  

Science Journals Connector (OSTI)

...Heterogeneity in an In Situ Uranium Bioremediation Field...and microbiology of a uranium-contaminated subsurface...oxides were highly depleted, groundwater sulfate...populations to in situ uranium bioremediation. Uranium...serious threat to human health and the natural environment...

Helen A. Vrionis; Robert T. Anderson; Irene Ortiz-Bernad; Kathleen R. O'Neill; Charles T. Resch; Aaron D. Peacock; Richard Dayvault; David C. White; Philip E. Long; Derek R. Lovley

2005-10-01T23:59:59.000Z

365

Uranium Oxide as a Highly Reflective Coating from 150-350 eV  

E-Print Network [OSTI]

of depleted uranium metal (less than 0.2% U-235). After sputtering, the uranium was allowed to oxidize1 Uranium Oxide as a Highly Reflective Coating from 150-350 eV Richard L. Sandberg, David D. Allred.byu.edu ABSTRACT We present the measured reflectances (beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium

Hart, Gus

366

Environmental Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

367

Effect of Shim Arm Depletion in the NBSR  

SciTech Connect (OSTI)

The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

Hanson A. H.; Brown N.; Diamond, D.J.

2013-02-22T23:59:59.000Z

368

Uranium occurrence in igneous rocks of the central Davis Mountains, west Texas  

E-Print Network [OSTI]

is local? sv ized in fewer sites with higher concentrations than in fine-grained rocks. In glasses, uranium is homogeneously dis tributed. Crystalline rocks are uranium-depleted by as much as 30 percent in comparison to glasses of similar composition.... This suggests that uranium is lost during alteration because it is concentrated at grain boundaries in crystalline rocks, where it is accessible to altering solutions. Uranium depletion also occurs in air-fall tuffs because of their permeability. Alteration...

Schaftenaar, Wendy Elizabeth

2012-06-07T23:59:59.000Z

369

Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.  

Science Journals Connector (OSTI)

...overlying water was depleted, Ba2+ and 226Ra2...SO4 sludges from uranium mine wastes...overlying water was depleted, Ba2' and 226Ra2...environment. At many uranium mining and milling...by the National Uranium Tailings Pro- gram...American Public Health Association. 1980...

P M Fedorak; D W Westlake; C Anders; B Kratochvil; N Motkosky; W B Anderson; P M Huck

1986-08-01T23:59:59.000Z

370

Determination of Young's modulus, shear modulus and mechanical damping as a function of temperature and microstructure for Uranium-2wt% Molybdenum using the PUCOT  

E-Print Network [OSTI]

Verghese Varughese, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Alan Wolfenden A research program has been completed at Texas A&M University in which dynamic Young's and shear modulus measurements were made for depleted Uranium-2wt... INTRODUCTION The need for mankind to utilize his abundant natural resources has led him to numerous research programs with depleted uranium. Depleted uranium ( U-238 ) is a by-product of the nuclear industry. Natural uranium contains about 0. 7...

Varughese, Joseph Verghese

2012-06-07T23:59:59.000Z

371

FAQ 3-What are the common forms of uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the common forms of uranium? are the common forms of uranium? What are the common forms of uranium? Uranium can take many chemical forms. In nature, uranium is generally found as an oxide, such as in the olive-green-colored mineral pitchblende. Uranium oxide is also the chemical form most often used for nuclear fuel. Uranium-fluorine compounds are also common in uranium processing, with uranium hexafluoride (UF6) and uranium tetrafluoride (UF4) being the two most common. In its pure form, uranium is a silver-colored metal. The most common forms of uranium oxide are U3O8 and UO2. Both oxide forms have low solubility in water and are relatively stable over a wide range of environmental conditions. Triuranium octaoxide (U3O8) is the most stable form of uranium and is the form most commonly found in nature. Uranium dioxide (UO2) is the form in which uranium is most commonly used as a nuclear reactor fuel. At ambient temperatures, UO2 will gradually convert to U3O8. Because of their stability, uranium oxides are generally considered the preferred chemical form for storage or disposal.

372

Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications.  

E-Print Network [OSTI]

??The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg… (more)

Garnetti, David J.

2010-01-01T23:59:59.000Z

373

Molten uranium dioxide structure and dynamics  

Science Journals Connector (OSTI)

...prevented ~64 × 10 12 kg of CO 2 -equivalent emissions since 1971, corresponding to a saving of 1.84 million air pollution–related deaths (1). Because the majority of currently operating nuclear reactors use either UO 2 or mixed oxide...

L. B. Skinner; C. J. Benmore; J. K. R. Weber; M. A. Williamson; A. Tamalonis; A. Hebden; T. Wiencek; O. L. G. Alderman; M. Guthrie; L. Leibowitz; J. B. Parise

2014-11-21T23:59:59.000Z

374

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network [OSTI]

Research Division OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC11905 -DISCLAIMER - OXYGEN DIFFUSION IN HYPOSTOICHIOMETRICc o n e e n i g woroxygen self-diffusion coefficient

Kim, Kee Chul

2010-01-01T23:59:59.000Z

375

FAQ 37-What are the potential health risks from transportation of depleted  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depleted uranium metal or oxide? depleted uranium metal or oxide? What are the potential health risks from transportation of depleted uranium metal or oxide? In the PEIS, risks associated with transportation of depleted uranium oxide and metal were estimated for transport by either rail or truck. Normal transport of oxide or metal would result in low-level external exposure to radiation for persons in the vicinity of a shipment. Based on estimates in the PEIS, the levels of exposure would result in negligible increased cancer risks. Risks from material released in an accident were also estimated. For a hypothetical railcar accident involving powder U3O8 that was assumed to occur in a highly-populated urban area under stable (nighttime) weather conditions, it was estimated that up to 20 people might experience irreversible adverse effects from chemical toxicity, with no fatalities expected. Approximately 2 potential latent cancer fatalities from radiological hazards are estimated for an accident under the same conditions. The probability of such an accident occurring is very low. The consequences from a truck accident would be lower, because trucks have a smaller shipment capacity. The consequences of transportation accidents involving depleted uranium metal would be much smaller than those involving uranium oxide because uranium metal would be in the form of solid blocks and would not be easily dispersed in an accident.

376

Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction  

SciTech Connect (OSTI)

Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Hickman, R.R. [NASA Marshall Space Flight Center, Huntsville, Alabama (United States)

2007-07-01T23:59:59.000Z

377

Validation of a Monte Carlo Based Depletion Methodology Using HFIR Post-Irradiation Measurements  

SciTech Connect (OSTI)

Post-irradiation uranium isotopic atomic densities within the core of the High Flux Isotope Reactor (HFIR) were calculated and compared to uranium mass spectrographic data measured in the late 1960s and early 70s [1]. This study was performed in order to validate a Monte Carlo based depletion methodology for calculating the burn-up dependent nuclide inventory, specifically the post-irradiation uranium

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

378

Carbonate Leaching of Uranium from Contaminated Soils  

Science Journals Connector (OSTI)

Uranium (U) was successfully removed from contaminated soils from the Fernald Environmental Management Project (FEMP) site near Fernald, Ohio. ... The concentrations of uranium and other metals in the effluent were analyzed using a Varian Liberty 200 inductively coupled plasma atomic emission spectrophotometer (ICP-AES) or a kinetic phosphorescence analyzer (KPA). ... When 30% hydrogen peroxide (H2O2) was added prior to the carbonate solution, no increase in the removal of uranium was detected (data not shown) due to effervescence with heating, liberating carbon dioxide, and thus preventing uniform distribution of H2O2. ...

C. F. V. Mason; W. R. J. R. Turney; B. M. Thomson; N. Lu; P. A. Longmire; C. J. Chisholm-Brause

1997-09-30T23:59:59.000Z

379

DOE Announces Policy for Managing Excess Uranium Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Policy for Managing Excess Uranium Inventory Policy for Managing Excess Uranium Inventory DOE Announces Policy for Managing Excess Uranium Inventory March 12, 2008 - 10:52am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today released a Policy Statement on the management of the Department of Energy's (DOE) excess uranium inventory, providing the framework within which DOE will make decisions concerning future use and disposition of its inventory. During the coming year, DOE will continue its ongoing program for downblending excess highly enriched uranium (HEU) into low enriched uranium (LEU), evaluate the benefits of enriching a portion of its excess natural uranium into LEU, and complete an analysis on enriching and/or selling some of its depleted uranium. Specific transactions are expected to occur in

380

Uranium in the Oatman Creek granite of Central Texas and its economic potential  

E-Print Network [OSTI]

granitic rocks are enriched in uranium. Although at present uranium in granites cannot b compared w1th the h1gh grade concentrat1ons of uran1um in sedimentary rocks, as these h1gh grade ore deposits become depleted, however, gr anites will become a..., however, the need to explore for new materials containing uranium will incr ease as the high grade sedimentary uranium deposits become depleted. A logical place to begin this search lies with the source rock for many of the known sedimentary uranium...

Conrad, Curtis Paul

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The geochemistry of uranium in the Orca Basin  

E-Print Network [OSTI]

inhibit=. vertical mixing between basin brine and overlying seawater. This severely limits the transport of hexa- valent uranium across this boundary. Second, the major depositional process in the basin is mass transport of sediments from... The continuing growth of nuclear power combined with the steady depletion of existing high-grade uranium ore has brought about an increase in the use of and search for lower-grade uranium deposits. According to Lieberman (1976), there is little undiscovered...

Weber, Frederick Fewell

2012-06-07T23:59:59.000Z

382

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

383

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

384

Health Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

385

Enclosure 1 -CCP-AK-INL-004, Table 5-2 (1 page) Table 5-2. Isotopic Compositions of Rocky Flats Plutonium and Uranium  

E-Print Network [OSTI]

Flats Plutonium and Uranium Weapons-Grade Plutonium Enriched Uranium Depleted Uranium Plutonium-238 0.01 ­ 0.05% Uranium-234 0.1 ­ 1.02% Uranium-234 0.0006% Plutonium-239 92.8 ­ 94.4% Uranium-235 90 ­ 94% Uranium-235 0.2 ­ 0.3% Plutonium-240 4.85 ­ 6.5% Uranium-236 0.4 ­ 0.5% Uranium-238 99.7 ­ 99.8% Plutonium

386

Dynamic measurements of Young's and shear moduli and mechanical damping as a function of temperature and microstructure for Uranium-6% Niobium  

E-Print Network [OSTI]

of mechanical damping versus strain amplitude. . . . . . . . 18 4. 1 Depleted uranium-niobium phase diagram wtih superimposed nonequilibrium phases. . 21 4. 2 Depleted U-6% Nb Time-Temperature-Transformation diagram. . 22 4. 3 Schematic of high temperature..., and an indispensible staple in the medical field. Intense research under government sponsorship has uncovered more information about uranium in less time than almost any other metal in history. Through this effort, depleted uranium (U-238) has surfaced as a viable...

Lowry, David Raymond

2012-06-07T23:59:59.000Z

387

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect (OSTI)

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

388

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

389

URANIUM IN ALKALINE ROCKS  

E-Print Network [OSTI]

Greenland," in Uranium Exploration Geology, Int. AtomicOklahoma," 1977 Nure Geology Uranium Symposium, Igneous HostMcNeil, M. , 1977. "Geology of Brazil's Uranium and Thorium

Murphy, M.

2011-01-01T23:59:59.000Z

390

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Broader source: Energy.gov (indexed) [DOE]

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

391

Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review  

Science Journals Connector (OSTI)

Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review† ... Other geologic formations, such as depleted petroleum reservoirs, deep saline aquifers and others have received considerable attention as sites for sequestering CO2. ...

Curt M. White; Duane H. Smith; Kenneth L. Jones; Angela L. Goodman; Sinisha A. Jikich; Robert B. LaCount; Stephen B. DuBose; Ekrem Ozdemir; Badie I. Morsi; Karl T. Schroeder

2005-03-22T23:59:59.000Z

392

Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI)  

Science Journals Connector (OSTI)

...bioremediation potential in uranium-contaminated subsurface...reduced. Once nitrate is depleted, U(VI) and Fe(III...bacteria, a study in a uranium-contaminated mill tailing...sludge. American Public Health Association, Washington...detection of trace levels of uranium by laser-induced kinetic...

Lainie Petrie; Nadia N. North; Sherry L. Dollhopf; David L. Balkwill; Joel E. Kostka

2003-12-01T23:59:59.000Z

393

The non-aqueous chemistry of uranium has been an active area of exploration in recent decades1,2  

E-Print Network [OSTI]

-purity depleted uranium produced as a by-product of nuclear isotope enrichment programmes. The early actinideThe non-aqueous chemistry of uranium has been an active area of exploration in recent decades1 for uranium will be created in part by the quest of researchers to understand the properties and potential

Cai, Long

394

Uranium Mining and Enrichment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

395

January 2, 2008 Numerical modeling of the effect of carbon dioxide  

E-Print Network [OSTI]

January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

Boyer, Edmond

396

Process Control Improvements for Production of Depleted Uranium Hohlraums  

Science Journals Connector (OSTI)

Technical Paper / Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook

H. Streckert; K. Blobaum; B. Chen; J. E. Fair; N. Hein; A. Nikroo; K. Quan; M. Stadermann

397

Characterization of Blistering and Delamination in Depleted Uranium Hohlraums  

Science Journals Connector (OSTI)

Technical Paper / Selected papers from 20th Target Fabrication Meeting, May 20-24, 2012, Santa Fe, NM, Guest Editor: Robert C. Cook

K. J. M. Blobaum; M. Stadermann; J. E. Fair; N. E. Teslich; M. A. Wall; R. J. Foreman; N. Hein; H. Streckert; A. Nikroo

398

Characterization of depleted uranium oxides fabricated using different processing methods  

Science Journals Connector (OSTI)

Identifying both physical and chemical characteristics of Special Nuclear Material (SNM) production processes is the corner stone of nuclear forensics. Typically, processing markers are based on measuring an inte...

E. P. Hastings; C. Lewis; J. FitzPatrick…

2008-05-01T23:59:59.000Z

399

The uranium cylinder assay system for enrichment plant safeguards  

SciTech Connect (OSTI)

Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

2010-01-01T23:59:59.000Z

400

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nitrogen dioxide detection  

DOE Patents [OSTI]

Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

1993-01-01T23:59:59.000Z

402

Ozone Depletion and Global Warming.  

E-Print Network [OSTI]

??Abstract This thesis examines global warming and the possible contribution that ozone depletion provides to this warming. An examination is performed to determine the extent… (more)

Fow, Alista John

2006-01-01T23:59:59.000Z

403

Uranium isotopes in ground water as a prospecting technique  

SciTech Connect (OSTI)

The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of /sup 234/U//sup 238/U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented.

Cowart, J.B.; Osmond, J.K.

1980-02-01T23:59:59.000Z

404

Excess Uranium Management  

Broader source: Energy.gov [DOE]

The Department is issuing a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries.

405

Method for fluorination of uranium oxide  

DOE Patents [OSTI]

Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

Petit, George S. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

406

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

407

Viscosity of tetrahydrothiophene-1,1-dioxide  

Science Journals Connector (OSTI)

Substance name(s): tetrahydrothiophene-1,1-dioxide; tetrahydrothiophene-S,S-dioxide; tetrahydro-thiophene-1,1 ... ,1-dioxide; thiacyclopentane dioxide; tetramethylene sulfone; tetrahydrothiophene 1...

Ch. Wohlfarth

2009-01-01T23:59:59.000Z

408

depleted underground oil shale for the permanent storage of carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

409

Nanoparticle-facilitated transport of uranium and nickel in contaminated sediments near a nuclear weapons processing facility.  

E-Print Network [OSTI]

??The Department of Energy???s Savannah River Site (SRS) has released a total of over 44,000 kg of depleted uranium (U) and a similar amount of… (more)

Buettner, Shea Westin

2012-01-01T23:59:59.000Z

410

Uranium and other contaminants in hair from the parents of children with congenital anomalies in Fallujah, Iraq  

Science Journals Connector (OSTI)

Recent reports have drawn attention to increases in congenital birth anomalies and cancer in Fallujah Iraq blamed on teratogenic, genetic and genomic stress thought to result from depleted Uranium contaminatio...

Samira Alaani; Muhammed Tafash; Christopher Busby; Malak Hamdan…

2011-09-01T23:59:59.000Z

411

8 - Uranium  

Science Journals Connector (OSTI)

Release of uranium (U) to the environment is mainly through the nuclear fuel cycle. In oxic waters, U(VI) is the predominant redox state, while U(IV) is likely to be encountered in anoxic waters. The free uranyl ion ( UO 2 2 + ) dominates dissolved U speciation at low pH while complexes with hydroxides and carbonates prevail in neutral and alkaline conditions. Whether the toxicity of U(VI) to fish can be predicted based on its free ion concentration remains to be demonstrated but a strong influence of pH has been shown. In the field, U accumulates in bone, liver, and kidney, but does not biomagnify. There is certainly potential for uptake of U via the gill based on laboratory studies; however, diet and/or sediment may be the major route of uptake, and may vary with feeding strategy. Uranium toxicity is low relative to many other metals, and is further reduced by increased calcium, magnesium, carbonates, phosphate, and dissolved organic matter in the water. Inside fish, U produces reactive oxygen species and causes oxidative damage at the cellular level. The radiotoxicity of enriched U has been compared with chemical toxicity and it has been postulated that both may work through a mechanism of production of reactive oxygen species. In practical terms, the potential for chemotoxicity of U outweighs the potential for radiotoxicity. The toxicokinetics and toxicodynamics of U are well understood in mammals, where bone is a stable repository and the kidney the target organ for toxic effects from high exposure concentrations. Much less is known about fish, but overall, U is one of the less toxic metals.

Richard R. Goulet; Claude Fortin; Douglas J. Spry

2011-01-01T23:59:59.000Z

412

What's Next for Vanadium Dioxide?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Atomic Vibrations Transform Vanadium Dioxide How Atomic Vibrations Transform Vanadium Dioxide Calculations Confirm Material's Potential for Next-Generation Electronics, Energy...

413

Uranium industry annual 1998  

SciTech Connect (OSTI)

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

414

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

415

Video: Part of the 'Hole' Story (of Uranium Hexafluoride Cylinders)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hole Story Hole Story Part of the "Hole" Story (of Uranium Hexafluoride Cylinders) Holes in the depleted Uranium Hexafluoride storage cylinders are investigated. It is shown that corrosion products cause the openings to be self-healing. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:00 Part of the 'Hole' Story Video 00:05 One of the depleted UF6 cylinder storage lots at Portsmouth Video 00:28 48G cylinders, each containing 14 tons of depleted UF6, in storage Video 00:52 Stacked 48G cylinders Video 01:35 UF6 sealed in glass tube Video 02:01 A lifting lug of one cylinder damaging a neighboring cylinder Video 02:37 Damage to small hole cylinder from impact with a lifting lub of an adjoining cylinder

416

Identification and quantification of the source terms for uranium in surface waters collected at the Rocky Flats facility  

Science Journals Connector (OSTI)

The intent of this study was to determine the fraction of soluble uranium attributable to the Rocky Flats Plant (RFP) operations which is recoverable from waters and suspended sediments drawn from ponds on site at RFP. Samples were collected from late 1992 through 1993. Thermal ionization mass spectrometry (TIMS) measurement techniques indicate that the water samples contain both naturally occurring uranium and depleted uranium. The uranium concentrations in the waters collected from the terminal ponds contained 0.5% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public.

D.W. Efurd; D.J. Rokop; R.D. Aguilar; F.R. Roensch; J.C. Banar; R.E. Perrin

1995-01-01T23:59:59.000Z

417

Uranium pinhole collimators for I-131 SPECT imaging  

SciTech Connect (OSTI)

Pinhole apertures made of depleted uranium were evaluated for high-resolution SPECT brain tumor imaging of therapeutic doses (30--100 mCi) of intratumorally administered I-131 radiolabeled monoclonal antibodies. High resolution is required for imaging residual tumor tissue, although for therapeutic doses, high collimator sensitivity is less important. Resolution of uranium and tungsten pinhole apertures was compared in planar and SPECT images of I-131 sources. Planar sensitivity was studied on- and off-axis. On-axis planar resolution for uranium pinholes is higher than that of tungsten pinholes for all cases examined; full-width-half-max (FWHM) is narrower for a 3 mm uranium pinhole than for a 1 mm tungsten pinhole, indicating significantly lower penetration at pinhole edges for uranium than for tungsten. Collimator sensitivity is higher for tungsten than for uranium, which also indicates higher edge penetration for tungsten. On-axis SPECT (14.4 cm radius) scans also show better resolution for a 2 mm uranium pinhole (7.8 mm FWHM) than for a 2 mm tungsten pinhole (9.5 mm FWHM). Background radiation from a uranium collimator (102 cts/sec) is acceptably low compared to expected clinical count rates.

Tenney, C.R.; Greer, K.L.; Jaszczak, R.J. [Duke University Medical Center, Durham, NC (United States)] [Duke University Medical Center, Durham, NC (United States); Smith, M.F. [National Institutes of Health, Bethesda, MD (United States)] [National Institutes of Health, Bethesda, MD (United States)

1999-08-01T23:59:59.000Z

418

Nuclear power fleets and uranium resources recovered from phosphates  

SciTech Connect (OSTI)

Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

419

Change in Bacterial Community Structure during In Situ Biostimulation of Subsurface Sediment Cocontaminated with Uranium and Nitrate  

Science Journals Connector (OSTI)

...403-410. 2 American Public Health Association. 1969...604-609. American Public Health Association, Washington...Geobacter species to remove uranium from the groundwater...nitrate, Fe(III), and uranium were extensively reduced...while nitrate was largely depleted. A large diversity of...

Nadia N. North; Sherry L. Dollhopf; Lainie Petrie; Jonathan D. Istok; David L. Balkwill; Joel E. Kostka

2004-08-01T23:59:59.000Z

420

Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications for radioactivity in the Earth's core  

E-Print Network [OSTI]

Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications Measurable uranium (U) is found in metal sulfide liquids in equilibrium with molten silicate at conditions shows that K is depleted in the Earth by $50%, while U and Th are slightly enriched (Palme and O

Minarik, William

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PII S0016-7037(00)00886-9 Remobilization of authigenic uranium in marine sediments by bioturbation  

E-Print Network [OSTI]

PII S0016-7037(00)00886-9 Remobilization of authigenic uranium in marine sediments by bioturbation in revised form November 23, 2001) Abstract--Uranium behaves as a nearly conservative element in oxygenated precip- itation in chemically reducing sediments. Pore-water depletion of U and sediment enrichment of U

van Geen, Alexander

422

Fully depleted back illuminated CCD  

DOE Patents [OSTI]

A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

Holland, Stephen Edward (Hercules, CA)

2001-01-01T23:59:59.000Z

423

Uranium industry annual 1995  

SciTech Connect (OSTI)

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

424

Uranium Oxide Aerosol Transport in Porous Graphite  

SciTech Connect (OSTI)

The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

2012-01-23T23:59:59.000Z

425

IPNS enriched uranium booster target  

SciTech Connect (OSTI)

Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.

Schulke, A.W. Jr.

1985-01-01T23:59:59.000Z

426

Innovative Elution Processes for Recovering Uranium from Seawater  

SciTech Connect (OSTI)

Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium removal from the sorbent reaches only 80% after 10 hours of leaching. Some information regarding coordination of vanadium with amidoxime molecules and elution of vanadium from amidoxime- based sorbents is also given in the report.

Wai, Chien; Tian, Guoxin; Janke, Christopher

2014-05-29T23:59:59.000Z

427

Measurement and Analysis of Fission Rates in a Spherical Mockup of Uranium and Polyethylene  

E-Print Network [OSTI]

Measurements of the reaction rate distribution were carried out using two kinds of Plate Micro Fission Chamber(PMFC). The first is a depleted uranium chamber and the second an enriched uranium chamber. The material in the depleted uranium chamber is strictly the same as the material in the uranium assembly. With the equation solution to conduct the isotope contribution correction, the fission rate of 238U and 235U were obtained from the fission rate of depleted uranium and enriched uranium. And then, the fission count of 238U and 235U in an individual uranium shell was obtained. In this work, MCNP5 and continuous energy cross sections ENDF/BV.0 were used for the analysis of fission rate distribution and fission count. The calculated results were compared with the experimental ones. The calculation of fission rate of DU and EU were found to agree with the measured ones within 10% except at the positions in polyethylene region and the two positions near the outer surface. Beacause the fission chamber was not co...

Tong-Hua, Zhu; Xin-Xin, Lu; Rong, Liu; Zi-Jie, Han; Li, Jiang; Mei, Wang

2013-01-01T23:59:59.000Z

428

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents [OSTI]

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Ratavia, IL)

2007-09-11T23:59:59.000Z

429

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents [OSTI]

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

430

Welding of uranium and uranium alloys  

SciTech Connect (OSTI)

The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

Mara, G.L.; Murphy, J.L.

1982-03-26T23:59:59.000Z

431

FAQ 1-What is uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

432

Carbon dioxide, the feedstock for using renewable energy  

Science Journals Connector (OSTI)

Extrapolation of world energy consumption between 1990 and 2007 to the future reveals the complete exhaustion of petroleum, natural gas, uranium and coal reserves on Earth in 2040, 2044, 2049 and 2054, respectively. We are proposing global carbon dioxide recycling to use renewable energy so that all people in the whole world can survive. The electricity will be generated by solar cell in deserts and used to produce hydrogen by seawater electrolysis at t nearby desert coasts. Hydrogen, for which no infrastructures of transportation and combustion exist, will be converted to methane at desert coasts by the reaction with carbon dioxide captured by energy consumers. Among systems in global carbon dioxide recycling, seawater electrolysis and carbon dioxide methanation have not been performed industrially. We created energy-saving cathodes for hydrogen production and anodes for oxygen evolution without chlorine formation in seawater electrolysis, and ideal catalysts for methane formation by the reaction of carbon dioxide with hydrogen. Prototype plant and industrial scale pilot plant have been built.

K Hashimoto; N Kumagai; K Izumiya; Z Kato

2011-01-01T23:59:59.000Z

433

EPA Update: NESHAP Uranium Activities  

E-Print Network [OSTI]

for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill for Underground Uranium Mining Operations (Subpart B) #12;5 EPA Regulatory Requirements for Underground Uranium uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient

434

Uranium hexafluoride public risk  

SciTech Connect (OSTI)

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

435

Determination of the dynamic Young's modulus, shear modulus, and internal friction as a function of temperature and microstructure in Uranium - 2.4wt% Niobium  

E-Print Network [OSTI]

's ratio o = maximum value of a resulting from an alternating stress 0 1/25 I. INTRODUCTION One of the secondary benefits of the nuclear energy industry is the application of depleted uranium (U-238) by-products as engineering materials for structural... used as storage containers, radiation shields, counter weights and armor piercing projectiles [3]. The most effective tank destroying projectile in the U. S. Army arsenal has a depleted uranium penetrator. To apply these engineering materials better...

Chancellor, Wayne Morrow

2012-06-07T23:59:59.000Z

436

Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation  

SciTech Connect (OSTI)

We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses. We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.

Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.; Eiden, Gregory C.

2013-05-19T23:59:59.000Z

437

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

438

Uranium purchases report 1992  

SciTech Connect (OSTI)

Data reported by domestic nuclear utility companies in their responses to the 1991 and 1992 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B ``Uranium Marketing Activities,are provided in response to the requirements in the Energy Policy Act 1992. Data on utility uranium purchases and imports are shown on Table 1. Utility enrichment feed deliveries and secondary market acquisitions of uranium equivalent of US DOE separative work units are shown on Table 2. Appendix A contains a listing of firms that sold uranium to US utilities during 1992 under new domestic purchase contracts. Appendix B contains a similar listing of firms that sold uranium to US utilities during 1992 under new import purchase contracts. Appendix C contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data.

Not Available

1993-08-19T23:59:59.000Z

439

Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach  

SciTech Connect (OSTI)

Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

Becker, N.M.

1992-01-01T23:59:59.000Z

440

Quantification of uranium transport away from firing sites at Los Alamos National Laboratory: A mass balance approach  

SciTech Connect (OSTI)

Investigations were conducted at Los Alamos National Laboratory to quantify the extent of migration of depleted uranium away from firing sites. Extensive sampling of air particles, soil, sediment, and water was conducted to establish the magnitude of uranium contamination throughout one watershed. The uranium source term was estimated, and mass balance calculations were performed to compare the percentage of migrated uranium with original expenditures. Mass balance calculations can be powerful in identification of the extent of waste migration and used as an aid in planning future waste investigations.

Becker, N.M.

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uranium dioxide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CARBON DIOXIDE EMISSION REDUCTION  

E-Print Network [OSTI]

.5 Primary Energy Use and Carbon Dioxide Emissions for Selected US Chemical Subsectors in 1994 ...............................................................................................................16 Table 2.7 1999 Energy Consumption and Specific Energy Consumption (SEC) in the U.S. Cement Efficiency Technologies and Measures in Cement Industry.................22 Table 2.9 Energy Consumption

Delaware, University of

442

Investigation of breached depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

443

Investigation of breached depleted UF sub 6 cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

444

Data Sheet No. 140 - World Energy Reserves and Depletion Policy  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on world energy reserves and depletion policy. Viewed in the long term, it is extremely difficult to obtain an accurate view of the total energy reserves of the world. Even small, very well-explored countries such as the United Kingdom and Holland have discovered new reserves in the past 20 years. Solar power and wave power are available in vast quantities, but the percentage that can be recovered is debatable. The percentage recovery of oil and gas is open to improvement, and it may be that much smaller percentage recoveries of coal will be contemplated in the future when undersea mining or extraction without miners is contemplated. Nuclear power, using thermal reactors, does not extract all the power within the uranium or any of the power available from reserves of thorium. The coal industry will have to double its output and even greater demands may be made on it to provide liquid fuels for the transport industry.

Wilfrid Francis; Martin C. Peters

1980-01-01T23:59:59.000Z

445

Lawrence Berkeley National Laboratory 1996 Site Environmental Report Vol. I  

E-Print Network [OSTI]

radioactive. uranium, depleted Uranium consisting primarilyoccurring in nature, depleted uranium is man-made. uranium,

2010-01-01T23:59:59.000Z

446

2013 Uranium Marketing Annual Survey  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for inflation. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013). UF 6 is uranium hexafluoride. The natural UF 6 and enriched...

447

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

448

Determination of uranium concentration in surface soil samples of Iran  

Science Journals Connector (OSTI)

The use of uranium-tipped antitank shells during the Iraq war (2003) caused serious concerns in Iran and the international media over possible contamination of the Iranian environment and consequent long-term health effects. After a shell explosion, uranium is discharged by fire into the air in the form of oxidised particles, which can be dispersed over a radius of several kilometres. Gamma ray spectrometry was used to determine uranium concentrations in soil samples collected from ten sites in Iranian sectors near the Iraqi border. All surface soil samples were taken from the top 5 cm from each site. The concentrations of 238U were assessed from 63 keV and 92 keV emissions of its first daughter nuclide, 234Th. To assess the isotopic ratio of 238U/235U, a secular equilibrium was ensured and the concentration of 235U under 186 keV was deduced. The 226Ra was determined through 295 keV and 352 keV gamma rays of 214Pb. The concentrations of 238U and activity ratios of 238U/235U were determined. The average of measurement activity ratio was 20.0, very close to the value of 21.5 for natural uranium, while the activity ratio of depleted uranium can be as high as 76.9. The analysis of ten surface soil samples from Iranian sites near the Iraqi border showed that uranium isotopes are in natural abundances.

A.A. Fathivand; J. Amidi

2006-01-01T23:59:59.000Z