Powered by Deep Web Technologies
Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Depleted UF6 Management Program Overview Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Management Program Overview Presentation Cylinders Photo Next Screen A Legacy of Uranium Enrichment...

2

Depleted UF6 Internet Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Internet Resources Depleted UF6 Internet Resources Links...

3

Depleted UF6 Overview Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Information network Web Site. The presentation covers the following topics: The uranium mining and enrichment processes - how depleted UF6 is created, How and where...

4

Depleted UF6 Health Risks  

NLE Websites -- All DOE Office Websites (Extended Search)

(depleted UF6) is released to the atmosphere, the uranium compounds and hydrogen fluoride (HF) gas that are formed by reaction with moisture in the air can be chemically...

5

Environmental Risks of Depleted UF6 Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Disposal A discussion of the environmental impacts...

6

Depleted UF6 Management Information Network - A resource for...  

NLE Websites -- All DOE Office Websites (Extended Search)

is an online repository of information about the U.S. Department of Energy's (DOE's) inventory of depleted uranium hexafluoride (DUF6), a product of the uranium enrichment...

7

Depleted UF6 Production and Handling Slide Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Production and Handling Depleted UF6 Production and Handling Slide Presentation An online slide presentation about production and handling of depleted UF6, from mining of uranium...

8

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

9

Unsubscribe from the Depleted UF6 E-mail List  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Unsubscribe Unsubscribe from the Depleted UF6 E-mail List This form allows you to remove yourself from the Depleted UF6 e-mail list. Type your e-mail address here:...

10

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

11

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

12

News Media Exits for Depleted Uranium and Depleted UF6 Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

line line Archived News and Events News Media Links News Media Exits for Depleted Uranium and Depleted UF6 Articles Online editions of newspapers that cover Depleted Uranium...

13

Production and Handling Slide 38: 48G Depleted UF6 Storage Cylinder  

NLE Websites -- All DOE Office Websites (Extended Search)

48G Depleted UF6 Storage Cylinder Refer to caption below for image description After enrichment, depleted uranium hexafluoride is placed in large steel cylinders for storage....

14

Portsmouth DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Portsmouth DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND.............................................................................................................

15

Paducah DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Paducah DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND............................................................................................................. 3 3

16

Environmental Risks of Depleted UF6-related Manufacturing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

and operation of a facility to fabricate representative products containing depleted uranium. Impacts Analyzed in the PEIS The PEIS evaluated the general environmental impacts...

17

DUF6 Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Depleted UF6 Management An introduction to DOE's Depleted UF6 Management Program. The mission of the DOE's Depleted UF6 Management Program is to safely and efficiently...

18

Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

19

Properties of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

such as water vapor in the air, the UF6 and water react, forming corrosive hydrogen fluoride (HF) and a uranium-fluoride compound called uranyl fluoride (UO2F2). For more...

20

Health Effects Associated with Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) UF6 Health Effects Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Health Effects Associated with Uranium Hexafluoride (UF6) Uranium...

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Production and Handling Slide 19: UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Refer to caption below for image description Uranium hexafluoride UF6...

22

Overview of Depleted Uranium Hexafluoride Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

23

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF DEPLETED URANIUM HEXAFLUORIDE MANAGEMENT Issuance Of Final Report On Preconceptual Designs For Depleted Uranium Hexafluoride Conversion Plants The Department of Energy...

24

Production and Handling Slide 22: UF6 Phase Diagram  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Phase Diagram Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Phase Diagram Refer to caption below for image...

25

Production and Handling Slide 31: Certification of UF6 Cylinder...  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Cylinder Volume Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Certification of UF6 Cylinder Volume The cylinder...

26

Management Responsibilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Responsibilities Management Responsibilities Depleted UF6 Management Responsibilities DOE has responsibility for safe and efficient management of approximately 700,000 metric tons of depleted UF6. Organizational Responsibilities In the United States, the U.S. Department of Energy is responsible for managing all the depleted uranium that has been generated by the government and has been declared surplus to national defense needs. In addition, as a result of two memoranda of agreement that have been signed between the DOE and USEC, the DOE has assumed management responsibility for approximately 145,000 metric tons of depleted UF6 that has been or will be generated by USEC. Any additional depleted UF6 that USEC generates will be USEC's responsibility to manage. DOE Management Responsibility

27

NGSI: IAEA Verification of UF6 Cylinders  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency (IAEA) is often ignorant of the location of declared, uranium hexafluoride (UF6) cylinders following verification, because cylinders are not typically tracked onsite or off. This paper will assess various methods the IAEA uses to verify cylinder gross defects, and how the task could be ameliorated through the use of improved identification and monitoring. The assessment will be restricted to current verification methods together with one that has been applied on a trial basisshort-notice random inspections coupled with mailbox declarations. This paper is part of the NNSA Office of Nonproliferation and International Securitys Next Generation Safeguards Initiative (NGSI) program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF6 cylinders.

Curtis, Michael M.

2012-06-05T23:59:59.000Z

28

Method And Apparatus For Measuring Enrichment Of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

For Measuring Enrichment Of UF6 A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which...

29

Production and Handling Slide 33: Density of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

of UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Density of UF6 Refer to caption below for image description The...

30

Production and Handling Slide 20: Advantages of UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Advantages of UF6 Only one isotope of F2 Can be handled at reasonable...

31

FAQ 8-What is uranium hexafluoride (UF6)?  

NLE Websites -- All DOE Office Websites (Extended Search)

is uranium hexafluoride (UF6)? is uranium hexafluoride (UF6)? What is uranium hexafluoride (UF6)? Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. Liquid UF6 is formed only at temperatures greater than 147° F (64° C) and at pressures greater than 1.5 times atmospheric pressure (22 psia). At atmospheric pressure, solid UF6 will transform directly to UF6 gas (sublimation) when the temperature is raised to 134° F (57° C), without going through a liquid phase.

32

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

33

METHOD AND APPARATUS FOR MEASURING ENRICHMENT OF UF6 - Energy ...  

A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are ...

34

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

35

Method and apparatus for measuring enrichment of UF6  

DOE Patents (OSTI)

A system and method are disclosed for determining the enrichment of .sup.235U in Uranium Hexafluoride (UF6) utilizing synthesized X-rays which are directed at a container test zone containing a sample of UF6. A detector placed behind the container test zone then detects and counts the X-rays which pass through the container and the UF6. In order to determine the portion of the attenuation due to the UF6 gas alone, this count rate may then be compared to a calibration count rate of X-rays passing through a calibration test zone which contains a vacuum, the test zone having experienced substantially similar environmental conditions as the actual test zone. Alternatively, X-rays of two differing energy levels may be alternately directed at the container, where either the container or the UF6 has a high sensitivity to the difference in the energy levels, and the other having a low sensitivity.

Hill, Thomas Roy (Santa Fe, NM); Ianakiev, Kiril Dimitrov (Los Alamos, NM)

2011-06-07T23:59:59.000Z

36

Depleted uranium management alternatives  

SciTech Connect

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

37

Production and Handling Slide 29: UF6 Cylinder Fill Limit Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Criteria Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Fill Limit Criteria No UF6 cylinder shall be filled...

38

Video: The Depleted Uranium Hexafluoride Story  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Story The Depleted Uranium Hexafluoride Story An overview of Uranium, its isotopes, the need and history of diffusive separation, the handling of the Depleted Uranium...

39

Integrating UF6 Cylinder RF Tracking With Continuous Load Cell Monitoring for Verifying Declared UF6 Feed and Withdrawal Operations Verifying Declared UF6 Feed and Withdrawal Operations  

SciTech Connect

Oak Ridge National Laboratory is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F&W) stations. CLCM and cylinder tracking are two of several continuous-monitoring technologies that show promise in providing integrated safeguards of F&W operations at enrichment plants. Integrating different monitoring technologies allows advanced, automated event processing to screen innocuous events thereby minimizing false alerts to independent inspectors. Traditionally, international inspectors rely on batch verification of material inputs and outputs derived from operator declarations and periodic on-site inspections at uranium enrichment plants or other nuclear processing facilities. Continuously monitoring F&W activities between inspections while providing filtered alerts of significant operational events will substantially increase the amount of valuable information available to inspectors thereby promising to enhance the effectiveness of safeguards and to improve efficiency in conducting on-site inspections especially at large plants for ensuring that all operations are declared.

Krichinsky, Alan M [ORNL; Miller, Paul [ORNL; Pickett, Chris A [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Whitaker, J Michael [ORNL; Younkin, James R [ORNL

2009-01-01T23:59:59.000Z

40

Production and Handling Slide 35: UF6 Cylinder Data Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

UF6 Cylinder Data Summary UF6 Cylinder Data Summary Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Data Summary Cylinder Model Nominal Diam. (in.) Material of Construction Minimum Volume Approximate Tare Weight Without Valve Protector Maximum Enrichment Uranium-235 Shipping Limit Maximum, a UF6 ft3 liters lb kg Weight % lb kg 1S 1.5 Nickel 0.0053 0.15 1.75 0.79 100.00 1.0 0.45 2S .5 Nickel 0.026 0.74 4.2 1.91 100.00 4.9 2.22 5A 5 Monel 0.284 8.04 55 25 100.00 55 24.95 5B 5 Nickel 0.284 8.04 55 25 100.00 55 24.95 8A 8 Monel 1.319 37.35 120 54 12.5 255 115.67 12A 12 Nickel 2.38 67.4 185 84 5.0 460 208.7 12B 12 Monel 2.38 67.4 185 84 5.0 460 208.7 308c 30 Steel 26.0 736.0 1,400 635 5.0b 5,020 2,277 48A 48 Steel 108.9 3,.84 4,500 2,041 4.5b 21,030 9,539 48Xd 48 Steel 108.9 3,084 4,500 2,041 4.5b,g 21,030 9,539 48F 48 Steel

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advancements of the Hybrid Method UF6 Container Inspection System  

Science Conference Proceedings (OSTI)

Safeguards inspectors currently visit uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution detectors on a limited number of cylinders taken to be representative of the plants cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute. Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter data (186 keV photons from 235U) and non-traditional, neutron-induced, high-energy gamma-ray signatures (3-8 MeV) with an array of collimated, medium-resolution scintillators. Previous work at PNNL (2010) demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term, unattended operations. This system aims to increase the number of inspected cylinders at higher accuracy and with lower cost than when compared to inspectors with hand-held instruments. Several measurement campaigns of 30B cylinder populations and a refined MCNP model will be reported. The MCNP model consists of per-gram basis vectors for the different uranium isotopes and several fill geometries, enabling fast generation of any UF6 enrichment level and multiple configurations. The refined model was used to optimize collimator design and detector configuration for the hybrid method. In addition, a new field prototype based on model results was utilized in a set of field measurements.

Mace, Emily K.; Orton, Christopher R.; Jordan, David V.; McDonald, Benjamin S.; Smith, Leon E.

2011-07-17T23:59:59.000Z

42

Production and Handling Slide 30: UF6 Cylinder Fill Limit Weights  

NLE Websites -- All DOE Office Websites (Extended Search)

Weights Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Fill Limit Weights A minimum volume, stated in cubic...

43

Enrichment Assay Methods for a UF6 Cylinder Verification Station  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These enrichment assay methods interrogate only a small fraction of the total cylinder volume, and are time-consuming and expensive to execute for inspectors. Pacific Northwest National Laboratory (PNNL) is developing an unattended measurement system capable of automated enrichment measurements over the full volume of Type 30B and Type 48 cylinders. This Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The focus of this paper is the development of nondestructive assay (NDA) methods that combine traditional enrichment signatures (e.g. 185-keV emission from U-235) and more-penetrating non-traditional signatures (e.g. high-energy neutron-induced gamma rays spawned primarily from U-234 alpha emission) collected by medium-resolution gamma-ray spectrometers (i.e. sodium iodide or lanthanum bromide). The potential of these NDA methods for the automated assay of feed, tail and product cylinders is explored through MCNP modeling and with field measurements on a cylinder population ranging from 0.2% to 5% in U-235 enrichment.

Smith, Leon E.; Jordan, David V.; Misner, Alex C.; Mace, Emily K.; Orton, Christopher R.

2010-11-30T23:59:59.000Z

44

Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

2012-06-01T23:59:59.000Z

45

Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques  

SciTech Connect

Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential for this application and should be assessed quantitatively. The next set of techniques leverage scintillator detectors that are sensitive to both neutron and gamma radiation. The first is the BC-523A capture-gated organic liquid scintillator. The detector response from several different neutron energies has been characterized and is included in the study. The BC-523A has not yet been tested with UF{sub 6} cylinders, but the application appears to be well suited for this technology. The second detector type is a relatively new inorganic scintillator called CLYC. CLYC provides a complementary detection approach to the HEVA and PNEM systems that could be used to determine uranium enrichment in UF{sub 6} cylinders. In this section, the conceptual idea for an integrated CLYC-HEVA/PNEM system is explored that could yield more precision and robustness against systemic uncertainties than any one of the systems by itself. This is followed by a feasibility study on using alpha-particle-induced reaction gamma-rays as a way to estimate {sup 234}U abundance in UF{sub 6}. Until now, there has been no readily available estimate of the strength of these reaction gamma-rays. Thick target yields of the chief reaction gammas are computed and show that they are too weak for practical safeguards applications. In special circumstances where long count times are permissible, the 1,275 keV F({alpha},x{gamma}) is observable. Its strength could help verify an operator declaration provided other knowledge is available (especially the age). The other F({alpha},x{gamma}) lines are concealed by the dominant uranium line spectrum and associated continuum. Finally, the last section provides several ideas for electromagnetic and acoustic nondestructive evaluation (NDE) techniques. These can be used to measure cylinder wall thickness, which is a source of systematic uncertainty for gamma-ray-based NDA techniques; characterize the UF{sub 6} filling profile inside the cylinder, which is a source of systematic uncertainty for neutron-based NDA techniques; locate hidden objects inside the cylinder; a

Miller, Karen A. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

46

Depleted uranium: A DOE management guide  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

47

Hybrid Enrichment Assay Methods for a UF6 Cylinder Verification Station: FY10 Progress Report  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) is developing the concept of an automated UF6 cylinder verification station that would be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until the arrival of International Atomic Energy Agency (IAEA) inspectors. At the center of this unattended system is a hybrid enrichment assay technique that combines the traditional enrichment-meter method (based on the 186 keV peak from 235U) with non-traditional neutron-induced high-energy gamma-ray signatures (spawned primarily by 234U alpha emissions and 19F(alpha, neutron) reactions). Previous work by PNNL provided proof-of-principle for the non-traditional signatures to support accurate, full-volume interrogation of the cylinder enrichment, thereby reducing the systematic uncertainties in enrichment assay due to UF6 heterogeneity and providing greater sensitivity to material substitution scenarios. The work described here builds on that preliminary evaluation of the non-traditional signatures, but focuses on a prototype field system utilizing NaI(Tl) and LaBr3(Ce) spectrometers, and enrichment analysis algorithms that integrate the traditional and non-traditional signatures. Results for the assay of Type-30B cylinders ranging from 0.2 to 4.95 wt% 235U, at an AREVA fuel fabrication plant in Richland, WA, are described for the following enrichment analysis methods: 1) traditional enrichment meter signature (186 keV peak) as calculated using a square-wave convolute (SWC) algorithm; 2) non-traditional high-energy gamma-ray signature that provides neutron detection without neutron detectors and 3) hybrid algorithm that merges the traditional and non-traditional signatures. Uncertainties for each method, relative to the declared enrichment for each cylinder, are calculated and compared to the uncertainties from an attended HPGe verification station at AREVA, and the IAEAs uncertainty target values for feed, tail and product cylinders. A summary of the major findings from the field measurements and subsequent analysis follows: Traditional enrichment-meter assay using specially collimated NaI spectrometers and a Square-Wave-Convolute algorithm can achieve uncertainties comparable to HPGe and LaBr for product, natural and depleted cylinders. Non-traditional signatures measured using NaI spectrometers enable interrogation of the entire cylinder volume and accurate measurement of absolute 235U mass in product, natural and depleted cylinders. A hybrid enrichment assay method can achieve lower uncertainties than either the traditional or non-traditional methods acting independently because there is a low degree of correlation in the systematic errors of the two individual methods (wall thickness variation and 234U/235U variation, respectively). This work has indicated that the hybrid NDA method has the potential to serve as the foundation for an unattended cylinder verification station. When compared to todays handheld cylinder-verification approach, such a station would have the following advantages: 1) improved enrichment assay accuracy for product, tail and feed cylinders; 2) full-volume assay of absolute 235U mass; 3) assay of minor isotopes (234U and 232U) important to verification of feedstock origin; single instrumentation design for both Type 30B and Type 48 cylinders; and 4) substantial reduction in the inspector manpower associated with cylinder verification.

Smith, Leon E.; Jordan, David V.; Orton, Christopher R.; Misner, Alex C.; Mace, Emily K.

2010-08-01T23:59:59.000Z

48

Frequently Asked Questions (FAQs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions (FAQs) Frequently asked questions (FAQs) about uranium, uranium hexafluoride (UF6), UF6 storage and depleted UF6 management. Below is a list of...

49

Summary of Field Measurement on UF6 Cylinders Using Electro-Mechanically Cooled Systems  

SciTech Connect

Measurement of the enrichment of solid state UF6 stored within large metal cylinders is a task commonly performed by plant operators and inspectors. The measurement technologies typically used range from low-resolution, high-efficiency sodium iodide detectors to high-resolution, moderate-efficiency high-purity germanium (HPGe) detectors. The technology used and methods deployed are dependent upon the material being measured, environmental conditions, time constraints, and measurement-precision requirements. Operators and inspectors typically use specially designed, HPGe detectors that are cooled with liquid nitrogen in situations where high-resolution measurements are required. However, the requirement for periodically refilling the system with liquid nitrogen makes remote usage cumbersome and slow. The task of cooling the detector reduces the available time for the inspector to perform other safeguards activities while on site. If the inspector has to reduce the count time for each selected cylinder to ensure that all preselected cylinders are measured during the inspection, the resulting measurement uncertainties may be increased, making it more difficult to detect and verify potential discrepancies in the operator's declarations. However, recent advances in electromechanically cooled HPGe detectors may provide the inspector with an improved verification tool by eliminating the need for liquid nitrogen. This report provides a summary of test results for field measurements performed using electromechanically cooled HPGe detectors on depleted, natural, and low-enriched uranium cylinders. The results of the study provide valuable information to inspectors and operators regarding the capabilities and limitations of electromechanically cooled systems based on true field-measurement conditions.

McGinnis, Brent R [ORNL; Smith, Steven E [ORNL; Solodov, Alexander A [ORNL; Whitaker, J Michael [ORNL; Morgan, James B [ORNL; MayerII, Richard L. [USEC; Montgomery, J. Brent [U.S. Enrichment Corporation Paducah Gaseous Diffusion Plant

2009-01-01T23:59:59.000Z

50

FAQ 24-Who is responsible for managing depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who is responsible for managing depleted uranium? Who is responsible for managing depleted uranium? In the United States, the U.S. Department of Energy is responsible for managing...

51

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

52

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

NLE Websites -- All DOE Office Websites (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

53

FAQ 7-How is depleted uranium produced?  

NLE Websites -- All DOE Office Websites (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

54

FAQ 25-What are the options for managing depleted uranium in...  

NLE Websites -- All DOE Office Websites (Extended Search)

options for managing depleted uranium in the future? What are the options for managing depleted uranium in the future? The options for managing depleted uranium were evaluated in...

55

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

56

Determination of the 235U Mass and Enrichment within Small UF6 Cylinders via a Neutron Coincidence Well Counting System  

Science Conference Proceedings (OSTI)

The construction of three new uranium enrichment facilities in the United States has sparked renewed interest in the development and enhancement of methods to determine the enrichment and fissile mass content of UF6 cylinders. We describe the design and examine the expected performance of a UF6 bottle counter developed for the assay of Type 5A cylinders. The counter, as designed and subsequently constructed, is a tall passive neutron well counter with a clam-shell configuration and graphite end plugs operated in fast neutron mode. Factory performance against expectation is described. The relatively high detection efficiency and effectively 4 detection geometry provide a near-ideal measurement configuration, making the UF6 bottle counter a valuable tool for the evaluation of the neutron coincidence approach to UF6 cylinder assay. The impacts of non-uniform filling, voids, enrichment, and mixed enrichments are examined

McElroy, Robert Dennis [ORNL; Croft, Dr. Stephen [Los Alamos National Laboratory (LANL); Young, Brian M [Canberra Industries, Inc., Meriden, CT; Venkataraman, Ram [Canberra Industries, Inc., Meriden, CT

2011-01-01T23:59:59.000Z

57

FAQ 35-What are the potential health risks from disposal of depleted...  

NLE Websites -- All DOE Office Websites (Extended Search)

health risks from disposal of depleted uranium as an oxide? Once depleted uranium has been converted from UF6 to the oxide form, the risk associated with handling at a disposal...

58

FAQ 33-What are the potential health risks from storage of depleted...  

NLE Websites -- All DOE Office Websites (Extended Search)

health risks from storage of depleted uranium as an oxide? Once depleted uranium has been converted from UF6 to the oxide form, the risk associated with storage and handling is...

59

Prototype Radiation Detector Positioning System For The Automated Nondestructive Assay Of Uf6 Cylinders  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of efficiency and assay accuracy. This paper describes an approach denoted the Integrated Cylinder Verification Station (ICVS) that supports 100% cylinder verification, provides volume-averaged cylinder enrichment assay, and reduces inspector manpower needs. To allow field measurements to be collected to validate data collection algorithms, a prototype radiation detector positioning system was constructed. The system was designed to accurately position an array of radiation detectors along the length of a cylinder to measure UF6 enrichment. A number of alternative radiation shields for the detectors were included with the system. A collimated gamma-ray spectrometer module that allows translation of the detectors in the surrounding shielding to adjust the field of view, and a collimating plug in the end to further reduce the low-energy field of view, were also developed. Proof-of-principle measurements of neutron and high-energy gamma-ray signatures, using moderated neutron detectors and large-volume spectrometers in a fixed-geometry, portal-like configuration, supported an early assessment of the viability of the concept. The system has been used successfully on two testing campaigns at an AREVA fuel fabrication plant to scan over 30 product cylinders. This paper will describe the overall design of the detector positioning system and provide an overview of the Integrated Cylinder Verification Station (ICVS) approach.

Hatchell, Brian K.; Valdez, Patrick LJ; Orton, Christopher R.; Mace, Emily K.

2011-08-07T23:59:59.000Z

60

A "Proof-of-Concept" Demonstration of RF-Based Technologies for UF6 Cylinder Tracking at Centrifuge Enrichment Plant  

SciTech Connect

This effort describes how radio-frequency (RF) technology can be integrated into a uranium enrichment facility's nuclear materials accounting and control program to enhance uranium hexafluoride (UF6) cylinder tracking and thus provide benefits to both domestic and international safeguards. Approved industry-standard cylinders are used to handle and store UF6 feed, product, tails, and samples at uranium enrichment plants. In the international arena, the International Atomic Energy Agency (IAEA) relies on time-consuming manual cylinder inventory and tracking techniques to verify operator declarations and to detect potential diversion of UF6. Development of a reliable, automated, and tamper-resistant process for tracking and monitoring UF6 cylinders would greatly reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a "proof-of concept" system that was designed show the feasibility of using RF based technologies to track individual UF6 cylinders throughout their entire life cycle, and thus ensure both increased domestic accountability of materials and a more effective and efficient method for application of IAEA international safeguards at the site level. The proposed system incorporates RF-based identification devices, which provide a mechanism for a reliable, automated, and tamper-resistant tracking network. We explore how securely attached RF tags can be integrated with other safeguards technologies to better detect diversion of cylinders. The tracking system could also provide a foundation for integration of other types of safeguards that would further enhance detection of undeclared activities.

Pickett, Chris A [ORNL; Younkin, James R [ORNL; Kovacic, Donald N [ORNL; Dixon, E. T. [Los Alamos National Laboratory (LANL); Martinez, B. [Los Alamos National Laboratory (LANL)

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Automated Nondestructive Assay of UF6 Cylinders: Detector Characterization and Initial Measurements  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders assumed to be representative of the facility's entire cylinder inventory. These measurements are time-consuming and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Pacific Northwest National Laboratory is developing an Integrated Cylinder Verification System (ICVS) intended for this purpose and has developed a field prototype of the nondestructive assay (NDA) components of an ICVS. The nondestructive assay methods would combine the 'traditional' enrichment-meter signature (i.e. 186-keV emission from 235U) as well as 'non-traditional' high-energy photon signatures derived from neutrons produced primarily by 19F({alpha},n) reactions. This paper describes the design, calibration and characterization of the NaI(Tl) and LaBr3(Ce) spectrometers utilized in the field prototype. An overview of a recent field measurement campaign is then provided, supported by example gamma-ray pulse-height spectra collected on cylinders of known enrichment.

Mace, Emily K.; Smith, Leon E.

2011-10-01T23:59:59.000Z

62

Depleted Uranium Uses Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

63

Consequence Management, Safeguards & Non-Proliferation Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the...

64

Signatures and Methods for the Automated Nondestructive Assay of UF6 Cylinders at Uranium Enrichment Plants  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facilitys entire cylinder inventory. These measurements are time-consuming, expensive, and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Such a station would use sensors that can be operated in an unattended mode at an industrial facility: medium-resolution scintillators for gamma-ray spectroscopy (e.g., NaI(Tl)) and moderated He-3 neutron detectors. This sensor combination allows the exploitation of additional, more-penetrating signatures beyond the traditional 185-keV emission from U-235: neutrons produced from F-19(?,n) reactions (spawned primarily from U 234 alpha emission) and high-energy gamma rays (extending up to 8 MeV) induced by neutrons interacting in the steel cylinder. This paper describes a study of these non-traditional signatures for the purposes of cylinder enrichment verification. The signatures and the radiation sensors designed to collect them are described, as are proof-of-principle cylinder measurements and analyses. Key sources of systematic uncertainty in the non-traditional signatures are discussed, and the potential benefits of utilizing these non-traditional signatures, in concert with an automated form of the traditional 185-keV-based assay, are discussed.

Smith, Leon E.; Mace, Emily K.; Misner, Alex C.; Shaver, Mark W.

2010-08-08T23:59:59.000Z

65

MODEL AND ALGORITHM EVALUATION FOR THE HYBRID UF6 CONTAINER INSPECTION SYSTEM  

Science Conference Proceedings (OSTI)

ABSTRACT Pacific Northwest National Laboratory (PNNL) is developing an automated UF6 cylinder verification station concept based on the combined collection of traditional enrichment-meter (186 keV photons from U-235) data and non-traditional, neutron-induced, high-energy gamma-signatures (3-8.5 MeV) with an array of collimated, medium-resolution scintillators. Previous (2010) work at PNNL demonstrated proof-of-principle that this hybrid method yields accurate, full-volume assay of the cylinder enrichment, reduces systematic errors when compared to several other enrichment assay methods, and provides simplified instrumentation and algorithms suitable for long-term unattended operations. We used Monte Carlo modeling with MCNP5 to support system design (e.g., number and configuration of detector arrays, and design of iron/poly collimators for enhanced (n,?) conversion) and enrichment algorithm development. We developed a first-generation modeling framework in 2010. These tools have since been expanded, refined and benchmarked against field measurements with a prototype system of a 30B cylinder population (0.2 to 4.95 weight % U-235). The MCNP5 model decomposes the radiation transport problem into a linear superposition of basis spectra representing contributions from the different uranium isotopes and gamma-ray generation mechanisms (e.g. neutron capture). This scheme accommodates fast generation of virtual assay signatures for arbitrary enrichment, material age, and fill variations. Ongoing (FY-2011) refinements to the physics model include accounting for generation of bremsstrahlung photons, arising primarily from the beta decay of Pa-234m, a U-238 daughter. We are using the refined model to optimize collimator design for the hybrid method. The traditional assay method benefits from a high degree of collimation (to isolate each detectors field-of-view) and relatively small detector area, while the non-traditional method benefits from a wide field-of-view, i.e. less collimation and larger detectors. We implement the enrichment-meter method by applying a square-wave digital filter to a raw spectrum and extracting the 186-keV peak area directly from the convolute spectrum. Ongoing enhancements to this approach include mitigating a systematic peak-area measurement deficit arising from curvature in the spectrum continuum shape. An optimized system prototype based on model results is utilized in a new set of 2011 field measurements, and model and measurement enrichment assay uncertainties are compared.

McDonald, Benjamin S.; Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; Smith, Leon E.; Wittman, Richard S.

2011-06-14T23:59:59.000Z

66

Selection of a management strategy for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

67

An Operator Perspective from a Facility Evaluation of an RFID-Based UF6 Cylinder Accounting and Tracking System  

SciTech Connect

An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment also provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.

Martyn, Rose [Global Nuclear Fuels; Fitzgerald, Peter [Global Nuclear Fuels; Stehle, Nicholas D [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL

2011-01-01T23:59:59.000Z

68

Including environmental concerns in management strategies for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF{sub 6}) management program. The program is intended to find a long-term management strategy for the DUF{sub 6} that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE`s current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997.

Goldberg, M. [Argonne National Laboratory, Washington, DC (United States); Avci, H.I. [Argonne National Lab., IL (United States); Bradley, C.E. [USDOE, Washington, DC (United States)

1995-12-31T23:59:59.000Z

69

Standard test method for determination of bromine and chlorine in UF6 and uranyl nitrate by X-Ray fluorescence (XRF) spectroscopy  

E-Print Network (OSTI)

1.1 This method covers the determination of bromine (Br) and chlorine (Cl) in uranium hexafluoride (UF6) and uranyl nitrate solution. The method as written covers the determination of bromine in UF6 over the concentration range of 0.2 to 8 ?g/g, uranium basis. The chlorine in UF6 can be determined over the range of 4 to 160 ?g/g, uranium basis. Higher concentrations may be covered by appropriate dilutions. The detection limit for Br is 0.2 ?g/g uranium basis and for Cl is 4 ?g/g uranium basis. 1.2 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2001-01-01T23:59:59.000Z

70

Ultra-low field NMR for detection and characterization of 235 UF6  

SciTech Connect

We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

71

Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay  

SciTech Connect

The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

Miller, Karen A. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Marlow, Johnna B. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

72

Results of Continuous Load Cell Monitoring Field Trial for UF6 Withdrawals at an Operating Industrial Plant  

Science Conference Proceedings (OSTI)

Continuous load cell monitoring (CLCM) has been implemented and tested for use as a safeguards tool during a 2009 field trial in an operating UF6 transfer facility. The transfer facility is part of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio, operated by the United States Enrichment Corporation. During the field trial, two process scales for UF{sub 6} cylinders were continuously monitored for a 6-month period as cylinders were being filled. The collected CLCM data were used in testing an event processor serving as a filter for highlighting measurements representing significant operational activities that are important in verifying declared operations. The collection of CLCM data, coupled with rules-based event processing, can provide inspectors with knowledge of a facility's feed and withdrawal activities occurring between site visits. Such process knowledge promises to enhance the effectiveness of safeguards by enabling inspectors to quantitatively compare declared activities directly with process measurements. Selected results of the field trial and event processing will be presented in the context of their value to an independent inspector and a facility operator.

Krichinsky, Alan M [ORNL; Bell, Lisa S [ORNL; Conchewski, Curtis A [ORNL; Peters, Benjamin R [ORNL; Pickett, Chris A [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL

2010-01-01T23:59:59.000Z

73

RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY  

SciTech Connect

Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF{sub 6} cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms, and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF{sub 6}) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF{sub 6} cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to add tamper-indicating and data authentication features to some of the pertinent system components. Future efforts will focus on these needs along with implementing protocols relevant to IAEA safeguards. The work detailed in this report demonstrates the feasibility of constructing RF devices that can survive the operational rigors associated with the transportation, storage, and processing of UF6 cylinders. The system software specially designed for this project is called Cylinder Accounting and Tracking System (CATS). This report details the elements of the CATS rules-based architecture and its use in safeguards-monitoring and asset-tracking applications. Information is also provided on improvements needed to make the technology ready, as well as options for improving the safeguards aspects of the technology. The report also includes feedback from personnel involved in the testing, as well as individuals who could utilize an RF-based system in supporting the performance of their work. The system software was set up to support a Mailbox declaration, where a declaration can be made either before or after cylinder movements take place. When the declaration is made before cylinders move, the operators must enter this information into CATS. If the IAEA then shows up unexpectedly at the facility, they can see how closely the operational condition matches the declaration. If the declaration is made after the cylinders move, this provides greater operational flexibility when schedules are interrupted or are changed, by allowing operators to declare what moves have been completed. The IAEA can then compare where cylinders are with where CATS or the system says they are located. The ability of CATS to automatically generate Mailbox declarations is seen by the authors as a desirable feature. The Mailbox approach is accepted by the IAEA but has not been widely implemented (and never in enrichment facilities). During the course of this project, we have incorporated alternative methods for implementation.

Pickett, Chris A [ORNL; Kovacic, Donald N [ORNL; Morgan, Jim [Innovative Solutions; Younkin, James R [ORNL; Carrick, Bernie [USEC; Ken, Whittle [USEC; Johns, R E [Pacific Northwest National Laboratory (PNNL)

2008-09-01T23:59:59.000Z

74

EIS-0269: Alternative Strategies for the Long-Term Management and Use of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Alternative Strategies for the Long-Term Management and 9: Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride, Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee EIS-0269: Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride, Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee Summary This EIS will evaluate the potential environmental impacts regarding management decisions on depleted UF6 by evaluating the environmental impacts of a range of reasonable alternative strategies as well as providing a means for the public to have a meaningful opportunity to be heard on this matter. Public Comment Opportunities None available at this time. Documents Available For Download August 10, 1999 EIS-0269: Record of Decision

75

Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect

The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

Dubrin, J.W., Rahm-Crites, L.

1997-09-01T23:59:59.000Z

76

Contact Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Contact Us Your comments, questions, and feedback about this web site and the Depleted UF6 Conversion EISs are welcomed. Please contact us with any questions or comments you may have about the Depleted UF6 Conversion EIS or the Depleted UF6 Management Program web site. Your questions or comments will be forwarded to the appropriate persons to answer or provide assistance. The purpose of this web site is to inform and involve the public in the Depleted UF6 Management Program, including the Depleted UF6 Conversion EIS process. We want it to meet your needs. Please feel free to make suggestions about additional features or services you would like to see on this web site, or ways you think we could improve the site. For general questions or comments about the Depleted UF6 Management Program web site or the Depleted UF6 Conversion EIS, contact us at: duf6webmaster@anl.gov.

77

FAQ 15-What are the dimensions of a depleted uranium hexafluoride cylinder?  

NLE Websites -- All DOE Office Websites (Extended Search)

are the dimensions of a depleted uranium hexafluoride cylinder? are the dimensions of a depleted uranium hexafluoride cylinder? What are the dimensions of a depleted uranium hexafluoride cylinder? Several different cylinder types are in use, although the vast majority of cylinders are designed to contain 14-tons (12-metric tons) of depleted UF6. The 14-ton-capacity cylinders are 12 ft (3.7 m) long by 4 ft (1.2 m) in diameter, with most having an initial wall thickness of 5/16 in. (0.79 cm) of steel. The cylinders have external stiffening rings that provide support. Lifting lugs for handling are attached to the stiffening rings. A small percentage of the cylinders have skirted ends (extensions of the cylinder walls past the rounded ends of the cylinder). Each cylinder has a single valve for filling and emptying located on one end at the 12 o'clock position. Similar, but slightly smaller, cylinders designed to contain 10 tons (9 metric tons) of depleted UF6 are also in use. Cylinders are manufactured in accordance with an American National Standards Institute standard (ANSI N14.1, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport) as specified in 49 CFR 173.420, the federal regulations governing transport of depleted UF6.

78

A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants  

SciTech Connect

This report describes an engineering-scale, mock UF6 feed and withdrawal (F&W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F&W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F&W system description. Continuous monitoring components on the mock F&W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF{sub 6} F&W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF{sub 6}. The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.

Krichinsky, Alan M [ORNL; Bates, Bruce E [ORNL; Chesser, Joel B [ORNL; Koo, Sinsze [ORNL; Whitaker, J Michael [ORNL

2009-12-01T23:59:59.000Z

79

Management and Uses Conversion Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

80

Depleted uranium hexafluoride (DUF{sub 6}) management system--a decision tool  

Science Conference Proceedings (OSTI)

The Depleted Uranium Hexafluoride (DUF{sub 6}) Management System (DMS) is being developed as a decision tool to provide cost and risk data for evaluation of short-and long-term management strategies for depleted uranium. It can be used to assist decision makers on a programmatic or site-specific level. Currently, the DMS allows evaluation of near-term cylinder management strategies such as storage yard improvements, cylinder restocking, and reconditioning. The DMS has been designed to provide the user with maximum flexibility for modifying data and impact factors (e.g., unit costs and risk factors). Sensitivity analysis can be performed on all key parameters such as cylinder corrosion rate, inspection frequency, and impact factors. Analysis may be conducted on a system-wide, site, or yard basis. The costs and risks from different scenarios may be compared in graphic or tabular format. Ongoing development of the DMS will allow similar evaluation of long-term management strategies such as conversion to other chemical forms. The DMS is a Microsoft Windows 3.1 based, stand-alone computer application. It can be operated on a 486 or faster computer with VGA, 4 MB of RAM, and 10 MB of disk space.

Gasper, J.R.; Sutter, R.J.; Avci, H.I. [and others

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Summary of the cost analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect

This report is a summary of the Cost Analysis Report which provides comparative cost data for the management strategy alternatives. The PEIS and the Cost Analysis Report will help DOE select a management strategy. The Record of Decision, expected in 1998, will complete the first part of the Depleted Uranium Hexafluoride Management Program. The second part of the Program will look at specific sites and technologies for carrying out the selected strategy. The Cost Analysis Report estimates the primary capital and operating costs for the different alternatives. It reflects the costs of technology development construction of facilities, operation, and decontamination and decommissioning. It also includes potential revenues from the sale of by-products such as anhydrous hydrogen fluoride (ABF). These estimates are based on early designs. They are intended to help in comparing alternatives, rather than to indicate absolute costs for project budgets or bidding purposes. More detailed estimates and specific funding sources will be considered in part two of the Depleted Uranium Hexafluoride Management Program.

Dubrin, J.W.; Rahm-Crites, L.

1997-09-01T23:59:59.000Z

82

About Us  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us Argonne National Laboratory administers this web site for The U.S. DOE Office of Environmental Management. Responsibilities The Depleted UF6 Management Program...

83

Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site in Support of Site-Specific NEPA Requirements for Continued Cylinder Storage, Cylinder Preparation, Conversion, and Long-Term Storage Activities Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

84

Depleted uranium plasma reduction system study  

Science Conference Proceedings (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

85

Cylinder Surveillance and Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Surveillance and Maintenance Cylinder Surveillance and Maintenance DOE has a Cylinder Management program in place to inspect and maintain depleted UF6 cylinders, and to improve...

86

INFORMATION: Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides  

SciTech Connect

The Administration and the Congress, through policy statements and passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), have signaled that they hope that proactive actions by agency Inspectors General will help ensure that Federal Recovery Act activities are transparent, effective and efficient. In that context, the purpose of this management alert is to share with you concerns that have been raised to the Office of Inspector General regarding the planned disposition of the Savannah River Site's (SRS) inventory of Depleted Uranium (DU) oxides. This inventory, generated as a by-product of the nuclear weapons production process and amounting to approximately 15,600 drums of DU oxides, has been stored at SRS for decades. A Department source we deem reliable and credible recently came to the Office of Inspector General expressing concern that imminent actions are planned that may not provide for the most cost effective disposition of these materials. During April 2009, the Department chose to use funds provided under the Recovery Act to accelerate final disposition of the SRS inventory of DU oxides. After coordination with State of Utah regulators, elected officials and the U.S. Nuclear Regulatory Commission, the Department initiated a campaign to ship the material to a facility operated by EnergySolutions in Clive, Utah. Although one shipment of a portion of the material has already been sent to the EnergySolutions facility, the majority of the product remains at SRS. As had been planned, both for the shipment already made and those planned in the near term, the EnergySolutions facility was to have been the final disposal location for the material. Recently, a member of Congress and various Utah State officials raised questions regarding the radioactive and other constituents present in the DU oxides to be disposed of at the Clive, Utah, facility. These concerns revolved around the characterization of the material and its acceptability under existing licensing criteria. As a consequence, the Governor of Utah met with Department officials to voice concerns regarding further shipments of the material and to seek return of the initial shipment of DU oxides to SRS. Utah's objections and the Department's agreement to accede to the State's demands effectively prohibit the transfer of the remaining material from South Carolina to Utah. In response, the Department evaluated its options and issued a draft decision paper on March 1, 2010, which outlined an alternative for temporary storage until the final disposition issue could be resolved. Under the terms of the proposed option, the remaining shipments from SRS are to be sent on an interim basis to a facility owned by Waste Control Specialists (WCS) in Andrews, Texas. Clearly, this choice carries with it a number of significant logistical burdens, including substantial additional costs for, among several items, repackaging at SRS, transportation to Texas, storage at the interim site, and, repackaging and transportation to the yet-to-be-determined final disposition point. The Department source expressed the concern that the proposal to store the material on an interim basis in Texas was inefficient and unnecessary, asserting: (1) that the materials could remain at SRS until a final disposition path is identified, and that this could be done safely, securely and cost effectively; and, (2) that the nature of the material was not subject to existing compliance agreements with the State of South Carolina, suggesting the viability of keeping the material in storage at SRS until a permanent disposal site is definitively established. We noted that, while the Department's decision paper referred to 'numerous project and programmatic factors that make it impractical to retain the remaining inventory at Savannah River,' it did not outline the specific issues involved nor did it provide any substantive economic or environmental analysis supporting the need for the planned interim storage action. The only apparent driver in this case was a Recovery Act-related goal esta

None

2010-04-01T23:59:59.000Z

87

Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

88

DUF6 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

of depleted UF6 is stored in steel cylinders at three sites in the U.S. Depleted UF6 Inventory and Storage Locations U.S. DOE's inventory of depleted UF6 consists of approximately...

89

Conversion of Yellow Cake to UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Yellow cake is converted to uranium hexafluoride through a multi-step chemical process using nitric acid, ammonium hydroxide, hydrogen, hydrofluoric acid (HF) and fluorine (F2)....

90

Assessment of UF6 Equation of State  

SciTech Connect

A common assumption in the mathematical analysis of flows of compressible fluids is to treat the fluid as a perfect gas. This is an approximation, as no real fluid obeys the perfect gas relationships over all temperature and pressure conditions. An assessment of the validity of treating the UF{sub 6} gas flow field within a gas centrifuge with perfect gas relationships has been conducted. The definition of a perfect gas is commonly stated in two parts: (1) the gas obeys the thermal equation of state, p = {rho}RT (thermally perfect), and, (2) the gas specific heats are constant (calorically perfect). Analysis indicates the thermally perfect assumption is valid for all flow conditions within the gas centrifuge, including shock fields. The low operating gas pressure is the primary factor in the suitability of the thermally perfect equation of state for gas centrifuge computations. UF{sub 6} is not calorically perfect, as the specific heats vary as a function of temperature. This effect is insignificant within the bulk of the centrifuge gas field, as gas temperatures vary over a narrow range. The exception is in the vicinity of shock fields, where temperature, pressure, and density gradients are large, and the variation of specific heats with temperature should be included in the technically detailed analyses. Results from a normal shock analysis incorporating variable specific heats is included herein, presented in the conventional form of shock parameters as a function of inlet Mach Number. The error introduced by assuming constant specific heats is small for a nominal UF{sub 6} shock field, such that calorically perfect shock relationships can be used for scaling and initial analyses. The more rigorous imperfect gas analysis should be used for detailed analyses.

Brady, P; Chand, K; Warren, D; Vandersall, J

2009-02-11T23:59:59.000Z

91

Neutronics and Depletion Methods for Parametric Studies of Fluoride Salt Cooled High Temperature Reactors with Slab Fuel Geometry and Multi-Batch Fuel Management Schemes  

SciTech Connect

The Advanced High Temperature Reactor (AHTR) is a 3400 MWth fluoride salt cooled high temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical fuel pebbles or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the reactivity-equivalent physical transformation (RPT) methodology usually applied in systems with coated particle fuel in cylindrical and spherical geometries was extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle composition and sampling different discharge burnups. This iterative equilibrium depletion search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux and composition evolutions across space and time), but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the non-linear reactivity model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms to extrapolate single-batch depletion results to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.

Cisneros, Anselmo T. [University of California, Berkeley; Ilas, Dan [ORNL

2012-01-01T23:59:59.000Z

92

Neutronics and Depletion Methods for Parametric Studies of Fluoride Salt Cooled High Temperature Reactors with Slab Fuel Geometry and Multi-Batch Fuel Management Schemes  

SciTech Connect

The Advanced High-Temperature Reactor (AHTR) is a 3400 MWth fluoride-salt-cooled high-temperature reactor (FHR) that uses TRISO particle fuel compacted into slabs rather than spherical or cylindrical fuel compacts. Simplified methods are required for parametric design studies such that analyzing the entire feasible design space for an AHTR is tractable. These simplifications include fuel homogenization techniques to increase the speed of neutron transport calculations in depletion analysis and equilibrium depletion analysis methods to analyze systems with multi-batch fuel management schemes. This paper presents three elements of significant novelty. First, the Reactivity-Equivalent Physical Transformation (RPT) methodology usually applied in systems with coated-particle fuel in cylindrical and spherical geometries has been extended to slab geometries. Secondly, based on this newly developed RPT method for slab geometries, a methodology that uses Monte Carlo depletion approaches was further developed to search for the maximum discharge burnup in a multi-batch system by iteratively estimating the beginning of equilibrium cycle (BOEC) composition and sampling different discharge burnups. This Iterative Equilibrium Depletion Search (IEDS) method fully defines an equilibrium fuel cycle (keff, power, flux, and composition evolutions) but is computationally demanding, although feasible on single-processor workstations. Finally, an analytical method, the Non-Linear Reactivity Model, was developed by expanding the linear reactivity model to include an arbitrary number of higher order terms so that single-batch depletion results could be extrapolated to estimate the maximum discharge burnup and BOEC keff in systems with multi-batch fuel management schemes. Results from this method were benchmarked against equilibrium depletion analysis results using the IEDS.

Cisneros, Anselmo T. [University of California, Berkeley; Ilas, Dan [ORNL

2013-01-01T23:59:59.000Z

93

DUF6 Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Guide DUF6 Guide Depleted UF6 Guide An introduction to uranium and its compounds, depleted uranium, and depleted uranium hexafluoride (depleted UF6). Uranium has unique properties that make it valuable as an energy source, yet potentially hazardous to human health and the environment. The Guide provides basic information about the properties of uranium compounds and the uranium enrichment process that produces depleted UF6. This information will help you understand the unique challenges involved in managing DOE's inventory of depleted UF6 in a safe and efficient manner. Overview Presentation DUF6 Health Risks Uranium and Its Compounds DUF6 Environmental Risks Depleted Uranium DUF6 Videos Uranium Hexafluoride Uranium Quick Facts DUF6 Production and Handling

94

Where DUF6 is Stored  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 is Stored Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Where Depleted UF6 is Stored in the United States The UF6...

95

Documents: Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Search Documents: Search PDF Documents View a list of all documents Cost Analysis PDF Icon Summary of the Cost Analysis Report for the Long-term Management of Depleted UF6...

96

FAQ 32-What are the potential health risks from conversion of depleted  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion of depleted uranium hexafluoride to other forms? conversion of depleted uranium hexafluoride to other forms? What are the potential health risks from conversion of depleted uranium hexafluoride to other forms? Accidental release of UF6 during processing activities could result in injuries. The most immediate hazard from a release would be lung injury or death from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when UF6 reacts with moisture in air. Uranyl fluoride is also formed. Uranyl fluoride is a particulate that can be dispersed in air and inhaled. Once inhaled, uranyl fluoride is easily absorbed into the bloodstream because it is soluble. If large quantities are inhaled, kidney toxicity will result. Conversion of uranium hexafluoride to oxide or metal may involve hazardous chemicals in addition to UF6; specifically, ammonia (NH3) may be used in the process, and HF may be produced from the process. In the PEIS, the conversion accidents estimated to have the largest potential consequences were accidents involving the rupture of tanks containing either anhydrous HF or ammonia. Such an accident could be caused by a large earthquake. The probability of large earthquakes depends on the location of the facility, and the probability of damage depends on the structural characteristics of the buildings. In the PEIS, the estimated frequency of this type of accident was less than once in one million years. However, if such an extremely unlikely accident did occur, it was estimated that up to 41,000 members of the general public around the conversion facility might experience adverse effects from chemical exposures (mostly mild and temporary effects, such as respiratory irritation or temporary decrease in kidney function). Of these, up to 1,700 individuals might experience irreversible adverse effects (such as lung damage or kidney damage), with the potential for about 30 fatalities. In addition, irreversible or fatal effects among workers very near the accident scene would be possible. (Note: The actual numbers of injuries among the general public would depend on the size and proximity of the population around the conversion facility).

97

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

0.5 seconds 0.5 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 83.2 MPH Acceleration 1 Mile Maximum Speed: 100.6 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 10.6 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 82.8 MPH Acceleration 1 Mile Maximum Speed: 101.9 MPH Brake Test @ 60 MPH Distance Required: 145.1 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6,10 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 10 118.5 2.85 10 53.0 1.80 20 116.8 5.49 20 56.6 3.37 40 116.0 10.50 40 58.0 6.38 60 90.7 11.34 60 55.3 9.48 80 76.6 11.34 80 51.4 11.11 100 68.0 11.34 100 47.2 11.13 200 50.9 11.34 200 38.7 11.13 Fuel Economy with A/C Off 1 Cold Start Charge Depleting 2 : Fuel Economy: 119.7 MPG AC kWh Consumed 7 : 0.282 kWh/mi Charge Depleting

98

Consequence Management, Safeguards & Non-Proliferation Tools | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the gamma radiation field in a mock-up of a UF-6 enrichment facility. The solution was generated on a desktop computer using ORNL's Denovo SN transport code and ADVANTG interface, using geometry and material descriptions from an NRL SWORD input file. ORNL is a leader in developing state-of-the-art radiation transport modeling and simulation tools and in applying these tools to solve challenging problems in national and global nuclear security. Recent developments in high-performance, high-fidelity, deterministic Monte Carlo, and hybrid Monte Carlo/deterministic radiation transport codes within

99

Depleted Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

100

FAQ 23-How much depleted uranium -- including depleted uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

is stored in the United States? How much depleted uranium -- including depleted uranium hexafluoride -- is stored in the United States? In addition to the depleted uranium stored...

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery of Uranium Discovery of Uranium Uranium was discovered in 1789 by Martin Klaproth, a German chemist, who isolated an oxide of uranium while analyzing pitchblende samples from the Joachimsal silver mines in the former Kingdom of Bohemia located in the present day Czech Republic. more facts >> Mailing List Signup Receive e-mail updates about this project and web site. your e-mail address Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home » Documents Search Documents: Search PDF Documents View a list of all documents Depleted UF6 Management Program Documents Downloadable documents about depleted UF6 management and related topics, including Depleted UF6 Conversion and Programmatic EIS documents

102

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

103

Depleted uranium disposal options evaluation  

SciTech Connect

The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

1994-05-01T23:59:59.000Z

104

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

105

Depleted uranium valuation  

SciTech Connect

The following uses for depleted uranium were examined to determine its value: a substitute for lead in shielding applications, feed material in gaseous diffusion enrichment facilities, feed material for an advanced enrichment concept, Mixed Oxide (MOx) diluent and blanket material in LMFBRs, and fertile material in LMFBR systems. A range of depleted uranium values was calculated for each of these applications. The sensitivity of these values to analysis assumptions is discussed. 9 tables.

Lewallen, M.A.; White, M.K.; Jenquin, U.P.

1979-04-01T23:59:59.000Z

106

FAQ 29-What are the risks from accidents involving depleted uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

The most immediate hazard after a release would be from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when UF6 reacts with moisture in air. Exposure to...

107

The New MCNP6 Depletion Capability  

SciTech Connect

The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

108

Polyethylene Encapsulated Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

109

Documents: Engineering Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

of Depleted UF6 99 KB details HTML Icon Preconceptual Design Studies and Cost Data of Depleted Uranium Hexafluoride Conversion Plants 4 KB details Engineering Analysis Report...

110

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

111

The ultimate disposition of depleted uranium  

SciTech Connect

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

112

Depleted Uranium Hexafluoride Management Program: Data Compilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts Associated with Continued Storage of the Entire Portsmouth Site Cylinder Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51 3.5.1 Approach Used to...

113

Depleted Uranium Hexafluoride Management Program: Data Compilation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Code USEC United States Enrichment Corporation Chemicals AlF 3 aluminum trifluoride CaF 2 calcium fluoride CO carbon monoxide Fe iron HF hydrogen fluoride HNO 3 nitric acid Mg...

114

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

115

FAQ 6-What is depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium? What is depleted uranium? Depleted uranium is created during the processing that is done to make natural uranium suitable for use as fuel in nuclear power plants...

116

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

117

FAQ 26-Are there any uses for depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

uses for depleted uranium? Are there any uses for depleted uranium? Several current and potential uses exist for depleted uranium. Depleted uranium could be mixed with highly...

118

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

119

For More Information  

NLE Websites -- All DOE Office Websites (Extended Search)

For More Information For More Information about the Conversion EIS Who to contact for more information about the Depleted UF6 Conversion EISs Please direct questions, comments, or...

120

DUF6 Draft EIS Public Hearing Transcripts  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Draft EIS Public Hearing Transcripts Transcripts from the DUF6 Conversion Draft EIS Public Hearings The following transcripts are from the DUF6 Conversion...

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Historical Context  

NLE Websites -- All DOE Office Websites (Extended Search)

Context Historical Context for the Conversion EISs Important events and decisions that led to development of the depleted UF6 Conversion EISs. 1992: Concerns Raised by Ohio...

122

Potential Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

123

Microsoft Word - NEGTN02-#188646-v22B-INVENTORY_PLAN_UNCLASSIFIED.DOC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Excess Uranium Inventory Management Plan December 16, 2008 Office of Nuclear Energy 2008 Table of Contents Executive Summary................................................................................................ES-1 Excess Uranium Inventories..........................................................................................1 Unallocated U.S. HEU.........................................................................................1 U.S.-Origin NU as UF 6 ........................................................................................1 Russian-Origin NU as UF 6 ...................................................................................1 Off-Spec Non-UF 6 ..............................................................................................2

124

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

DOE Green Energy (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

125

Final DUF6 PEIS: Volume 2: Appendix J; Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Depleted UF 6 PEIS J-i APPENDIX J: ENVIRONMENTAL IMPACTS OF TRANSPORTATION OF UF 6 CYLINDERS, URANIUM OXIDE, URANIUM METAL, AND ASSOCIATED MATERIALS Transportation Depleted UF 6 PEIS J-ii Transportation Depleted UF 6 PEIS J-iii CONTENTS (APPENDIX J) NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-vi J.1 SUMMARY OF TRANSPORTATION OPTION IMPACTS . . . . . . . . . . . . . . . . . . J-3 J.2 TRANSPORTATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.1 Truck Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.2 Rail Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-9 J.2.3 Transportation Options Considered But Not Analyzed in Detail . . . . . . . . . . J-9 J.3 IMPACTS OF OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-10 J.3.1

126

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion: Project management/evaluation plan  

Science Conference Proceedings (OSTI)

The objectives of the Management/Evaluation Plan are: (1) clarify management structure, task responsibilities and schedules, and (2) to be used as a basis for judging the Project Evaluation Report submitted as a part of the continuation application. The components addressed in the report are: management structure; project staff organization; management procedure; quality assurance plan; ES and H plan and environmental compliance reporting; task WBS and logic flow diagram; list and schedule of planned deliverables; diagram of existing facilities; industry interaction; and evaluation of technical and economic feasibility.

Hallenbeck, L.D.; Harpole, K.J.; Gerard, M.G.

1995-05-03T23:59:59.000Z

127

From the lab to the real world : sources of error in UF6 gas enrichment monitoring.  

E-Print Network (OSTI)

??Safeguarding uranium enrichment facilities is a serious concern for the International Atomic Energy Agency (IAEA). Safeguards methods have changed over the years, most recently switching (more)

Lombardi, Marcie

2012-01-01T23:59:59.000Z

128

Field Trial of LANL On-Line Advanced Enrichment Monitor for UF6 GCEP  

Science Conference Proceedings (OSTI)

The outline of this presentation is: (1) Technology basis of on-line enrichment monitoring; (2) Timescale of trial; (3) Description of installed equipment; (4) Photographs; (5) Results; (6) Possible further development; and (7) Conclusions. Summary of the good things about the Advanced Enrichment Monitor (AEM) performance is: (1) High accuracy - normally better than 1% relative, (2) Active system as accurate as passive system, (3) Fast and accurate detection of enrichment changes, (4) Physics is well understood, (5) Elegant method for capturing pressure signal, and (6) Data capture is automatic, low cost and fast. A couple of negative things are: (1) Some jumps in measured passive enrichment - of around +2% relative (due to clock errors?); and (2) Data handling and evaluation is off-line, expensive and very slow. Conclusions are: (1) LANL AEM is being tested on E23 plant at Capenhurst; (2) The trial is going very well; (3) AEM could detect production of HEU at potentially much lower cost than existing CEMO; (4) AEM can measure {sup 235}U assay accurately; (5) Active system using X-Ray source would avoid need for pressure measurement; (6) Substantial work lies ahead to go from current prototype to a production instrument.

Ianakiev, Kiril D. [Los Alamos National Laboratory; Lombardi, Marcie [Los Alamos National Laboratory; MacArthur, Duncan W. [Los Alamos National Laboratory; Parker, Robert F. [Los Alamos National Laboratory; Smith, Morag K. [Los Alamos National Laboratory; Keller, Clifford [Los Alamos National Laboratory; Friend, Peter [URENCO; Dunford, Andrew [URENCO

2012-07-13T23:59:59.000Z

129

Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program  

Science Conference Proceedings (OSTI)

Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

Boyer, Brian D [Los Alamos National Laboratory; Whitaker, J. Michael [ORNL; White-Horton, Jessica L. [ORNL; Durbin, Karyn R. [NNSA

2012-07-12T23:59:59.000Z

130

Evaluation of UF6 to UO2 Conversion Capability at Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.7 Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

131

Who is Responsible for the DUF6 Conversion Facility EISs?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who is Responsible Who is Responsible Who Is Responsible for the Depleted UF6 Conversion Facility EISs? The U.S. DOE Office of Environmental Management is preparing the two Depleted UF6 Conversion Facility EISs, with assistance from Argonne National Laboratory. Responsibilities The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for preparation of the Depleted UF6 Conversion EIS. Argonne National Laboratory is assisting EM in preparation of the EIS. About the Office of Environmental Management (EM) In 1989, the Department of Energy created the Office of Environmental Management (EM) to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. Although the nation continues to maintain an arsenal of nuclear weapons, as well as some production capability, the United States has embarked on new missions. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Like most industrial and manufacturing operations, the nuclear complex has generated waste, pollution, and contamination. However, many problems posed by its operations are unique. They include unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures that will remain radioactive for thousands of years.

132

Depleted Argon from Underground Sources  

Science Conference Proceedings (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

133

High-voltage-compatible, fully depleted CCDs  

SciTech Connect

We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

2006-05-15T23:59:59.000Z

134

,"Natural Gas Depleted Fields Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural...

135

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

136

Depleted Uranium De-conversion  

E-Print Network (OSTI)

This Environmental Report (ER) constitutes one portion of an application being submitted by International Isotopes Fluorine Products (IIFP) to construct and operate a facility that will utilize depleted DUF6 to produce high purity inorganic fluorides, uranium oxides, and anhydrous hydrofluoric acid. The proposed IIFP facility will be located near Hobbs, New Mexico. IIFP has prepared the ER to meet the requirements specified in 10 CFR 51, Subpart A, particularly those requirements set forth in 10 CFR 51.45(b)-(e). The organization of this ER is generally consistent with NUREG-1748, Environmental Review Guidance for Licensing Actions Associated with NMSS Programs, Final Report. The Environmental Report for this proposed facility provides information that is specifically required by the NRC to assist it in meeting its obligations under the National Environmental Policy Act (NEPA) of 1969 and the agencys NEPA-implementing regulations. This ER demonstrates that the environmental protection measures proposed by IIFP are adequate to protect both the environment and the health and safety of the public. This Environmental Report evaluates the potential environmental impacts of the Proposed Action and its reasonable alternatives. This ER also describes the environment potentially affected by IIEFs proposal,

Fluorine Extraction Process

2009-01-01T23:59:59.000Z

137

Depleted argon from underground sources  

Science Conference Proceedings (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

138

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

139

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

NLE Websites -- All DOE Office Websites (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

140

THE RIMINI PROTOCOL Oil Depletion Protocol  

E-Print Network (OSTI)

Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil. This fact alone tells us that oil is a finite resource, which in turn means that it is subject to depletion1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict

Keeling, Stephen L.

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Audit Report on "Depleted Uranium Hexafluoride Conversion," DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Audit Report on "Depleted Uranium Hexafluoride Conversion," DOEIG-0642 Audit Report on "Depleted Uranium Hexafluoride...

142

Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751 Follow-up of Depleted Uranium Hexafluoride...

143

Depleted Uranium Operations at the Y-12 National Security Complex...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Depleted Uranium Operations at the Y-12 National Security Complex, G-0570 Depleted Uranium Operations...

144

FAQ 14-What does a depleted uranium hexafluoride cylinder look...  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium hexafluoride cylinder look like? What does a depleted uranium hexafluoride cylinder look like? A picture is worth a thousand words The pictures below show typical...

145

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

146

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

Annual Energy Outlook 2012 (EIA)

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

147

Production and Handling Slide 42: Typical Depleted Cylinder Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Typical Depleted Cylinder Storage Yard Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Typical Depleted Cylinder Storage Yard...

148

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

149

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

150

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

151

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

152

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

153

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

154

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

155

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

156

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

157

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

158

EIS-0269: Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69: Record of Decision 69: Record of Decision EIS-0269: Record of Decision Long-Term Management and Use of Depleted Uranium Hexafluoride, Paduch, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee The Department of Energy (''DOE'' or ''the Department'') issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF6). DOE has decided to promptly convert the depleted UF6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both.

159

Depleted Uranium (DU) Cermet Waste Package  

NLE Websites -- All DOE Office Websites (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

160

Nuclear conflict and ozone depletion Quick summary  

E-Print Network (OSTI)

Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

Toohey, Darin W.

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NEPA Activities for the Depleted Uranium Hexafluoride Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

ETTP) to some other stable chemical form acceptable for transportation, beneficial usereuse, andor disposal. Conversion facilities will be constructed at Paducah and...

162

Ozone-depleting-substance control and phase-out plan  

SciTech Connect

Title VI of the Federal Clean Air Act Amendments of 1990 requires regulation of the use and disposal of ozone-depleting substances (ODSs) (e.g., Halon, Freon). Several important federal regulations have been promulgated that affect the use of such substances at the Hanford Site. On April 23, 1993, Executive Order (EO) 12843, Procurement Requirements and Policies for Federal Agencies for Ozone-Depleting Substances (EPA 1993) was issued for Federal facilities to conform to the new US Environmental Protection Agency (EPA) regulations implementing the Clean Air Act of 1963 (CAA), Section 613, as amended. To implement the requirements of Title VI the US Department of Energy, Richland Operations Office (RL), issued a directive to the Hanford Site contractors on May 25, 1994 (Wisness 1994). The directive assigns Westinghouse Hanford Company (WHC) the lead in coordinating the development of a sitewide comprehensive implementation plan to be drafted by July 29, 1994 and completed by September 30, 1994. The implementation plan will address several areas where immediate compliance action is required. It will identify all current uses of ODSs and inventories, document the remaining useful life of equipment that contains ODS chemicals, provide a phase-out schedule, and provide a strategy that will be implemented consistently by all the Hanford Site contractors. This plan also addresses the critical and required elements of Federal regulations, the EO, and US Department of Energy (DOE) guidance. This plan is intended to establish a sitewide management system to address the clean air requirements.

Nickels, J.M.; Brown, M.J.

1994-07-01T23:59:59.000Z

163

Depleted Uranium Uses: Regulatory Requirements and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

164

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

165

Uranio impoverito: perch? (Depleted uranium: why?)  

E-Print Network (OSTI)

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-05-28T23:59:59.000Z

166

Depletion modeling of liquid dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Depletion models for liquid-dominated geothermal reservoirs are derived and presented. The depletion models are divided into two categories: confined and unconfined. For both cases depletion models with no recharge (or influx), and depletion models including recharge, are used to match field data from the Svartsengi high temperature geothermal field in Iceland. The influx models included with the mass and energy balances are adopted from the petroleum engineering literature. The match to production data from Svartsengi is improved when influx was included. The Schilthuis steady-state influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and the unsteady state method of Hurst gave reasonable answers, but not as good. The best match is obtained using Hurst simplified solution when lambda = 1.3 x 10{sup -4} m{sup -1}. From the match the cross-sectional area of the aquifer was calculated as 3.6 km{sup 2}. The drawdown was predicted using the Hurst simplified method, and compared with predicted drawdown from a boiling model and an empirical log-log model. A large difference between the models was obtained. The predicted drawdown using the Hurst simplified method falls between the other two. Injection has been considered by defining the net rate as being the production rate minus the injection rate. No thermal of transient effects were taken into account. Prediction using three different net rates shows that the pressure can be maintained using the Hurst simplified method if there is significant fluid reinjection. 32 refs., 44 figs., 2 tabs.

Olsen, G.

1984-06-01T23:59:59.000Z

167

U.S. Working Natural Gas Underground Storage Depleted Fields...  

Annual Energy Outlook 2012 (EIA)

Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

168

New Mexico Natural Gas Number of Underground Storage Depleted...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

169

New Mexico Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

170

Management  

E-Print Network (OSTI)

Research has indicated that, depending upon driver and passenger characteristics, passengers can have either a positive or negative influence upon driver behaviour. In conclusion to a recent study investigating the roles that passengers can play to influence, positively and negatively, driver behaviour, Regan and Mitsopoulos (2001) recommended, among other things, that the principles of Crew Resource Management (CRM) training may increase passengers ability to positively influence driver behaviour and also drivers ability to accept constructive feedback. The present study investigated the potential application of CRM training within young driver training in the Australian Capital Territory (ACT). This involved a literature review, an analysis of the differences between the driving and aviation domains, an analysis of the team-based activities and the knowledge, skills and attitudes required during driving to perform those activities, consultation with CRM experts from the aviation and medicine domains and the conduct of six focus groups involving young learner drivers, provisional licence drivers and course teachers. The findings indicate that CRM training as part of young driver training in the ACT is a viable concept to pursue. The application of CRM training within young driver training has potential to significantly enhance the positive and reduce the negative effects of passengers on young driver behaviour, and thus the safety of young drivers and passengers alike. The outcomes of this study formed the basis for a set of recommendations for the development of a young driver CRM training program in the ACT.

Young Drivers; Eve Mitsopoulos; Michael Regan; Janet Anderson; Paul Salmon; Jessica Edquist; Ii Report Documentation Page

2005-01-01T23:59:59.000Z

171

A modern depleted uranium manufacturing facility  

SciTech Connect

The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

Zagula, T.A.

1995-07-01T23:59:59.000Z

172

Depletion effects of silicon deposition from methyltrichlorosilane  

DOE Green Energy (OSTI)

The deposition rate of SiC on carbon-coated Nicalon fibers from methyltrichlorosilane in hydrogen was measured as a function of temperature, pressure, total flow rate, and simulated reactant depletion. The results, which are included in this paper together with kinetic information on the stability of methyltrichlorosilane, led to two conclusions: two different mechanisms of deposition can occur depending on whether the methyltrichlorosilane has an opportunity to dissociate into separate silicon- and carbon-containing precursors, and the deposition rate is strongly reduced by the generation of byproduct HCl. The data were fitted to a simple etch model to obtain a kinetic expression that accounts for the significant effect of HCl.

Besmann, T.M.; Sheldon, B.W.; Moss, T.S. III; Kaster, M.D. (Oak Ridge National Lab., TN (United States))

1992-10-01T23:59:59.000Z

173

EIS-0269: Alternative Strategies for the Long-Term Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

69: Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride, Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee EIS-0269:...

174

Evaluation of a RF-Based Approach for Tracking UF6 Cylinders at a Uranium Enrichment Plant  

SciTech Connect

Approved industry-standard cylinders are used globally to handle and store uranium hexafluoride (UF{sub 6}) feed, product, tails, and samples at uranium enrichment plants. The International Atomic Energy Agency (IAEA) relies on time-consuming physical inspections to verify operator declarations and detect possible diversion of UF{sub 6}. Development of a reliable, automated, and tamper-resistant system for near real-time tracking and monitoring UF{sub 6} cylinders (as they move within an enrichment facility) would greatly improve the inspector function. This type of system can reduce the risk of false or misreported cylinder tare weights, diversion of nuclear material, concealment of excess production, utilization of undeclared cylinders, and misrepresentation of the cylinders contents. This paper will describe a proof-of-concept approach that was designed to evaluate the feasibility of using radio frequency (RF)-based technologies to track individual UF{sub 6} cylinders throughout a portion of their life cycle, and thus demonstrate the potential for improved domestic accountability of materials, and a more effective and efficient method for application of site-level IAEA safeguards. The evaluation system incorporates RF-based identification devices (RFID) which provide a foundation for establishing a reliable, automated, and near real-time tracking system that can be set up to utilize site-specific, rules-based detection algorithms. This paper will report results from a proof-of-concept demonstration at a real enrichment facility that is specifically designed to evaluate both the feasibility of using RF to track cylinders and the durability of the RF equipment to survive the rigors of operational processing and handling. The paper also discusses methods for securely attaching RF devices and describes how the technology can effectively be layered with other safeguard systems and approaches to build a robust system for detecting cylinder diversion. Additionally, concepts for off-site tracking of cylinders are described.

Pickett, Chris A [ORNL; Younkin, James R [ORNL; Kovacic, Donald N [ORNL; Laughter, Mark D [ORNL; Hines, Jairus B [ORNL; Boyer, Brian [Los Alamos National Laboratory (LANL); Martinez, B. [Los Alamos National Laboratory (LANL)

2008-01-01T23:59:59.000Z

175

FAQ 17-Where is uranium hexafluoride stored in the United States...  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is uranium hexafluoride stored in the United States? Where is uranium hexafluoride stored in the United States? Most of the depleted UF6 accumulated since the 1940s is stored...

176

DUF6 EIS Public Comment Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Comment Form Public Comment Form The public comment period for the Depleted UF6 Supplemental Analysis is closed. The public comment form is no longer available. Sorry The...

177

DUF6 Conversion Facility EIS Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Conversion Facility EISs Schedule The final EISs for the DUF6 Conversion Facilities have been completed, and are available through this web site. The RODs are...

178

Cylinder Leakage  

NLE Websites -- All DOE Office Websites (Extended Search)

(breach) occurs and the depleted UF6 is exposed to water vapor in the air, uranyl fluoride (UO2F2) and hydrogen fluoride (HF) are formed. The uranyl fluoride is a solid that...

179

FAQ 18-What does a cylinder storage yard look like?  

NLE Websites -- All DOE Office Websites (Extended Search)

cylinder storage yard look like? What does a cylinder storage yard look like? Pictures of depleted UF6 cylinder storage yards are shown below. Storage yards are large outdoor areas...

180

How DUF6 is Stored  

NLE Websites -- All DOE Office Websites (Extended Search)

cylinder combines with the iron on the inner surfaces to form a surface layer of iron fluoride that inhibits internal corrosion. A new depleted UF6 cylinder Cylinders that exhibit...

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

FAQ 19-Is storage of uranium hexafluoride safe?  

NLE Websites -- All DOE Office Websites (Extended Search)

storage of uranium hexafluoride safe? Is storage of uranium hexafluoride safe? The advanced age of some of the steel cylinders in which the depleted UF6 is contained, and the way...

182

FAQ 21-What happens if a cylinder of uranium hexafluoride leaks...  

NLE Websites -- All DOE Office Websites (Extended Search)

(breach) occurs and the depleted UF6 is exposed to water vapor in the air, uranyl fluoride (UO2F2) and hydrogen fluoride (HF) are formed. The uranyl fluoride is a solid that...

183

Mailing Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Mailing Services Mailing Services Use the form below to add your name to the Depleted UF6 Mailing List. First Name: Last Name: Organization: Address: City: State: Postal Code:...

184

Regulation of New Depleted Uranium Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

2-5 2-5 Regulation of New Depleted Uranium Uses Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

185

Lithium Depletion of Nearby Young Stellar Associations  

E-Print Network (OSTI)

We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.

Erin Mentuch; Alexis Brandeker; Marten H. van Kerkwijk; Ray Jayawardhana; Peter H. Hauschildt

2008-08-26T23:59:59.000Z

186

Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluorid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Perry, (865) 576-0885 September 24, 2001 www.oakridge.doe.gov DOE SEEKS PUBLIC INPUT FOR DEPLETED URANIUM HEXAFLUORIDE ENVIRONMENTAL IMPACT STATEMENT Public Meetings Planned in...

187

Numerical study of error propagation in Monte Carlo depletion simulations.  

E-Print Network (OSTI)

??Improving computer technology and the desire to more accurately model the heterogeneity of the nuclear reactor environment have made the use of Monte Carlo depletion (more)

Wyant, Timothy Joseph

2012-01-01T23:59:59.000Z

188

DOE Selects Contractor for Depleted Hexafluoride Conversion Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Paducah, Kentucky and Portsmouth, Ohio. For several decades DOE was responsible for uranium enrichment, the uranium hexafluoride depleted in the 235U isotope (typically down...

189

Health Risks Associated with Disposal of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Disposal of Depleted Uranium A discussion of risks associated with disposal...

190

Environmental Impacts of Options for Disposal of Depleted Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

study by Oak Ridge National Laboratory evaluated the acceptability of several depleted uranium conversion products at potential LLW disposal sites to provide a basis for DOE...

191

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings:...

192

FAQ 27-Are there any currently-operating disposal facilities that can  

NLE Websites -- All DOE Office Websites (Extended Search)

currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? Are there any currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? With respect to available capacity, three sites could accept the entire inventory of depleted uranium oxide: the Department of Energy's (DOE's) Hanford site in Washington State, DOE's Nevada Test Site, or EnergySolution Clive, Utah Facility, a commercial site. Each of these sites would have sufficient capacity for either the grouted or ungrouted oxide forms of depleted uranium (for the two DOE sites, this also takes into account other projected disposal volumes through the year 2070).

193

Summary of the Preliminary Analysis of Savannah River Depleted Uranium Trioxide  

SciTech Connect

This report summarizes a preliminary special analysis of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 2). The analysis is considered preliminary because a final waste profile has not been submitted for review. The special analysis is performed to determine the acceptability of the waste stream for shallow land burial at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The Savannah River Depleted Uranium Trioxide waste stream requires a special analysis because the waste streams sum of fractions exceeds one. The 99Tc activity concentration is 98 percent of the NNSS Waste Acceptance Criteria and the largest single contributor to the sum of fractions.

NSTec Environmental Management

2010-10-13T23:59:59.000Z

194

Analysis of Hydrogen Depletion Using a Scaled Passive Autocatalytic Recombiner  

DOE Green Energy (OSTI)

Hydrogen depletion tests of a scaled passive autocatalytic recombine (pAR) were performed in the Surtsey test vessel at Sandia National Laboratories (SNL). The experiments were used to determine the hydrogen depletion rate of a PAR in the presence of steam and also to evaluate the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations.

Blanchat, T.K.; Malliakos, A.

1998-10-28T23:59:59.000Z

195

Regulation of new depleted uranium uses.  

DOE Green Energy (OSTI)

This report evaluates how the existing U.S. Nuclear Regulatory Commission (NRC) regulatory structure and pending modifications would affect full deployment into radiologically uncontrolled areas of certain new depleted uranium (DU) uses being studied as part of the U.S. Department of Energy's DU uses research and development program. Such new DU uses include as catalysts (for destroying volatile organic compounds in off-gases from industrial processes and for hydrodesulfurization [HDS] of petroleum fuels), semiconductors (for fabricating integrated circuits, solar cells, or thermoelectric devices, especially if such articles are expected to have service in hostile environments), and electrodes (for service in solid oxide fuel cells, in photoelectrochemical cells used to produce hydrogen, and in batteries). The report describes each new DU use and provides a detailed analysis of whether any existing NRC licensing exemption or general license would be available to users of products and devices manufactured to deploy the new use. Although one existing licensing exemption was found to be possibly available for catalysts used for HDS of petroleum fuels and one general license was found to be possibly available for catalysts, semiconductors, and electrodes used in hydrogen production or batteries, existing regulations would require most users of products and devices deploying new DU uses to obtain specific source material licenses from the NRC or an Agreement State. This situation would not be improved by pending regulatory modifications. Thus, deployment of new DU uses may be limited because persons having no previous experience with NRC or Agreement State regulations may be hesitant to incur the costs and inconvenience of regulatory compliance, unless using a DU-containing product or device offers a substantial economic benefit over nonradioactive alternatives. Accordingly, estimating the risk of deploying new DU-containing products and devices in certain radiologically uncontrolled areas is recommended. If the estimated risks of such deployment are found to be acceptable, then it may be possible to justify adding new exemptions or general licenses to the NRC regulations.

Ranek, N. L.

2003-01-22T23:59:59.000Z

196

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

197

Depleted Uranium Dioxide as SNF Waste Package Fill: A Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPLETED URANIUM DIOXIDE AS SNF WASTE PACKAGE FILL: A DISPOSAL OPTION Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6179 Tel: (865)...

198

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

199

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

200

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

202

Radiochemical Analysis Methodology for uranium Depletion Measurements  

SciTech Connect

This report provides sufficient material for a test sponsor with little or no radiochemistry background to understand and follow physics irradiation test program execution. Most irradiation test programs employ similar techniques and the general details provided here can be applied to the analysis of other irradiated sample types. Aspects of program management directly affecting analysis quality are also provided. This report is not an in-depth treatise on the vast field of radiochemical analysis techniques and related topics such as quality control. Instrumental technology is a very fast growing field and dramatic improvements are made each year, thus the instrumentation described in this report is no longer cutting edge technology. Much of the background material is still applicable and useful for the analysis of older experiments and also for subcontractors who still retain the older instrumentation.

Scatena-Wachel DE

2007-01-09T23:59:59.000Z

203

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

204

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PORTSMOUTH, OHIO, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Portsmouth DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

205

Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Accidents Health Risks » Accidents DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Accidents A discussion of accidents involving depleted UF6 storage cylinders, including possible health effects, accident risk, and accident history. Potential Health Effects from Cylinder Accidents Accidents involving depleted UF6 storage cylinders are a concern because they could result in an uncontrolled release of UF6 to the environment, which could potentially affect the health of workers and members of the public living downwind of the accident site. Accidental release of UF6 from storage cylinders or during processing activities could result in injuries or fatalities. The most immediate hazard after a release would be from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when

206

Ozone depletion, greenhouse gases, and climate change: Proceedings  

SciTech Connect

This symposium was primarily concerned with the linkages between ozone depletion and increasing greenhouse gases and with their combined effect in causing climate change to occur on a global scale. The presentations in these proceedings review the current state of knowledge about stratospheric ozone depletion, discuss the probable effect of predicted greenhouse gas increase on future ozone trends, summarize observational data on changing atmospheric chemistry and associated atmospheric temperatures, and describe the continuing effort to model and predict future scenarios of climatic change relative to ozone and greenhouse gases in both the stratosphere and the troposphere. Some of the questions and answers that followed the presentations have been included when they highlight noteworthy points that were not covered in the presentation itself. The request by the National Climate Program Office for a symposium on the above related issues is included. The symposium agenda and participants are given. As well as a glossary of special terms and abbreviations. In summary, the Joint Symposium on Ozone Depletion, Greenhouse Gases, and Climate Change reviewed the magnitude and causes of stratospheric ozone depletion and examined the connections that exist between this problem and the impending climate warming to increasing greenhouse gases. The presentations of these proceedings indicate that the connections are real and important, and that the stratospheric ozone depletion and tropospheric greenhouse warming problems must be studied as parts of an interactive global system rather than as more or less unconnected events.

1989-01-01T23:59:59.000Z

207

Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants  

SciTech Connect

One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

Jones, E

1999-07-26T23:59:59.000Z

208

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector  

E-Print Network (OSTI)

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

1980-01-01T23:59:59.000Z

209

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

210

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

211

Effect of Shim Arm Depletion in the NBSR  

SciTech Connect

The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

Hanson A. H.; Brown N.; Diamond, D.J.

2013-02-22T23:59:59.000Z

212

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotonically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W.

1997-12-01T23:59:59.000Z

213

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

214

Notice of Intent (NOI) to Prepare DUF6 PEIS  

NLE Websites -- All DOE Office Websites (Extended Search)

1, No. 17 / Thursday, January 25, 1996 / Notice 1, No. 17 / Thursday, January 25, 1996 / Notice [Pages 2239-2242] From the Federal Register Online via GPO Access [wais.access.gpo.gov] Alternative Strategies for the Long-Term Management and Use o f Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Notice of Intent (NOI). SUMMARY: The Department of Energy (DOE) announces its intent to prepare a programmatic environmental impact statement (PEIS) pursuant to the National Environmental Policy Act (NEPA) of 1969 (42 USC 4321 et seq.). The PEIS will assess the potential environmental impacts of alternative strategies for the long-term management and use of 560,000 metric tons of depleted uranium hexafluoride (UF 6 ) currently stored in cylinders at DOE's three gaseous diffusion plant sites located near Paducah, Kentucky; Portsmouth, Ohio; and Oak

215

EIS-0269: Notice of Intent to Prepare a Programmatic Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Notice of Intent to Prepare a Programmatic Environmental Notice of Intent to Prepare a Programmatic Environmental Impact Statement EIS-0269: Notice of Intent to Prepare a Programmatic Environmental Impact Statement Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride, Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee This impact statement will support management decisions on depleted UF6 by evaluating the environmental impacts of a range of reasonable alternative strategies as well as providing a means for the public to have a meaningful opportunity to be heard on this matter. This NOI informs the public of the proposal, explains the schedule, announces the dates, times, and places for scoping meetings, and solicits public comment. 96-1196.pdf More Documents & Publications

216

Environmental acceptability of high-performance alternatives for depleted uranium penetrators  

SciTech Connect

The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

Kerley, C.R.; Easterly, C.E.; Eckerman, K.F. [and others] [and others

1996-08-01T23:59:59.000Z

217

Lithium depletion and the rotational history of exoplanet host stars  

E-Print Network (OSTI)

Israelian et al. (2004) reported that exoplanet host stars are lithium depleted compared to solar-type stars without detected massive planets, a result recently confirmed by Gonzalez (2008). We investigate whether enhanced lithium depletion in exoplanet host stars may result from their rotational history. We have developed rotational evolution models for slow and fast solar-type rotators from the pre-main sequence (PMS) to the age of the Sun and compare them to the distribution of rotational periods observed for solar-type stars between 1 Myr and 5 Gyr. We show that slow rotators develop a high degree of differential rotation between the radiative core and the convective envelope, while fast rotators evolve with little core-envelope decoupling. We suggest that strong differential rotation at the base of the convective envelope is responsible for enhanced lithium depletion in slow rotators. We conclude that lithium-depleted exoplanet host stars were slow rotators on the zero-age main sequence (ZAMS) and argue that slow rotation results from a long lasting star-disk interaction during the PMS. Altogether, this suggests that long-lived disks (> 5 Myr) may be a necessary condition for massive planet formation/migration.

Jerome Bouvier

2008-08-28T23:59:59.000Z

218

The depleted hydrogen atoms in chemical graph theory  

Science Conference Proceedings (OSTI)

A new algorithm which explicitly describes the depleted hydrogen atoms is proposed for chemical graph computations, and especially for molecular connectivity model studies. The new algorithm continues to be centred on the concepts of complete graphs ... Keywords: General chemical graphs, complete graphs, hydrogen perturbation, molecular connectivity computations

Lionello Pogliani

2008-12-01T23:59:59.000Z

219

Technical considerations in materials management policy development  

Science Conference Proceedings (OSTI)

Under the Materials-in-Inventory (MIN) initiative, US DOE intends to develop policies to ensure that materials are managed and use efficiently, cost-effectively, and safely throughout DOE. The MIN initiative covers depleted uranium, scrap metals, chemicals, explosives, spent nuclear fuel, lead, alkali metals, etc.; by far the largest component is depleted uranium hexafluoride (DUF6). A technically defensible approach has been developed and is being used to select a long-term management strategy for DOE`s DUF6 inventory. The same approach can be adapted to management of other materials in inventory that have the potential to be reutilized.

Avci, H.; Goldberg, M.

1996-05-01T23:59:59.000Z

220

Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.  

DOE Green Energy (OSTI)

The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

United States. Bonneville Power Administation; A.G. Crook Company

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Next Generations Safeguards Initiative: The Life of a Cylinder  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy/National Nuclear Security Administration Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a program based on a five-year plan to investigate the concept of a global monitoring scheme that uniquely identifies uranium hexafluoride (UF6) cylinders and their locations throughout the life cycle. A key initial activity in the NGSI program is to understand and document the 'life of a UF6 cylinder' from cradle to grave. This document describes the life of a UF6 cylinder and includes cylinder manufacture and procurement processes as well as cylinder-handling and operational practices at conversion, enrichment, fuel fabrication, and depleted UF6 conversion facilities. The NGSI multiple-laboratory team is using this document as a building block for subsequent tasks in the five-year plan, including development of the functional requirements for cylinder-tagging and tracking devices.

Morgan, James B [ORNL; White-Horton, Jessica L [ORNL

2012-01-01T23:59:59.000Z

222

CRDIAC: Coupled Reactor Depletion Instrument with Automated Control  

SciTech Connect

When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion, unlike ORIGEN, which only depletes the isotopes specified by the user. This means that depletions done by MRTAU more accurately reflect reality. MRTAU also allows the user to build new isotope data sets, which means any isotope with nuclear data could be depleted, something that would help predict the outcomes of nuclear reaction testing in materials other than fuel, like beryllium or gold.

Steven K. Logan

2012-08-01T23:59:59.000Z

223

Isotopic Depletion and Decay Methods and Analysis Capabilities in SCALE  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the SCALE Nuclear Analysis Code System / Fuel Cycle and Management

Ian C. Gauld; Georgeta Radulescu; Germina Ilas; Brian D. Murphy; Mark L. Williams; Dorothea Wiarda

224

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

225

Shock induced multi-mode damage in depleted uranium  

SciTech Connect

Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

Koller, Darcie D [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

226

Uranio impoverito: perch'e? (Depleted uranium: why?)  

E-Print Network (OSTI)

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of the author of understanding the reasons of the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

D'Abramo, G

2003-01-01T23:59:59.000Z

227

Depletion-induced structure and dynamics in bimodal colloidal suspensions.  

Science Conference Proceedings (OSTI)

Combined small angle x-ray scattering and x-ray photon correlation spectroscopy studies of moderately concentrated bimodal hard-sphere colloidal suspensions in the fluid phase show that depletion-induced demixing introduces spatially heterogeneous dynamics with two distinct time scales. The adhesive nature, as well as the mobility, of the large particles is determined by the level of interaction within the monomodal domains. This interaction is driven by osmotic forces, which are governed by the relative concentration of the constituents.

Sikorski, M.; Sandy, A. R.; Narayanan, S. (X-Ray Science Division)

2011-05-03T23:59:59.000Z

228

Accounting for Depletion of Oil and Gas Resources in Malaysia  

Science Conference Proceedings (OSTI)

Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

Othman, Jamal, E-mail: jortman@ukm.my; Jafari, Yaghoob, E-mail: yaghoob.jafari@gmail.com [Universiti Kebangsaan Malaysia, Faculty of Economics and Management (Malaysia)

2012-12-15T23:59:59.000Z

229

CO depletion --- An evolutionary tracer for molecular clouds  

E-Print Network (OSTI)

Planck cold clumps are among the most promising objects to investigate the initial conditions of the evolution of molecular clouds. In this work, by combing the dust emission data from the survey of Planck satellite with the molecular data of $^{12}$CO/$^{13}$CO (1-0) lines from observations with the Purple Mountain Observatory (PMO) 14 m telescope, we investigate the CO abundance, CO depletion and CO-to-H$_{2}$ conversion factor of 674 clumps in the early cold cores (ECC) sample. The median and mean values of the CO abundance are 6.2$\\times10^{-5}$ and 9.1$\\times10^{-5}$, respectively. The mean and median of CO depletion factor are 2.8 and 1.4, respectively. The median value of $X_{CO-to-H_{2}}$ for the whole sample is $3.3\\times10^{20}$ cm$^{-2}$K$^{-1}$km$^{-1}$ s. The CO abundance, CO depletion factor and CO-to-H$_{2}$ conversion factor seems to be strongly correlated to other physical parameters (e.g. dust temperature, dust emissivity spectra index and column density). CO gas severely freeze out in colde...

Liu, Tie; Zhang, Huawei

2013-01-01T23:59:59.000Z

230

Depletion Reactivity Benchmark for the International Handbook of Evaluated Reactor Physics Benchmark Experiments  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI-) sponsored depletion reactivity benchmarks documented in reports 1022909, Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty, and 1025203, Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation, have been translated to an evaluated benchmark for incorporation in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE), published by the Organisation for Economic ...

2013-04-10T23:59:59.000Z

231

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

232

Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Background Fact Sheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions At the direction of Energy Secretary Steven Chu, over many months, the Energy Department (DOE) has been working closely with Energy Northwest (ENW), the Tennessee Valley Authority (TVA), and USEC Inc. (USEC) to develop a plan to address the challenges at USEC's Paducah Gaseous Diffusion Plant (GDP) that advances America's national security interests, protects taxpayers, and provides benefits for TVA and the Bonneville Power Administration's (BPA's) electric ratepayers and business operations. BPA is ENW's sole customer, purchasing 100 percent of ENW's Columbia Generating Station's electric power as part of BPA's overall

233

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

234

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

235

Video: Part of the 'Hole' Story (of Uranium Hexafluoride Cylinders)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hole Story Hole Story Part of the "Hole" Story (of Uranium Hexafluoride Cylinders) Holes in the depleted Uranium Hexafluoride storage cylinders are investigated. It is shown that corrosion products cause the openings to be self-healing. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:00 Part of the 'Hole' Story Video 00:05 One of the depleted UF6 cylinder storage lots at Portsmouth Video 00:28 48G cylinders, each containing 14 tons of depleted UF6, in storage Video 00:52 Stacked 48G cylinders Video 01:35 UF6 sealed in glass tube Video 02:01 A lifting lug of one cylinder damaging a neighboring cylinder Video 02:37 Damage to small hole cylinder from impact with a lifting lub of an adjoining cylinder

236

A more accurate and penetrating method to measure the enrichment and mass of UF6 storage containers using passive neutron self-interrogation  

Science Conference Proceedings (OSTI)

This paper describes an unattended mode neutron measurement that can provide the enrichment of the uranium in UF{sub 6} cylinders. The new passive neutron measurement provides better penetration into the uranium mass than prior gamma-ray enrichment measurement methods. The Passive Neutron Enrichment Monitor (PNEM) provides a new measurement technique that uses passive neutron totals and coincidence counting together with neutron self-interrogation to measure the enrichment in the cylinders. The measurement uses the neutron rates from two detector pods. One of the pods has a bare polyethylene surface next to the cylinder and the other polyethylene surface is covered with Cd to prevent thermal neutrons from returning to the cylinder. The primary neutron source from the enriched UF{sub 6} is the alpha-particle decay from the {sub 234}U that interacts with the fluorine to produce random neutrons. The singles neutron counting rate is dominated by the {sub 234}U neutrons with a minor contribution from the induced fissions in the {sub 235}U. However, the doubles counting rate comes primarily from the induced fissions (i.e., multiplication) in the {sub 235}U in enriched uranium. The PNEM concept makes use of the passive neutrons that are initially produced from the {sub 234}U reactions that track the {sub 235}U enrichment during the enrichment process. The induced fission reactions from the thermal-neutron albedo are all from the {sub 235}U and provide a measurement of the {sub 235}U. The Cd ratio has the desirable feature that all of the thermal-neutron-induced fissions in {sub 235}U are independent of the original neutron source. Thus, the ratio is independent of the uranium age, purity, and prior reactor history.

Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

237

Prototype Tests for the Recovery and Conversion of UF6 Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of -11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.

2000-04-01T23:59:59.000Z

238

Results from a "Proof-of-Concept" Demonstration of RF-Based Tracking of UF6 Cylinders during a Processing Operation at a Uranium Enrichment Plant  

SciTech Connect

Approved industry-standard cylinders are used globally for processing, storing, and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants. To ensure that cylinder movements at enrichment facilities occur as declared, the International Atomic Energy Agency (IAEA) must conduct time-consuming periodic physical inspections to validate facility records, cylinder identity, and containment. By using a robust system design that includes the capability for real-time unattended monitoring (of cylinder movements), site-specific rules-based event detection algorithms, and the capability to integrate with other types of monitoring technologies, one can build a system that will improve overall inspector effectiveness. This type of monitoring system can provide timely detection of safeguard events that could be used to ensure more timely and appropriate responses by the IAEA. It also could reduce reliance on facility records and have the additional benefit of enhancing domestic safeguards at the installed facilities. This paper will discuss the installation and evaluation of a radio-frequency- (RF-) based cylinder tracking system that was installed at a United States Enrichment Corporation Centrifuge Facility. This system was installed primarily to evaluate the feasibility of using RF technology at a site and the operational durability of the components under harsh processing conditions. The installation included a basic system that is designed to support layering with other safeguard system technologies and that applies fundamental rules-based event processing methodologies. This paper will discuss the fundamental elements of the system design, the results from this site installation, and future efforts needed to make this technology ready for IAEA consideration.

Pickett, Chris A [ORNL; Kovacic, Donald N [ORNL; Whitaker, J Michael [ORNL; Younkin, James R [ORNL; Hines, Jairus B [ORNL; Laughter, Mark D [ORNL; Morgan, Jim [Innovative Solutions; Carrick, Bernie [USEC; Boyer, Brian [Los Alamos National Laboratory (LANL); Whittle, K. [USEC

2008-01-01T23:59:59.000Z

239

Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps  

SciTech Connect

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

Boyer, Brian D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Moran, Bruce W [IAEA; Lebrun, Alain [IAEA

2009-01-01T23:59:59.000Z

240

Energy Management at Deere & Company  

E-Print Network (OSTI)

Deere & Company appreciates the opportunity to discuss energy management and conservation with you. Energy is a topic that will occupy our thoughts for many years to come and certainly will be in the forefront in the near future. It is a subject that has become increasingly complex. Fuel availability is a fluctuating phenomenon. Technology to enable energy conservation and to supply efficient alternate non-depleting sources is complex. Government intervention is becoming increasingly pervasive in energy management. National and certainly industrial responsibilities in wise energy management is a commitment. But it is difficult to determine how one finds a reasonable path to energy security.

Boyd, M. P.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Attainable Burnup in a LIFE Engine Loaded with Depleted Uranium  

Science Conference Proceedings (OSTI)

The Laser Inertial Fusion-based Energy (LIFE) system uses a laser-based fusion source for electricity production. The (D,T) reaction, beside a pure fusion system, allows the option to drive a sub-critical fission blanket in order to increase the total energy gain. In a typical fusion-fission LIFE engine the fission blanket is a spherical shell around the fusion source, preceded by a beryllium shell for neutron multiplications by means of (n,2n) reactions. The fuel is in the form of TRISO particles dispersed in carbon pebbles, cooled by flibe. The optimal design features 80 cm thick blanket, 16 cm multiplier, and 20% TRISO packing factor. A blanket loaded with depleted uranium and depleted in a single batch with continuous mixing can achieve burnup as high as {approx}85% FIMA while generating 2,000 MW of total thermal power and producing enough tritium to be used for fusion. A multi-segment blanket with a central promotion shuffling scheme enhances burnup to {approx}90% FIMA, whereas a blanket that is operated with continuous refueling achieves only 82% FIMA under the same constraints of thermal power and tritium self-sufficiency. Both, multi-segment and continuous refueling eliminate the need for a fissile breeding phase.

Fratoni, M; Kramer, K J; Latkowski, J F

2009-11-30T23:59:59.000Z

242

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

243

The scale analysis sequence for LWR fuel depletion  

Science Conference Proceedings (OSTI)

The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system is used extensively to perform away-from-reactor safety analysis (particularly criticality safety, shielding, heat transfer analyses) for spent light water reactor (LWR) fuel. Spent fuel characteristics such as radiation sources, heat generation sources, and isotopic concentrations can be computed within SCALE using the SAS2 control module. A significantly enhanced version of the SAS2 control module, which is denoted as SAS2H, has been made available with the release of SCALE-4. For each time-dependent fuel composition, SAS2H performs one-dimensional (1-D) neutron transport analyses (via XSDRNPM-S) of the reactor fuel assembly using a two-part procedure with two separate unit-cell-lattice models. The cross sections derived from a transport analysis at each time step are used in a point-depletion computation (via ORIGEN-S) that produces the burnup-dependent fuel composition to be used in the next spectral calculation. A final ORIGEN-S case is used to perform the complete depletion/decay analysis using the burnup-dependent cross sections. The techniques used by SAS2H and two recent applications of the code are reviewed in this paper. 17 refs., 5 figs., 5 tabs.

Hermann, O.W.; Parks, C.V.

1991-01-01T23:59:59.000Z

244

Numerical study of error propagation in Monte Carlo depletion simulations  

Science Conference Proceedings (OSTI)

Improving computer technology and the desire to more accurately model the heterogeneity of the nuclear reactor environment have made the use of Monte Carlo depletion codes more attractive in recent years, and feasible (if not practical) even for 3-D depletion simulation. However, in this case statistical uncertainty is combined with error propagating through the calculation from previous steps. In an effort to understand this error propagation, a numerical study was undertaken to model and track individual fuel pins in four 17 x 17 PWR fuel assemblies. By changing the code's initial random number seed, the data produced by a series of 19 replica runs was used to investigate the true and apparent variance in k{sub eff}, pin powers, and number densities of several isotopes. While this study does not intend to develop a predictive model for error propagation, it is hoped that its results can help to identify some common regularities in the behavior of uncertainty in several key parameters. (authors)

Wyant, T.; Petrovic, B. [Nuclear and Radiological Engineering, Georgia Inst. of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

2012-07-01T23:59:59.000Z

245

Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium  

Science Conference Proceedings (OSTI)

This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

Ivan R. Thomas

2011-11-01T23:59:59.000Z

246

On the Presence of Depleted Zones in Platinum  

SciTech Connect

In the bombardment of materials with heavy particles a large amount of energy can be deposited in a very small region by a primary knock-on atom and the local atomic arrangement can be thereby drastically disrupted. Various measurements of physical properties of such irradiated materials indicate the presence of distributions of defects which are removed in a step-like manner by annealing. One of the more interesting physical property changes accompanying fast particle irradiation is the attendant change in mechanical properties of irradiated crystals. The defect which is responsible for the mechanical property changes of irradiated crystals is only removed at high temperatures, temperatures coresponding to self diffusion. This observation, as well as others, has led to the model of a depleted zone as being responsible for the changes of mechanical properties of irradiated crystals. A depleted zone is envisioned as a region of crystal where a high local concentration of point defects exists - a belt of interstitials surrounding a multiply connected complex of vacancy clusters. We would like to present here some evidence which lends support to the existence of such defects.

Attardo, M J; Galligan, J M

1966-08-05T23:59:59.000Z

247

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

248

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

249

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

250

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Paducah DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process,

251

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Paducah DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

252

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

253

Repository Applications: Potential Benefits of Using Depleted Uranium (DU)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository Applications Repository Applications Repository Applications: Potential Benefits of Using Depleted Uranium (DU) in a Geological Repository The United States is investigating the Yucca Mountain (YM) site in Nevada for the disposal of radioactive spent nuclear fuel (SNF)—the primary waste from nuclear power plants. The SNF would be packaged and then emplaced 200 to 300 m underground in parallel disposal tunnels. The repository isolates the SNF from the biosphere until the radionuclides decay to safe levels. DU may improve the performance of geological repositories for disposal of SNF via three mechanisms: Radiation shielding for waste packages to protect workers Lowering the potential for long-term nuclear criticality in the repository Reducing the potential for releases of radionuclides from the SNF

254

Military use of depleted uranium assessment of prolonged population exposure  

E-Print Network (OSTI)

This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

Giannardi, C

2001-01-01T23:59:59.000Z

255

Investigation of breached depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

256

Investigation of breached depleted UF sub 6 cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

257

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

258

DUF6 Management Cost Analysis Report (CAR): Part 2  

NLE Websites -- All DOE Office Websites (Extended Search)

. . . Cost Analysis Report for the Long-Term Management of May 1997 Figure 4.5 Total Costs of Manufacture of Metal Options 900 800 700 Ctj 300 3 200 100 0 Metal Shielding Oxide Shielding Depleted Uranium Hexafluoride and Oxide Shielding s Decontamination & Decommissioning QI Operations & Maintenance s Regulatory Compliance u Balance of Plant u Manufacturing Facilities s Manufacturing Equipment u Engineering Development 57 ..- . Cost Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride May 1997 4.4 Long-term Storage Storage of depleted uranium is predicated on its use at some later date. In the engineering analysis, storage options are defined by the type of storage facility, and suboptions are defined by the chemical form in which the depleted uranium is stored. The types of storage facilities analyzed are (1) buildings, (2) below ground vaults,

259

ROD for Long-Term Management and Use of Depleted Uranium Hexaflouride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Federal Register / Vol. 64, No. 153 / Tuesday, August 10, 1999 / Notices DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency, Science and Technology Advisory Board Closed Panel Meeting AGENCY: Department of Defense, Defense Intelligence Agency. ACTION: Notice. SUMMARY: Pursuant to the provisions of Subsection (d) of Section 10 of Public Law 92-463, as amended by Section 5 of Public Law 94-409, notice is hereby given that a closed meeting of the DIA Science and Technology Advisory board has been scheduled as follows: DATES: 12 August 1999 (9 am to 4 pm). ADDRESSES: The Defense Intelligence Agency, Bolling AFB, Washington, DC 20340-5100. FOR FURTHER INFORMATION CONTACT: Maj. Donald R. Culp, Jr., USAF, Executive Secretary, DIA Science and Technology Advisory Board, Washington, DC

260

Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities  

SciTech Connect

A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

NONE

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Depleted-Uranium Weapons the Whys and Wherefores  

E-Print Network (OSTI)

The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

Gsponer, A

2003-01-01T23:59:59.000Z

262

Kr Ion Irradiation Study of the Depleted-Uranium Alloys  

SciTech Connect

Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200C to ion doses up to 2.5 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

2010-12-01T23:59:59.000Z

263

Transpassive electrodissolution of depleted uranium in alkaline electrolytes  

SciTech Connect

To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

1998-03-01T23:59:59.000Z

264

Kr ion irradiation study of the depleted-uranium alloys.  

Science Conference Proceedings (OSTI)

Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M. (Materials Science Division); (INL); (Univ. of Wisconsin)

2010-12-01T23:59:59.000Z

265

Investigation of breached depleted UF sub 6 cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team's principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation. 4 refs., 2 figs.

DeVan, J.H.

1991-01-01T23:59:59.000Z

266

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

267

Benefits of the delta K of depletion benchmarks for burnup credit validation  

SciTech Connect

Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO{sub 2} critical experiments to determine the criticality safety limits on the neutron multiplication factor, k{sub eff}. The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

Lancaster, D. [NuclearConsultants.com, 187 Faith Circle, Boalsburg, PA 16827 (United States); Machiels, A. [Electric Power Research Inst., Inc., 3420 Hillview Avenue, Palo Alto, CA 94304 (United States)

2012-07-01T23:59:59.000Z

268

Management Plan Management Plan  

E-Print Network (OSTI)

of a coevolving naturalcultural system. Suitable ecosystem attributes can be achieved by managing human maintenance that protects the riparian corridor. · Manage recreational use to protect riparian values Creek and the Warm Springs River during runoff periods. · Road systems and upland management practices

269

Radiological Risk Assessment of Capstone Depleted Uranium Aerosols  

SciTech Connect

Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-yr doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. The methodologies of the ICRP International Steering Committee on Radiation Standards (ISCORS) were used for determining the whole body cancer risk. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.

Hahn, Fletcher; Roszell, Laurie E.; Daxon, Eric G.; Guilmette, Ray A.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

270

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

271

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network (OSTI)

Nuclear fuel comes in many forms; oxide fuel is the most commonly used in current reactor systems while metal fuel is a promising fuel type for future reactors due to neutronic performance and increased thermal conductivity. As a key heat transfer parameter, thermal conductivity describes the heat transport properties of a material based upon the density, specific heat, and thermal diffusivity. A materials ability to transport thermal energy through its structure is a measurable property known as thermal diffusivity; the units for thermal diffusivity are given in area per unit time (e.g., m2/s). Current measurement methods for thermal diffusivity include LASER (or light) Flash Analysis and the hot-wire method. This study examines an approach that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA), and it induces a radial transient across a packed sample of microspheres then monitors the temperature profile using an array of thermocouples located at different distances from the source of the thermal transient. From the thermocouple data and an accurate time log, the thermal diffusivity of the sample may be calculated. Results indicate that DU microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer. At 500C, the thermal conductivity of the DU microspheres was 0.431 13% W/m-K compared to approximately 32 W/m-K for solid uranium metal. Characterization of the developed apparatus revealed a method that may be useful for measuring the thermal diffusivity of powders and liquids.

Humrickhouse, Carissa Joy

2012-05-01T23:59:59.000Z

272

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

273

Dupoly process for treatment of depleted uranium and production of beneficial end products  

DOE Patents (OSTI)

The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

2000-02-29T23:59:59.000Z

274

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading  

E-Print Network (OSTI)

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading

1985-01-01T23:59:59.000Z

275

Toward a greener campus : experiments with sustainable resource management at one Mexican university and two United States universities  

E-Print Network (OSTI)

Modern society faces a range of difficult resource management problem like climate change, acid rain and soil depletion. To confront problems like these successfully, educational institutions, along with all other public ...

Coffie, Randall Gregory Jesus

2005-01-01T23:59:59.000Z

276

Management Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

3MS Environment and Waste Management Programs Environment and Waste Management Programs Environment and Waste Management Programs AN L-934 Surveillance of Site A and Plot M...

277

Management Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment and Waste Management Programs Environment and Waste Management Programs Environment and Waste Management Programs AN L-9213 Surveillance of Site A and Plot M Report...

278

Management Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

r Environment and Waste Management Programs Environment and Waste Management Programs Environment and Waste Management Programs ANL-949 Surveillance of Site A and Plot M Report...

279

Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium  

Science Conference Proceedings (OSTI)

Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

Gillas, D. L.; Chambers, B. K.

2002-02-26T23:59:59.000Z

280

Isotopic dilution of {sup 233}U with depleted uranium for criticality safety in processing and disposal  

SciTech Connect

The disposal of excess {sup 233}U as waste is being considered. Because {sup 233}U is a fissile material, a key requirement for processing {sup 233}U to a final waste form and disposing of it is the avoidance of nuclear criticality. For many processing and disposal options, isotopic dilution is the most feasible and preferred option to avoid nuclear criticality. Isotopic dilution is dilution of fissile {sup 233}U with nonfissile {sup 238}U. The use of isotopic dilution removes any need to control nuclear criticality in process or disposal facilities through geometry or chemical composition. Isotopic dilution allows the use of existing waste management facilities that are not designed for significant quantities of fissile materials to be used for processing and disposing of {sup 233}U. The amount of isotopic dilution required to reduce criticality concerns to reasonable levels was determined in this study to be approximately 0.53 wt % {sup 233}U. The numerical calculations used to define this limit consisted of a homogeneous system of silicon dioxide (SiO{sub 2}), water (H{sub 2}O), {sup 233}U and depleted uranium (DU) in which the ratio of each component was varied to learn the conditions of maximum nuclear reactivity. About 188 parts of DU (0.2 wt % {sup 235}U) are required to dilute 1 part of {sup 233}U to this limit in a water-moderated system with no SiO{sub 2} present. Thus for the U.S. inventory of {sup 233}U, several hundred metric tons of DU would be required for isotopic dilution.

Hopper, C.M.; Wright, R.Q.; Elam, K.R.; Forsberg, C.W.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, D.C. 20585 Washington, D.C. 20585 April 25, 2013 2 Environmental Management Site-Specific Advisory Board - April 25, 2013 Meeting Minutes LIST OF ACRONYMS AB - Advisory Board ANL - Argonne National Laboratory ARP - Accelerator Retrieval Project BNL - Brookhaven National Laboratory BRC - Blue Ribbon Commission CAB - Citizens Advisory Board D&D - Decontamination & Decommissioning DDFO - Deputy Designated Federal Officer DOE - Department of Energy DUF6 - Depleted Uranium Hexafluoride DWPF - Defense Waste Processing Facility EIS - Environmental Impact Statement EM - DOE Office of Environmental Management EM SSAB - DOE Office of Environmental Management Site-Specific Advisory Board EPA - U.S. Environmental Protection Agency FY - Fiscal Year

282

Depleted Uraniuim Dioxide as a Spent-Nuclear-Fuel-Waste Package...  

NLE Websites -- All DOE Office Websites (Extended Search)

15 DEPLETED URANIUM DIOXIDE AS A SPENT-NUCLEAR-FUEL WASTE-PACKAGE PARTICULATE FILL: FILL BEHAVIOR Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge,...

283

Separating the Dynamical Effects of Climate Change and Ozone Depletion. Part II: Southern Hemisphere Troposphere  

Science Conference Proceedings (OSTI)

The separate effects of ozone depleting substances (ODSs) and greenhouse gases (GHGs) on forcing circulation changes in the Southern Hemisphere extratropical troposphere are investigated using a version of the Canadian Middle Atmosphere Model (...

Charles McLandress; Theodore G. Shepherd; John F. Scinocca; David A. Plummer; Michael Sigmond; Andreas I. Jonsson; M. Catherine Reader

2011-03-01T23:59:59.000Z

284

Sequestration of CO2 in a Depleted Oil Reservoir: An Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

in a Depleted Oil Reservoir: An Overview H. Westrich (hrwestr@sandia.gov; 505-844-9092) J. Lorenz (jcloren@sandia.gov; 505-3695) S. Cooper (spcoope@sandia.gov; 505-844-3977) C....

285

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model  

Science Conference Proceedings (OSTI)

Ductility and fracture toughness is a major stumbling block in using depleted uranium as a structural material. The ability to correctly model deformation of uranium can be used to create process path methods to improve its structural design ability. The textural evolution of depleted uranium was simulated using a visco-plastic self consistent model and analyzed by comparing pole figures of the simulations and experimental samples. Depleted uranium has the same structure as alpha uranium, which is an orthorhombic phase of uranium. Both deformation slip and twin systems were compared. The VPSC model was chosen to simulate this material because the model encompasses both low-symmetry materials as well as twinning in materials. This is of particular interest since depleted uranium has a high propensity for twinning, which dominates deformation and texture evolution. Simulated results were compared to experimental results to measure the validity of the model. One specific twin system, the {l_brace}176{r_brace}[512] twin, was of specific notice. The VPSC model was used to simulate the influence of this twin on depleted uranium and was compared with a mechanically shocked depleted uranium sample. Under high strain rate shock deformation conditions, the {l_brace}176{r_brace}[512] twin system appears to be a dominant deformation system. By simulating a compression process using the VPSC model with the {l_brace}176{r_brace}[512] twin as the dominant deformation mode, a favorable comparison could be made between the experimental and simulated textures. (authors)

Ho, J.; Garmestani, H. [Georgia Inst. of Technology, Atlanta, GA 30332-0245 (United States); Burrell, R.; Belvin, A. [Y-12 National Security Complex, Oak Ridge, TN (United States); Li, D. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); McDowell, D. [Woodruff School of Mechanical Engineering, Atlanta, GA 30332-0245 (United States); Rollett, A. [Dept. of Materials Science and Engineering, Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States)

2012-07-01T23:59:59.000Z

286

Summary: DUF6 Management Cost Analysis Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7650 7650 Depleted Uranium Hexafluoride Management Program Summary of the COST ANALYSIS REPORT for the Long-term Management of Depleted Uranium Hexafluoride Prepared for the Department of Energy by Lawrence Livermore National Laboratory September 1997 DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,

287

FAQ 37-What are the potential health risks from transportation of depleted  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium metal or oxide? depleted uranium metal or oxide? What are the potential health risks from transportation of depleted uranium metal or oxide? In the PEIS, risks associated with transportation of depleted uranium oxide and metal were estimated for transport by either rail or truck. Normal transport of oxide or metal would result in low-level external exposure to radiation for persons in the vicinity of a shipment. Based on estimates in the PEIS, the levels of exposure would result in negligible increased cancer risks. Risks from material released in an accident were also estimated. For a hypothetical railcar accident involving powder U3O8 that was assumed to occur in a highly-populated urban area under stable (nighttime) weather conditions, it was estimated that up to 20 people might experience irreversible adverse effects from chemical toxicity, with no fatalities expected. Approximately 2 potential latent cancer fatalities from radiological hazards are estimated for an accident under the same conditions. The probability of such an accident occurring is very low. The consequences from a truck accident would be lower, because trucks have a smaller shipment capacity. The consequences of transportation accidents involving depleted uranium metal would be much smaller than those involving uranium oxide because uranium metal would be in the form of solid blocks and would not be easily dispersed in an accident.

288

HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO 2 ). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability.

289

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

290

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

291

DANDE: a linked code system for core neutronics/depletion analysis  

SciTech Connect

This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem.

LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

1985-06-01T23:59:59.000Z

292

Transient effects and pump depletion in stimulated Raman scattering. [Para-hydrogen  

DOE Green Energy (OSTI)

Stimulated rotational Raman scattering in a 300-K multipass cell filled with para-H/sub 2/ with a single-mode CO/sub 2/-pumped laser is studied using a frequency-narrowed optical parametric oscillator (OPO) as a probe laser at the Stokes frequency for the S/sub 0/(O) transition. Amplification and pump depletion are examined as a function of incident pump energy. The pump depletion shows clear evidence of transient behavior. A theoretical treatment of transient stimulated Raman scattering, including effects of both pump depletion and medium saturation is presented. In a first approximation, diffraction effects are neglected, and only plane-wave interactions are considered. The theoretical results are compared to the experimental pulse shapes.

Carlsten, J.L.; Wenzel, R.G.; Druehl, K.

1983-01-01T23:59:59.000Z

293

Performance Management  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Performance Management. ... If you are unable to access these PDF files, please contact the Office of Workforce Management.

2013-04-20T23:59:59.000Z

294

Structure and Depletion at Fluoro- and Hydro-carbon/Water Liquid/Liquid Interfaces  

E-Print Network (OSTI)

The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vapor-like depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose super-hydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These results are consistent with the sub-angstrom proximity of water to soft hydrophobic materials.

Kaoru Kashimoto; Jaesung Yoon; Binyang Hou; Chiu-hao Chen; Binhua Lin; Makoto Aratono; Takanori Takiue; Mark L. Schlossman

2008-07-18T23:59:59.000Z

295

Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis  

Science Conference Proceedings (OSTI)

A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

2012-07-03T23:59:59.000Z

296

Managing time  

Science Conference Proceedings (OSTI)

Professionals overwhelmed with information glut can find hope from new insights about time management.

Peter J. Denning

2011-03-01T23:59:59.000Z

297

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

298

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

299

Verification of a Depletion Method in SCALE for the Advanced High Temperature Reactor  

SciTech Connect

This study describes a new method utilizing the Dancoff factor to model a non-standard TRISO fuel form characteristic of the AHTR reactor design concept for depletion analysis using the TRITON sequence of SCALE and the validation of this method by code-to-code comparisons. The fuel used in AHTR has the TRISO particles concentrated along the edges of a slab fuel element. This particular geometry prevented the use of a standard DOUBLEHET treatment, previously developed in SCALE to handle NGNP-designed fuel. The new method permits fuel depletion on complicated geometries that traditionally can be handled only by continuous energy based depletion code systems. The method was initially tested on a fuel design typical of the NGNP, where the DOUBLEHET treatment is available. A more comprehensive study was performed using the VESTA code that uses the continuous energy MCNP5 code as a transport solver and ORIGEN2.2 code for depletion calculations. Comparisons of the results indicate good agreement of whole core characteristics, such as the multiplication factor, and the isotopics, including their spatial distribution. Key isotopes analyzed included 235U, 239Pu, 240Pu and 241Pu. The results from this study indicate that the Dancoff factor method can generate estimates of core characteristics with reasonable precision for scoping studies of configurations where the DOUBLEHET treatment is unavailable.

KELLY, RYAN [Texas A& M University; Ilas, Dan [ORNL

2012-01-01T23:59:59.000Z

300

Peak production in an oil depletion model with triangular field profiles  

E-Print Network (OSTI)

Peak production in an oil depletion model with triangular field profiles Dudley Stark School;1 Introduction M. King Hubbert [5] used curve fitting to predict that the peak of oil produc- tion in the U.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been

Stark, Dudley

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Decadal Changes of Wind Stress over the Southern Ocean Associated with Antarctic Ozone Depletion  

Science Conference Proceedings (OSTI)

Using 40-yr ECMWF Re-Analysis (ERA-40) data and in situ observations, the positive trend of Southern Ocean surface wind stress during two recent decades is detected, and its close linkage with spring Antarctic ozone depletion is established. The ...

Xiao-Yi Yang; Rui Xin Huang; Dong Xiao Wang

2007-07-01T23:59:59.000Z

302

Depleted uranium oxides as spent-nuclear-fuel waste-package fill materials  

SciTech Connect

Depleted uranium dioxide fill inside the waste package creates the potential for significant improvements in package performance based on uranium geochemistry, reduces the potential for criticality in a repository, and consumes DU inventory. As a new concept, significant uncertainties exist: fill properties, impacts on package design, post- closure performance.

Forsberg, C.W.

1997-07-07T23:59:59.000Z

303

Depleted uranium risk assessment for Jefferson Proving Ground using data from environmental monitoring and site characterization. Final report  

SciTech Connect

This report documents the third risk assessment completed for the depleted uranium (DU) munitions testing range at Jefferson Proving Ground (JPG), Indiana, for the U.S. Army Test and Evaluation command. Jefferson Proving Ground was closed in 1995 under the Base Realignment and Closure Act and the testing mission was moved to Yuma Proving Ground. As part of the closure of JPG, assessments of potential adverse health effects to humans and the ecosystem were conducted. This report integrates recent information obtained from site characterization surveys at JPG with environmental monitoring data collected from 1983 through 1994 during DU testing. Three exposure scenarios were evaluated for potential adverse effects to human health: an occasional use scenario and two farming scenarios. Human exposure was minimal from occasional use, but significant risk were predicted from the farming scenarios when contaminated groundwater was used by site occupants. The human health risk assessments do not consider the significant risk posed by accidents with unexploded ordnance. Exposures of white-tailed deer to DU were also estimated in this study, and exposure rates result in no significant increase in either toxicological or radiological risks. The results of this study indicate that remediation of the DU impact area would not substantially reduce already low risks to humans and the ecosystem, and that managed access to JPG is a reasonable model for future land use options.

Ebinger, M.H.; Hansen, W.R.

1996-10-01T23:59:59.000Z

304

Synthetic liquid fuels development: assessment of critical factors. Volume III. Coal resource depletion  

DOE Green Energy (OSTI)

While US coal resources are known to be vast, their rate of depletion in a future based predominantly on coal has not been examined analytically heretofore. The Coal Depletion Model inventories the coal resource on a regional basis and calculates the cost of coal extraction by three technologies - strip and underground mining and in-situ combustion. A plausible coal demand scenario extending from 1975 to the year 2050 is used as a basis in applying the model. In the year 2050, plants in operation include 285 syncrude plants, each producing 100,000 B/D; 312 SNG plants, each producing 250 million SCF/D and 722 coal-fired electric power plants, each of 1000 MW capacity. In addition, there is 890 million tons per year of industrial coal consumption. Such a high level of coal use would deplete US coal resources much more rapidly than most people appreciate. Of course, the actual amount of US coal is unknown, and if the coal in the hypothetical reliability category is included, depletion is delayed. Coal in this category, however, has not been mapped; it is only presumed to exist on the basis of geological theory. The coal resource depletion model shows that unilateral imposition of a severance tax by a state tends to shift production to other coal producing regions. Boom and bust cycles are both delayed and reduced in their magnitude. When several states simultaneously impose severance taxes, the effect of each is weakened.Key policy issues that emerge from this analysis concern the need to reduce the uncertainty of the magnitude and geographic distribution of the US coal resource and the need to stimulate interaction among the parties at interest to work out equitable and acceptable coal conversion plant location strategies capable of coping with the challenges of a high-coal future.

Dickson, E.M.; Yabroff, I.W.; Kroll, C.A.; White, R.K.; Walton, B.L.; Ivory, M.E.; Fullen, R.E.; Weisbecker, L.W.; Hays, R.L.

1977-01-01T23:59:59.000Z

305

Full-field simulation for development planning and reservoir management at Kuparuk River field  

SciTech Connect

The Kuparuk River oil field on the Alaskan North Slope produces from two stratigraphically independent sands of the Kuparuk River formation. A full-field reservoir model was constructed to support field management and development planning. The model captures essential aspects of two independent producing horizons, hydraulically coupled at the wellbores, and simulates dynamic interactions between the reservoir stands and surface facilities. This paper reports that the field model is used to plan field development on the basis of performance ranking of drillsite expansions, to assess depletion performance effects of reservoir management strategies, and to evaluate alternative depletion processes and associated reservoir and facility interactions of field projects.

Starley, G.P.; Masino, W.H. Jr.; Weiss, J.L.; Bolling, J.D. (Arco Alaska Inc. (US))

1991-08-01T23:59:59.000Z

306

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 seconds 3 seconds Acceleration 1/4 Mile Time: 20.3 seconds Maximum Speed: 74.3 MPH Acceleration 1 Mile Maximum Speed: 103.4 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 13.4 seconds Acceleration 1/4 Mile Time: 20.4 seconds Maximum Speed: 74.8 MPH Acceleration 1 Mile Maximum Speed: 104.0 MPH Brake Test @ 60 MPH Distance Required: 153.0 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6 Distance (miles)

307

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

0 seconds 0 seconds Acceleration 1/4 Mile Time: 20.1 seconds Maximum Speed: 75.7 MPH Acceleration 1 Mile Maximum Speed: 104.9 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 12.8 seconds Acceleration 1/4 Mile Time: 20.0 seconds Maximum Speed: 75.7 MPH Acceleration 1 Mile Maximum Speed: 105.0 MPH Brake Test @ 60 MPH Distance Required: 126.8 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6 Distance (miles)

308

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

(mpg) Fuel Economy (mpg) Fuel Economy AC Energy Consumed AC Energy Consumed AC Energy (kWh) 7 Distance (miles) Fuel Economy (mpg) Fuel Economy (mpg) Fuel Economy AC Energy...

309

Federal Energy Management Program: Energy Management Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management Energy Management Guidance to someone by E-mail Share Federal Energy Management Program: Energy Management Guidance on Facebook Tweet about Federal Energy Management Program: Energy Management Guidance on Twitter Bookmark Federal Energy Management Program: Energy Management Guidance on Google Bookmark Federal Energy Management Program: Energy Management Guidance on Delicious Rank Federal Energy Management Program: Energy Management Guidance on Digg Find More places to share Federal Energy Management Program: Energy Management Guidance on AddThis.com... Requirements by Subject Requirements by Regulation Notices & Rules Guidance Facility Reporting Fleet Reporting Energy Management Guidance The Federal Energy Management Program (FEMP) provides guidance on Federal

310

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

311

Methods Used to Calculate Doses Resulting from Inhalation of Capstone Depleted Uranium Aerosols  

Science Conference Proceedings (OSTI)

The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a United States Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions is described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.

Miller, Guthrie; Cheng, Yung-Sung; Traub, Richard J.; Little, Thomas T.; Guilmette, Ray A.

2009-02-26T23:59:59.000Z

312

Assessing the risk from the depleted uranium weapons used in Operation Allied Force.  

E-Print Network (OSTI)

The conflict in Yugoslavia has been a source of great concern for the neighboring countries, about the radiological and toxic hazard posed by the alleged presence of depleted uranium in NATO weapons. In the present study a worst-case scenario is assumed mainly to assess the risk for Greece and other neighboring countries of Yugoslavia at similar distances. The risk of the weapons currently in use is proved to be negligible at distances greater than 100 Km. For shorter distances classified data of weapons composition are needed to obtain a reliable assessment. Operation Allied Force (OAF) has been going on for weeks in Yugoslavia with grave environmental consequences in the neighboring countries. Unfortunately, the sophisticated weapons that are being used carry the spectrum of radiological contamination. Over the past decades there has been a tremendous effort in weapons laboratories to use depleted uranium

unknown authors

1999-01-01T23:59:59.000Z

313

Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel Vitaly T. Gotovchikov a , Victor A. Seredenko a , Valentin V. Shatalov a , Vladimir N. Kaplenkov a , Alexander S. Shulgin a , Vladimir K. Saranchin a , Michail A. Borik a∗ , Charles W. Forsberg b , All-Russian Research Institute of Chemical Technology (ARRICT) 33, Kashirskoe ave., Moscow, Russia, 115409, E-mail: chem.conv@ru.net Oak Ridge National Laboratory (ORNL) Bethel Wall Road, P.O. Box 2008, MS-6165, Oak Ridge, TN, USA, 37831 Abstract - Induction cold crucible melters (ICCM) have the potential to be a very-low-cost high-throughput method for the production of DUO 2 for SNF casks. The proposed work would develop these melters for this specific application. If a

314

Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

2007-01-22T23:59:59.000Z

315

Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium  

SciTech Connect

We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064 nm) and femtosecond Ti:sapphire (800 nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.

Emmert, Luke A.; Chinni, Rosemarie C.; Cremers, David A.; Jones, C. Randy; Rudolph, Wolfgang

2011-01-20T23:59:59.000Z

316

Adjoint-Based Uncertainty Quantification and Sensitivity Analysis for Reactor Depletion Calculations  

E-Print Network (OSTI)

Depletion calculations for nuclear reactors model the dynamic coupling between the material composition and neutron flux and help predict reactor performance and safety characteristics. In order to be trusted as reliable predictive tools and inputs to licensing and operational decisions, the simulations must include an accurate and holistic quantification of errors and uncertainties in its outputs. Uncertainty quantification is a formidable challenge in large, realistic reactor models because of the large number of unknowns and myriad sources of uncertainty and error. We present a framework for performing efficient uncertainty quantification in depletion problems using an adjoint approach, with emphasis on high-fidelity calculations using advanced massively parallel computing architectures. This approach calls for a solution to two systems of equations: (a) the forward, engineering system that models the reactor, and (b) the adjoint system, which is mathematically related to but different from the forward system. We use the solutions of these systems to produce sensitivity and error estimates at a cost that does not grow rapidly with the number of uncertain inputs. We present the framework in a general fashion and apply it to both the source-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new approach for reducing the memory and I/O demands on the host machine, which can be overwhelming for typical adjoint algorithms. Our conclusion is that adjoint depletion calculations using full transport solutions are not only computationally tractable, they are the most attractive option for performing uncertainty quantification on high-fidelity reactor analysis problems.

Stripling, Hayes Franklin

2013-08-01T23:59:59.000Z

317

Validation of a Monte Carlo Based Depletion Methodology Using HFIR Post-Irradiation Measurements  

Science Conference Proceedings (OSTI)

Post-irradiation uranium isotopic atomic densities within the core of the High Flux Isotope Reactor (HFIR) were calculated and compared to uranium mass spectrographic data measured in the late 1960s and early 70s [1]. This study was performed in order to validate a Monte Carlo based depletion methodology for calculating the burn-up dependent nuclide inventory, specifically the post-irradiation uranium

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

318

Depleted uranium oxides as spent-nuclear-fuel waste-package invert and backfill materials  

SciTech Connect

A new technology has been proposed in which depleted uranium, in the form of oxides or silicates, is placed around the outside of the spent nuclear fuel waste packages in the geological repository. This concept may (1) reduce the potential for repository nuclear criticality events and (2) reduce long-term release of radionuclides from the repository. As a new concept, there are significant uncertainties.

Forsberg, C.W.; Haire, M.J.

1997-07-07T23:59:59.000Z

319

Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G. (Nuclear Engineering Division); (2MIT Nuclear Reactor Laboratory and Nuclear Science and Engineering Department)

2012-04-04T23:59:59.000Z

320

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

DOE Green Energy (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Developing fuel management capabilities based on coupled Monte Carlo depletion in support of the MIT Research Reactor (MITR) conversion  

E-Print Network (OSTI)

Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. Prior studies have shown that the MITR will be able to ...

Romano, Paul K. (Paul Kollath)

2009-01-01T23:59:59.000Z

322

REVIEW ARTICLE Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis?  

E-Print Network (OSTI)

on photosynthetic competence or light-interception. It is concluded that O depletion and the concurrent rise This critical review of recent literature questions earl-3 in UV-B irradiance is not a direct threat to photosynier predictions that photosynthetic productivity of thetic productivity of crops and natural vegetation. higher plants is vulnerable to increased ultraviolet-B (UV-B) radiation as a result of stratospheric ozone (O) 3 Key words: Biomass, development, ozone depletion, depletion. Direct UV-B-induced inhibition of photosyn- photosynthesis, ultraviolet-B. thetic competence is observed only at high UV-B irradiances and primarily involves the loss of soluble Calvin

Damian J. Allen; Salvador Nogus; Neil R. Baker

1998-01-01T23:59:59.000Z

323

Cost analysis guidelines  

Science Conference Proceedings (OSTI)

The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

Strait, R.S.

1996-01-10T23:59:59.000Z

324

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

325

Description of the Canadian Particulate-Fill WastePackage (WP) System for Spent-Nuclear Fuel (SNF) and its Applicability to Ligh-Water Reactor SNF WPS with Depleted Uranium-Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

3502 3502 Chemical Technology Division DESCRIPTION OF THE CANADIAN PARTICULATE-FILL WASTE-PACKAGE (WP) SYSTEM FOR SPENT-NUCLEAR FUEL(SNF) AND ITS APPLICABILITY TO LIGHT- WATER REACTOR SNF WPS WITH DEPLETED URANIUM-DIOXIDE FILL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (423) 574-6783 Fax: (423) 574-9512 Email: forsbergcw@ornl.gov October 20, 1997 _________________________ Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the * U.S. Department of Energy. iii CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

326

Federal Energy Management Program: Computerized Maintenance Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Computerized Computerized Maintenance Management Systems to someone by E-mail Share Federal Energy Management Program: Computerized Maintenance Management Systems on Facebook Tweet about Federal Energy Management Program: Computerized Maintenance Management Systems on Twitter Bookmark Federal Energy Management Program: Computerized Maintenance Management Systems on Google Bookmark Federal Energy Management Program: Computerized Maintenance Management Systems on Delicious Rank Federal Energy Management Program: Computerized Maintenance Management Systems on Digg Find More places to share Federal Energy Management Program: Computerized Maintenance Management Systems on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management

327

Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere  

Science Conference Proceedings (OSTI)

The importance of stratospheric ozone depletion on the atmospheric circulation of the troposphere is studied with an atmospheric general circulation model, the Community Atmospheric Model, version 3 (CAM3), for the second half of the twentieth ...

Lorenzo M. Polvani; Darryn W. Waugh; Gustavo J. P. Correa; Seok-Woo Son

2011-02-01T23:59:59.000Z

328

Effects of Ionizing Radiation on Digital Single Event Transients in a 180-nm Fully Depleted SOI Process  

E-Print Network (OSTI)

Effects of ionizing radiation on single event transients are reported for Fully Depleted SOI (FDSOI) technology using experiments and simulations. Logic circuits, i.e. CMOS inverter chains, were irradiated with cobalt-60 ...

Keast, Craig L.

329

Data Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation and Quality Assurance for Data Sharing and Archival Now that you have planned your project and data management, collected data, integrated imagery, or generated model...

330

SUBCONTRACT MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1 -1 CHAPTER 10 SUBCONTRACT MANAGEMENT (Revised October 19, 2011) WHAT ARE THE BASIC PRINCIPLES AND OBJECTIVES OF SUBCONTRACT MANAGEMENT? 1. To ensure contractors establish, document, and maintain adequate purchasing systems. 2. To ensure contractors flow down contract requirements to subcontractors. WHY IS SUBCONTRACT MANAGEMENT IMPORTANT? In many Department prime contracts a significant portion of the obligated dollars is spent on subcontract work. Due to the absence of a direct contractual relationship with the subcontractor, the Department must rely on the prime contractor to manage subcontract work. Subcontractors perform significant work efforts at sites and are an integral part of the site's success. Prime

331

Reservation Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservation Management The ORR is home to three major facility complexes: the East Tennessee Technology Park (ETTP), the National Nuclear Security Administration's (NNSA's) Y-12...

332

Management Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

to global waste vitrification and related programs Serve as a technical platform for DOE reviews Environmental Management Leadership Team Responsible for identifying or...

333

Management Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Plan (SSMP) to be submitted to Congress after the April 2010 release of the Nuclear Posture Review Report. It is aligned with the President's National Security Strategy...

334

Assessment of the mechanical performance of the Westinghouse BWR control rod CR 99 at high depletion levels  

SciTech Connect

A long-term program assessing the mechanical performance of the Westinghouse BWR control rod CR 99 at high depletion levels has been performed. The scope of the program has mainly been based on the operation of four CR 99 Generation 2 control rods in demanding positions during 6 and 7 cycles in the Leibstadt Nuclear Power Plant (KKL) and on the detailed visual inspections and blade wing thickness measurements that were performed after the rods were discharged. By correlating statistically the blade wing thickness measurements to the appearance of irradiation-assisted stress corrosion cracking (IASCC), the probability of IASCC appearance as function of the blade wing swelling was estimated. In order to correlate the IASCC probability of a CR 99 to its depletion, the {sup 10}B depletion of the studied rods was calculated in detail on a local level with the stochastic Monte Carlo code MCNP in combination with the Westinghouse nodal code system PHOENIX4/POLCA7. Using this information coupled to the blade wing measurement data, a finite element model describing the blade wing swelling of an arbitrary CR 99 design as function of {sup 10}B depletion could then be generated. In the final step, these relationships were used to quantify the probability of IASCC appearance as function of the {sup 10}B depletion of the CR 99 Generations 2 and 3. Applying this detailed mapping of the CR 99 behavior at high depletion levels and using an on-line core monitoring system with explicit {sup 10}B depletion tracking capabilities will enable a reliable prediction of the probability for IASCC appearance, thus enhancing the optimized design and the sound operation of the CR 99 control rod. Another important outcome of the program was that it was clearly shown that no significant amount of boron leakage did occur through any of the detected IASCC cracks, despite the very high depletion levels achieved. (authors)

Seltborg, P.; Jinnestrand, M. [Westinghouse Electric Sweden AB, SE-721 63 Vaesteraas (Sweden)

2012-07-01T23:59:59.000Z

335

Aerosol Sampling System for Collection of Capstone Depleted Uranium Particles in a High-Energy Environment  

SciTech Connect

The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.

Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.

2009-03-01T23:59:59.000Z

336

Assessing the risk from the depleted uranium weapons used in Operation Allied Force  

E-Print Network (OSTI)

The conflict in Yugoslavia has been a source of great concern for the neighboring countries, about the radiological and toxic hazard posed by the alleged presence of depleted uranium in NATO weapons. In the present study a worst-case scenario is assumed mainly to assess the risk for Greece and other neighboring countries of Yugoslavia at similar distances . The risk of the weapons currently in use is proved to be negligible at distances greater than 100 Km. For shorter distances classified data of weapons composition are needed to obtain a reliable assessment.

Liolios, T E

1999-01-01T23:59:59.000Z

337

Power management of plug-in hybrid electric vehicles using neural network based trip modeling  

Science Conference Proceedings (OSTI)

The plug-in hybrid electric vehicles (PHEV), utilizing more battery power, has become a next-generation HEV with great promise of higher fuel economy. Global optimization charge-depletion power management would be desirable. This has so far been hampered ...

Qiuming Gong; Yaoyu Li; Zhongren Peng

2009-06-01T23:59:59.000Z

338

DEACTIVATION MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT MANAGEMENT The purpose here is to provide information for specific aspects of project management that apply to deactivation. Overall management of deactivation projects should use a traditional project management approach, and as such is not addressed. The following specific topics are based on lessons learned during deactivation of DOE facilities.  The Deactivation Mission  The Stabilization/Deactivation "Customer"  Project Approach for a Complex Facility  Establishing the Overall End-State  Viewing Deactivation in Two Phases  Early Decisions  Early Deactivation Tasks  Facility-Specific Commitments  Hazard Reduction  Detailed End-Points  Set Up Method and Criteria  Post-Deactivation S&M Plan

339

Safety & Emergency Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination Management andor Coordination of APS Site WorkServices Safety & Emergency Management Database Maintenance Personnel Safety & Emergency Management Area...

340

Econometric Modelling of World Oil Supplies: Terminal Price and the Time to Depletion  

E-Print Network (OSTI)

This paper develops a novel approach by which to identify the price of oil at the time of depletion; the so-called "terminal price " of oil. It is shown that while the terminal price is independent of both GDP growth and the price elasticity of energy demand, it is dependent on the world real interest rate and the total life-time stock of oil resources, as well as on the marginal extraction and scarcity cost parameters. The theoretical predictions of this model are evaluated using data on the cost of extraction, cumulative production, and proven reserves. The predicted terminal prices seem sensible for a range of parameters and variables, as illustrated by the sensitivity analysis. Using the terminal price of oil, we calculate the time to depletion, and determine the extraction and price proles over the life-time of the resource. The extraction proles generated seem to be in line with the actual production and the predicted prices are generally in line with those currently observed.

Kamiar Mohaddes

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Environmental Management Waste Management Facility (EMWMF) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Environmental Management Search form Search Office of Environmental Management Services Waste Management Site & Facility Restoration...

342

Organization Update Assistant Manager for Environmental Management  

NLE Websites -- All DOE Office Websites (Extended Search)

EM-90 Office of the Manager Mark Whitney, Manager Sue Cange, Deputy Manager Brenda Hawks, Senior Technical Advisor Karen Ott, Chief of Staff Karen Forester, Administrative...

343

Federal Energy Management Program: Federal Energy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Management Program Contacts to someone by E-mail Share Federal Energy Management Program: Federal Energy Management Program Contacts on Facebook Tweet about Federal...

344

Federal Energy Management Program: Energy Management Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management Requirements by Subject to someone by E-mail Share Federal Energy Management Program: Energy Management Requirements by Subject on Facebook Tweet about Federal...

345

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Water-Efficient Irrigation on Facebook Tweet about Federal Energy Management Program: Best...

346

Federal Energy Management Program: Computerized Maintenance Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Computerized Maintenance Management Systems Computerized maintenance management systems (CMMS) are a type of management software that perform functions in support of operations and...

347

Integrated Energy and Greenhouse Gas Management System  

E-Print Network (OSTI)

With Climate Change legislation on the horizon, the need to integrate energy reduction initiatives with greenhouse gas reduction efforts is critical to manufactures competitiveness and financial strength going forward. MPC has developed an integrated Energy and Greenhouse Gas Management System that allows companies to reduce energy and carbon intensity at the same time all the while bolstering bottom line performance. Reducing energy use and greenhouse gases is not an option but a necessity today. All manufacturing companies need to develop in-house capabilities to manage these important resources or pay the price of high carbon taxes and/or face a depletion in operating margins. MPC will present a case history highlighting the steps taken, the results obtained and the lessons learned in developing an integrated Energy and Greenhouse Gas Management System with a major industrial manufacturing company in the Midwest. Key subject areas covered include: Integration of Climate Change and Energy Management Strategies- a winning approach to meet the challenge; Turn a potential cost of compliance into a new cash flow source; Leveraging Energy Management Systems to optimize savings; Navigating through the new Greenhouse Gas reporting requirements; Utilizing Plant and Corporate Energy Management Dashboards to Control Energy Consumption and Greenhouse Gas emissions.

Spates, C. N.

2010-01-01T23:59:59.000Z

348

Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems  

SciTech Connect

The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E. [and others

1996-09-01T23:59:59.000Z

349

Management Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Immobilization Research Immobilization Research Kurt Gerdes U.S. DOE, Office of Engineering and Technology John Vienna Pacific Northwest National Laboratory Environmental Management May 19, 2009 2009 Hanford - Idaho - Savannah River Technical Exchange 2 Objectives Perform research and development to advance the waste stabilization technology options by through closely- coupled theory, experimentation, and modeling Develop solutions for Hanford, Idaho, Savannah River, and Oak Ridge wastes challenges (along with facilitating management of future wastes) Environmental Management General Approach Balance between near-term incremental technology improvements and long-term transformational solutions Address the requirements for high risk waste streams - high-level tank waste (RPP, SRS)

350

Draft Supplement Analysis for Location(s) to Dispose of Depleted...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site, issued by Jessie Hill Roberson, Assistant Secretary for Environmental Management, July 20. DOE,...

351

Why Are the DUF6 Conversion Facility EISs Needed?  

NLE Websites -- All DOE Office Websites (Extended Search)

Why is an EIS Needed Why is an EIS Needed Why the Depleted UF6 Conversion Facility EISs Are Needed The two Depleted UF6 Conversion EISs are needed to assess the potential environmental impacts of constructing, operating, maintaining, and decontaminating and decommissioning DUF6 conversion facilities at the Paducah and Portsmouth sites. National Environmental Policy Act Federal laws and regulations require the federal government to evaluate the effects of its actions on the environment and to consider alternative courses of action. The National Environmental Policy Act of 1969 (NEPA) specifies when an environmental impact statement (EIS) must be prepared. NEPA regulations require, among other things, federal agencies to include discussion of a proposed action and the range of reasonable alternatives in an EIS. Sufficient information must be included in the EIS for reviewers to evaluate the relative merits of each alternative. Council for Environmental Quality (CEQ) regulations provide the recommended format and content of Environmental Impact Statements.

352

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

353

Work Manager  

Science Conference Proceedings (OSTI)

A real-time control system has been developed and deployed nationally to support BTs work management programme. This paper traces the history, system architecture, development, deployment and service aspects of this very large programme. Many ...

G. J. Garwood

1997-01-01T23:59:59.000Z

354

Management Solution  

E-Print Network (OSTI)

MEMO: Request for proposal for Computer-Aided Facilities and Maintenance Management application software; professional services; development services for interfaces to Financial Management and Human Resources systems; configuration, test, train, maintenance and support services to implement and maintain a CAFM Solution for the California Administrative Office of the Courts, the Trial Courts, the Appellate Courts and the Judicial Council, known as The AOC Group. You are invited to review and respond to the attached Request for Proposal (RFP):

Rfp Number Isdcafm

2004-01-01T23:59:59.000Z

355

Airflow Management  

Science Conference Proceedings (OSTI)

This technical update provides an overview of airflow management, with an emphasis on how reduced airflow can improve energy efficiency in data centers. Airflow management within a data center can have a dramatic impact on energy efficiency. Typically, much more cold air circulates within conventional data centers than is actually needed to cool equipment related to information and communication technology (ICT). It is not uncommon for facilities to supply more than two to three times the minimum require...

2011-12-14T23:59:59.000Z

356

D0 Decomissioning : Storage of Depleted Uranium Modules Inside D0 Calorimeters after the Termination of D0 Experiment  

Science Conference Proceedings (OSTI)

Dzero liquid Argon calorimeters contain hadronic modules made of depleted uranium plates. After the termination of DO detector's operation, liquid Argon will be transferred back to Argon storage Dewar, and all three calorimeters will be warmed up. At this point, there is no intention to disassemble the calorimeters. The depleted uranium modules will stay inside the cryostats. Depleted uranium is a by-product of the uranium enrichment process. It is slightly radioactive, emits alpha, beta and gamma radiation. External radiation hazards are minimal. Alpha radiation has no external exposure hazards, as dead layers of skin stop it; beta radiation might have effects only when there is a direct contact with skin; and gamma rays are negligible - levels are extremely low. Depleted uranium is a pyrophoric material. Small particles (such as shavings, powder etc.) may ignite with presence of Oxygen (air). Also, in presence of air and moisture it can oxidize. Depleted uranium can absorb moisture and keep oxidizing later, even after air and moisture are excluded. Uranium oxide can powder and flake off. This powder is also pyrographic. Uranium oxide may create health problems if inhaled. Since uranium oxide is water soluble, it may enter the bloodstream and cause toxic effects.

Sarychev, Michael; /Fermilab

2011-09-21T23:59:59.000Z

357

DOE - Office of Legacy Management -- Ashtabula  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio Ohio Ashtabula, Ohio, Site Other Regulatory Framework ashtabula2013 The Ashtabula, Ohio, Site is a 42.5-acre, privately owned site adjacent to the city of Ashtabula, about 55 miles east of Cleveland. From 1962 to 1988 Reactive Metals, Inc. (RMI) operated a facility on the property that manufactured metallic uranium tubes and rods and experimental quantities of thorium metal for use in the Hanford, Washington; and Savannah River, Georgia, weapons program reactors. RMI also extruded depleted uranium and nonradioactive materials, primarily copper-based, for the private sector. The site has been decontaminated and released for unrestricted use. Responsibility for maintaining records for the Ashtabula site was transferred to DOE's Office of Legacy Management in 2010. The site requires records management and stakeholder support. For more information about the Ashtabula site, view the fact sheet.

358

ENVIRONMENTAL MANAGEMENT SYSTEM OBJECTIVES AND TARGETS  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives & Targets Rev. 7/17/13 Objectives & Targets Rev. 7/17/13 ENVIRONMENTAL MANAGEMENT SYSTEM OBJECTIVES AND TARGETS 2012 PROGRESS REPORT for SOUTHWESTERN POWER ADMINISTRATION Activity Legal Requirement Aspect Objective Target** see important note Target Achieved Details Real Estate Management DOE O 436.1 E.O. 13423 & 13514 EPAct 1992 and 2005 EISA 2007 NECPA 1978 Natural resource depletion and GHG emissions from resource intensive facilities Increase sustainability of facility resources, reduce energy and water consumption, reduce impacts to natural resources from facility usage 1) Meter 90% of electricity by September 2012 2) Meter 90% of gas, steam, and water by September 2015 3) 30% energy intensity reduction by 2015 from baseline 2003 4) Reduce water consumption intensity 2%

359

Environmental Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Video Community, Environment Environmental Stewardship Environmental Protection Environmental Management System Environmental Management System An Environmental...

360

Quality System Documentation Management  

Science Conference Proceedings (OSTI)

Quality System Documentation Management. ... Minutes, summaries, or notes from Management Meetings of significance are archived here. ...

2012-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NIST Performance Management Program  

Science Conference Proceedings (OSTI)

NIST Performance Management Program. Performance ... appraisal. APMS and FWS Performance Management Programs: ...

2010-10-05T23:59:59.000Z

362

Presidential Management Fellows Program  

Science Conference Proceedings (OSTI)

Presidential Management Fellows Program. Summary: About the Program: The Presidential Management Fellows (PMF ...

2012-08-31T23:59:59.000Z

363

Crypto Key Management Framework  

Science Conference Proceedings (OSTI)

... A Framework for Designing Cryptographic Key Management Systems ... A Framework for Designing Cryptographic Key Management Systems ...

2013-08-13T23:59:59.000Z

364

RUNNING OUT OF AND INTO OIL: ANALYZING GLOBAL OIL DEPLETION AND TRANSITION THROUGH 2050  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 RUNNING OUT OF AND INTO OIL: ANALYZING GLOBAL OIL DEPLETION AND TRANSITION THROUGH 2050 October 2003 David L. Greene Corporate Fellow Janet L. Hopson Research Assistant Jia Li Senior Research Technician DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

365

Conclusions of the Capstone Depleted Uranium Aerosol Characterization and Risk Assessment Study  

Science Conference Proceedings (OSTI)

The rationale for the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Program and its results and applications have been examined in the previous 13 articles of this special issue. This paper summarizes the results and discusses its successes and lessons learned. The robust data from the Capstone DU Aerosol Study have provided a sound basis for assessing the inhalation exposure to DU aerosols and the dose and risk to personnel in combat vehicles at the time of perforation and to those entering immediately after perforation. The Human Health Risk Assessment provided a technically sound process for evaluating chemical and radiological doses and risks from DU aerosol exposure using well-accepted biokinetic and dosimetric models innovatively applied. An independent review of the study process and results is summarized, and recommendations for possible avenues of future study by the authors and by other major reviews of DU health hazards are provided.

Parkhurst, MaryAnn; Guilmette, Raymond A.

2009-02-26T23:59:59.000Z

366

Assessing the risk from the depleted Uranium weapons used in Operation Allied Force.  

E-Print Network (OSTI)

The conflict in Yugoslavia has been a source of great concern due to the radiological and toxic hazard posed by the alleged presence of depleted uranium in NATO weapons. In the present study some worst-case scenaria are assumed in order to assess the risk for Yugoslavia and its neighboring countries. The risk is proved to be negligible for the neighboring countries while for Yugoslavia itself evidence is given that any increase in total long-term cancer mortality will be so low that it will remain undetected. Local radioactive hotspots such as DU weapons fragments and abandoned battle tanks, fortified or contaminated with DU, constitute a post-war hazard which is not studied in this article.

unknown authors

1999-01-01T23:59:59.000Z

367

Revenue ruling 73-538: the service's assault on percentage depletion for ''D'' miners  

SciTech Connect

In this article, the author examines the Internal Revenue Service's ruling that storage and loading for shipment at the mine site are nonmining processes for ores and minerals described in section 613(c)(4)(D) of the Internal Revenue Code. He explains the tax consequences of the ruling and discusses the correctness of the position taken by the Internal Revenue Service in light of the relevant case law and the language and legislative history of the statute. The effect of the ruling is to reduce the percentage depletion deduction available to many miners of ores and minerals described in section 613(c)(4)(D), including miners of lead, zinc, copper, gold, silver, uranium, fluorspar, potash, soda ash, garnet and tungsten. (JMT)

Barnes, D.A.

1983-01-01T23:59:59.000Z

368

A Process for Reducing the Licensing Burden for New Products Containing Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

3-01 3-01 A Process for Reducing the Licensing Burden for New Products Containing Depleted Uranium Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes

369

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

NLE Websites -- All DOE Office Websites (Extended Search)

L. Greene, Janet L. Hopson, and Jia Li L. Greene, Janet L. Hopson, and Jia Li A risk analysis is presented of the peaking of world conventional oil pro- duction and the likely transition to unconventional oil resources such as oil sands, heavy oil, and shale oil. Estimates of world oil resources by the U.S. Geological Survey (USGS) and C. J. Campbell provide alternative views of ultimate world oil resources. A global energy scenario created by the International Institute of Applied Systems Analysis and the World Energy Council provides the context for the risk analysis. A model of oil resource depletion and expansion for 12 world regions is combined with a market equilibrium model of conventional and unconventional oil sup- ply and demand. The model does not use Hubbert curves. Key variables

370

SR/OIAF/2000-04 Accelerated Depletion: Assessing Its Impacts  

Gasoline and Diesel Fuel Update (EIA)

4 4 Accelerated Depletion: Assessing Its Impacts on Domestic Oil and Natural Gas Prices and Production July 2000 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester. Contacts This report was prepared by the staff of the Office of Integrated Analysis and Forecasting of the Energy

371

Grid orientation effects in the simulation of cold water injection into depleted vapor zones  

DOE Green Energy (OSTI)

A considerable body of field experience with injection has been accumulated at Larderello, Italy and The Geysers, California; the results have been mixed. There are well documented cases where injection has increased flow rates of nearby wells. Return of injected fluid as steam from production wells has been observed directly through chemical and isotopic changes of produced fluids (Giovannoni et al., 1981; Nuti et al., 1981). In other cases injection has caused thermal interference and has degraded the temperature and pressure of production wells. Water injection into depleted vapor zones gives rise to complex two-phase fluid flow and heat transfer processes with phase change. These are further complicated by the fractured-porous nature of the reservoir rocks. An optimization of injection design and operating practice is desirable; this requires realistic and robust mathematical modeling capabilities.

Pruess, K.

1991-01-01T23:59:59.000Z

372

Oxidation of depleted uranium penetrators and aerosol dispersal at high temperatures  

SciTech Connect

Aerosols dispersed from depleted uranium penetrators exposed to air and air-CO/sub 2/ mixtures at temperatures ranging from 500 to 1000/sup 0/C for 2- or 4-h periods were characterized. These experiments indicated dispersal of low concentrations of aerosols in the respirable size range (typically <10/sup -3/% of penetrator mass at 223 cm/s (5 mph) windspeed). Oxidation was maximum at 700/sup 0/C in air and 800/sup 0/C in 50% air-50% CO/sub 2/, indicating some self-protection developed at higher temperatures. No evidence of self-sustained burning was observed, although complete oxidation can be expected in fires significantly exceeding 4 h, the longest exposure of this series. An outdoor burning experiment using 10 batches of pine wood and paper packing material as fuel caused the highest oxidation rate, probably accelerated by disruption of the oxide layer accompanying broad temperature fluctuation as each fuel batch was added.

Elder, J.C.; Tinkle, M.C.

1980-12-01T23:59:59.000Z

373

?Just-in-Time? Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life  

SciTech Connect

Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle s life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These Just-in-Time methods provide maximum effective battery life while getting virtually the same electricity from the grid.

DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

374

Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium  

E-Print Network (OSTI)

The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and thermal neutron fluxes. The relative abundances (alphas) for the first four groups were calculated from the delayed neutron emission (counts vs. time) data using Keepin's 6-group decay constants (lambdas) for Th-232, Pu-239 and depleted uranium (both fast and thermal neutron induced fissions). The relative abundances (alphas) for the first five groups were calculated for the fast neutron induced fission of Np-237 using the 7-group lambdas obtained by Charlton (1997). The relative abundances for the first five groups were also calculated using the 7-group lambdas proposed by Loaiza and Haskin (2000), the 8-group lambdas proposed by Campbell and Spriggs (1998) and the 8-group lambdas proposed by Piksaikin (2000) for all of the samples (fast neutron induced fission only for Th-232 and Np-237, fast and thermal neutron induced fission for the remainder). Fission product yield and delayed neutron emission probability data from the ENDF-349 and JEF 2.2 nuclear data libraries were also used to simulate neutron emission data from the samples. The calculated neutron yield curves were used to obtain group relative abundances for each of the five actinide samples (fast neutron induced fission only for Th-232 and Np-237, fast and thermal neutron induced fission for the remainder) based on each set of proposed lambdas. The relative abundances obtained from the experiments and calculations are compared and the differences are noted and discussed.

Stone, Joseph C.

2001-01-01T23:59:59.000Z

375

Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time  

SciTech Connect

The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.; Parkhurst, MaryAnn

2009-03-01T23:59:59.000Z

376

Cadmium Depletion Impacts on Hardening Neutron6 Spectrum for Advanced Fuel Testing in ATR  

SciTech Connect

For transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products effectively is in a fast neutron spectrum reactor. In the absence of a fast spectrum test reactor in the United States of America (USA), initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. A test region is achieved with a Cadmium (Cd) filter which can harden the neutron spectrum to a spectrum similar (although still somewhat softer) to that of the liquid metal fast breeder reactor (LMFBR). A fuel test loop with a Cd-filter has been installed within the East Flux Trap (EFT) of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). A detailed comparison analyses between the cadmium (Cd) filter hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum have been performed using MCWO. MCWO is a set of scripting tools that are used to couple the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2.2. The MCWO-calculated results indicate that the Cd-filter can effectively flatten the Rim-Effect and reduce the linear heat rate (LHGR) to meet the advanced fuel testing project requirements at the beginning of irradiation (BOI). However, the filtering characteristics of Cd as a strong absorber quickly depletes over time, and the Cd-filter must be replaced for every two typical operating cycles within the EFT of the ATR. The designed Cd-filter can effectively depress the LHGR in experimental fuels and harden the neutron spectrum enough to adequately flatten the Rim Effect in the test region.

Gray S. Chang

2011-05-01T23:59:59.000Z

377

MANAGEMENT SUMMARY  

E-Print Network (OSTI)

need to effectively manage business performance. This has never been more true than in todays complex, highly regulated and confusing business environment which requires better decisions and improved execution now! In spite of the billions of dollars invested in infor-mation technology to address these challenges, managers and executives in many organizations still make key decisions underpinned by their own personal versions of documents and spread-sheets. Their organization struggles to provide a seamless flow of trusted information between customers, suppliers and their employees. The result is that most organizations cannot provide their people with the right information at the right time, and in attempting to do so are committing significant resources to compiling and auditing numbers instead of using them to inform the business. Consequently, they are far more reac-tive than proactive and ultimately they are not efficiently and effectively managing their current and future performance. Leading organizations are investing in managing information and developing predictive insights to drive sustainable business results. These com-panies have become masters in Performance Management- going beyond mere users of business intelligence to become the Intelligent Enterprises. ...a new breed of company is upping the stakes....have dominated their fields by deploy-ing industrial-strength analytics across a wide variety of activities. In essence, they are trans-forming their organiza-tions into armies of killer apps and crunching their way to victory.

unknown authors

2006-01-01T23:59:59.000Z

378

Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.  

SciTech Connect

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

379

DOE Announces Policy for Managing Excess Uranium Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy for Managing Excess Uranium Inventory Policy for Managing Excess Uranium Inventory DOE Announces Policy for Managing Excess Uranium Inventory March 12, 2008 - 10:52am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today released a Policy Statement on the management of the Department of Energy's (DOE) excess uranium inventory, providing the framework within which DOE will make decisions concerning future use and disposition of its inventory. During the coming year, DOE will continue its ongoing program for downblending excess highly enriched uranium (HEU) into low enriched uranium (LEU), evaluate the benefits of enriching a portion of its excess natural uranium into LEU, and complete an analysis on enriching and/or selling some of its depleted uranium. Specific transactions are expected to occur in

380

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 calorimeter upgrading  

E-Print Network (OSTI)

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 calorimeter upgrading

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 experiment  

E-Print Network (OSTI)

Proposal for the award of a contract for the supply of 5 mm depleted-uranium plates for the UA1 experiment

1986-01-01T23:59:59.000Z

382

Management of Spent and Disused Radiation Sources - The Zambian Experience  

SciTech Connect

Zambia like all other countries in the world is faced with environmental problems brought about by a variety of human activities. In Zambia the major environmental issues as identified by Nation Environmental Action Plan (NEAP) of 1994 are water pollution, poor sanitation, land degradation, air pollution, poor waste management, misuse of chemicals, wildlife depletion and deforestation. Zambian has been using a lot of radioactive materials in its various industries. The country has taken several projects with help of external partners. These partners however left these projects in the hands of the Zambians without developing their capacities to manage these radioactive sources. The Government recognized the need to manage these sources and passed legislation governing the management of radioactive materials. The first act of Parliament on Radiation Protection work was passed in 1975 to legislate the use of ionizing radiation. However, because of financial constraints the Country is facing, these regulations have remained unimplemented. Fortunately the international Community has been working in partnership with the Zambian Government in the Management of Radioactive Material. Therefore this paper will present the following aspects of radioactive waste management in Zambia: review Existing Legislation in Zambia regarding management of spent/radioactive sources; capacity building in the field of management of radioactive waste; management of spent and disused radiation sources; existing disposal systems in Zambia regarding spent/orphaned sources; existing stocks of radioactive sources in the Zambian industries.

Chabala, F.

2002-02-26T23:59:59.000Z

383

Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site  

SciTech Connect

Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

NSTec Radioactive Waste

2010-10-12T23:59:59.000Z

384

Operational Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Operational Management Aviation Management Executive Secretariat Energy Reduction at HQ Facilities and Infrastructure Federal Advisory Committee Management Freedom of...

385

Aviation Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aviation Management Aviation Management Aviation Management Executive Secretariat Energy Reduction at HQ Facilities and Infrastructure Federal Advisory Committee Management Freedom...

386

CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir-A Numerical Simulation Study  

E-Print Network (OSTI)

1 CO2-Driven Enhanced Gas Recovery and Storage in Depleted Shale Reservoir- A Numerical Simulation for storage and enhanced gas recovery may be organic-rich shales, which CO2 is preferentially adsorbed comprehensive simulation studies to better understand CO2 injection process in shale gas reservoir. This paper

Mohaghegh, Shahab

387

Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

he feasibility of sequestering supercritical CO2 in depleted gas reservoirs. The experimental runs involved the following steps. First, the 1 ft long by 1 in. diameter carbonate core is inserted into a viton Hassler sleeve and placed inside an aluminum coreholder that is then evacuated. Second, with or without connate water, the carbonate core is saturated with methane. Third, supercritical CO2 is injected into the core with 300 psi overburden pressure. From the volume and composition of the produced gas measured by a wet test meter and a gas chromatograph, the recovery of methane at CO2 breakthrough is determined. The core is scanned three times during an experimental run to determine core porosity and fluid saturation profile: at start of the run, at CO2 breakthrough, and at the end of the run. Runs were made with various temperatures, 20C (68F) to 80C (176F), while the cell pressure is varied, from 500 psig (3.55 MPa) to 3000 psig (20.79 MPa) for each temperature. An analytical study of the experimental results has been also conducted to determine the dispersion coefficient of CO2 using the convection-dispersion equation. The dispersion coefficient of CO2 in methane is found to be relatively low, 0.01-0.3 cm2/min.. Based on experimental and analytical results, a 3D simulation model of one eighth of a 5-spot pattern was constructed to evaluate injection of supercritical CO2 under typical field conditions. The depleted gas reservoir is repressurized by CO2 injection from 500 psi to its initial pressure 3,045 psi. Simulation results for 400 bbl/d CO2 injection may be summarized as follows. First, a large amount of CO2 is sequestered: (i) about 1.2 million tons in 29 years (0 % initial water saturation) to 0.78 million tons in 19 years (35 % initial water saturation) for 40-acre pattern, (ii) about 4.8 million tons in 112 years (0 % initial water saturation) to 3.1 million tons in 73 years (35 % initial water saturation) for 80-acre pattern. Second, a significant amount of natural gas is also produced: (i) about 1.2 BSCF or 74 % remaining GIP (0 % initial water saturation) to 0.78 BSCF or 66 % remaining GIP (35 % initial water saturation) for 40-acre pattern, (ii) about 4.5 BSCF or 64 % remaining GIP (0 % initial water saturation) to 2.97 BSCF or 62 % remaining GIP (35 % initial water saturation) for 80-acre pattern. This produced gas revenue could help defray the cost of CO2 sequestration. In short, CO2 sequestration in depleted gas reservoirs appears to be a win-win technology.

Seo, Jeong Gyu

2003-05-01T23:59:59.000Z

388

Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

Pruess, Karsten; O'Sullivan, Michael

1992-01-01T23:59:59.000Z

389

Categorical Exclusion Determinations: Environmental Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Management Categorical Exclusion Determinations: Environmental Management Categorical Exclusion Determinations issued by Environmental Management. DOCUMENTS AVAILABLE...

390

ORISE: Emergency Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Emergency Management Effective emergency management relies on thorough integration of preparedness plans at all levels of government. The Oak Ridge Institute for Science...

391

Federal Energy Management Program: Best Management Practice: Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Management Planning to someone by E-mail Water Management Planning to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Water Management Planning on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Water Management Planning on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Water Management Planning on Google Bookmark Federal Energy Management Program: Best Management Practice: Water Management Planning on Delicious Rank Federal Energy Management Program: Best Management Practice: Water Management Planning on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Water Management Planning on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

392

Federal Energy Management Program: Best Management Practice: Cooling Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Tower Management to someone by E-mail Cooling Tower Management to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Google Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Delicious Rank Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

393

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

394

Depletion of FKBP does not affect the interaction between isolated ryanodine receptors  

SciTech Connect

The ryanodine receptors/calcium release channels (RyRs) usually form two dimensional regular lattices in the endoplasmic/sarcoplasmic reticulum membranes. The native RyR is associated with many auxiliary proteins, including FKBP. It has been indicated that FKBP may play a role in the intermolecular interaction and coupled gating of neighboring RyRs. However, a more recent study shows that FKBP12 is not involved in the physical linkage between neighboring RyR1s. In the present work, the effect of FKBP12 on the interaction between RyR1s isolated from rabbit skeletal muscle was investigated in an aqueous medium with photon correlation spectroscopy. We found that the depletion of FKBP12 did not affect the oligomerization of RyR1s in the medium containing different [KCl] or under different channel functional states. No evidence is obtained for the involvement of FKBP12 in the intermolecular interaction between RyR1s.

Hu Xiaofang [Bio-X Life Science Research Center, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai 200030 (China); Liang Xin [Bio-X Life Science Research Center, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai 200030 (China); Chen Keying [Bio-X Life Science Research Center, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai 200030 (China); Zhu Peihong [Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 (China); Hu Jun [Bio-X Life Science Research Center, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai 200030 (China); Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800 (China); E-mail: jhu@sjtu.edu.cn

2005-10-14T23:59:59.000Z

395

Analysis of an interwell tracer test in a depleted heavy-oil reservoir  

SciTech Connect

This paper presents field data and analyses of an interwell tracer test conducted in the Niitsu oil field, which is a fully depleted heavy-oil reservoir of unconsolidated sand formation. Water containing a chemical tracer was injected at a constant rate into an injector surrounded by three production wells. Effluent analyses showed very early breakthrough of injected water at two of the producing wells. The test results suggest a strong areal heterogeneity of the tested formation. An appropriate analytic model was used to obtain a preliminary interpretation of the results. A modified three-dimensional (3D) black-oil model developed to simulate th polymer flood process was then used for analyzing the data in more detail. The model treats tracer solution as a fourth component and can also account for adsorption of tracer. Simulation efforts were concentrated on matching the breakthrough times and tracer profiles after breakthrough. Through both the analytic and the simulation work, the reservoir is characterized by a highly heterogeneous distribution of horizontal permeability, a thin layer of high permeability, and a natural waterdrive that cause a preferential flow trend in a direction toward one producer. The authors conclude that the interwell tracer test is an effective tool for evaluating reservoir heterogeneities and a quantitative analysis of test data is done with the polymer option of a black-oil simulator.

Ohno, K.; Nanba, T.; Horne, R.N.

1987-12-01T23:59:59.000Z

396

Analysis of an interwell tracer test in a depleted heavy oilreservoir  

SciTech Connect

This paper presents field data and analyses of an interwell tracer test conducted in the Niitsu oil field which is a fully depleted heavy oil reservoir of unconsolidated sand formation. The purpose of the tracer test is to diagnose reservoir heterogeneity at a location where a micellar/ polymer field test is planned. Water containing a chemical tracer was injected at a constant rate into an injector surrounded by three production wells. Effluent analyses showed very early breakthrough of injected water at two of the producing wells, no tracer, however, was detected at the third producer thoughout the test period. In addition, tracer production profiles at two wells after breakthrough differed much from each other. These test results suggest a strong areal heterogeneity of the tested formation. An appropriate analytical model was used to obtain a preliminary interpretation of the results. A modified three-dimensional black oil model developed to simulate polymer flood process was then utilized for analyzing the data in more detail. The model treats tracer solution as a fourth component, and can also account for adsorption of tracer.

Ohno, K.; Horne, R.N.; Nanba, T.

1985-03-01T23:59:59.000Z

397

REVIEW ARTICLE Depletion of atrial natriuretic peptide during longstanding atrial fibrillation  

E-Print Network (OSTI)

atrial fibrillation; heart failure; depletion; cardioversion; maze procedure Abstract This review focuses on the relation between atrial fibrillation (AF) and atrial natriuretic peptide (ANP). ANP is produced by the atria secondary to atrial stretch. By causing atrial stretch, acute AF leads to an increase in plasma ANP concentration, which serves to normalize haemodynamics through natriuresis and vasodilation. However, data have been reported suggesting that prolonged AF, by inflicting structural atrial damage, is associated with a reduced capacity by the atria to produce ANP. An inverse relation was thus demonstrated between the duration of AF and plasma ANP concentration. In addition, a reduced ANP response to exercise has been shown to be predictive of unsuccessful cardioversion of AF to sinus rhythm. Finally, ANP has also been shown to predict outcome after a maze operation. Outcome was poor when preoperative plasma ANP concentration was low. Moreover, a high atrial collagen content, as a measure of atrial degeneration, correlated with low ANP. These data indicate that ANP may serve as a marker of atrial integrity, which may help in selecting AF patients for therapeutic interventions. 2004 The European Society of Cardiology. Published by Elsevier Ltd. All rights reserved. Downloaded from

Maarten P. Van Den Berg; Isabelle C. Van Gelder; Dirk J. Van Veldhuisen

2004-01-01T23:59:59.000Z

398

Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields  

DOE Green Energy (OSTI)

The technical and economic feasibility of storing hydrogen in underground storage reservoirs is evaluated. The past and present technology of storing gases, primarily natural gas is reviewed. Four types of reservoirs are examined: salt caverns, excavated caverns, aquifers, and depleted fields. A technical investigation of hydrogen properties reveals that only hydrogen embrittlement places a limit on the underground storage by hydrogen. This constraint will limit reservoir pressures to 1200 psi or less. A model was developed to determine economic feasibility. After making reasonable assumptions that a utility might make in determining whether to proceed with a new storage operation, the model was tested and verified on natural gas storage. A parameteric analysis was made on some of the input parameters of the model to determine the sensitivity of the cost of service to them. Once the model was verified it was used to compute the cost of service of storing hydrogen in the four reservoir types. The costs of service for hydrogen storage ranged from 26 to 150% of the cost of the gas stored. The study concludes that it is now both safe and economic to store hydrogen in underground reservoirs.

Foh, S.; Novil, M.; Rockar, E.; Randolph, P.

1979-12-01T23:59:59.000Z

399

Equilibrium cycle pin by pin transport depletion calculations with DeCART  

SciTech Connect

As the Advanced Fuel Cycle Initiative (AFCI) program has matured it has become more important to utilize more advanced simulation methods. The work reported here was performed as part of the AFCI fellowship program to develop and demonstrate the capability of performing high fidelity equilibrium cycle calculations. As part of the work here, a new multi-cycle analysis capability was implemented in the DeCART code which included modifying the depletion modules to perform nuclide decay calculations, implementing an assembly shuffling pattern description, and modifying iteration schemes. During the work, stability issues were uncovered with respect to converging simultaneously the neutron flux, isotopics, and fluid density and temperature distributions in 3-D. Relaxation factors were implemented which considerably improved the stability of the convergence. To demonstrate the capability two core designs were utilized, a reference UOX core and a CORAIL core. Full core equilibrium cycle calculations were performed on both cores and the discharge isotopics were compared. From this comparison it was noted that the improved modeling capability was not drastically different in its prediction of the discharge isotopics when compared to 2-D single assembly or 2-D core models. For fissile isotopes such as U-235, Pu-239, and Pu-241 the relative differences were 1.91%, 1.88%, and 0.59%), respectively. While this difference may not seem large it translates to mass differences on the order of tens of grams per assembly, which may be significant for the purposes of accounting of special nuclear material. (authors)

Kochunas, B.; Downar, T. [Dept. of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Taiwo, T. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

400

Summary - Environmental Management Waste Management Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Report Date: February 2008 ETR-11 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Environmental Management...

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Faucets and Showerheads to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Faucets and Showerheads on Facebook Tweet about Federal Energy...

402

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Water Intensive Processes to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Other Water Intensive Processes on Facebook Tweet about...

403

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Efficient Landscaping to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Water-Efficient Landscaping on Facebook Tweet about Federal...

404

Your Records Management Responsibilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Records Management Your Records Management Responsibilities Table of Contents INTRODUCTION RECORDS MANAGEMENT IN THE FEDERAL GOVERNMENT RECORDS MANAGEMENT IN THE DEPARTMENT OF ENERGY IMPORTANCE OF RECORDS MANAGEMENT YOUR RECORDS MANAGEMENT RESPONSIBILITIES RECORDS MANAGEMENT LIFE CYCLE ELECTRONIC RECORDS & RECORDKEEPING LAW, REGULATION, AND POLICY ASSISTANCE RECORDS MANAGEMENT TERMS 2 INTRODUCTION If you are a government employee or contractor working for a federal agency, records management is part of your job. This pamphlet explains your responsibilities for federal records and provides the context for understanding records management in the federal government and in the Department of Energy. TOP RECORDS MANAGEMENT IN THE FEDERAL GOVERNMENT

405

Integrated Safety Management Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTEGRATED SAFETY INTEGRATED SAFETY MANAGEMENT SYSTEM DESCRIPTION U.S. DEPARTMENT OF ENERGY Office of Environmental Management Headquarters May 2008 Preparation: Braj K. sin& Occupational Safety and Health Manager Office of Safety Management Concurrence: Chuan-Fu wu Director, Offlce of Safety Management Deputy Assistant Secretary for safe& Management andoperations Operations Officer for 1 Environmental Management Approval: Date p/-g Date Environmental Management TABLE OF CONTENTS ACRONYMS................................................................................................................................................................v EXECUTIVE SUMMARY .........................................................................................................................................1

406

Managing time, part 2  

Science Conference Proceedings (OSTI)

Masterful time management means not just tracking of messages in your personal environment, but managing your coordination network with others.

Peter J. Denning; Ritu Raj

2011-09-01T23:59:59.000Z

407

Environmental Management Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Management Systems Technical Assistance Tools Technical Assistance Tool: Integrating Sustainable Practices into Environmental Management Systems , November 2009...

408

Managing PCBs  

Science Conference Proceedings (OSTI)

Compliance with Environmental Protection Agency regulations for managing the polychlorinated biphenyls (PCBs) that were widely distributed in electrical equipment will be costly to the utility industry, estimated at over $5 billion over a ten-year period by the Electric Power Research Institute (EPRI). Most of the budget could be needed to identify and reclaim 2.5 million contaminated transformers. Three divisions are coordinating EPRI research efforts with those of other companies and utilities in the areas of detection, destruction, spill cleanup, disposal, and health effects. (DCK)

Lihach, N.

1981-10-01T23:59:59.000Z

409

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

DOE Green Energy (OSTI)

This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

Greene, D.L.

2003-11-14T23:59:59.000Z

410

Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses  

Science Conference Proceedings (OSTI)

The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth; Arey, Bruce W.; Jenson, Evan D.; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

411

Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

Science Conference Proceedings (OSTI)

The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

NONE

1996-07-01T23:59:59.000Z

412

M E Environmental Management Environmental Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safety  performance  cleanup  closure safety  performance  cleanup  closure M E Environmental Management Environmental Management M E Environmental Management Environmental Management Office of Site Restoration, EM-10 Office of D&D and Facility Engineering, EM-13 Facility Deactivation & Decommissioning (D&D) D&D Program Map Addendum: Impact of American Recovery and Reinvestment Act (ARRA) on EM's D&D Program 2013 Edition U.S. Department Of Energy safety  performance  cleanup  closure M E Environmental Management Environmental Management safety  performance  cleanup  closure M E Environmental Management Environmental Management M E Environmental Management Environmental Management 3/13/2013 The American Recovery and Reinvestment Act of 2009

413

Potential influence of iodine-containing compounds on the chemistry of the troposphere in the polar spring. I. Ozone depletion  

Science Conference Proceedings (OSTI)

Iodine in the atmosphere, identified largely by the presence of IO, is a ubiquitous component of the troposphere in coastal and oceanic areas. The role, if any, that iodine chemistry plays in the polar ozone depletion episodes is not known. These events are rationalized today largely in terms of Br2- and BrCl-initiated reactions. The potential for enhancement of ozone depletions through the presence of iodine-containing molecules (I{sub 2}, IBr, ICl, CH{sub 2}I{sub 2}, CH{sub 2}IBr, CH{sub 2}ICl, and CH{sub 3}I) is investigated in this study. Computer simulations of the homogeneous chemistry are made using a reasonably complete reaction mechanism for Br-, Cl- and I-containing species together with representative chemistry of trace gases in the clean troposphere. The extent of uncertain alternative pathways and efficiencies for OIO and I{sub 2}O{sub 2} photolyses are varied over a range of possible values to establish the sensitivity of the depletion events to these variables. The study shows that significant enhancements of the polar ozone depletion are expected when small amounts of iodine-containing compounds such as CH{sub 2}I{sub 2}, IBr, or ICl are present in a polar air mass containing representative Br{sub 2}-BrCl-trace gas mixtures. The synergistic effect of the iodine compounds results from additional halogen-atom formation from IO-IO, IO-BrO, and IO-ClO reactions. Measurements of IO and precursor iodine-containing compounds are encouraged for future polar spring studies, as well as currently acknowledged important trace species (O{sub 3}, CH{sub 2}O, BrO, Br{sub 2}, and BrCl).

Calvert, Jack G [ORNL; Lindberg, Steven Eric [ORNL

2004-05-01T23:59:59.000Z

414

Overview - Data Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Help > Data Management Help > Data Management Data Management for Data Providers Click an arrow to follow the data management path of a data set from planning to curation. plan Overview plan Plan manage Manage archive Archive curation DAAC Curation Data Management Overview Plan Manage Archive DAAC Curation Related Links DAAC Help Best Practices PDF Workshops DataONE ESIP Data Management Overview Welcome to the data management pages for data providers to the ORNL Distributed Active Archive (DAAC). These pages provide an overview of data management planning and preparation and offer practical methods to successfully share and archive your data. Plan - write a short data management plan while preparing your research proposal, Manage - assign logical, descriptive file names, define the contents of your data files, and use consistent data values when preparing

415

Office of Legacy Management FY 2009 Energy Management Data Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Office of Legacy Management FY 2009 Energy Management Data Report Office of Legacy Management FY 2009 Energy Management Data...

416

ICT Supply Chain Risk Management  

Science Conference Proceedings (OSTI)

... ICT Supply Chain Risk Management Manager's Forum ... ICT Supply Chain Risk Management National Institute of Standards and Technology Page 6. ...

2013-06-04T23:59:59.000Z

417

Relative Contribution of Greenhouse Gases and Ozone-Depleting Substances to Temperature Trends in the Stratosphere: A ChemistryClimate Model Study  

Science Conference Proceedings (OSTI)

The temperature of the stratosphere has decreased over the past several decades. Two causes contribute to that decrease: well-mixed greenhouse gases (GHGs) and ozone-depleting substances (ODSs). This paper addresses the attribution of temperature ...

Richard S. Stolarski; Anne R. Douglass; Paul A. Newman; Steven Pawson; Mark R. Schoeberl

2010-01-01T23:59:59.000Z

418

Carotenoids & Retinoids; Molecular Aspects and Health IssuesChapter 13 Effect of Feeding and Then Depleteing a High Fruit and Vegetable Diet on Oxidizability in Human Serum  

Science Conference Proceedings (OSTI)

Carotenoids & Retinoids; Molecular Aspects and Health Issues Chapter 13 Effect of Feeding and Then Depleteing a High Fruit and Vegetable Diet on Oxidizability in Human Serum Health Nutrition Biochemistry eChapters Health - Nutrition - B

419

Run manager module for CORAL laboratory management  

E-Print Network (OSTI)

This thesis describes a new module, the Run Manager (RM), for Stanford Nanofabrication Facility's Common Object Representation for Advanced Laboratories (CORAL). CORAL is the lab manager with which MIT's Microsystems ...

Klann, Jeffrey G

2004-01-01T23:59:59.000Z

420

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Pass Cooling Equipment to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Single-Pass Cooling Equipment on Facebook Tweet about Federal...

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental Management System Plan  

E-Print Network (OSTI)

3) environmental management programs, (4) training, (5)Management Programs3-5 Structure and Responsibility.3-6 Training,Management System Plan Program Elements Additional information regarding EMS training

Fox, Robert

2009-01-01T23:59:59.000Z

422

Federal Energy Management Program: Operations and Maintenance Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Support to someone by E-mail Management Support to someone by E-mail Share Federal Energy Management Program: Operations and Maintenance Management Support on Facebook Tweet about Federal Energy Management Program: Operations and Maintenance Management Support on Twitter Bookmark Federal Energy Management Program: Operations and Maintenance Management Support on Google Bookmark Federal Energy Management Program: Operations and Maintenance Management Support on Delicious Rank Federal Energy Management Program: Operations and Maintenance Management Support on Digg Find More places to share Federal Energy Management Program: Operations and Maintenance Management Support on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management

423

Energy Star Portfolio Manager  

NLE Websites -- All DOE Office Websites (Extended Search)

May 2013 What's New in Portfolio Manager ? EPA's ENERGY STAR Portfolio Manager tool helps you measure and track energy use, water use, and greenhouse gas emissions of your...

424

Target Cost Management Strategy  

E-Print Network (OSTI)

Target cost management (TCM) is an innovation of Japanese management accounting system and by common sense has been considered with great interest by practitioners. Nowadays, TCM related

Okano, Hiroshi

1996-01-01T23:59:59.000Z

425

FILE MANAGEMENT MANUAL  

NLE Websites -- All DOE Office Websites (Extended Search)

6.5.2 (ZAP BAD POINTERS) : Appendices :1 Glossary of Important File-Management Terms :29 SPIRES Documentation * SPIRES File Management ***...

426

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011...

427

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 nd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

428

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY...

429

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Performance Metrics and Targets 1 ContractProject Management Primary Performance Metrics FY 2010 Target FY 2010 Actual FY...

430

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 4 th Quarter Metrics Final Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2008 Target FY 2008 Actual...

431

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2012 Target FY 2012 Final FY...

432

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 rd Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

433

Contract/Project Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

434

Waterway Management Districts (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Waterway management districts are established to manage and supervise the use and development of waterways in municipalities with populations between 29,600 and 29,900.

435

K&N Management  

Science Conference Proceedings (OSTI)

... K&N Management (PDF version of this profile). (Photo courtesy of K&N Management). Download high-res version of this photo. ...

2011-04-19T23:59:59.000Z

436

Data Management Policy The  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Management Policy The guidelines below describe Data Management procedures, processes and resources that need to be understood by both user projects and in-house research. 1....

437

Data Management Webinar  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Data Management Best Practices Webinar Environmental Data Management Best Practices Webinar NASA EarthData Webinar Series September 10, 11, and 12, 2013 Abstract The...

438

Stormwater Management Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

Stormwater Management program of the Department of Environmental Protection's Bureau of Conservation and Restoration administers the rules and regulations for stormwater management for Pennsylvania...

439

ALS Project Management Manual  

E-Print Network (OSTI)

management practices across all ALS projects. It describesthat the primary weakness in ALS project management effortsrich projects common at the ALS. It is sometimes difficult

Krupnick, Jim; Harkins, Joe

2000-01-01T23:59:59.000Z

440

Corrective Action Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Corrective Action Management Program (CAMP) Home CAMP Background DOE Directives Corrective Action Management Team Corrective Action Tracking System (CATS) CAMP Quarterly Reports...

Note: This page contains sample records for the topic "depleted uf6 management" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Emergency Management Evaluations - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Management Evaluations Reports 2010 Independent Oversight Review of Emergency Management at the Pantex Site Office and Pantex Plant, November 2010 Independent Oversight...

442

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

443

The water ice rich surface of (145453) 2005 RR43: a case for a carbon-depleted population of TNOs?  

E-Print Network (OSTI)

Recent results suggest that there is a group of TNOs (2003 EL61 being the biggest member), with surfaces composed of almost pure water ice and with very similar orbital elements. We study the surface composition of another TNO that moves in a similar orbit, 2005 RR43, and compare it with the surface composition of the other members of this group. We report visible and near-infrared spectra, obtained with the 4.2m William Herschel Telescope and the 3.58m Telescopio Nazionale Galileo at the "Roque de los Muchachos" Observatory (La Palma, Spain). The spectrum of 2005 RR43 is neutral in color in the visible and dominated by very deep water ice absorption bands in the near infrared (D= 70.3 +/- 2.1 % and 82.8 +/- 4.9 % at 1.5 \\mu and 2.0 \\mu respectively). It is very similar to the spectrum of the group of TNOs already mentioned. All of them present much deeper water ice absorption bands (D>40 %) than any other TNO except Charon. Scattering models show that its surface is covered by water ice, a significant fraction in crytalline state with no trace (5 % upper limit) of complex organics. Possible scenarios to explain the existence of this population of TNOs are discussed: a giant collision, an originally carbon depleted composition, or a common process of continuous resurfacing. We conclude that TNO 2005 RR43 is member of a group, may be a population, of TNOs clustered in the space of orbital parameters that show abundant water ice and no signs of complex organics. The lack of complex organics in their surfaces suggests a significant smaller fraction of carbonaceous volatiles like CH4 in this population than in "normal" TNOs. A carbon depleted population of TNOs could be the origin of the population of carbon depleted Jupiter family comets already noticed by A'Hearn et al. (1995).

N. Pinilla-Alonso; J. Licandro; R. Gil-Hutton; R. Brunetto

2007-03-06T23:59:59.000Z

444

Issues in Three-Dimensional Depletion Analysis of Measured Data Near the End of a Fuel Rod  

Science Conference Proceedings (OSTI)

The dynamics of reactor operation result in nonuniform axial-burnup profiles in fuel with any significant burnup. At the beginning of life in a pressurized water reactor (PWR), a near-cosine axial-shaped flux will begin depleting fuel near the axial center of a fuel assembly at a greater rate than at the ends. As the reactor continues to operate, the cosine flux shape will flatten because of the fuel depletion and fission-product buildup that occur near the center. However, because of the high leakage near the end of the fuel assembly, burnup will drop off rapidly near the ends. Partial-length absorbers or nonuniform axial fuel loadings can further complicate the burnup profile. In a boiling water reactor, the same phenomena come into play, but the burnup profile is complicated by the significant variation of axial moderator density and by nonuniform axial loadings of burnable poison rods. Numerous studies of axial burnup effects have been published. However, most analyses performed in estimation of isotopic distributions due to axial burnup have been based on a set of two-dimensional (2-D) calculations performed for burnups that represent the axial burnup distribution in a fuel assembly. In general, this approach works quite well because the in-core axial gradient of the neutron flux is small over most of the length of the fuel rod, and the 2-D approximation is appropriate. Conversely, because the axial gradient becomes significant as one approaches either end of the fuel assembly, the 2-D approximation begins to break down at that point. It has been theorized that axial leakage will lead to a reduced fast flux relative to the thermal flux, softening the spectrum near the ends of the fuel, and that a 2-D approximation is conservative in that it provides more plutonium production. This has not been put the test, however, for two reasons--a lack of good three-dimensional (3-D) analysis methods acceptable for away-from-reactor applications and, more importantly, a scarcity of experimental measurements for fuel taken from the end regions of a fuel rod. A number of 3-D depletion approaches based on Monte Carlo methods have been introduced in the past decade including, but not limited to, those listed in Refs. 5-7. A full listing would be quite extensive. Recent fuel-sample measurements from two discharged assemblies of the Takahama Unit 3 PWR provide data for fuel samples taken very close to the top of the active region of the fuel rod. This paper discusses results of TRITON-based 3-D depletion calculations completed in the analysis of the Takahama fuel samples.

DeHart, Mark D [ORNL; Gauld, Ian C [ORNL; Suyama, Kenya [Japan Atomic Energy Agency (JAEA)

2008-01-01T23:59:59.000Z

445

Experimental results of hydrogen distillation at the low power cryogenic column for the production of deuterium depleted hydrogen  

Science Conference Proceedings (OSTI)

The Deuterium Removal Unit (DRU) has been designed and built at the Petersburg Nuclear Physics Inst. (PNPI) to produce isotopically pure hydrogen with deuterium content less than 1 ppm. The cryogenic distillation column of 2.2 cm inner diameter and 155 cm packing height is the main element of the DRU. Column performances at different hydrogen distillation operating modes have been measured. The height equivalent to theoretical plate (HETP) for the column is 2.2 cm and almost constant over a wide range of vapour flow rates. Deuterium depleted hydrogen with a deuterium content of less than 0.1 ppm was produced in required quantity. (authors)

Alekseev, I.; Fedorchenko, O.; Kravtsov, P.; Vasilyev, A.; Vznuzdaev, M. [Petersburg Nuclear Physics Inst., Leningrad district, Gatchina, 188300 (Russian Federation)

2008-07-15T23:59:59.000Z

446

DOE - Office of Legacy Management -- Spencer Chemical Co - MO 0-01  

Office of Legacy Management (LM)

MO 0-01 MO 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (MO.0-01) Eliminated from further consideration under FUSRAP - an AEC licensed operation Designated Name: Not Designated Alternate Name: Jayhawk Works MO.0-01-1 Location: Joplin , Missouri MO.0-01-1 Evaluation Year: 1985 MO.0-01-2 Site Operations: Processed enriched uranium (UF-6) and scrap to produce primarily uranium dioxide (UO-2) under AEC licenses. MO.0-01-3 MO.0-01-4 Site Disposition: Eliminated - No Authority MO.0-01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Normal and Enriched Uranium, Thorium MO.0-01-6 Radiological Survey(s): Yes MO.0-01-5 Site Status: Eliminated from further consideration under FUSRAP - an AEC licensed operation Also see Documents Related to SPENCER CHEMICAL CO.

447

DOE - Office of Legacy Management -- Spencer Chemical Co - KS 0-01  

Office of Legacy Management (LM)

KS 0-01 KS 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (KS.0-01 ) Eliminated from further consideration under FUSRAP - an AEC licensed operation Designated Name: Not Designated Alternate Name: Jayhawk Works KS.0-01-1 Location: Pittsburg , Kansas KS.0-01-1 Evaluation Year: 1985 KS.0-01-2 Site Operations: Processed enriched uranium (UF-6) and scrap to produce primarily uranium dioxide (UO-2) under AEC licenses. KS.0-01-3 KS.0-01-4 Site Disposition: Eliminated - No Authority - AEC licensed KS.0-01-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Normal and Enriched Uranium; Thorium KS.0-01-6 Radiological Survey(s): Yes KS.0-01-5 Site Status: Eliminated from further consideration under FUSRAP - an AEC licensed operation

448

PROJECT MANAGEMENT PLANS Project Management Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT PLANS MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Section 4.2 of DOE Guide 430.1-3, DEACTIVATION IMPLEMENTATION GUIDE discusses the content and purpose of deactivation project management plans. It is presented as a suggested outline followed by other potential subjects. For the convenience of readers, that information is repeated below.

449

Federal Energy Management Program: Energy Management Requirements by Law  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management Energy Management Requirements by Law and Regulation to someone by E-mail Share Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Facebook Tweet about Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Twitter Bookmark Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Google Bookmark Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Delicious Rank Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Digg Find More places to share Federal Energy Management Program: Energy Management Requirements by Law and Regulation on AddThis.com... Requirements by Subject Requirements by Regulation

450

Life cycle assessment of solid waste management options for Eskisehir, Turkey  

SciTech Connect

Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.

Banar, Mufide [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)], E-mail: mbanar@anadolu.edu.tr; Cokaygil, Zerrin; Ozkan, Aysun [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)

2009-01-15T23:59:59.000Z

451

Laboratory Management (Quality) Systems  

Science Conference Proceedings (OSTI)

Laboratory Management (Quality) Systems. NISTIR 7028 Type Evaluation Quality Manual Template. This NISTIR has been ...

2012-05-02T23:59:59.000Z

452

ADMINISTRATIVE AND RESOURCE MANAGEMENT  

E-Print Network (OSTI)

development of risk management- relatedITservicesthatbenefittheentireUCsystem. The systems developed at UC and maintenance have diminished so dramatically. #12;7 ADMINISTRATIVE AND RESOURCE MANAGEMENT AnnuAl RepoRt 2010, are collaborating to implement a new asset management, work management, and integrated planning system

Hammock, Bruce D.

453

Environmental Management System Plan  

E-Print Network (OSTI)

offices, the EMS Program Program Elements Environmental ManagementOffice of Institutional Assurance as stated in the OQMP. 3-7 Environmental ManagementEnvironmental Management System Fiscal Year Improve (EMP classification) Integrated Safety Management System International Organization for Standardization Lawrence Berkeley National Laboratory Office

Fox, Robert

2009-01-01T23:59:59.000Z

454

Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase  

SciTech Connect

The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan (2 to 4 mg/kg intravenously (IV) x 3) was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells.

Abkowitz, J.L.; Ott, R.M.; Holly, R.D.; Adamson, J.W.

1988-06-01T23:59:59.000Z

455

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method to estimate the ultimate CO2 storage in depleted oil and gas reservoirs by implementing a volume constrained thermodynamic equation of state (EOS) using the reservoir?s average pressure and fluid composition. This method was implemented in an algorithm which allows fast and accurate estimations of final storage, which can be used to select target storage reservoirs, and design the injection scheme and surface facilities. Impurities such as nitrogen and carbon monoxide, usually contained in power plant flue gases, are considered in the injection stream and can be handled correctly in the proposed algorithm by using their thermodynamic properties into the EOS. Results from analytical method presented excellent agreement with those from reservoir simulation. Ultimate CO2 storage capacity was predicted with an average difference of 1.3%, molar basis, between analytical and numerical methods; average oil, gas, and water saturations were also matched. Additionally, the analytical algorithm performed several orders of magnitude faster than numerical simulation, with an average of 5 seconds per run.

Valbuena Olivares, Ernesto

2011-12-01T23:59:59.000Z

456

End-of-life destructive examinations of Zircaloy maximum depletion blanket fuel plates from the Shippingport PWR Core 2  

DOE Green Energy (OSTI)

Destructive examinations were performed on four Shippingport PWR Core 2 maximum fluence and depletion blanket plates for surface integrity, corrosion oxide thickness, and hydrogen absorption of the Zircaloy-4 cladding. The Shippingport PWR Core 2 operated for 23,360 effective full power hours (EFPH) (62,235 hot hours) at an average coolant temperature of 536{degrees}F (280{degrees}C) and a peak neutron flux of 0.6{times}10{sup 14}n/cm{sup 2}/s. The end-of-life examination program included measurements on three PWR-2 beta-quenched blanket fuel plates and one alpha-annealed blanket end plate. The examinations consisted of optical and scanning electron microscopy (SEM) inspections, direct metallographic oxide thickness measurements, and hydrogen extraction analyses on a joined element pair from the peak fluence (132{times}10{sup 20} n/cm{sup 2}), maximum depletion (13.5{times}10{sup 20} fissions/cc)PWR-2 blanket cluster.

Clayton, J.C.; Kammenzind, B.F.; Senio, P.; Sherman, J.

1993-10-01T23:59:59.000Z

457

Integral Test and Engineering Analysis of Coolant Depletion During a Large-Break Loss-of-Coolant Accident  

Science Conference Proceedings (OSTI)

This study concerns the development of an integrated calculation methodology with which to continually and consistently analyze the progression of an accident from the design-basis accident phase via core uncovery to the severe accident phase. The depletion rate of reactor coolant inventory was experimentally investigated after the safety injection failure during a large-break loss-of-coolant accident utilizing the Seoul National University Integral Test Facility (SNUF), which is scaled down to 1/6.4 in length and 1/178 in area from the APR1400 [Advanced Power Reactor 1400 MW(electric)]. The experimental results showed that the core coolant inventory decreased five times faster before than after the extinction of sweepout in the reactor downcomer, which is induced by the incoming steam from the intact cold legs. The sweepout occurred on top of the spillover from the downcomer region and expedited depletion of the core coolant inventory. The test result was simulated with the MAAP4 severe accident analysis code. The calculation results of the original MAAP4 deviated from the test data in terms of coolant inventory distribution in the test vessel. After the calculation algorithm of coolant level distribution was improved by including the subroutine of pseudo pressure buildup, which accounts for the differential pressure between the core and downcomer in MAAP4, the core melt progression was delayed by hundreds of seconds, and the code prediction was in reasonable agreement with the overall behavior of the SNUF experiment.

Kim, Yong Soo; Park, Chang Hwan; Bae, Byoung Uhn; Park, Goon Cherl; Suh, Kune Yull; Lee, Un Chul [Seoul National University (Korea, Republic of)

2005-02-15T23:59:59.000Z

458

Cryptographic Key Management Workshop 2010  

Science Conference Proceedings (OSTI)

Cryptographic Key Management Workshop 2010. Purpose: ... Related Project(s): Cryptographic Key Management Project. Details: ...

2013-08-01T23:59:59.000Z

459

Environmental Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Management System Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the environmental impacts of those activities, prioritizing improvements, and measuring results. May 30, 2012 The continuous improvement cycle Our Environmental Management System encourages continuous improvement o