Powered by Deep Web Technologies
Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Depleted UF6 Conversion facility EIS Topics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

2

Health Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

3

Environmental Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

4

Portsmouth DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Portsmouth DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND.............................................................................................................

5

Paducah DUF6 Conversion Final EIS - Appendix D: Environmental Synopsis for the Depleted UF6 Conversion Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX D: ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT Environmental Synopsis D-2 Paducah DUF 6 Conversion Final EIS ENVIRONMENTAL SYNOPSIS FOR THE DEPLETED UF 6 CONVERSION PROJECT (Solicitation No. DE-RP05-01OR22717) October 2002 Environmental Assessment Division Argonne National Laboratory Argonne, Illinois Prepared for Office of Site Closure - Oak Ridge Office (EM-32) Office of Environmental Management U.S. Department of Energy Washington, D.C. October 2002 iii CONTENTS 1 INTRODUCTION........................................................................................................... 1 2 BACKGROUND............................................................................................................. 3 3

6

Uranium Hexafluoride (UF6)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

7

FAQ 32-What are the potential health risks from conversion of depleted  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conversion of depleted uranium hexafluoride to other forms? conversion of depleted uranium hexafluoride to other forms? What are the potential health risks from conversion of depleted uranium hexafluoride to other forms? Accidental release of UF6 during processing activities could result in injuries. The most immediate hazard from a release would be lung injury or death from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when UF6 reacts with moisture in air. Uranyl fluoride is also formed. Uranyl fluoride is a particulate that can be dispersed in air and inhaled. Once inhaled, uranyl fluoride is easily absorbed into the bloodstream because it is soluble. If large quantities are inhaled, kidney toxicity will result. Conversion of uranium hexafluoride to oxide or metal may involve hazardous chemicals in addition to UF6; specifically, ammonia (NH3) may be used in the process, and HF may be produced from the process. In the PEIS, the conversion accidents estimated to have the largest potential consequences were accidents involving the rupture of tanks containing either anhydrous HF or ammonia. Such an accident could be caused by a large earthquake. The probability of large earthquakes depends on the location of the facility, and the probability of damage depends on the structural characteristics of the buildings. In the PEIS, the estimated frequency of this type of accident was less than once in one million years. However, if such an extremely unlikely accident did occur, it was estimated that up to 41,000 members of the general public around the conversion facility might experience adverse effects from chemical exposures (mostly mild and temporary effects, such as respiratory irritation or temporary decrease in kidney function). Of these, up to 1,700 individuals might experience irreversible adverse effects (such as lung damage or kidney damage), with the potential for about 30 fatalities. In addition, irreversible or fatal effects among workers very near the accident scene would be possible. (Note: The actual numbers of injuries among the general public would depend on the size and proximity of the population around the conversion facility).

8

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

9

Depleted Uranium Uses Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

10

Management and Uses Conversion Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

11

FAQ 8-What is uranium hexafluoride (UF6)?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is uranium hexafluoride (UF6)? is uranium hexafluoride (UF6)? What is uranium hexafluoride (UF6)? Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. Liquid UF6 is formed only at temperatures greater than 147° F (64° C) and at pressures greater than 1.5 times atmospheric pressure (22 psia). At atmospheric pressure, solid UF6 will transform directly to UF6 gas (sublimation) when the temperature is raised to 134° F (57° C), without going through a liquid phase.

12

Technology Assessment for Proof-of-Concept UF6 Cylinder Unique Identification Task 3.1.2 Report Survey and Assessment of Technologies  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Securitys (NA-24) Next Generation Safeguards Initiative (NGSI) and the nuclear industry have begun to develop approaches to identify and monitor uranium hexafluoride (UF6) cylinders. The NA-24 interest in a global monitoring system for UF6 cylinders relates to its interest in supporting the International Atomic Energy Agency (IAEA) in deterring and detecting diversion of UF6 (e.g., loss of cylinder in transit) and undeclared excess production at conversion and enrichment facilities. The industry interest in a global monitoring system for UF6 cylinders relates to the improvements in operational efficiencies that such a system would provide. This task is part of an effort to survey and assess technologies for a UF6 cylinder to identify candidate technologies for a proof-of-concept demonstration and evaluation for the Cylinder Identification System (CIS).

Wylie, Joann; Hockert, John

2014-04-24T23:59:59.000Z

13

Thermo-mechanical study of bare 48Y UF6 containers exposed to the regulatory fire environment.  

SciTech Connect (OSTI)

Most of the regulatory agencies world-wide require that containers used for the transportation of natural UF6 and depleted UF6 must survive a fully-engulfing fire environment for 30 minutes as described in 10CFR71 and in TS-R-1. The primary objective of this project is to examine the thermo-mechanical performance of 48Y transportation cylinders when exposed to the regulatory hypothetical fire environment without the thermal protection that is currently used for shipments in those countries where required. Several studies have been performed in which UF6 cylinders have been analyzed to determine if the thermal protection currently used on UF6 cylinders of type 48Y is necessary for transport. However, none of them could clearly confirm neither the survival nor the failure of the 48Y cylinder when exposed to the regulatory fire environment without the additional thermal protection. A consortium of five companies that move UF6 is interested in determining if 48Y cylinders can be shipped without the thermal protection that is currently used. Sandia National Laboratories has outlined a comprehensive testing and analysis project to determine if these shipping cylinders are capable of withstanding the regulatory thermal environment without additional thermal protection. Sandia-developed coupled physics codes will be used for the analyses that are planned. A series of destructive and non-destructive tests will be performed to acquire the necessary material and behavior information to benchmark the models and to answer the question about the ability of these containers to survive the fire environment. Both the testing and the analysis phases of this project will consider the state of UF6 under thermal and pressure loads as well as the weakening of the steel container due to the thermal load. Experiments with UF6 are also planned to collect temperature- and pressure-dependent thermophysical properties of this material.

Ammerman, Douglas James; Lopez, Carlos; Morrow, Charles; Korbmacher, Tim (Urenco Enrichment Co. Ltd., Gronau, Germany); Charette, Marc-Andre (Cameco Corporation, Port Hope, ON, Canada)

2010-11-01T23:59:59.000Z

14

DUF6 Conversion Facility EIS Alternatives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

15

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

16

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

17

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

18

Production and Handling Slide 35: UF6 Cylinder Data Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UF6 Cylinder Data Summary UF6 Cylinder Data Summary Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents UF6 Cylinder Data Summary Cylinder Model Nominal Diam. (in.) Material of Construction Minimum Volume Approximate Tare Weight Without Valve Protector Maximum Enrichment Uranium-235 Shipping Limit Maximum, a UF6 ft3 liters lb kg Weight % lb kg 1S 1.5 Nickel 0.0053 0.15 1.75 0.79 100.00 1.0 0.45 2S .5 Nickel 0.026 0.74 4.2 1.91 100.00 4.9 2.22 5A 5 Monel 0.284 8.04 55 25 100.00 55 24.95 5B 5 Nickel 0.284 8.04 55 25 100.00 55 24.95 8A 8 Monel 1.319 37.35 120 54 12.5 255 115.67 12A 12 Nickel 2.38 67.4 185 84 5.0 460 208.7 12B 12 Monel 2.38 67.4 185 84 5.0 460 208.7 308c 30 Steel 26.0 736.0 1,400 635 5.0b 5,020 2,277 48A 48 Steel 108.9 3,.84 4,500 2,041 4.5b 21,030 9,539 48Xd 48 Steel 108.9 3,084 4,500 2,041 4.5b,g 21,030 9,539 48F 48 Steel

19

Onsite Gaseous Centrifuge Enrichment Plant UF6 Cylinder Destructive Analysis  

SciTech Connect (OSTI)

The IAEA safeguards approach for gaseous centrifuge enrichment plants (GCEPs) includes measurements of gross, partial, and bias defects in a statistical sampling plan. These safeguard methods consist principally of mass and enrichment nondestructive assay (NDA) verification. Destructive assay (DA) samples are collected from a limited number of cylinders for high precision offsite mass spectrometer analysis. DA is typically used to quantify bias defects in the GCEP material balance. Under current safeguards measures, the operator collects a DA sample from a sample tap following homogenization. The sample is collected in a small UF6 sample bottle, then sealed and shipped under IAEA chain of custody to an offsite analytical laboratory. Current practice is expensive and resource intensive. We propose a new and novel approach for performing onsite gaseous UF6 DA analysis that provides rapid and accurate assessment of enrichment bias defects. DA samples are collected using a custom sampling device attached to a conventional sample tap. A few micrograms of gaseous UF6 is chemically adsorbed onto a sampling coupon in a matter of minutes. The collected DA sample is then analyzed onsite using Laser Ablation Absorption Ratio Spectrometry-Destructive Assay (LAARS-DA). DA results are determined in a matter of minutes at sufficient accuracy to support reliable bias defect conclusions, while greatly reducing DA sample volume, analysis time, and cost.

Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Carter, Jennifer C.; McNamara, Bruce K.; O'Hara, Matthew J.; Phillips, Jon R.; Curtis, Michael M.

2012-07-17T23:59:59.000Z

20

Why Are the DUF6 Conversion Facility EISs Needed?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why is an EIS Needed Why is an EIS Needed Why the Depleted UF6 Conversion Facility EISs Are Needed The two Depleted UF6 Conversion EISs are needed to assess the potential environmental impacts of constructing, operating, maintaining, and decontaminating and decommissioning DUF6 conversion facilities at the Paducah and Portsmouth sites. National Environmental Policy Act Federal laws and regulations require the federal government to evaluate the effects of its actions on the environment and to consider alternative courses of action. The National Environmental Policy Act of 1969 (NEPA) specifies when an environmental impact statement (EIS) must be prepared. NEPA regulations require, among other things, federal agencies to include discussion of a proposed action and the range of reasonable alternatives in an EIS. Sufficient information must be included in the EIS for reviewers to evaluate the relative merits of each alternative. Council for Environmental Quality (CEQ) regulations provide the recommended format and content of Environmental Impact Statements.

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

22

Who is Responsible for the DUF6 Conversion Facility EISs?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Who is Responsible Who is Responsible Who Is Responsible for the Depleted UF6 Conversion Facility EISs? The U.S. DOE Office of Environmental Management is preparing the two Depleted UF6 Conversion Facility EISs, with assistance from Argonne National Laboratory. Responsibilities The United States Department of Energy (DOE), Office of Environmental Management (EM) is responsible for preparation of the Depleted UF6 Conversion EIS. Argonne National Laboratory is assisting EM in preparation of the EIS. About the Office of Environmental Management (EM) In 1989, the Department of Energy created the Office of Environmental Management (EM) to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. Although the nation continues to maintain an arsenal of nuclear weapons, as well as some production capability, the United States has embarked on new missions. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Like most industrial and manufacturing operations, the nuclear complex has generated waste, pollution, and contamination. However, many problems posed by its operations are unique. They include unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures that will remain radioactive for thousands of years.

23

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

24

Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

2012-06-01T23:59:59.000Z

25

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Broader source: Energy.gov (indexed) [DOE]

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

26

FAQ 7-How is depleted uranium produced?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

27

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

28

Hybrid Enrichment Assay Methods for a UF6 Cylinder Verification Station: FY10 Progress Report  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) is developing the concept of an automated UF6 cylinder verification station that would be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until the arrival of International Atomic Energy Agency (IAEA) inspectors. At the center of this unattended system is a hybrid enrichment assay technique that combines the traditional enrichment-meter method (based on the 186 keV peak from 235U) with non-traditional neutron-induced high-energy gamma-ray signatures (spawned primarily by 234U alpha emissions and 19F(alpha, neutron) reactions). Previous work by PNNL provided proof-of-principle for the non-traditional signatures to support accurate, full-volume interrogation of the cylinder enrichment, thereby reducing the systematic uncertainties in enrichment assay due to UF6 heterogeneity and providing greater sensitivity to material substitution scenarios. The work described here builds on that preliminary evaluation of the non-traditional signatures, but focuses on a prototype field system utilizing NaI(Tl) and LaBr3(Ce) spectrometers, and enrichment analysis algorithms that integrate the traditional and non-traditional signatures. Results for the assay of Type-30B cylinders ranging from 0.2 to 4.95 wt% 235U, at an AREVA fuel fabrication plant in Richland, WA, are described for the following enrichment analysis methods: 1) traditional enrichment meter signature (186 keV peak) as calculated using a square-wave convolute (SWC) algorithm; 2) non-traditional high-energy gamma-ray signature that provides neutron detection without neutron detectors and 3) hybrid algorithm that merges the traditional and non-traditional signatures. Uncertainties for each method, relative to the declared enrichment for each cylinder, are calculated and compared to the uncertainties from an attended HPGe verification station at AREVA, and the IAEAs uncertainty target values for feed, tail and product cylinders. A summary of the major findings from the field measurements and subsequent analysis follows: Traditional enrichment-meter assay using specially collimated NaI spectrometers and a Square-Wave-Convolute algorithm can achieve uncertainties comparable to HPGe and LaBr for product, natural and depleted cylinders. Non-traditional signatures measured using NaI spectrometers enable interrogation of the entire cylinder volume and accurate measurement of absolute 235U mass in product, natural and depleted cylinders. A hybrid enrichment assay method can achieve lower uncertainties than either the traditional or non-traditional methods acting independently because there is a low degree of correlation in the systematic errors of the two individual methods (wall thickness variation and 234U/235U variation, respectively). This work has indicated that the hybrid NDA method has the potential to serve as the foundation for an unattended cylinder verification station. When compared to todays handheld cylinder-verification approach, such a station would have the following advantages: 1) improved enrichment assay accuracy for product, tail and feed cylinders; 2) full-volume assay of absolute 235U mass; 3) assay of minor isotopes (234U and 232U) important to verification of feedstock origin; single instrumentation design for both Type 30B and Type 48 cylinders; and 4) substantial reduction in the inspector manpower associated with cylinder verification.

Smith, Leon E.; Jordan, David V.; Orton, Christopher R.; Misner, Alex C.; Mace, Emily K.

2010-08-01T23:59:59.000Z

29

Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques  

SciTech Connect (OSTI)

Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential for this application and should be assessed quantitatively. The next set of techniques leverage scintillator detectors that are sensitive to both neutron and gamma radiation. The first is the BC-523A capture-gated organic liquid scintillator. The detector response from several different neutron energies has been characterized and is included in the study. The BC-523A has not yet been tested with UF{sub 6} cylinders, but the application appears to be well suited for this technology. The second detector type is a relatively new inorganic scintillator called CLYC. CLYC provides a complementary detection approach to the HEVA and PNEM systems that could be used to determine uranium enrichment in UF{sub 6} cylinders. In this section, the conceptual idea for an integrated CLYC-HEVA/PNEM system is explored that could yield more precision and robustness against systemic uncertainties than any one of the systems by itself. This is followed by a feasibility study on using alpha-particle-induced reaction gamma-rays as a way to estimate {sup 234}U abundance in UF{sub 6}. Until now, there has been no readily available estimate of the strength of these reaction gamma-rays. Thick target yields of the chief reaction gammas are computed and show that they are too weak for practical safeguards applications. In special circumstances where long count times are permissible, the 1,275 keV F({alpha},x{gamma}) is observable. Its strength could help verify an operator declaration provided other knowledge is available (especially the age). The other F({alpha},x{gamma}) lines are concealed by the dominant uranium line spectrum and associated continuum. Finally, the last section provides several ideas for electromagnetic and acoustic nondestructive evaluation (NDE) techniques. These can be used to measure cylinder wall thickness, which is a source of systematic uncertainty for gamma-ray-based NDA techniques; characterize the UF{sub 6} filling profile inside the cylinder, which is a source of systematic uncertainty for neutron-based NDA techniques; locate hidden objects inside the cylinder; a

Miller, Karen A. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

30

Photoelectron Spectroscopy and Theoretical Studies of UF5 ? and UF6 ?  

SciTech Connect (OSTI)

The UF5 ? and UF6 ? anions are produced using electrospray ionization and investigated by photoelectron spectroscopy and relativistic quantum chemistry. An extensive vibrational progression is observed in the spectra of UF5 ?, indicating significant geometry changes between the anion and neutral ground state. Franck-Condon factor simulations of the observed vibrational progression yield an adiabatic electron detachment energy of 3.82 0.05 eV for UF5 ?. Relativistic quantum calculations using density functional and ab initio theories are performed on UF5 ? and UF6 ? and their neutrals. The ground states of UF5 ? and UF5 are found to have C4v symmetry, but with a large U?F bond length change. The ground state of UF5 ? is a triplet state (3B2) with the two 5f electrons occupying a 5fz3-based 8a1 highest occupied molecular orbital (HOMO) and the 5fxyz-based 2b2 HOMO-1 orbital. The detachment cross section from the 5fxyz orbital is observed to be extremely small and the detachment transition from the 2b2 orbital is more than ten times weaker than that from the 8a1 orbital at the photon energies available. The UF6 ? anion is found to be octahedral, similar to neutral UF6 with the extra electron occupying the 5fxyz-based a2u orbital. Surprisingly, no photoelectron spectrum could be observed for UF6 ? due to the extremely low detachment cross section from the 5fxyz-based HOMO of UF6 ?.

Dau, Phuong D.; Su, Jing; Liu, Hong-Tao; Huang, Dao-Ling; Wei, Fan; Li, Jun; Wang, Lai S.

2012-05-17T23:59:59.000Z

31

Documents: Paducah DUF6 Conversion Facility Final EIS and ROD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF6 Final EIS Paducah DUF6 Final EIS Search Documents: Search PDF Documents View a list of all documents Paducah DUF6 Conversion Facility Final EIS and Record of Decision Full text of the Record of Decision and Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site. The full text of the Record of Decision and Paducah DUF6 Conversion Facility Final EIS and ROD is available for downloading or browsing in Adobe Acrobat PDF format through the links below. You may also order a CD-ROM or paper copy of the Depleted UF6 Conversion Facility EISs by submitting a Final EIS Document Request Form. Record of Decision PDF Icon Paducah DUF6 Conversion Facility: Record of Decision 3.6 MB details

32

Preconceptual design studies and cost data of depleted uranium hexafluoride conversion plants  

SciTech Connect (OSTI)

One of the more important legacies left with the Department of Energy (DOE) after the privatization of the United States Enrichment Corporation is the large inventory of depleted uranium hexafluoride (DUF6). The DOE Office of Nuclear Energy, Science and Technology (NE) is responsible for the long-term management of some 700,000 metric tons of DUF6 stored at the sites of the two gaseous diffusion plants located at Paducah, Kentucky and Portsmouth, Ohio, and at the East Tennessee Technology Park in Oak Ridge, Tennessee. The DUF6 management program resides in NE's Office of Depleted Uranium Hexafluoride Management. The current DUF6 program has largely focused on the ongoing maintenance of the cylinders containing DUF6. However, the long-term management and eventual disposition of DUF6 is the subject of a Programmatic Environmental Impact Statement (PEIS) and Public Law 105-204. The first step for future use or disposition is to convert the material, which requires construction and long-term operation of one or more conversion plants. To help inform the DUF6 program's planning activities, it was necessary to perform design and cost studies of likely DUF6 conversion plants at the preconceptual level, beyond the PEIS considerations but not as detailed as required for conceptual designs of actual plants. This report contains the final results from such a preconceptual design study project. In this fast track, three month effort, Lawrence Livermore National Laboratory and Bechtel National Incorporated developed and evaluated seven different preconceptual design cases for a single plant. The preconceptual design, schedules, costs, and issues associated with specific DUF6 conversion approaches, operating periods, and ownership options were evaluated based on criteria established by DOE. The single-plant conversion options studied were similar to the dry-conversion process alternatives from the PEIS. For each of the seven cases considered, this report contains information on the conversion process, preconceptual plant description, rough capital and operating costs, and preliminary project schedule.

Jones, E

1999-07-26T23:59:59.000Z

33

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

34

Paducah DUF6 Conversion Final EIS - Appendix C: Scoping Summary Report for Depleted Uranium Hexafluoride Conversion Facilities - Environmental Impact Statement Scoping Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX C: SCOPING SUMMARY REPORT FOR DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITIES ENVIRONMENTAL IMPACT STATEMENT SCOPING PROCESS Scoping Summary Report C-2 Paducah DUF 6 Conversion Final EIS Scoping Summary Report C-3 Paducah DUF 6 Conversion Final EIS APPENDIX C This appendix contains the summary report prepared after the initial public scoping period for the depleted uranium hexafluoride conversion facilities environmental impact statement (EIS) project. The scoping period for the EIS began with the September 18, 2001, publication of a Notice of Intent (NOI) in the Federal Register (66 FR 23213) and was extended to January 11, 2002. The report summarizes the different types of public involvement opportunities provided and the content of the comments received.

35

Paducah DUF6 Conversion Final EIS - Appendix H: Contractor Disclosure Statement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Disclosure Statement H-2 Paducah DUF 6 Conversion Final EIS Disclosure Statement H-3 Paducah DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Argonne National Laboratory (ANL) is the contractor assisting the U.S. Department of Energy (DOE) in preparing the environmental impact statement (EIS) for depleted UF 6 conversion. DOE is responsible for reviewing and evaluating the information and determining the appropriateness and adequacy of incorporating any data, analyses, or results in the EIS. DOE determines the scope and content of the EIS and supporting documents and will furnish direction to ANL, as appropriate, in preparing these documents. The Council on Environmental Quality's regulations (40 CFR 1506.5(c)), which have

36

Automated Nondestructive Assay of UF6 Cylinders: Detector Characterization and Initial Measurements  

SciTech Connect (OSTI)

International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders assumed to be representative of the facility's entire cylinder inventory. These measurements are time-consuming and assay only a small fraction of the total cylinder volume. An automated nondestructive assay system capable of providing enrichment measurements over the full volume of the cylinder could improve upon current verification practices in terms of manpower and assay accuracy. Pacific Northwest National Laboratory is developing an Integrated Cylinder Verification System (ICVS) intended for this purpose and has developed a field prototype of the nondestructive assay (NDA) components of an ICVS. The nondestructive assay methods would combine the 'traditional' enrichment-meter signature (i.e. 186-keV emission from 235U) as well as 'non-traditional' high-energy photon signatures derived from neutrons produced primarily by 19F({alpha},n) reactions. This paper describes the design, calibration and characterization of the NaI(Tl) and LaBr3(Ce) spectrometers utilized in the field prototype. An overview of a recent field measurement campaign is then provided, supported by example gamma-ray pulse-height spectra collected on cylinders of known enrichment.

Mace, Emily K.; Smith, Leon E.

2011-10-01T23:59:59.000Z

37

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PADUCAH, KENTUCKY, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Paducah DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

38

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

DRAFT ENVIRONMENTAL IMPACT DRAFT ENVIRONMENTAL IMPACT STATEMENT FOR CONSTRUCTION AND OPERATION OF A DEPLETED URANIUM HEXAFLUORIDE CONVERSION FACILITY AT THE PORTSMOUTH, OHIO, SITE DECEMBER 2003 U.S. Department of Energy-Oak Ridge Operations Office of Environmental Management Cover Sheet Portsmouth DUF 6 DEIS: December 2003 iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement (DEIS) for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831

39

Safeguards assessment of gamma-ray detection for process monitoring at natural uranium conversion facilities.  

E-Print Network [OSTI]

??Conversion, the process by which natural uranium ore (yellowcake) is puri?ed and converted through a series of chemical processes into uranium hexa?uoride gas (UF6), has (more)

Dewji, Shaheen Azim

2014-01-01T23:59:59.000Z

40

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

1 1 Paducah DUF 6 DEIS: December 2003 SUMMARY S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth,

42

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Portsmouth DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site (DOE/EIS-0360) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Ports_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

43

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Paducah DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process,

44

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

1: Main Text and Appendixes A-H 1: Main Text and Appendixes A-H June 2004 U.S. Department of Energy Office of Environmental Management Cover Sheet Paducah DUF 6 Conversion Final EIS iii COVER SHEET * RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process, contact:

45

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

SciTech Connect (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

46

Standard test method for determination of bromine and chlorine in UF6 and uranyl nitrate by X-Ray fluorescence (XRF) spectroscopy  

E-Print Network [OSTI]

1.1 This method covers the determination of bromine (Br) and chlorine (Cl) in uranium hexafluoride (UF6) and uranyl nitrate solution. The method as written covers the determination of bromine in UF6 over the concentration range of 0.2 to 8 ?g/g, uranium basis. The chlorine in UF6 can be determined over the range of 4 to 160 ?g/g, uranium basis. Higher concentrations may be covered by appropriate dilutions. The detection limit for Br is 0.2 ?g/g uranium basis and for Cl is 4 ?g/g uranium basis. 1.2 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2001-01-01T23:59:59.000Z

47

Parametric down conversion with a depleted pump as a model for classical information transmission capacity of quantum black holes  

E-Print Network [OSTI]

In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. \\textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump' source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump' mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump' source. We also analytically and dynamically verify the `Page information time' for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.

Paul M. Alsing

2015-02-04T23:59:59.000Z

48

Overview of Depleted Uranium Hexafluoride Management Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

49

Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Us Contact Us Contact Us Your comments, questions, and feedback about this web site and the Depleted UF6 Conversion EISs are welcomed. Please contact us with any questions or comments you may have about the Depleted UF6 Conversion EIS or the Depleted UF6 Management Program web site. Your questions or comments will be forwarded to the appropriate persons to answer or provide assistance. The purpose of this web site is to inform and involve the public in the Depleted UF6 Management Program, including the Depleted UF6 Conversion EIS process. We want it to meet your needs. Please feel free to make suggestions about additional features or services you would like to see on this web site, or ways you think we could improve the site. For general questions or comments about the Depleted UF6 Management Program web site or the Depleted UF6 Conversion EIS, contact us at: duf6webmaster@anl.gov.

50

Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program  

SciTech Connect (OSTI)

Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

Boyer, Brian D [Los Alamos National Laboratory; Whitaker, J. Michael [ORNL; White-Horton, Jessica L. [ORNL; Durbin, Karyn R. [NNSA

2012-07-12T23:59:59.000Z

51

Status Report on the Passive Neutron Enrichment Meter (PNEM) for UF6 Cylinder Assay  

SciTech Connect (OSTI)

The Passive Neutron Enrichment Meter (PNEM) is a nondestructive assay (NDA) system being developed at Los Alamos National Laboratory (LANL). It was designed to determine {sup 235}U mass and enrichment of uranium hexafluoride (UF{sub 6}) in product, feed, and tails cylinders (i.e., 30B and 48Y cylinders). These cylinders are found in the nuclear fuel cycle at uranium conversion, enrichment, and fuel fabrication facilities. The PNEM is a {sup 3}He-based neutron detection system that consists of two briefcase-sized detector pods. A photograph of the system during characterization at LANL is shown in Fig. 1. Several signatures are currently being studied to determine the most effective measurement and data reduction technique for unfolding {sup 235}U mass and enrichment. The system collects total neutron and coincidence data for both bare and cadmium-covered detector pods. The measurement concept grew out of the success of the Uranium Cylinder Assay System (UCAS), which is an operator system at Rokkasho Enrichment Plant (REP) that uses total neutron counting to determine {sup 235}U mass in UF{sub 6} cylinders. The PNEM system was designed with higher efficiency than the UCAS in order to add coincidence counting functionality for the enrichment determination. A photograph of the UCAS with a 48Y cylinder at REP is shown in Fig. 2, and the calibration measurement data for 30B product and 48Y feed and tails cylinders is shown in Fig. 3. The data was collected in a low-background environment, meaning there is very little scatter in the data. The PNEM measurement concept was first presented at the 2010 Institute of Nuclear Materials Management (INMM) Annual Meeting. The physics design and uncertainty analysis were presented at the 2010 International Atomic Energy Agency (IAEA) Safeguards Symposium, and the mechanical and electrical designs and characterization measurements were published in the ESARDA Bulletin in 2011.

Miller, Karen A. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Marlow, Johnna B. [Los Alamos National Laboratory

2012-05-02T23:59:59.000Z

52

RESULTS FROM A DEMONSTRATION OF RF-BASED UF6 CYLINDER ACCOUNTING AND TRACKING SYSTEM INSTALLED AT A USEC FACILITY  

SciTech Connect (OSTI)

Approved industry-standard cylinders are used globally for storing and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants and processing facilities. To verify that no diversion or undeclared production of nuclear material involving UF{sub 6} cylinders at the facility has occurred, the International Atomic Energy Agency (IAEA) conducts periodic, labor-intensive physical inspections to validate facility records, cylinder identities, and cylinder weights. A reliable cylinder monitoring system that would improve overall inspector effectiveness would be a significant improvement to the current international safeguards inspection regime. Such a system could include real-time unattended monitoring of cylinder movements, situation-specific rules-based event detection algorithms, and the capability to integrate with other types of safeguards technologies. This type of system could provide timely detection of abnormal operational activities that may be used to ensure more appropriate and efficient responses by the IAEA. A system of this type can reduce the reliance on paper records and have the additional benefit of facilitating domestic safeguards at the facilities at which it is installed. A radio-frequency (RF)-based system designed to track uranium hexafluoride (UF{sub 6}) cylinders during processing operations was designed, assembled, and tested at the United States Enrichment Corporation (USEC) facility in Portsmouth, Ohio, to determine the operational feasibility and durability of RF technology. The overall objective of the effort was to validate the robustness of RF technology for potential use as a future international safeguards tool for tracking UF6 cylinders at uranium-processing facilities. The results to date indicate that RF tags represent a feasible technique for tracking UF{sub 6} cylinders in operating facilities. Additional work will be needed to improve the operational robustness of the tags for repeated autoclave processing and to add tamper-indicating and data authentication features to some of the pertinent system components. Future efforts will focus on these needs along with implementing protocols relevant to IAEA safeguards. The work detailed in this report demonstrates the feasibility of constructing RF devices that can survive the operational rigors associated with the transportation, storage, and processing of UF6 cylinders. The system software specially designed for this project is called Cylinder Accounting and Tracking System (CATS). This report details the elements of the CATS rules-based architecture and its use in safeguards-monitoring and asset-tracking applications. Information is also provided on improvements needed to make the technology ready, as well as options for improving the safeguards aspects of the technology. The report also includes feedback from personnel involved in the testing, as well as individuals who could utilize an RF-based system in supporting the performance of their work. The system software was set up to support a Mailbox declaration, where a declaration can be made either before or after cylinder movements take place. When the declaration is made before cylinders move, the operators must enter this information into CATS. If the IAEA then shows up unexpectedly at the facility, they can see how closely the operational condition matches the declaration. If the declaration is made after the cylinders move, this provides greater operational flexibility when schedules are interrupted or are changed, by allowing operators to declare what moves have been completed. The IAEA can then compare where cylinders are with where CATS or the system says they are located. The ability of CATS to automatically generate Mailbox declarations is seen by the authors as a desirable feature. The Mailbox approach is accepted by the IAEA but has not been widely implemented (and never in enrichment facilities). During the course of this project, we have incorporated alternative methods for implementation.

Pickett, Chris A [ORNL; Kovacic, Donald N [ORNL; Morgan, Jim [Innovative Solutions; Younkin, James R [ORNL; Carrick, Bernie [USEC; Ken, Whittle [USEC; Johns, R E [Pacific Northwest National Laboratory (PNNL)

2008-09-01T23:59:59.000Z

53

FAQ 15-What are the dimensions of a depleted uranium hexafluoride cylinder?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the dimensions of a depleted uranium hexafluoride cylinder? are the dimensions of a depleted uranium hexafluoride cylinder? What are the dimensions of a depleted uranium hexafluoride cylinder? Several different cylinder types are in use, although the vast majority of cylinders are designed to contain 14-tons (12-metric tons) of depleted UF6. The 14-ton-capacity cylinders are 12 ft (3.7 m) long by 4 ft (1.2 m) in diameter, with most having an initial wall thickness of 5/16 in. (0.79 cm) of steel. The cylinders have external stiffening rings that provide support. Lifting lugs for handling are attached to the stiffening rings. A small percentage of the cylinders have skirted ends (extensions of the cylinder walls past the rounded ends of the cylinder). Each cylinder has a single valve for filling and emptying located on one end at the 12 o'clock position. Similar, but slightly smaller, cylinders designed to contain 10 tons (9 metric tons) of depleted UF6 are also in use. Cylinders are manufactured in accordance with an American National Standards Institute standard (ANSI N14.1, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport) as specified in 49 CFR 173.420, the federal regulations governing transport of depleted UF6.

54

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

Paducah DUF Paducah DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Paducah, Kentucky, Site Vicinity Summary S-18 Paducah DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Paducah Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Paducah DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Paducah Conversion Facility Summary S-21 Paducah DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Paducah Summary S-28 Paducah DUF 6 Conversion Final EIS FIGURE S-6 Areas of Potential Impact Evaluated for Each Alternative Alternatives 2-7 Paducah DUF 6 Conversion Final EIS

55

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

56

Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of the Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

57

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Portsmouth, Ohio, Site Vicinity Summary S-18 Portsmouth DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Portsmouth Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Portsmouth DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Portsmouth Conversion Facility Summary S-21 Portsmouth DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Portsmouth Summary S-25 Portsmouth DUF 6 Conversion Final EIS FIGURE S-6 Potential Locations for Construction of a New Cylinder Storage Yard at Portsmouth

58

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

59

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

60

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

SciTech Connect (OSTI)

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transcript of Public Scoping Meeting for Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities at Portsmouth, Ohio, and Paducah, Kentucky, held Nov. 28, 2001, Piketon, Ohio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. DEPARTMENT OF ENERGY ENVIRONMENTAL 2 IMPACT STATEMENT 3 FOR DEPLETED URANIUM HEXAFLUORIDE 4 CONVERSION FACILITIES 5 AT PORTSMOUTH, OHIO AND PADUCAH, KENTUCKY 6 7 SCOPING MEETING 8 9 November 28, 2001. 10 11 6:00 p.m. 12 13 Riffe Beavercreek Vocational School 14 175 Beavercreek Road 15 Piketon, Ohio 45661 16 17 FACILITATORS: Darryl Armstrong 18 Harold Munroe 19 Kevin Shaw 20 Gary Hartman 21 22 23 24 Professional Reporters, Inc. (614) 460-5000 or (800) 229-0675 2 1 -=0=- 2 PROCEEDINGS 3 -=0=- 4 MR. ARMSTRONG: I have 6:00, 5 according to my watch. Good evening, ladies 6 and gentlemen. If you'll please take your 7 seats, we'll get started. This meeting is 8 now officially convened. 9 On behalf of DOE, we thank you for 10 attending the environmental impact 11 statement, or EIS, scoping meeting this 12 evening for the depleted uranium conversion 13 facilities. My name is Darryl Armstrong. I 14

62

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Broader source: Energy.gov (indexed) [DOE]

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Public Law 107-206 A-2 Portsmouth DUF 6 Conversion Final EIS Public Law 107-206 A-3 Portsmouth DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Section 502 of Public Law 107-206, "2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States" (signed by the President 08/02/2002) SEC. 502. Section 1 of Public Law 105-204 (112 Stat. 681) is amended - (1) in subsection (b), by striking "until the date" and all that follows and inserting "until the date that is 30 days after the date on which the Secretary of Energy awards a contract under

63

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

Broader source: Energy.gov (indexed) [DOE]

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Public Law 107-206 A-2 Paducah DUF 6 Conversion Final EIS Public Law 107-206 A-3 Paducah DUF 6 Conversion Final EIS APPENDIX A: TEXT OF PUBLIC LAW 107-206 PERTINENT TO THE MANAGEMENT OF DUF 6 Section 502 of Public Law 107-206, "2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States" (signed by the President 08/02/2002) SEC. 502. Section 1 of Public Law 105-204 (112 Stat. 681) is amended - (1) in subsection (b), by striking "until the date" and all that follows and inserting "until the date that is 30 days after the date on which the Secretary of Energy awards a contract under

64

Depleted uranium plasma reduction system study  

SciTech Connect (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

65

Biological assessment of the effects of construction and operation of a depleted uranium hexafluoride conversion facility at the Paducah, Kentucky, site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF6 inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This biological assessment (BA) has been prepared by DOE, pursuant to the National Environmental Policy Act of 1969 (NEPA) and the Endangered Species Act of 1974, to evaluate potential impacts to federally listed species from the construction and operation of a conversion facility at the DOE Paducah site.

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

66

Thermal Reactions of Uranium Metal, UO2, U3O8, UF4, and UO2F2 with NF3 to Produce UF6  

SciTech Connect (OSTI)

he objective of this paper is to demonstrate that NF3 fluorinates uranium metal, UO2, UF4, UO3, U3O8, and UO2F22H2O to produce the volatile UF6 at temperatures between 100 and 500?C. Thermogravimetric reaction profiles are described that reflect changes in the uranium oxidation state and discrete chemical speciation. Differences in the onset temperatures for each system indicate that NF3-substrate interactions are important for the temperature at which NF3 reacts: U metal > UO3 > UO2 > UO2F2 > UF4 and in fact may indicate different fluorination mechanisms for these various substrates. These studies demonstrate that NF3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in oft-proposed actinide volatility reprocessing.

McNamara, Bruce K.; Scheele, Randall D.; Kozelisky, Anne E.; Edwards, Matthew K.

2009-11-01T23:59:59.000Z

67

Transcript of Public Scoping Meeting for Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities at Portsmouth, Ohio, and Paducah, Kentucky, held Dec. 4, 2001, Oak Ridge, Tennessee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRANSCRIPT TRANSCRIPT OF MEETING ______________________________________________________ FACILITATOR: MR. DARRYL ARMSTRONG SPEAKER: MR. DALE RECTOR SPEAKER: MR. NORMAN MULVENON SPEAKER: MS. SUSAN GAWARECKI SPEAKER: MR. GENE HOFFMAN DECEMBER 4, 2001 ____________________________________________________ JOAN S. ROBERTS COURT REPORTER P.O. BOX 5924 OAK RIDGE, TENNESSEE 37831 (865-457-4027) 2 1 MR. ARMSTRONG: TAKE YOUR SEATS AND WE 2 WILL BEGIN THE MEETING. GOOD EVENING, LADIES 3 AND GENTLEMEN. IF YOU WILL, WE WILL START, THE 4 TIME IS NOW 6:02 P.M. THE MEETING IS 5 OFFICIALLY CONVENED. ON BEHALF OF THE 6 DEPARTMENT OF ENERGY, WE THANK YOU FOR 7 ATTENDING THIS ENVIRONMENTAL IMPACT STATEMENT 8 SCOPING MEETING, ALSO KNOWN AS AN EIS SCOPING 9 MEETING, FOR THE DEPLETED URANIUM CONVERSION 10 FACILITIES. MY NAME IS DARRYL ARMSTRONG. I'M 11 AN INDEPENDENT AND NEUTRAL FACILITATOR HIRED BY 12 AGENCIES

68

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

69

Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

Van Lonkhuyzen, R.

2005-09-09T23:59:59.000Z

70

Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

71

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

72

FAQ 27-Are there any currently-operating disposal facilities that can  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? Are there any currently-operating disposal facilities that can accept all of the depleted uranium oxide that would be generated from conversion of DOE's depleted UF6 inventory? With respect to available capacity, three sites could accept the entire inventory of depleted uranium oxide: the Department of Energy's (DOE's) Hanford site in Washington State, DOE's Nevada Test Site, or EnergySolution Clive, Utah Facility, a commercial site. Each of these sites would have sufficient capacity for either the grouted or ungrouted oxide forms of depleted uranium (for the two DOE sites, this also takes into account other projected disposal volumes through the year 2070).

73

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

74

Charge Depleting:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.5 seconds 0.5 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 83.2 MPH Acceleration 1 Mile Maximum Speed: 100.6 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 10.6 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 82.8 MPH Acceleration 1 Mile Maximum Speed: 101.9 MPH Brake Test @ 60 MPH Distance Required: 145.1 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6,10 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 10 118.5 2.85 10 53.0 1.80 20 116.8 5.49 20 56.6 3.37 40 116.0 10.50 40 58.0 6.38 60 90.7 11.34 60 55.3 9.48 80 76.6 11.34 80 51.4 11.11 100 68.0 11.34 100 47.2 11.13 200 50.9 11.34 200 38.7 11.13 Fuel Economy with A/C Off 1 Cold Start Charge Depleting 2 : Fuel Economy: 119.7 MPG AC kWh Consumed 7 : 0.282 kWh/mi Charge Depleting

75

Depleted Uranium Hexafluoride Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

76

Depleted uranium hexafluoride: Waste or resource?  

SciTech Connect (OSTI)

the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

1995-07-01T23:59:59.000Z

77

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

78

Documents: DUF6 Conversion EIS Supporting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

79

Depleted Uranium Health Effects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

80

Accidents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Accidents Health Risks » Accidents DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Accidents A discussion of accidents involving depleted UF6 storage cylinders, including possible health effects, accident risk, and accident history. Potential Health Effects from Cylinder Accidents Accidents involving depleted UF6 storage cylinders are a concern because they could result in an uncontrolled release of UF6 to the environment, which could potentially affect the health of workers and members of the public living downwind of the accident site. Accidental release of UF6 from storage cylinders or during processing activities could result in injuries or fatalities. The most immediate hazard after a release would be from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Next Generations Safeguards Initiative: The Life of a Cylinder  

SciTech Connect (OSTI)

The U.S. Department of Energy/National Nuclear Security Administration Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a program based on a five-year plan to investigate the concept of a global monitoring scheme that uniquely identifies uranium hexafluoride (UF6) cylinders and their locations throughout the life cycle. A key initial activity in the NGSI program is to understand and document the 'life of a UF6 cylinder' from cradle to grave. This document describes the life of a UF6 cylinder and includes cylinder manufacture and procurement processes as well as cylinder-handling and operational practices at conversion, enrichment, fuel fabrication, and depleted UF6 conversion facilities. The NGSI multiple-laboratory team is using this document as a building block for subsequent tasks in the five-year plan, including development of the functional requirements for cylinder-tagging and tracking devices.

Morgan, James B [ORNL; White-Horton, Jessica L [ORNL

2012-01-01T23:59:59.000Z

82

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

83

Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discovery of Uranium Discovery of Uranium Uranium was discovered in 1789 by Martin Klaproth, a German chemist, who isolated an oxide of uranium while analyzing pitchblende samples from the Joachimsal silver mines in the former Kingdom of Bohemia located in the present day Czech Republic. more facts >> Mailing List Signup Receive e-mail updates about this project and web site. your e-mail address Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home » Documents Search Documents: Search PDF Documents View a list of all documents Depleted UF6 Management Program Documents Downloadable documents about depleted UF6 management and related topics, including Depleted UF6 Conversion and Programmatic EIS documents

84

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the...

85

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

86

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

87

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network [OSTI]

Enrichment (MJ/g U-235) Uranium Conversion, Fabrication &Uranium Milling UF6 Conversion Uranium Enrichment (Gaseous

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

88

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

89

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

90

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network [OSTI]

quantities of depleted uranium hexafluoride (DUF 6 ), known85 kg of enriched uranium hexafluoride (UF 6 ) and ?915 kg

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

91

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

92

Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.  

SciTech Connect (OSTI)

This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

2001-01-24T23:59:59.000Z

93

Public Involvement Opportunities for the DUF6 Conversion Facility EISs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities Opportunities Public Involvement Opportunities The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride is closed. Sorry! The public comment period for the Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride is closed. The public comment form is no longer available. For information on other public involvement opportunities, please visit Public Involvement Opportunities. Ways to Provide Comments Comments may be submitted via the Public Comment Form on this Web site. Comments can also be mailed to: DU Disposal Supplement Analysis Comment Argonne National Laboratory

94

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells Andras G. Pattantyus-Abraham,, Illan J and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada-circuit voltage (Voc) and fill factor (FF). The power conversion efficiency ( ) for an in- put solar intensity

95

DOE Selects Contractor for Depleted Hexafluoride Conversion Project...  

Broader source: Energy.gov (indexed) [DOE]

and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah...

96

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents [OSTI]

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

97

Polyethylene Encapsulated Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

98

Supplemental Systems for Unattended UF6 Cylinder Monitoring  

SciTech Connect (OSTI)

Cylinder assay and mass measurements, the mainstay of enrichment plant verification efforts have historically been performed by International Atomic Energy Agency (IAEA) inspectors using portable equipment. For the sake of efficiency, accuracy, and timeliness, such equipment is being supplanted by unattended measurement stations. Ancillary systems must be employed with such stations to ensure that measured parameters are properly recorded, cylinders are positively identified, operations occur according to procedure, and no tampering takes place in the inspectors absence. Depending on the facility, it may prove feasible to track cylinders from the measurement vicinity to their storage locations using surveillance. This paper will provide a cursory description of the various subsystems associated with Pacific Northwest National Laboratorys Integrated Cylinder Verification Station and how inattention to the requirements of such systems could seriously diminish the capability of the integrated whole.

Curtis, Michael M.

2010-08-11T23:59:59.000Z

99

UF6 overfilling prevention at Eurodif production Georges Besse plant  

SciTech Connect (OSTI)

Risk of overfilling exists on different equipments of Georges BESSE Plant: cylinders, desublimers and intermediate tanks. The preventive measures are composed of technical devices: desublimers weighing, load monitoring alarms, automatic controls ... and procedures, training, safety organization. In thirteen years of operation, some incidents have occurred but none of them has caused any personal injuries. They are related and discussed. The main factors involved in the Sequoyah fuel facility accident on 1/4/1986 have been analyzed and taken into account.

Reneaud, J.M. [Eurodif Production, Pierrelatte (France)

1991-12-31T23:59:59.000Z

100

Ozone Depletion and Global Warming.  

E-Print Network [OSTI]

??Abstract This thesis examines global warming and the possible contribution that ozone depletion provides to this warming. An examination is performed to determine the extent (more)

Fow, Alista John

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conversion Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

102

Biomass Conversion  

Science Journals Connector (OSTI)

Accounting for all of the factors that go into energy demand (population, vehicle miles traveled per ... capita, vehicle efficiency) and land required for energy production (biomass land yields, biomass conversion

Stephen R. Decker; John Sheehan

2012-01-01T23:59:59.000Z

103

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Hllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

104

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Broader source: Energy.gov (indexed) [DOE]

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

105

Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities  

SciTech Connect (OSTI)

Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

Dewji, Shaheen A [ORNL] [ORNL; Lee, Denise L [ORNL] [ORNL; Croft, Stephen [ORNL] [ORNL; McElroy, Robert Dennis [ORNL] [ORNL; Hertel, Nolan [Georgia Institute of Technology] [Georgia Institute of Technology; Chapman, Jeffrey Allen [ORNL] [ORNL; Cleveland, Steven L [ORNL] [ORNL

2013-01-01T23:59:59.000Z

106

Fully depleted back illuminated CCD  

DOE Patents [OSTI]

A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

Holland, Stephen Edward (Hercules, CA)

2001-01-01T23:59:59.000Z

107

Portsmouth DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Portsmouth DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Portsmouth DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

108

Paducah DUF6 Conversion Final EIS - Appendix E: Impacts Associated with HF and CaF2 Conversion Product Sale and Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE HF and CaF 2 Conversion Products E-2 Paducah DUF 6 Conversion Final EIS HF and CaF 2 Conversion Products E-3 Paducah DUF 6 Conversion Final EIS APPENDIX E: IMPACTS ASSOCIATED WITH HF AND CaF 2 CONVERSION PRODUCT SALE AND USE E.1 INTRODUCTION During the conversion of the depleted uranium hexafluoride (DUF 6 ) inventory to depleted uranium oxide, products having some potential for sale to commercial users would be produced. These products would include aqueous hydrogen fluoride (HF) and calcium fluoride (CaF 2 , commonly referred to as fluorspar). These products are routinely used as commercial materials, and an investigation into their potential reuse was done; results are included as part of

109

Potential Uses of Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

110

FY 12 Award Fee Determination Scorecard Contractor: B&W Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fee The first PBI was based on the state of readiness of the Paducah and Piketon Depleted Uranium Hexafluoride (DUF 6 ) conversion plants as of September 30, 2011. BWCS met...

111

Paducah DUF6 Conversion Final EIS - Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF 6 stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the Federal Register (FR) on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF 6 conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in

112

Physics of Fully Depleted CCDs  

E-Print Network [OSTI]

In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

Holland, S E; Kolbe, W F; Lee, J S

2014-01-01T23:59:59.000Z

113

Final DUF6 PEIS: Volume 2: Appendix J; Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Depleted UF 6 PEIS J-i APPENDIX J: ENVIRONMENTAL IMPACTS OF TRANSPORTATION OF UF 6 CYLINDERS, URANIUM OXIDE, URANIUM METAL, AND ASSOCIATED MATERIALS Transportation Depleted UF 6 PEIS J-ii Transportation Depleted UF 6 PEIS J-iii CONTENTS (APPENDIX J) NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-vi J.1 SUMMARY OF TRANSPORTATION OPTION IMPACTS . . . . . . . . . . . . . . . . . . J-3 J.2 TRANSPORTATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.1 Truck Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.2 Rail Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-9 J.2.3 Transportation Options Considered But Not Analyzed in Detail . . . . . . . . . . J-9 J.3 IMPACTS OF OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-10 J.3.1

114

Depleted Argon from Underground Sources  

SciTech Connect (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

115

BETO Conversion Program  

Broader source: Energy.gov [DOE]

Breakout Session 2AConversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

116

Photoelectrochemical solar energy conversion  

Science Journals Connector (OSTI)

In the present paper the progress in the field of solar energy conversion for the production of electricity and storable ... critically analyzed in view of their stability and conversion efficiency. A number of factors

Rdiger Memming

1988-01-01T23:59:59.000Z

117

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

118

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

119

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat, says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

120

Documents: Portsmouth DUF6 Conversion Facility Final EIS and ROD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF6 Final EIS Portsmouth DUF6 Final EIS Search Documents: Search PDF Documents View a list of all documents Portsmouth DUF6 Conversion Facility Final EIS and Record of Decision Full text of the Record of Decision and Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site. The full text of the Record of Decision and Portsmouth DUF6 Conversion Facility Final EIS and ROD is available for downloading or browsing in Adobe Acrobat PDF format through the links below. Record of Decision PDF Icon Portsmouth DUF6 Conversion Facility: Record of Decision 3.8 MB details PDF Icon Portsmouth DUF6 Conversion Facility: Record of Decision: As Published in the Federal Register 82 KB details

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Depleted argon from underground sources  

SciTech Connect (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

122

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

a novel method of solar energy conversion that can lead tofundamentals of plasmonic energy conversion are reviewed in3. Plasmonic energy conversion fundamentals Surface plasmons

Clavero, Cesar

2014-01-01T23:59:59.000Z

123

Iterated multidimensional wave conversion  

SciTech Connect (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

124

Portsmouth DUF6 Conversion Final EIS - Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS SUMMARY 1 S.1 INTRODUCTION This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF 6 ) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF 6 stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF 6 from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and

125

Selection of a management strategy for depleted uranium hexafluoride  

SciTech Connect (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

126

Inhibition of lytic infection of pseudorabies virus by arginine depletion  

SciTech Connect (OSTI)

Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.

Wang, H.-C. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Kao, Y.-C. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Chang, T-J. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Wong, M.-L. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China)]. E-mail: mlwong@dragon.nchu.edu.tw

2005-08-26T23:59:59.000Z

127

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

128

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

129

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

130

Use of the UNCLE Facility to Assess Integrated Online Monitoring Systems for Detection of Diversions at Uranium Conversion Facilities  

SciTech Connect (OSTI)

Historically, the approach to safeguarding nuclear material in the front end of the fuel cycle was implemented only at the stage when UF6 was declared as feedstock for enrichment plants. Recent International Atomic Energy Agency (IAEA) circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exist. Oak Ridge National Laboratory has developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions for a purified uranium-bearing aqueous stream exiting the solvent extraction process conducted in a natural uranium conversion plant (NUCP) operating at 6000 MTU/year. Monitoring instruments, including the 3He passive neutron detector developed at Los Alamos National Laboratory and the Endress+Hauser Promass 83F Coriolis meter, have been tested at UNCLE and field tested at Springfields. The field trials demonstrated the need to perform full-scale equipment testing under controlled conditions prior to field deployment of operations and safeguards monitoring at additional plants. Currently, UNCLE is testing neutron-based monitoring for detection of noncompliant activities; however, gamma-ray source term monitoring is currently being explored complementary to the neutron detector in order to detect undeclared activities in a more timely manner. The preliminary results of gamma-ray source term modeling and monitoring at UNCLE are being analyzed as part of a comprehensive source term and detector benchmarking effort. Based on neutron source term detection capabilities, alternative gamma-based detection and monitoring methods will be proposed to more effectively monitor NUCP operations in verifying or detecting deviations from declared conversion activities.

Dewji, Shaheen A [ORNL; Chapman, Jeffrey Allen [ORNL; Lee, Denise L [ORNL; Rauch, Eric [Los Alamos National Laboratory (LANL); Hertel, Nolan [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

131

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of g), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting 1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

132

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

133

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Hllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

134

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb

2002-01-01T23:59:59.000Z

135

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

136

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

137

Processing and Conversion  

Broader source: Energy.gov [DOE]

The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts...

138

Algae Harvest Energy Conversion  

Science Journals Connector (OSTI)

Resolution of many workshops on algae harvest energy conversion is that low productivity, high capital intensity ... and maintenance, respiration, and photoinhibition are few factors militating against viability ...

Yung-Tse Hung Ph.D.; P.E.; DEE; O. Sarafadeen Amuda Ph.D.

2010-01-01T23:59:59.000Z

139

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network [OSTI]

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

140

Photovoltaic Energy Conversion  

E-Print Network [OSTI]

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Make solar cells more efficient Theoretical energy conversion efficiency limit of single junction-bandgap photons are not absorbed: Carrier relaxation to band edges: Photon energy exceeding bandgap is lost

Glashausser, Charles

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Depleted Uranium (DU) Cermet Waste Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

142

Neutral depletion and the helicon density limit  

SciTech Connect (OSTI)

It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States)

2013-12-15T23:59:59.000Z

143

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Jones and w.s. Fong, Biomass Conversion of Biomass to Fuels11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII RonaldLBL-11902 Biomass Energy Conversion in Hawaii Ronald 1.

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

144

Wave Energy Conversion Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

145

Avatar augmented online conversation  

E-Print Network [OSTI]

One of the most important roles played by technology is connecting people and mediating their communication with one another. Building technology that mediates conversation presents a number of challenging research and ...

Vilhjlmsson, Hannes Hgni

2003-01-01T23:59:59.000Z

146

Modern Biomass Conversion Technologies  

Science Journals Connector (OSTI)

This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may...2...capture and sequestration technology (CCS). In doing so, special at...

Andre Faaij

2006-03-01T23:59:59.000Z

147

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network [OSTI]

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

148

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

of applications, notably energy conversion. As researchnanowires for energy conversion. Chemical Reviews, 2010.Implications for solar energy conversion. Physical Review

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

149

Structured luminescence conversion layer  

DOE Patents [OSTI]

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

150

Conversion Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation of new and converted filesdatabases; coordinates the...

151

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of solar energy into electricity in photovoltaic cells orsolar energy conversion aimed at photovoltaic applicationsenergy conversion, opening a new venue for photovoltaic and

Clavero, Cesar

2014-01-01T23:59:59.000Z

152

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

of carriers allows maintaining the energy conversionenergy conversion 8 Timescale of charge separation, carrierin this energy conversion method, i.e. carrier regeneration

Clavero, Cesar

2014-01-01T23:59:59.000Z

153

Nuclear conflict and ozone depletion Quick summary  

E-Print Network [OSTI]

Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

Toohey, Darin W.

154

DUF6 Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DUF6 Guide DUF6 Guide Depleted UF6 Guide An introduction to uranium and its compounds, depleted uranium, and depleted uranium hexafluoride (depleted UF6). Uranium has unique properties that make it valuable as an energy source, yet potentially hazardous to human health and the environment. The Guide provides basic information about the properties of uranium compounds and the uranium enrichment process that produces depleted UF6. This information will help you understand the unique challenges involved in managing DOE's inventory of depleted UF6 in a safe and efficient manner. Overview Presentation DUF6 Health Risks Uranium and Its Compounds DUF6 Environmental Risks Depleted Uranium DUF6 Videos Uranium Hexafluoride Uranium Quick Facts DUF6 Production and Handling

155

Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

123 123 Federal Register / Vol. 66, No. 181 / Tuesday, September 18, 2001 / Notices Section 615-Procedural Safeguards Topic Addressed: Due Process Hearings * Letter dated April 19, 2001 to Virginia Department of Education Director Judith A. Douglas, regarding whether a State educational agency is required to convene a due process hearing initiated by someone other than the parent of a child with a disability or a public agency. Topic Addressed: Surrogate Parents * Letter dated April 16, 2001 to Pinal County, Arizona Deputy County Attorney Linda L. Harant, regarding the appointment of surrogate parents for children who are wards of a tribal court. Topic Addressed: Student Discipline * Letter dated April 16, 2001 to Professor Perry A. Zirkel, regarding the calculation of disciplinary removals of

156

High temperature experiments on a 4 tons UF6 container TENERIFE program  

SciTech Connect (OSTI)

The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

1991-12-31T23:59:59.000Z

157

Field Trial of LANL On-Line Advanced Enrichment Monitor for UF6 GCEP  

SciTech Connect (OSTI)

The outline of this presentation is: (1) Technology basis of on-line enrichment monitoring; (2) Timescale of trial; (3) Description of installed equipment; (4) Photographs; (5) Results; (6) Possible further development; and (7) Conclusions. Summary of the good things about the Advanced Enrichment Monitor (AEM) performance is: (1) High accuracy - normally better than 1% relative, (2) Active system as accurate as passive system, (3) Fast and accurate detection of enrichment changes, (4) Physics is well understood, (5) Elegant method for capturing pressure signal, and (6) Data capture is automatic, low cost and fast. A couple of negative things are: (1) Some jumps in measured passive enrichment - of around +2% relative (due to clock errors?); and (2) Data handling and evaluation is off-line, expensive and very slow. Conclusions are: (1) LANL AEM is being tested on E23 plant at Capenhurst; (2) The trial is going very well; (3) AEM could detect production of HEU at potentially much lower cost than existing CEMO; (4) AEM can measure {sup 235}U assay accurately; (5) Active system using X-Ray source would avoid need for pressure measurement; (6) Substantial work lies ahead to go from current prototype to a production instrument.

Ianakiev, Kiril D. [Los Alamos National Laboratory; Lombardi, Marcie [Los Alamos National Laboratory; MacArthur, Duncan W. [Los Alamos National Laboratory; Parker, Robert F. [Los Alamos National Laboratory; Smith, Morag K. [Los Alamos National Laboratory; Keller, Clifford [Los Alamos National Laboratory; Friend, Peter [URENCO; Dunford, Andrew [URENCO

2012-07-13T23:59:59.000Z

158

E-Print Network 3.0 - activities uf6 cylinder Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science; Ohta, Shigemi - Theory Group, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) Collection: Environmental Sciences and Ecology...

159

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2012 deliveries 4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2012 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries Uranium Concentrate Natural UF6 Enriched UF6 Natural UF6 and Enriched UF6 Total U.S.-Origin Uranium Purchases W W W W 9,807 Weighted-Average Price W W W W 59.44 Foreign-Origin Uranium Purchases W W W W 47,713 Weighted-Average Price W W W W 54.07 Total Purchases 28,642 W W 28,878 57,520 Weighted-Average Price 54.20 W W 55.80 54.99 W = Data withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components because of independent rounding. Weighted-average prices are not adjusted for inflation. Natural UF6 is uranium hexafluoride. The natural UF6 and enriched UF6 quantity represents only the U3O8 equivalent uranium-component quantity specified in the contract for each delivery of natural UF6 and enriched UF6. The natural UF6 and enriched UF6 weighted-average price represent only the U3O8 equivalent uranium-component price specified in the contract for each delivery of natural UF6 and enriched UF6, and does not include the conversion service and enrichment service components.

160

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Digital optical conversion module  

DOE Patents [OSTI]

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

162

Depleted Uranium Uses: Regulatory Requirements and Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

163

Improvements in EBR-2 core depletion calculations  

SciTech Connect (OSTI)

The need for accurate core depletion calculations in Experimental Breeder Reactor No. 2 (EBR-2) is discussed. Because of the unique physics characteristics of EBR-2, it is difficult to obtain accurate and computationally efficient multigroup flux predictions. This paper describes the effect of various conventional and higher order schemes for group constant generation and for flux computations; results indicate that higher-order methods are required, particularly in the outer regions (i.e. the radial blanket). A methodology based on Nodal Equivalence Theory (N.E.T.) is developed which allows retention of the accuracy of a higher order solution with the computational efficiency of a few group nodal diffusion solution. The application of this methodology to three-dimensional EBR-2 flux predictions is demonstrated; this improved methodology allows accurate core depletion calculations at reasonable cost. 13 refs., 4 figs., 3 tabs.

Finck, P.J.; Hill, R.N.; Sakamoto, S.

1991-01-01T23:59:59.000Z

164

Carbon sequestration in depleted oil shale deposits  

SciTech Connect (OSTI)

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

165

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

166

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

167

Uranio impoverito: perch? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-05-28T23:59:59.000Z

168

Chemical and radiochemical characterization of depleted uranium in contaminated soils  

Science Journals Connector (OSTI)

The main results of chemical and radiochemical characterization and fractionation of depleted uranium in soils contaminated during the Balkan conflict ... the paper. Alpha-spectrometric analysis of used depleted

M. B. Radenkovi?; A. B. Kandi?; I. S. Vukana?

2007-09-01T23:59:59.000Z

169

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...transmission of genetic damage by depleted uranium and tungsten alloy Alexandra Miller...The radioactive heavy metal, depleted uranium (DU), an alpha-particle emitter...fragments will affect the long-term health of offspring conceived by these...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

170

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 May 2005...Proc Amer Assoc Cancer Res, Volume 46, 2005 Depleted uranium internal contamination...Proc Amer Assoc Cancer Res, Volume 46, 2005] 2080 Depleted uranium is a heavy metal...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

171

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Proc Amer Assoc Cancer Res, Volume 47, 2006 Depleted uranium - induced malignant...Proc Amer Assoc Cancer Res, Volume 47, 2006] 5215 Depleted uranium (DU) has been...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

172

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

173

Numerical simulation for formed projectile of depleted uranium alloy  

Science Journals Connector (OSTI)

The numerical simulation for forming projectile of depleted uranium alloy with the SPH (Smooth Particle Hydrodynamic ... . To describe the deformed behaviors of the depleted uranium alloy under high pressure and ...

Song Shun-cheng; Gao Ping; Cai Hong-nian

2003-09-01T23:59:59.000Z

174

Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent regime  

E-Print Network [OSTI]

Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent of a disordered nanowire in the presence of an external gate electrode which can be used for depleting the carrier and Gardner for describing the energy dependence of the localization length around the band edges allowing us

Recanati, Catherine

175

RESEARCH ARTICLE Open Access Susceptibility to ATP depletion of primary  

E-Print Network [OSTI]

RESEARCH ARTICLE Open Access Susceptibility to ATP depletion of primary proximal tubular cell subjected to ATP depletion using antimycin A. Results: Surprisingly, there was no difference in the amount, Viability, Survival, Apoptosis knockout mice, shRNA, ATP depletion, Metabolic stress, Antimycin Background

Paris-Sud XI, Université de

176

Energy Conversion to Electricity  

Science Journals Connector (OSTI)

30 May 1974 research-article Energy Conversion to Electricity D. Clark...continuing growth in the demand for energy, and of electricity as the route...the electricity share of the total energy market and of the substitution of electricity...

1974-01-01T23:59:59.000Z

177

Solar Energy Conversion  

Science Journals Connector (OSTI)

If solar energy is to become a practical alternative to fossil fuels we must have efficient ways to convert photons into electricity fuel and heat. The need for better conversion technologies is a driving force behind many recent developments in biology materials and especially nanoscience.

George W. Crabtree; Nathan S. Lewis

2008-01-01T23:59:59.000Z

178

Campus Conversations: CLIMATE CHANGE  

E-Print Network [OSTI]

review and input from scholars with expertise in climate change and communication. #12; Welcome Thank youCampus Conversations: CLIMATE CHANGE AND THE CAMPUS Southwestern Pennsylvania Program booklet is an adaptation and updating of Global Warming and Climate Change, a brochure developed in 1994

Attari, Shahzeen Z.

179

Solar energy conversion.  

SciTech Connect (OSTI)

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

180

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind energy conversion system  

DOE Patents [OSTI]

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

182

Management Responsibilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management Responsibilities Management Responsibilities Depleted UF6 Management Responsibilities DOE has responsibility for safe and efficient management of approximately 700,000 metric tons of depleted UF6. Organizational Responsibilities In the United States, the U.S. Department of Energy is responsible for managing all the depleted uranium that has been generated by the government and has been declared surplus to national defense needs. In addition, as a result of two memoranda of agreement that have been signed between the DOE and USEC, the DOE has assumed management responsibility for approximately 145,000 metric tons of depleted UF6 that has been or will be generated by USEC. Any additional depleted UF6 that USEC generates will be USEC's responsibility to manage. DOE Management Responsibility

183

Session: Energy Conversion  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

184

Hydrofluoric Acid Corrosion Testing on Unplated and Electroless Gold-Plated Samples  

SciTech Connect (OSTI)

The Molten Salt Reactor Experiment (MSRE) remediation requires that almost 40 kg of uranium hexafluoride (UF6) be converted to uranium oxide (UO). In the process of this conversion, six moles of hydrofluoric acid (HP) are produced for each mole of UF6 converted.

Osborne, P.E.; Icenhour, A.S.; Del Cul, G.D.

2000-08-01T23:59:59.000Z

185

Conversion of Questionnaire Data  

SciTech Connect (OSTI)

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

2011-01-01T23:59:59.000Z

186

A critical comparison of ionospheric depletion chemicals  

SciTech Connect (OSTI)

Six chemicals, H{sub 2}, H{sub 2}O, CO{sub 2}, SF{sub 6}, CF{sub 3}BR, and Ni(CO){sub 4}, are considered as ionospheric modification agents. Each of these species reacts in the F region to produce localized plasma depletions. The first three interact with O{sup +} and yield polyatomic ions which dissociatively recombine with electrons to give neutrals. The last three dissociatively attach electrons to produce heavy negative ions which become mutually neutralized by reactions with O{sup +}. The effectiveness of these chemicals depends on the amount which goes into the vapor state upon release. Thermodynamic calculations show that H{sub 2}O has the lowest vapor yield of about 20% from a heated, pressurized tank. Over 60% of the other substances should be vented in gaseous form. Based on estimates of plasma density reduction and airglow stimulation, nickel carbonyl is the most efficient of the six species for modifying the nighttime ionosphere. During the daytime, CF{sub 3}BR and SF{sub 6} provide the largest depletions.

Bernhardt, P.A. (Los Alamos National Lab., NM (United States))

1987-05-01T23:59:59.000Z

187

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network [OSTI]

Nanowires and Nanotubes for Energy Conversion By MelissaNanowires and Nanotubes for Energy Conversion by MelissaNanowires and Nanotubes for Energy Conversion by Melissa

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

188

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

189

Advanced Conversion Roadmap Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. ctabwebinardoe.pdf More Documents & Publications Conversion...

190

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . .other pyroelectric energy conversion methods . . . . Chapter6 Pyroelectric Energy Conversion using PLZT and

Lee, Felix

2012-01-01T23:59:59.000Z

191

Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility  

SciTech Connect (OSTI)

Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] using the indirect drive configuration [J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L, Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric, energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss, depleted uranium is incorporated into the traditional gold hohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura, T. Endo, H. Shiraga, U. Kato, and S. Nakai, Appl. Phys. Lett. 62, 1344 (1993)]. Multilayered depleted uranium (DU) and gold hohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice, exposed DU oxidizes in air and other chemicals necessary to hohlraum production, so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques, including characterization by Auger electron spectroscopy, which is used to verify sample composition and the amount of oxygen uptake over time.

Wilkens, H. L.; Nikroo, A.; Wall, D. R.; Wall, J. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2007-05-15T23:59:59.000Z

192

Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facilitya)  

Science Journals Connector (OSTI)

Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner E. M. Campbell and W. J. Hogan Fusion Technol.26 755 (1994)] using the indirect drive configuration [J. D. Lindl P. Amendt R. L. Berger S. G. Glendinning S. H. Glenzer S. W. Haan R. L Kauffman O. L. Landen and L. J. Suter Phys. Plasmas11 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss depleted uranium is incorporated into the traditional goldhohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura T. Endo H. Shiraga U. Kato and S. Nakai Appl. Phys. Lett.62 1344 (1993)]. Multilayered depleted uranium (DU) and goldhohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice exposed DU oxidizes in air and other chemicals necessary to hohlraum production so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques including characterization by Auger electron spectroscopy which is used to verify sample composition and the amount of oxygen uptake over time.

H. L. Wilkens; A. Nikroo; D. R. Wall; J. R. Wall

2007-01-01T23:59:59.000Z

193

SFR with once-through depleted uranium breed & burn blanket  

Science Journals Connector (OSTI)

Abstract This paper assesses the feasibility of Sodium-cooled Fast Reactor (SFR) cores that have TRU recycled seeds and once-through depleted uranium blankets. The design objective of these Seed-and-Blanket (S&B) cores is to maximize the power generated by the blanket. As the blanket fuel cost is significantly lower than the cost of the seed fuel and does not need reprocessing, increasing the fraction of reactor power generated by the blanket will reduce the total fuel cycle cost and the fuel reprocessing capacity required per unit of electricity generated. The S&B core is designed to have a prolate (cigar) shape seed (driver) to maximize the fraction of neutrons that radially leak into the subcritical blanket and reduce neutron loss via axial leakage. Both seed and blanket contain multiple batches; the blanket batches are gradually shuffled inward, while one third of the fuel batches in the seed are recycled. The preliminary study found that it is possible to design the seed to accommodate a wide range of TRU conversion ratios (CR) without significantly penalizing the burnup reactivity swing. The relatively small burnup reactivity swing enables to design the S&B core to operate at longer cycles and discharge its fuel at a higher burnup relative to conventional TRU transmutation cores with identical CR. The S&B cores can generate 1000 \\{MWth\\} and fit within the S-PRISM reactor vessel. The fraction of core power generated by the blanket is between 40% and 50% without exceeding the radiation damage constraint of 200 Displacements per Atom (DPA); this fraction increases when the seed is designed to have a smaller CR. These features are expected to improve the economics of SFR.

Guanheng Zhang; Ehud Greenspan; Alejandra Jolodosky; Jasmina Vujic

2014-01-01T23:59:59.000Z

194

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

195

Zinc phosphate conversion coatings  

DOE Patents [OSTI]

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

Sugama, T.

1997-02-18T23:59:59.000Z

196

Regulation of New Depleted Uranium Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-5 2-5 Regulation of New Depleted Uranium Uses Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

197

Depleted uranium waste assay at AWE  

SciTech Connect (OSTI)

The Atomic Weapons Establishment (AWE) at Aldermaston has recently conducted a Best Practical Means (BPM) study, for solid Depleted Uranium (DU) waste assay, in order to satisfy key stakeholders that AWE is applying best practice. This study has identified portable passive High Resolution Gamma Spectrometry (HRGS), combined with an analytical software package called Spectral Nondestructive Assay Platform (SNAP), as the preferred option with the best balance between performance and costs. HRGS/SNAP performance has been assessed by monitoring 200 l DU waste drum standards and also heterogeneous, high density drums from DU firing trials. Accuracy was usually within 30 % with Detection Limits (DL) in the region of 10 g DU for short count times. Monte Carlo N-Particle (MCNP) calculations have been used to confirm the shape of the calibration curve generated by the SNAP software procured from Eberline Services Inc. (authors)

Miller, T.J. [AWE, Aldermaston, Reading, Berkshire, England, RG7 4PR (United Kingdom)

2007-07-01T23:59:59.000Z

198

Processing depleted uranium quad alloy penetrator rods  

SciTech Connect (OSTI)

Two depleted uranium (DU) quad alloys were cast, extruded and rolled to produce penetrator rods. The two alloy combinations were (1) 1 wt % molybdenum (Mo), 1 wt % niobium (Nb), and 0.75 wt % titanium (Ti); and (2) 1 wt % tantalum (Ta), 1 wt % Nb, and 0.75 wt % Ti. This report covers the processing and results with limited metallographic information available. The two alloys were each vacuum induction melted (VIM) into an 8-in. log, extruded into a 3-in. log, then cut into 4 logs and extruded at 4 different temperatures into 0.8-in. bars. From the 8 conditions (2 alloys, 4 extrusion temperatures each), 10 to 13 16-in. rods were cut for rolling and swaging. Due to cracking problems, the final processing changed from rolling and swaging to limited rolling and heat treating. The contracted work was completed with the delivery of 88 rods to Dr. Zabielski. 28 figs.

Bokan, S.L.

1987-02-19T23:59:59.000Z

199

The health effects of depleted uranium  

Science Journals Connector (OSTI)

There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU) munitions. In response to this concern the Royal Society set up an independent, expert working group to investigate the health effects of DU munitions. The Royal Society has now produced two reports, and this summary covering the key conclusions and recommendations from both reports. The part I report considered the increased risks of radiation-induced cancer from exposures to DU on the battlefield. Part II dealt with the risks from the chemical toxicity of uranium, non-malignant radiation effects from DU intakes, the long-term environmental consequences of the deployment of DU munitions and responses to part I including issues arising at a public meeting to discuss the part I report.

The Royal Society Working Group on the Health Hazards of

2002-01-01T23:59:59.000Z

200

Deuterium depletion and magnesium enhancement in the local disc  

E-Print Network [OSTI]

The local disc deuter is known to be depleted in comparison to the local bubble. We show, that the same lines of sight that are depleted in deuter, are enhanced in magnesium. Heavier elements - Si and Fe do not show any difference in the abundance between the local disc and the local bubble. This observation implicates that astration is responsible for both deuter depletion and magnesium enhancement.

Piotr Gnacinski

2005-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

22 - Conversion Factors  

Science Journals Connector (OSTI)

Abstract This chapter details the viscosity and pressure conversion chart. To convert absolute or dynamic viscosity from one set of units to another, one must locate the given set of units in the left-hand column then multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also explains that to convert kinematic viscosity from one set of units to another, one must locate the given set of units in the left-hand column and multiply the numerical value by the factor shown horizontally to the right-hand side, under the set of units desired. The chapter also defines how the conversion from natural gas to other fuels has progressed from possibility to reality for many companies and will become necessary for many others in months and years ahead. Fuels that are considered practical replacements for gas include coal, heavy fuel oils, middle distillates (such as kerosinetypeturbo fuel and burner fuel oils) and liquefied petroleum gas.

2014-01-01T23:59:59.000Z

202

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

203

Energy conversion system  

DOE Patents [OSTI]

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

204

Subsurface transformations of depleted uranium at Aberdeen Proving Ground, Maryland.  

E-Print Network [OSTI]

?? Approximately 130,000 kg of depleted uranium (DU) from ammunition testing have been deposited in soils since 1974 and remain in the environment at Aberdeen (more)

Oxenberg, Tanya Palmateer

2007-01-01T23:59:59.000Z

205

Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests. Analysis of Serum Total and Free PSA Using Immunoaffinity...

206

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

207

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

208

Microscale Depletion of High Abundance Proteins in Human Biofluids...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides...

209

Another Cold War-era building at the Department of Energys...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as the Metals Plant. It operated from 1953 to 1962, and from 1968 to 1973, to convert depleted uranium hexafluoride, or UF 6 , into uranium metal. Two of the five structures...

210

April 2011 Recovery News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant spanned roughly 65,000 square feet and operated from 1953-62 and 1968-73 to convert depleted uranium hexafluoride (UF 6 ) into uranium metal and uranium tetrafluoride. It is...

211

Federal Register  

National Nuclear Security Administration (NNSA)

of Decision (ROD) are available on the DOE National Environmental Policy Act (NEPA) Web site at http: www.eh.doe.govnepa and on the Depleted UF 6 Management Information...

212

Wind energy conversion system  

SciTech Connect (OSTI)

This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

Longrigg, P.

1987-03-17T23:59:59.000Z

213

Quantum optical waveform conversion  

E-Print Network [OSTI]

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

D Kielpinski; JF Corney; HM Wiseman

2010-10-11T23:59:59.000Z

214

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network [OSTI]

Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _LBL-11902 UC-61a BIOMASS ENERGY CONVERSION IN HAWAII

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

215

Biochemical Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products. Lignocellulose (mainly lignin,...

216

Energy conversion by gravitational waves  

Science Journals Connector (OSTI)

... out that if such particles are charged, the accelerations will constitute a mechanism for the conversion of gravitational ... of gravitational energy into electromagnetic ...

H. BONDI; F. A. E. PIRANI

1988-03-17T23:59:59.000Z

217

Transcript of Public Hearing on DUF6 Conversion Facility Draft EISs, Held Jan. 7, 2004, Waverly, Ohio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - - - - - Draft Environmental Impact Statements For the Construction and Operation of Depleted Uranium Hexafluoride Conversion Facilities at the Paducah, Kentucky and Portsmouth, Ohio Sites - - - PUBLIC HEARING JANUARY 7, 2004 - - - LOCATION: Pike County YMCA 400 Pride Drive Waverly, Ohio TIME: 6:00

218

Surface Depletion in the Vacuum Distillation of Metals from Bismuth  

SciTech Connect (OSTI)

Surface depletion was investigated in laboratory- and plant-scale distillation units with mixing by natural convection or by mechanical surface agitation. A model was developed for predicting the degree of surface depletion during the distillation of metals from bismuth as a function of temperature, still pot dimensions, and degree of agitation. This paper discusses those findings.

Bradley, R.F.

2001-08-29T23:59:59.000Z

219

Pumping induced depletion from two streams Dongmin Sun a  

E-Print Network [OSTI]

Author's personal copy Pumping induced depletion from two streams Dongmin Sun a , Hongbin Zhan b-domain and becomes identical to that of Hunt [Hunt B. Unsteady stream depletion from ground water pumping. Ground of the shortest distance from the pumping well to the other stream over the shortest distance between the two

Zhan, Hongbin

220

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Depleted Uranium: Exposure and Possible Health Effects  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a by-product of the enrichment process of 235U used for fission in nuclear reactors and nuclear weapons. It has both civilian and military applications. The military use of DU is of defensive as well as of offensive nature, being mainly employed as armor-piercing ammunition. So far, the usage of ammunitions containing DU has been officially confirmed in four military conflicts: Iraq (1991), Bosnia (1994), Kosovo (1999), and again Iraq (2003). During their deployment in the military actions, most penetrators are thought to have missed their intended targets. Therefore, a substantial amount of DU is still present in the environment and may act as a source of contamination for the environment and the population. The possible effects of this radioactive and chemically toxic material have attracted particular notice. To evaluate these consequences, it is important to have accurate methods to assess the exposure to DU in both environmental and biological samples. This article is therefore intended to point out the problematic nature of the experimental techniques and of the analytical methods so far used to quantify the exposure to DU in the light of possible health effects of DU.

U. Oeh

2011-01-01T23:59:59.000Z

222

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Broader source: Energy.gov (indexed) [DOE]

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

223

Notice of Availability of a Draft Supplement Analysis for Disposal of Depleted Uranium Oxide Conversion Produce Generated from DOE's Inventory of Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

69 Federal Register 69 Federal Register / Vol. 72, No. 63 / Tuesday, April 3, 2007 / Notices DEPARTMENT OF EDUCATION The Historically Black Colleges and Universities Capital Financing Advisory Board AGENCY: The Historically Black Colleges and Universities Capital Financing Board, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming open meeting of the Historically Black Colleges and Universities Capital Financing Advisory Board. The notice also describes the functions of the Board. Notice of this meeting is required by Section 10(a)(2) of the Federal Advisory Committee Act and is intended to notify the public of their opportunity to attend. DATES: Friday, April 20, 2007. Time: 10 a.m.-2 p.m.

224

5, 35333559, 2005 Catalytic conversion  

E-Print Network [OSTI]

measurement technique, employing selective gas- phase catalytic conversion of methanol to formaldehyde it the second most abundant organic trace gas after methane. Methanol can play an important role in upper tropoACPD 5, 3533­3559, 2005 Catalytic conversion of methanol to formaldehyde S. J. Solomon et al. Title

Paris-Sud XI, Université de

225

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect (OSTI)

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

226

Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site in Support of Site-Specific NEPA Requirements for Continued Cylinder Storage, Cylinder Preparation, Conversion, and Long-Term Storage Activities Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

227

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect (OSTI)

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

228

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

229

Thermal Conversion Process (TCP) Technology  

Broader source: Energy.gov (indexed) [DOE]

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

230

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......I (2009) Depleted uranium: properties, military...Teratogenicity of depleted uranium aerosols: a review...expression in female breast cancer among an Iraqi population exposed to depleted uranium. J Carcinog 7: 8......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

231

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations...and Jadranko SIMIC2 Health risks/Depleted uranium/Chromosome aberrations...Institute symposia "The Health Effects of Depleted Uranium." Remarks and slides......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

232

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......Society. The Health Hazards of Depleted Uranium Munitions-Part...Carpenter D. O. Depleted uranium contamination...implications for health assessment...Sunder S. Depleted uranium dust from fired...properties. Health Phys (2004......

Marcelo Valds

2009-02-01T23:59:59.000Z

233

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......War about the health significance of exposure to depleted uranium (DU), the...perforated by depleted uranium ammunition...War about the health significance of exposure to depleted uranium (DU), the......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

234

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...the study was hit by depleted uranium projectiles during...M. , Haldimann M. Depleted uranium in Kosovo: an assessment...exposure for aid workers. Health Phys. (2002) 82......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

235

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Fairlie I (2009) Depleted uranium: properties, military use and health risks. Med Confl...et al (2002) Health effects of embedded depleted uranium. Mil Med 167...et al (2000) Health effects of depleted uranium on exposed Gulf......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

236

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......Abou-Donia, M. Depleted and natural uranium: chemistry...Environ. Health B Crit...et al. Health effects of embedded depleted uranium. Mil. Med...determinations in depleted uranium exposed Gulf...veterans. Health Phys. 77......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

237

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

238

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Association for Cancer Research April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

239

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

240

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Carefree, AZ Abstract B41: Depleted uranium-induced oxidative stress in...as occupational exposures to depleted uranium via military action. Cellular...to evaluate the toxicity of depleted uranium (DU) in its soluble and insoluble...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......from exposure to aerosols of depleted uranium Marcelo Valdes * * Corresponding...Following exposure to aerosols of depleted uranium (DU), biological samples...uranyl phosphates. INTRODUCTION Depleted uranium (DU) is a waste product of......

Marcelo Valds

2009-02-01T23:59:59.000Z

242

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

243

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......armoured vehicles perforated by depleted uranium ammunition M. A. Parkhurst...significance of exposure to depleted uranium (DU), the US Department of...armoured vehicles perforated by depleted uranium ammunition. | In response to......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

244

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......the Terrains Contaminated with Depleted Uranium Snezana Milacic 1 * Jadranko...originated from ammunition containing depleted uranium (DU). The studied population...ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations| J......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

245

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to Low-dose Depleted Uranium Yuhui Hao Rong Li * Yanbing...study evaluated the effects of depleted uranium (DU) on reproduction in rats...effects were obvious in F1 rats. Depleted uranium|Ingestion|Reproductive effects......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

246

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......villages in Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric 2...included in the study was hit by depleted uranium projectiles during the North...1999. Although no impact of depleted uranium on radon levels has been observed......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

247

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......intramuscularly injected with depleted uranium S. Fukuda 1 M. Ikeda 1 M...related to kidney and bone in depleted uranium (DU)-injected rats were...injected is low. INTRODUCTION Depleted uranium (DU) accumulates like natural......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

248

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...multiple carrier generation...renewable energy|solar energy conversion|photovoltaic...photovoltaic energy conversion process...minority carriers in the p-type...efficiency carrier multiplication...for solar energy conversion. Phys...

2007-01-01T23:59:59.000Z

249

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

250

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

251

Machining of depleted uranium using coated cutting tools  

Science Journals Connector (OSTI)

The machining of depleted uranium and its alloys are discussed in this...1-x-y-z Al x Cr y Y2N alloys, with y=0.03 and z=0.02, h...

M. J. Jackson; G. M. Robinson

2006-04-01T23:59:59.000Z

252

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Science Journals Connector (OSTI)

During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most...

Mirjana B. Radenkovi?; Svjetlana A. Cupa?

2008-01-01T23:59:59.000Z

253

Lichens as Biomonitors of Depleted Uranium in Kosovo  

Science Journals Connector (OSTI)

This paper reports the results of a study using lichens as biomonitors to investigate the environmental distribution of depleted uranium (DU) at selected Kosovo sites as...235U/238U measurements did not indicate ...

S. Loppi; L. A. Di Lella; L. Frati; G. Protano

2004-11-01T23:59:59.000Z

254

Hyperspectral stimulated emission depletion microscopy and methods of use thereof  

DOE Patents [OSTI]

A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

Timlin, Jerilyn A; Aaron, Jesse S

2014-04-01T23:59:59.000Z

255

Depleted uranium: a contemporary controversy for the teaching of radioactivity  

Science Journals Connector (OSTI)

Depleted uranium has been used in recent military conflicts and the media have reported the danger from radioactivity. This context provides a good way to keep students' attention when introducing the subject of radioactivity at GCSE or advanced level.

Mark Whalley

2006-01-01T23:59:59.000Z

256

Chemical Conversions of Natural Precursors  

Science Journals Connector (OSTI)

Many products from the flavour industry are primary products from renewable resources or secondary products obtained by chemical conversions of the primary products. In general these secondary products are key...

Peter H. van der Schaft

2007-01-01T23:59:59.000Z

257

Solar Energy Conversion Efficiency Project  

Science Journals Connector (OSTI)

Report of a discussion on possible collaborative experimentation to test and refine biomass production models based on the conversion of solar energy by plant stands, and to evaluate alternative models.

J. S. Pereira; J. J. Landsberg

1989-01-01T23:59:59.000Z

258

Plasmonic conversion of solar energy  

E-Print Network [OSTI]

Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy Csar Clavero Plasma

Clavero, Cesar

2014-01-01T23:59:59.000Z

259

Retrieval of buried depleted uranium from the T-1 trench  

SciTech Connect (OSTI)

The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

Burmeister, M. [Rocky Mountain Remediation Services, Golden, CO (United States); Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Greengard, T. [Kaiser-Hill Co., Golden, CO (United States)]|[Science Applications International Corp. (United States); Hull, C. [S.M. Stoller Corp., Boulder, CO (United States); Barbour, D.; Quapp, W.J. [Starmet Corp. (United States)

1998-07-01T23:59:59.000Z

260

E-Print Network 3.0 - aerosol depletion test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depletion test Search Powered by Explorit Topic List Advanced Search Sample search results for: aerosol depletion test Page: << < 1 2 3 4 5 > >> 1 Supervolcanoes General feedback...

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Impact of carbon dioxide sequestration in depleted gas-condensate reservoirs.  

E-Print Network [OSTI]

??Depleted gas-condensate reservoirs are becoming important targets for carbon dioxide sequestration. Since depleted below the dew point, retrograde condensate has been deposited in the pore (more)

Ramharack, Richard M.

2010-01-01T23:59:59.000Z

262

Energy Conversion Devices | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Energy Conversion Devices Place: Rochester Hills, MI Website: http:www.energyconversiondev References: Energy Conversion Devices1...

263

Brain accumulation of depleted uranium in rats following 3- or 6-month treatment with implanted depleted uranium pellets  

Science Journals Connector (OSTI)

Depleted uranium (DU) is used to reinforce armor ... were weighed weekly as a measure of general health, with no statistically significant differences observed among ... midbrain, hippocampus, striatum, and corte...

Vanessa A. Fitsanakis; Keith M. Erikson

2006-01-01T23:59:59.000Z

264

Portsmouth DUF6 Conversion Final EIS - Chapter 1: Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 1 INTRODUCTION Over the last five decades, the U.S. Department of Energy (DOE) has enriched large quantities of uranium for nuclear applications by means of gaseous diffusion. This enrichment has taken place at three DOE sites located at Paducah, Kentucky; Portsmouth, Ohio; and the East Tennessee Technology Park (ETTP, formerly known as the K-25 site) in Oak Ridge, Tennessee (Figure 1-1). "Depleted" uranium hexafluoride (commonly referred to as DUF 6 ) is a product of this process. It is being stored at the three sites. The total DUF 6 inventory at the three sites weighs approximately 700,000 metric tons (t) (770,000 short tons [tons]) 1 and is stored in about 60,000 steel cylinders. This document is a site-specific

265

Impact of the HEU/LEU conversion on experimental facilities  

SciTech Connect (OSTI)

The LVR-15 reactor is a multipurpose research facility used for basic research on horizontal channels, material and corrosion studies in loops and irradiation rigs, and for the isotope production. A conversion from HEU (IRT-2M 36%, so far used) to LEU (IRT-3M 19.5%, IRT- 4M 19.5%) is planned till 2010. The influence of the new type of fuel on the performance of the experimental facilities operated at the reactor has been studied. The comparison of the calculated neutron fluence rates and spectra using NODER operational code (3D nodal diffusion) and MCNP code for both the fresh and depleted cores was performed. Results of the analyses and future plans are presented in the article. (author)

Marek, M.; Kysela, J.; Ernest, J.; Flibor, S.; Broz, V. [Reactor Services Division, Nuclear Research Institute Rez, plc., Husinec 130, CZ-25068 (Czech Republic)

2008-07-15T23:59:59.000Z

266

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector  

E-Print Network [OSTI]

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

1980-01-01T23:59:59.000Z

267

Conversion Electrons of Radium D  

Science Journals Connector (OSTI)

The conversion electrons of radium D have been studied with thin sources on thin backings in a beta-ray spectrograph using calibrated photographic emulsions. The number of conversion electrons due to the 47-kev gamma-ray has been measured to be 745 per hundred disintegrations. The L:M:N ratio is 1:0.26:0.077. This implies a complex decay scheme for radium D, since earlier results give 3.5 unconverted 47-kev gamma-rays per hundred disintegrations.

Lawrence Cranberg

1950-01-15T23:59:59.000Z

268

Recirculation in multiple wave conversions  

SciTech Connect (OSTI)

A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

2008-07-30T23:59:59.000Z

269

International aspects of restrictions of ozone-depleting substances  

SciTech Connect (OSTI)

This report summarizes international efforts to protect stratospheric ozone. Also included in this report is a discussion of activities in other countries to meet restrictions in the production and use of ozone-depleting substances. Finally, there is a brief presentation of trade and international competitiveness issues relating to the transition to alternatives for the regulated chlorofluorocarbons (CFCs) and halons. The stratosphere knows no international borders. Just as the impact of reduced stratospheric ozone will be felt internationally, so protection of the ozone layer is properly an international effort. Unilateral action, even by a country that produces and used large quantities of ozone-depleting substances, will not remedy the problem of ozone depletion if other countries do not follow suit. 32 refs., 7 tabs.

McDonald, S.C.

1989-10-01T23:59:59.000Z

270

Effect of Shim Arm Depletion in the NBSR  

SciTech Connect (OSTI)

The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

Hanson A. H.; Brown N.; Diamond, D.J.

2013-02-22T23:59:59.000Z

271

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

272

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

273

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

274

MUTUAL CONVERSION SOLAR AND SIDEREAL  

E-Print Network [OSTI]

TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

Roegel, Denis

275

HELIOPHYSICS II. ENERGY CONVERSION PROCESSES  

E-Print Network [OSTI]

of a solar flare 11 2.3.1 Flare luminosity and mechanical energy 11 2.3.2 The impulsive phase (hard X with the term "solar flare" dominate our thinking about energy conversion from magnetic storage to other forms approaches to the problems involved in phys- ically characterizing the solar atmosphere; see also the lecture

Hudson, Hugh

276

Developing fuel management capabilities based on coupled Monte Carlo depletion in support of the MIT Research Reactor (MITR) conversion  

E-Print Network [OSTI]

Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. Prior studies have shown that the MITR will be able to ...

Romano, Paul K. (Paul Kollath)

2009-01-01T23:59:59.000Z

277

Developing fuel management capabilities based on coupled Monte Carlo depletion in support of the MIT Research Reactor (MITR) conversion .  

E-Print Network [OSTI]

??Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of highly enriched uranium (HEU) to low enriched (more)

Romano, Paul K. (Paul Kollath)

2009-01-01T23:59:59.000Z

278

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

279

Fundamental differences between Arctic and Antarctic ozone depletion  

Science Journals Connector (OSTI)

...binary sulfuric acid?water aerosols can deplete...National Oceanic and Atmospheric Administration. Satellite observations...Relative influences of atmospheric chemistry and transport...RP Pinto J ( 1986 ) Condensation of HNO 3 and HCl in...Implications for recovery of springtime Antarctic...

Susan Solomon; Jessica Haskins; Diane J. Ivy; Flora Min

2014-01-01T23:59:59.000Z

280

Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer  

E-Print Network [OSTI]

Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer Received: 12 January 2007 Mainz, Germany M. Oppenheimer (*) Department of Geosciences, Princeton University, Princeton, NJ 08544, USA e-mail: omichael@princeton.edu M. Oppenheimer Woodrow Wilson School of Public and International

Oppenheimer, Michael

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network [OSTI]

that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA...

Humrickhouse, Carissa Joy

2012-07-16T23:59:59.000Z

282

Defending Resource Depletion Attacks on Implantable Medical Devices  

E-Print Network [OSTI]

that could deplete IMD resources (e.g., battery power) quickly. The RD attacks could reduce the lifetime are powered by a non-rechargeable battery and replacing the battery requires surgery. Re-charging an IMD from an external RF electromagnetic source causes thermal effects in the organs and thus is not recommended. Unlike

Wu, Jie

283

Disposal Options for Depleted Uranium Trioxide (DU03) Study  

SciTech Connect (OSTI)

There exists at SRS 50 million pounds of depleted UO3 (DUO) stored in 55-gallon drums stacked three high in several buildings. This storage configuration does not allow access to the individual drums for monitoring drum integrity and material accountability.

Jones, T.M.

2002-08-02T23:59:59.000Z

284

The Variation of Magnesium Depletion with Line of Sight Conditions  

E-Print Network [OSTI]

In this paper we report on the gas-phase abundance of singly-ionized magnesium (Mg II) in 44 lines of sight, using data from the Hubble Space Telescope (HST). We measure Mg II column densities by analyzing medium- and high-resolution archival STIS spectra of the 1240 A doublet of Mg II. We find that Mg II depletion is correlated with many line of sight parameters (e.g. F(H_2), E_(B-V), E_(B-V)/r, A_V, and A_V/r) in addition to the well-known correlation with . These parameters should be more directly related to dust content and thus have more physical significance with regard to the depletion of elements such as magnesium. We examine the significance of these additional correlations as compared to the known correlation between Mg II depletion and . While none of the correlations are better predictors of Mg II depletion than , some are statistically significant even assuming fixed . We discuss the ranges over which these correlations are valid, their strength at fixed , and physical interpretations.

Adam G. Jensen; Theodore P. Snow

2007-10-04T23:59:59.000Z

285

Photovoltaic and photoelectrochemical conversion of solar energy  

Science Journals Connector (OSTI)

...photoelectrochemical conversion of solar energy Michael Gratzel * * ( michael...industry, have dominated photovoltaic solar energy converters. These systems have...promising perspectives. renewable energy|solar energy conversion|photovoltaic...

2007-01-01T23:59:59.000Z

286

Grounded Situation Models for Situated Conversational Assistants  

E-Print Network [OSTI]

A Situated Conversational Assistant (SCA) is a system with sensing, acting and speech synthesis/recognition abilities, which engages in physically situated natural language conversation with human partners and assists them ...

Mavridis, Nikolaos

2007-01-01T23:59:59.000Z

287

Biofuel Conversion Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

288

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

289

The National Conversion Pilot Project  

SciTech Connect (OSTI)

The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

Roberts, A.V. [BNFL, Inc., Golden, CO (United States)

1995-12-31T23:59:59.000Z

290

Methanol conversion to higher hydrocarbons  

SciTech Connect (OSTI)

Several indirect options exist for producing chemicals and transportation fuels from coal, natural gas, or biomass. All involve an initial conversion step to synthesis gas (CO and H{sub 2}). Presently, there are two commercial technologies for converting syngas to liquids: Fischer-Tropsch, which yields a range of aliphatic hydrocarbons with molecular weights determined by Schulz-Flory kinetics, and methanol synthesis. Mobil`s diversity of technology for methanol conversion gives the methanol synthesis route flexibility for production of either gasoline, distillate or chemicals. Mobil`s ZSM-5 catalyst is the key in several processes for producing chemicals and transportation fuels from methanol: MTO for light olefins, MTG for gasoline, MOGD for distillates. The MTG process has been commercialized in New Zealand since 1985, producing one-third of the country`s gasoline supply, while MTO and MOGD have been developed and demonstrated at greater than 100 BPD scale. This paper will discuss recent work in understanding methanol conversion chemistry and the various options for its use.

Tabak, S.A. [Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Lab.

1994-12-31T23:59:59.000Z

291

Ocean Thermal Energy Conversion LUIS A. VEGA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion LUIS A. VEGA Hawaii Natural Energy Institute, School of Ocean depths of 20 m (surface water) and 1,000 m. OTEC Ocean Thermal Energy Conversion, the process Energy Conversion. At first, OTEC plantships providing electricity, via submarine power cables, to shore

292

3. Energy conversion, balances, efficiency, equilibrium  

E-Print Network [OSTI]

1/124 3. Energy conversion, balances, efficiency, equilibrium (Introduction to Thermodynamics) Ron h�dm, h = u + p/ Picture: SEHB06 56/124 3.5: Energy balances; Conversion work work, work heat 96/124 Energy conversion heat work /1 "the essential rules" Picture:IO06 #12;97/124 Energy

Zevenhoven, Ron

293

Energy Conversion Technologies 1.0 Introduction  

E-Print Network [OSTI]

1 Energy Conversion Technologies 1.0 Introduction In these notes, we describe the infrastructure. By "energy conversion," we mean the conversion of energy into some form of electric energy. By "available now that is available to be considered in the generation and planning functions. We classify this information by Energy

McCalley, James D.

294

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS  

E-Print Network [OSTI]

GUIDED ANGLER FISH ANNUAL CONVERSION FACTORS FOR THE 2014 FISHING YEAR NOAA FISHERIES, ALASKA via the GAF electronic reporting system. If no GAF were harvested in a year, the conversion factor is the first calendar year that GAF regulations will be in effect. Therefore, the conversion factors are based

295

Ionic Liquids as Solvents for Catalytic Conversion of Lignocellulosic Feedstocks  

E-Print Network [OSTI]

to the development of biomass conversion technologies, it isefficient and selective biomass conversion technologies is athe conversion of both carbohydrate components of biomass.

Dee, Sean Joseph

2012-01-01T23:59:59.000Z

296

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network [OSTI]

1980. Ocean Thermal Energy Conversion Draft ProgrammaticPlan. Ocean Thermal Energy Conversion. U.S. DOE Assistantl OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENT

Sands, M.Dale

2013-01-01T23:59:59.000Z

297

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

E-Print Network [OSTI]

cost and improve the energy conversion efficiency, to enableefficiency solar energy conversion devices. AcknowledgementsPhotoelectrochemical Energy Conversion Neil P. Dasgupta and

Dasgupta, Neil

2014-01-01T23:59:59.000Z

298

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network [OSTI]

of Steady-State Energy Conversion. Applied ScientificElectrokinetic energy conversion efficiency in nanofluidicElectrokinetic energy conversion efficiency in nanofluidic

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

299

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.ocean thermal energy conversion. A preliminary engineeringCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

300

ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion (OTEC) plants byFifth Ocean Thermal Energy Conversion Conference, February1980. Ocean thermal energy conversion (OTEC) pilot plant

Sullivan, S.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS  

E-Print Network [OSTI]

Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.Sixth Ocean Thermal Energy conversion Conference. June 19-

Sullivan, S.M.

2014-01-01T23:59:59.000Z

302

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Nanoporous Thermal-to-Electrical Energy Conversion System (of Wasted Energy : Thermal to Electrical Energy Conversion AArticles: 1. Thermal to electrical energy conversion , Yu

Lim, Hyuck

2011-01-01T23:59:59.000Z

303

2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors  

E-Print Network [OSTI]

with the standard conversion factors at Annex 1. If, however, you export energy or heat to another business (or2008 Guidelines to Defra's GHG Conversion Factors 2008 Guidelines to Defra's GHG Conversion Factors yellow = Calculation results Page 1 of 15 #12;2008 Guidelines to Defra's GHG Conversion Factors Annex 1

304

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

305

Shock induced multi-mode damage in depleted uranium  

SciTech Connect (OSTI)

Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

Koller, Darcie D [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

306

depleted underground oil shale for the permanent storage of carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

307

Copper-triazole interaction and coolant inhibitor depletion  

SciTech Connect (OSTI)

To a large extent, the depletion of tolyltriazole (TTZ) observed in several field tests may be attributed to the formation of a protective copper-triazole layer. Laboratory aging studies, shown to correlate with field experience, reveal that copper-TTZ layer formation depletes coolant TTZ levels in a fashion analogous to changes observed in the field. XPS and TPD-MS characterization of the complex formed indicates a strong chemical bond between copper and the adsorbed TTZ which can be desorbed thermally only at elevated temperatures. Electrochemical polarization experiments indicate that the layer provides good copper protection even when TTZ is absent from the coolant phase. Examination of copper cooling system components obtained after extensive field use reveals the presence of a similar protective layer.

Bartley, L.S.; Fritz, P.O.; Pellet, R.J.; Taylor, S.A.; Van de Ven, P. [Texaco Fuels and Lubricants Technology Dept., Beacon, NY (United States)

1999-08-01T23:59:59.000Z

308

NREL: Biomass Research - Biochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

309

Safety evaluation for packaging (onsite) depleted uranium waste boxes  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

McCormick, W.A.

1997-08-27T23:59:59.000Z

310

Uranio impoverito: perch'e? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of the author of understanding the reasons of the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

D'Abramo, G

2003-01-01T23:59:59.000Z

311

E-Print Network 3.0 - allogeneic t-cell depleted Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

t-cell depleted Search Powered by Explorit Topic List Advanced Search Sample search results for: allogeneic t-cell depleted Page: << < 1 2 3 4 5 > >> 1 haematologicathe hematology...

312

Diversity of Glycosyl Hydrolases from Cellulose-Depleting Communities Enriched from Casts of Two Earthworm Species  

Science Journals Connector (OSTI)

...metagenomic fosmid libraries from cellulose-depleting...annotated in public databases as...introducing myRDP space and quality controlled public data. Nucleic...metagenomic fosmid libraries from cellulose-depleting...annotated in public databases as...

Ana Beloqui; Taras Y. Nechitaylo; Nieves Lpez-Corts; Azam Ghazi; Mara-Eugenia Guazzaroni; Julio Polaina; Axel W. Strittmatter; Oleg Reva; Agnes Waliczek; Michail M. Yakimov; Olga V. Golyshina; Manuel Ferrer; Peter N. Golyshin

2010-07-09T23:59:59.000Z

313

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model.  

E-Print Network [OSTI]

??Texture evolution of depleted uranium is investigated using a viscoplastic self-consistent model. Depleted uranium, which has the same structure as alpha-uranium, is difficult to model (more)

Ho, John

2012-01-01T23:59:59.000Z

314

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra Miller

2007-05-01T23:59:59.000Z

315

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......M. Depleted and natural uranium: chemistry and toxicological...internal contamination with uranium. Croat. Med. J. 40...1999). 5. Mould, R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

316

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......p 105185. 5. UNEP. (2001) Depleted Uranium in Kosovo. Post Conflict Environmental...pp 98115. 6. UNEP. (2002) Depleted Uranium in Serbia and Montenegro Post...Lundin, A. (2004) Incidence of cancer among Swedish military and civil......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

317

E-Print Network 3.0 - antarctic ozone depletion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-B and Biosphere." Oecologia 128(1-2): 1-296. (1997). Ozone depletion FAQ Part IV: UV radiation and its effects... -B radiation due to stratospheric ozone depletion on global...

318

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Epigenetic mechanism is involved in depleted uranium-induced transformation in human...Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military...research information on the potential health hazards of DU exposure. In our...

Alexandra Miller

2007-05-01T23:59:59.000Z

319

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Science of Cancer Health Disparities- Feb...AZ Abstract B41: Depleted uranium-induced oxidative...Science of Cancer Health Disparities- Feb...high deposits of uranium or tailings. There...occupational exposures to depleted uranium via military...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

320

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 February...The Science of Cancer Health Disparities...Abstract B41: Depleted uranium-induced oxidative...Carefree, AZ Cancer and mortality...deposits of uranium or tailings...exposures to depleted uranium via...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...American Association for Cancer Research April 15, 2010...mechanism is involved in depleted uranium-induced transformation...Maine, Portland, ME. Depleted uranium (DU) is commonly...American Association for Cancer Research; 2010 Apr 17-21...

Alexandra Miller

2007-05-01T23:59:59.000Z

322

Depleted uranium hexafluoride technogenic raw material for obtaining high-purity inorganic fluorides  

Science Journals Connector (OSTI)

The problem of handling depleted uranium hexafluoride is discussed. An effective and ecologically safe variant of complex recycling of depleted uranium hexafluoride with uranium oxides, organic compounds, and hig...

E. P. Magomedbekov; S. V. Chizhevskaya; O. M. Klimenko; A. V. Davydov

2012-02-01T23:59:59.000Z

323

Conversion of raw carbonaceous fuels  

DOE Patents [OSTI]

Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

Cooper, John F. (Oakland, CA)

2007-08-07T23:59:59.000Z

324

Paducah DUF6 Conversion Final EIS - Volume 2: Comment and Response Document, Part 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Comment and Response Document 2: Comment and Response Document June 2004 U.S. Department of Energy Office of Environmental Management Comment & Response Document Paducah DUF 6 Conversion Final EIS iii COVER SHEET RESPONSIBLE FEDERAL AGENCY: U.S. Department of Energy (DOE) TITLE: Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site (DOE/EIS-0359) CONTACT: For further information on this environmental impact statement (EIS), contact: Gary S. Hartman DOE-ORO Cultural Resources Management Coordinator U.S. Department of Energy-Oak Ridge Operations P.O. Box 2001 Oak Ridge, TN 37831 e-mail: Pad_DUF6@anl.gov phone: 1-866-530-0944 fax: 1-866-530-0943 For general information on the DOE National Environmental Policy Act (NEPA) process,

325

Are plasma depletions in Saturn's ionosphere a signature of time-dependent water input?  

E-Print Network [OSTI]

Are plasma depletions in Saturn's ionosphere a signature of time- dependent water input? Luke Moore the presence of numerous ``ionospheric holes'', or plasma depletions, in Saturn's upper atmosphere that cannot the observed plasma depletions. The required influxes present a target to assess for the possible sources

Mendillo, Michael

326

Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies  

Science Journals Connector (OSTI)

...Spacelab-2 Plasma Depletion...Spacelab-2 Plasma Depletion...releasing large amounts of...Earth's upper atmosphere to chemically...spanned an area of several...16.5-MHZ AND THE GALACTIC...Spacelab-2 plasma depletion...releasing large amounts of...Earth's upper atmosphere to chemically...spanned an area of several...

M. MENDILLO; J. BAUMGARDNER; D. P. ALLEN; J. FOSTER; J. HOLT; G. R.A. ELLIS; A. KLEKOCIUK; G. REBER

1987-11-27T23:59:59.000Z

327

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......A. (2001) Depleted uranium and public health. BMJ. 322...phenotype by depleted uranium-uranyl chloride. Environ. Health Perspect 106...radiological risk from depleted uranium in war scenarious. Health Phys. 82: 1420......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

328

Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Hong Xie; Carolyne LaCerte; and John P. Wise

2010-04-15T23:59:59.000Z

329

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

330

Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank  

Science Journals Connector (OSTI)

......Characterisation and dissolution of depleted uranium aerosols produced during impacts...Aerosols produced during impacts of depleted uranium (DU) penetrators against the...Characterisation and dissolution of depleted uranium aerosols produced during impacts......

V. Chazel; P. Gerasimo; V. Debouis; P. Laroche; F. Paquet

2003-07-01T23:59:59.000Z

331

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to a Low Dose of Depleted Uranium Yuhui Hao Rong Li * Yanbing...by chronic oral exposure to depleted uranium (DU). Materials and methods...exposure to a low dose of DU. Depleted uranium|Ingestion|Genotoxicity......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

332

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

333

2011 Biomass Program Platform Peer Review: Thermochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

334

Energy Calculator- Common Units and Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

335

Advanced Coal Conversion Process Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

336

Power conversion apparatus and method  

DOE Patents [OSTI]

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

337

Thermophotovoltaic Energy Conversion for Space  

Science Journals Connector (OSTI)

Heat is converted to electricity by using a heated surface (the emitter) that radiates infrared (IR) photons to an adjacent low bandgap photovoltaic cell (typically made with binary, ternary, or quaternary semiconductors such as InGaAs, GaSb, InAs, or InGaAsSb), which converts these IR photons to electricity. ... Solid-state TPV energy conversion uses photovoltaic devices in the form of a p?n diode to convert radiant thermal photons directly into electricity. ... The overall system efficiency of a TPV system is the product of factors attributable to the TPV cell efficiency, the spectral filter, and the cell module factor which includes effects of parasitic photon absorption in the nonactive diode area and is defined as the total photonic energy absorbed in the active diode area divided by the total photonic energy absorption. ...

V. L. Teofilo; P. Choong; J. Chang; Y.-L. Tseng; S. Ermer

2008-05-22T23:59:59.000Z

338

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

339

Microstructure of depleted uranium under uniaxial strain conditions  

Science Journals Connector (OSTI)

Uranium samples of two different purities were used for spall strength measurements. Samples of depleted uranium were taken from very high purity material (38 ppm of carbon) and from material containing 280 ppm carbon. Experimental conditions were chosen to effectively arrest the microstructural damage at two places in the development to full spall separation. Samples were soft recovered and characterized with respect to the microstructure and the form of damage. This allowed determination of the dependence of spall mechanisms on stress level stress state and sample purity. This information is used in developing a model to predict the mode of fracture.

A. K. Zurek; J. D. Embury; A. Kelly; W. R. Thissell; R. L. Gustavsen; J. E. Vorthman; R. S. Hixson

1998-01-01T23:59:59.000Z

340

Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions  

Broader source: Energy.gov (indexed) [DOE]

Background Fact Sheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions At the direction of Energy Secretary Steven Chu, over many months, the Energy Department (DOE) has been working closely with Energy Northwest (ENW), the Tennessee Valley Authority (TVA), and USEC Inc. (USEC) to develop a plan to address the challenges at USEC's Paducah Gaseous Diffusion Plant (GDP) that advances America's national security interests, protects taxpayers, and provides benefits for TVA and the Bonneville Power Administration's (BPA's) electric ratepayers and business operations. BPA is ENW's sole customer, purchasing 100 percent of ENW's Columbia Generating Station's electric power as part of BPA's overall

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Thermionic Solar Energy Conversion SLAC National Accelerator Laboratory Award Number: CPS 25659 | April 15, 2013 | Melosh * Fabricate heterostructure semiconductor cathodes based...

342

Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

will enable energy-efficient biochemical conversion of lignocellulosic biomass into biofuels that are compatible with today's vehicles and infrastructure. Photos (clockwise from...

343

Solar Energy, Its Conversion and Utilization  

Science Journals Connector (OSTI)

The basis of the discussions is the University of Florida Solar Energy and Energy Conversion Laboratory with its Solar House and its Solar-Electric Car.

Erich A. Farber

1974-01-01T23:59:59.000Z

344

Economic Considerations of Biomass Conversion Processes  

Science Journals Connector (OSTI)

Earlier chapters have described various biomass conversion processes and processing procedures. This chapter provides a systematic method of estimating biomass process economics and determining the revenue requir...

Fred A. Schooley

1981-01-01T23:59:59.000Z

345

LED Street Lighting Conversion Workshop Presentations  

Broader source: Energy.gov [DOE]

This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

346

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

347

Conversion Technologies for Advanced Biofuels - Carbohydrates...  

Broader source: Energy.gov (indexed) [DOE]

Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

348

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

349

Automotive Waste Heat Conversion to Power Program  

Broader source: Energy.gov (indexed) [DOE]

Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

350

Developing Functionalized Graphene Materials for Biomass Conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Functionalized Graphene Materials for Biomass Conversion The goal of this research is to develop low cost catalysts based on graphene-derived nanomaterials, and use them...

351

Surreptitious interception of conversations with lasers  

Science Journals Connector (OSTI)

Methods are described for surreptitiously intercepting conversations by reflecting a low-power laser beam from a window pane. The essential components and optical configurations of...

Mims III, Forrest M

1985-01-01T23:59:59.000Z

352

Project Profile: Brayton Solar Power Conversion System  

Broader source: Energy.gov [DOE]

Brayton Energy, under the CSP R&D FOA, is looking to demonstrate the viability and economics of a new concentrating solar thermal power conversion system.

353

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electricity, will become increasingly important. Indeed enhancements in efficiencies of energy conversion technologies that are readily adaptable in any environment will con-...

354

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most pressing problems. Indeed, our success at discovering new paradigms for efficient energy conversion, with minimal environmental impact, will largely determine humankind's...

355

Solid-State Energy Conversion Overview  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

356

Conversion Technologies for Advanced Biofuels ? Carbohydrates...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

balance measurements Biological Conversion of Sugars to Hydrocarbons - R&D Activities Energy Efficiency & Renewable Energy eere.energy.gov 5 Feedstocks Organism design for...

357

Next-Generation Thermionic Solar Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

Microscale-enhanced thermionic emitters will enable high-efficiency, solar-to-electrical conversion by taking advantage of both heat and light. Image from Stanford University...

358

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

359

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

360

Thermochemical Conversion Related Links | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

website's Information Resources section. Some key publications are: Using Heat and Chemistry to Make Fuel and Power: Thermochemical Conversion (January 2011) Thermochemical...

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

362

Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium  

SciTech Connect (OSTI)

This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

Ivan R. Thomas

2011-11-01T23:59:59.000Z

363

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect (OSTI)

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

364

Radiological air quality in a depleted uranium storage vault  

SciTech Connect (OSTI)

The radiological air quality of two storage vaults, one with depleted uranium (DU) and one without, was evaluated and compared. The intent of the study was to determine if the presence of stored DU would significantly contribute to the gaseous/airborne radiation level compared to natural background. Both vaults are constructed out of concrete and are dimensionally similar. The vaults are located on the first floor of the same building. Neither vault has air supply or air exhaust. The doors to both vaults remained closed during the evaluation period, except for brief and infrequent access by the operational group. One vault contained 700 KG of depleted uranium, and the other vault contained documents inside of file cabinets. Radon detectors and giraffe air samplers were used to gather data on the quantity of gaseous/airborne radionuclides in both vaults. The results of this study indicated that there was no significant difference in the quantity of gaseous/airborne radionuclides in the two vaults. This paper gives a discussion of the effects of the stored DU on the air quality, and poses several theories supporting the results.

Robinson, T.; Cucchiara, A.L.

1999-03-01T23:59:59.000Z

365

Depleted uranium residual radiological risk assessment for Kosovo sites  

Science Journals Connector (OSTI)

During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 ?Sv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity.

Marco Durante; Mariagabriella Pugliese

2003-01-01T23:59:59.000Z

366

SHOCKWAVE PROFILE AND BAUSCHINGER EFFECT IN DEPLETED URANIUM  

Science Journals Connector (OSTI)

Dynamic damage evolution in materials is of growing interest in particular the role of defect structure on material strength during a dynamic experiment. Many studies in the past have seen strong correlations between the shockwave profile and the defect structure during dynamic experiments such as quasi?elastic release behavior. Bauschinger effect is a microstructurally controlled process in which a material displays a change in stress?strain characterisitics due to a change in the defect structure. Studies on depleted uranium have revealed indications of Bauschinger effect being a mechanism present during quasi?static experiments which could be a result of the large amount of twinning observed in these materials. As work continues to improve strength models it becomes imperitive to understand the role of defect structure on the properties of materials under dynamic conditions. The study reported here is an observation of the release wave behavior in depleted uranium that first undergoes compressive shock loading followed by a reversal of the loading direction upon release.

D. D. Koller; G. T. Gray III; R. S. Hixson

2007-01-01T23:59:59.000Z

367

Depleted uranium instead of lead in munitions: the lesser evil  

Science Journals Connector (OSTI)

Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment.

Sergei V Jargin

2014-01-01T23:59:59.000Z

368

Energy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program  

E-Print Network [OSTI]

for several groups of electrocatalysts ECD PEMFC Catalyst Development Evaluation programs exist for severalEnergy Conversion Devices PEMFC Electrocatalyst Development Program Contact information: Dr. Peter Faguy pfaguyEnergy Conversion DevicesEnergy Conversion Devices Fuel Cell Electrocatalyst Development Program

369

Video: Part of the 'Hole' Story (of Uranium Hexafluoride Cylinders)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hole Story Hole Story Part of the "Hole" Story (of Uranium Hexafluoride Cylinders) Holes in the depleted Uranium Hexafluoride storage cylinders are investigated. It is shown that corrosion products cause the openings to be self-healing. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:00 Part of the 'Hole' Story Video 00:05 One of the depleted UF6 cylinder storage lots at Portsmouth Video 00:28 48G cylinders, each containing 14 tons of depleted UF6, in storage Video 00:52 Stacked 48G cylinders Video 01:35 UF6 sealed in glass tube Video 02:01 A lifting lug of one cylinder damaging a neighboring cylinder Video 02:37 Damage to small hole cylinder from impact with a lifting lub of an adjoining cylinder

370

Gene conversion in the rice genome  

E-Print Network [OSTI]

. Over 60% of the conversions we detected were between chromosomes. We found that the inter-chromosomal conversions distributed between chromosome 1 and 5, 2 and 6, and 3 and 5 are more frequent than genome average (Z-test, P < 0.05). The frequencies...

Xu, Shuqing; Clark, Terry; Zheng, Hongkun; Vang, SÃ ¸ ren; Li, Ruiqiang; Wong, Gane Ka-Shu; Wang, Jun; Zheng, Xiaoguang

2008-02-25T23:59:59.000Z

371

Approaches for biological and biomimetic energy conversion  

Science Journals Connector (OSTI)

...biological and biomimetic energy conversion 10.1073...that are related to energy conversion: specifically...synthetic and/or hybrid devices is still...systems that produce energy in an efficient...costs are related to infrastructure, such as supporting...inverters, and grid connections. For...

David A. LaVan; Jennifer N. Cha

2006-01-01T23:59:59.000Z

372

Parameterizing energy conversion on rough topography  

E-Print Network [OSTI]

Parameterizing energy conversion on rough topography using bottom pressure sensors to measure form and mixing U0 Form drag pressure Tidal energy conversion Form drag causes: - internal wave generation - eddy Sound, WA Point Three Tree Previous work McCabe et al., 2006 > Measured the internal form drag

Warner, Sally

373

Application of Planck's law to thermionic conversion  

SciTech Connect (OSTI)

A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

Caldwell, F.

1998-07-01T23:59:59.000Z

374

Solution-Derived ZnO Homojunction Nanowire Films on Wearable Substrates for Energy Conversion and Self-Powered Gesture Recognition  

Science Journals Connector (OSTI)

Solution-Derived ZnO Homojunction Nanowire Films on Wearable Substrates for Energy Conversion and Self-Powered Gesture Recognition ... As more donor sources are produced, the depletion of free holes makes the material more insulating (green curve in Figure 2b). ... As the concn. of intrinsic defects becomes sufficiently high in O-deficient ZnO, interactions between defects lead to a significant redn. in their formation energies. ...

Ken C. Pradel; Wenzhuo Wu; Yong Ding; Zhong Lin Wang

2014-11-25T23:59:59.000Z

375

Life cycle assessment of Brassica carinata biomass conversion tobioenergy and platform chemicals  

Science Journals Connector (OSTI)

Abstract The extraction, supply and use of fossil energy carriers and chemicals is a day-by-day increasingly critical issue, linked as it is to severe damages to environment and human health, not to talk of the shrinking availability of fossil fuels worldwide. Therefore, research on suitable alternatives to the extensive use of fossil-based fuels and chemicals is crucial: the potential of Brassica carinata, a non-food oil crop, to grow on marginal lands in Campania Region was investigated, focusing on the production of biodiesel from seeds and platform chemicals from agricultural and extraction residues via an innovative conversion route (so-called Biofine process) in a local industry. The aim of this paper is to evaluate the performance of such an agro-industrial system for biodiesel and bio-chemicals. A comparison with an equivalent system only producing biodiesel and thermal energy is also carried out. A Life Cycle Assessment (LCA) is performed by means of commercial LCA software (Simapro 7.3.0), investigating energy requirements and environmental impacts (global warming, acidification, abiotic depletion, human toxicity, eutrophication and photochemical oxidation). Results show that, in spite of claims of biomass-based greenness, both systems still rely on large fractions of non-renewable energy sources (around 90% of the total use) and mostly affect the same impact categories (abiotic depletion and global warming). The agricultural phase contributes to the total impact more than the industrial extraction and conversion steps, being the nitrogen fertilizers responsible for most of impacts of both systems. However, the conversion of lignocellulosic residues into chemicals instead of heat, conserves the structural quality of natural polymers in the form of marketable value added products (ethyl levulinate and formic acid), also translating into large energy savings compared to traditional chemical routes.

G. Fiorentino; M. Ripa; S. Mellino; S. Fahd; S. Ulgiati

2014-01-01T23:59:59.000Z

376

Conversion of Units of Measurement Gordon S. Novak Jr. \\Lambda  

E-Print Network [OSTI]

by the programmer; this can be both burdensome and error­prone, since the conversion factors used by the programmer guidelines for use of SI units and tables of conversion factors. Several books provide conversion factors, the accuracy of the conversion factors, and the algorithms that some books present for unit conversion

Novak Jr., Gordon S.

377

Repository Applications: Potential Benefits of Using Depleted Uranium (DU)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Repository Applications Repository Applications Repository Applications: Potential Benefits of Using Depleted Uranium (DU) in a Geological Repository The United States is investigating the Yucca Mountain (YM) site in Nevada for the disposal of radioactive spent nuclear fuel (SNF)—the primary waste from nuclear power plants. The SNF would be packaged and then emplaced 200 to 300 m underground in parallel disposal tunnels. The repository isolates the SNF from the biosphere until the radionuclides decay to safe levels. DU may improve the performance of geological repositories for disposal of SNF via three mechanisms: Radiation shielding for waste packages to protect workers Lowering the potential for long-term nuclear criticality in the repository Reducing the potential for releases of radionuclides from the SNF

378

Measurement of Holmium Rydberg series through MOT depletion spectroscopy  

E-Print Network [OSTI]

We report measurements of the absolute excitation frequencies of $^{165}$Ho $4f^{11}6sns$ and $4f^{11}6snd$ odd-parity Rydberg series. The states are detected through depletion of a magneto-optical trap via a two-photon excitation scheme. Measurements of 162 Rydberg levels in the range $n=40-101$ yield quantum defects well described by the Rydberg-Ritz formula. We observe a strong perturbation in the $ns$ series around $n=51$ due to an unidentified interloper at 48515.47(4) cm$^{-1}$. From the series convergence, we determine the first ionization potential $E_\\mathrm{IP}=48565.939(4)$ cm$^{-1}$, which is three orders of magnitude more accurate than previous work. This work represents the first time such spectroscopy has been done in Holmium and is an important step towards using Ho atoms for collective encoding of a quantum register.

Hostetter, J; Lawler, J E; Saffman, M

2014-01-01T23:59:59.000Z

379

Investigation of breached depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

380

Investigation of breached depleted UF sub 6 cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Military use of depleted uranium assessment of prolonged population exposure  

E-Print Network [OSTI]

This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

Giannardi, C

2001-01-01T23:59:59.000Z

382

Depleted Uranium Report from the Health Council of the Netherlands  

Science Journals Connector (OSTI)

The Health Council of the Netherlands, which is an independent scientific advisory body established in 1902 `to advise the government and Parliament on the current level of knowledge with respect to public health issues', has recently published an overview report on depleted uranium. The title of the report is `Health risks of exposure to depleted uranium' and it is freely available in both English and the original Dutch language. A brief summary of the report that was published on 16 May 2001 is presented here. The use of ammunition containing depleted uranium (DU) in Kosovo and elsewhere in the Balkans has provoked disquiet in Europe. In the Netherlands, concern over the release of this material had already been aroused previously following the crash of the El-Al airliner in the Bijlmermeer district of Amsterdam in 1992. It was against this background that the President of the Health Council decided to set up a Committee charged with the task of reviewing the health risks of exposure to DU and the preventive measures required for individuals present in areas where DU has been released into the environment. After reviewing the properties of uranium in general and depleted uranium in particular, and presenting data on the occurrence of the element in the environment and biological tissues, the committee assessed the chemical and radiological health effect of uranium and uranium compounds. The Health Council Committee concludes that radioactive contamination of the lungs is the principal health risk to be considered in connection with exposure to slightly soluble uranium compounds in the atmosphere. For soluble compounds, the chemical toxic effect in the kidneys is the primary consideration. The toxicological effects are to some extent concordant with those of other heavy metals. For relevant exposure scenarios the Committee does not anticipate that exposure to DU will result in a demonstrable increased risk of diseases and symptoms among exposed individuals as a result of a radiological or chemical toxic effect exerted by this substance. Cancer In view of the fact that DU emits ionising radiation in the form of alpha particles, the induction of cancer, in principle, needs to be taken into account in relation to individuals exhibiting internal contamination with DU. In case of inhalation of slightly soluble DU compounds, attention will in particular need to be focused on the lungs. The radiation dose caused by incidental exposure to DU in the exposure scenarios considered is limited compared with the radiation dose received during a lifetime of exposure to natural uranium. As at the common levels of exposure to natural uranium a contribution to the induction of cancer in the population cannot be demonstrated, the Committee concludes that the same is true for exposure to DU. This general conclusion is also valid for the appearance of lung cancer and for the appearance of leukaemia after the inhalation of dust containing slightly soluble uranium compounds. Renal damage For soluble compounds, the risk posed by exposure to DU is principally of a chemical toxic nature. In the case of increasing exposure, abnormalities will first of all appear in the kidneys. Exposure to small amounts (milligrams) of uranium over short periods will therefore result in changes in the kidneys, which lead to acute, usually reversible, renal impairment. No such dose-dependency has been observed, however, in the frequency of chronic renal disorders among population groups who are chronically exposed to enhanced quantities of natural uranium. Nor have studies involving workers in the uranium industry and ex-military personnel (including the group with shrapnel in the body) to date produced any evidence that uranium can cause renal impairment. Thus the present body of scientific data tends to suggest an absence of irreparable renal damage as a result of the intake of DU in the exposure scenarios considered. Prevention Although the risks associated with exposure to DU for the exposure scenarios considered appear to be very limited, the fundamental prin

W F Passchier; J W N Tuyn

2002-01-01T23:59:59.000Z

383

Data Sheet No. 140 - World Energy Reserves and Depletion Policy  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on world energy reserves and depletion policy. Viewed in the long term, it is extremely difficult to obtain an accurate view of the total energy reserves of the world. Even small, very well-explored countries such as the United Kingdom and Holland have discovered new reserves in the past 20 years. Solar power and wave power are available in vast quantities, but the percentage that can be recovered is debatable. The percentage recovery of oil and gas is open to improvement, and it may be that much smaller percentage recoveries of coal will be contemplated in the future when undersea mining or extraction without miners is contemplated. Nuclear power, using thermal reactors, does not extract all the power within the uranium or any of the power available from reserves of thorium. The coal industry will have to double its output and even greater demands may be made on it to provide liquid fuels for the transport industry.

Wilfrid Francis; Martin C. Peters

1980-01-01T23:59:59.000Z

384

The Lithium Depletion Boundary as a Clock and Thermometer  

E-Print Network [OSTI]

We take a critical look at the lithium depletion boundary (LDB) technique that has recently been used to derive the ages of open clusters. We identify the sources of experimental and systematic error and show that the probable errors are larger by approximately a factor two than presently claimed in the literature. We then use the Pleiades LDB age and photometry in combination with evolutionary models to define empirical colour-T_eff relations that can be applied to younger clusters. We find that these relationships DO NOT produce model isochrones that match the younger cluster data. We propose that this is due either to systematic problems in the evolutionary models or an age (gravity) sensitivity in the colour-T_eff relation which is not present in published atmospheric models.

R. D. Jeffries; T. Naylor

2000-09-12T23:59:59.000Z

385

E-Print Network 3.0 - arctic ozone depletion Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Introduction Stratospheric ozone depletion has been one... (Chubachi, 1984; Farman et al., 1985), winter ozone ... Source: Ecole Polytechnique, Centre de mathmatiques...

386

Alloy of depleted uranium: Material for ?-protection of shipment packing sets  

Science Journals Connector (OSTI)

The effect of thermal action on the structure and physical and mechanical properties of an alloy based on depleted uranium and used for biological protection from ionizing...

V. K. Orlov; V. M. Sergeev; A. G. Semenov; V. V. Noskov

387

E-Print Network 3.0 - antioxidant defence depletion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: antioxidant defence depletion Page: << < 1 2 3 4 5 > >> 1 Journal of Applied Ecology 2007 Summary: of antioxidants during their annual migrations to neutralize free...

388

Utilizing Nature's Designs for Solar Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nature's Designs for Solar Energy Conversion Nature's Designs for Solar Energy Conversion Create new materials that: capture, convert, store sunlight Learn from Nature... ...build with chemistry ANL Photosynthesis Group Fundamental Studies  Solar energy conversion in natural and artificial photosynthesis Resolve mechanisms, design principles  Unique capabilities Time-resolved, multi-frequency EPR Time-resolved synchrotron X-ray Ultrafast spectroscopy Multi-molecular: Artificial systems for H 2 photocatalysis  Limitations:  Large solvent, molecular dependencies  Diffusion  Lifetimes  Uncontrolled back-reactions  Most PS contain noble metals  Organic solvent/high proton

389

Paducah DUF6 Conversion Final EIS - Appendix G: Consultation Letters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX G: CONSULTATION LETTERS Consultation Letters G-2 Paducah DUF 6 Conversion Final EIS Consultation Letters G-3 Paducah DUF 6 Conversion Final EIS U.S. DEPARTMENT OF ENERGY LETTERS TO STATE AGENCIES AND RECOGNIZED NATIVE AMERICAN GROUPS Consultation Letters G-4 Paducah DUF 6 Conversion Final EIS Consultation Letters G-5 Paducah DUF 6 Conversion Final EIS Consultation Letters G-6 Paducah DUF 6 Conversion Final EIS Consultation Letters G-7 Paducah DUF 6 Conversion Final EIS Consultation Letters G-8 Paducah DUF 6 Conversion Final EIS Consultation Letters G-9 Paducah DUF 6 Conversion Final EIS Consultation Letters G-10 Paducah DUF 6 Conversion Final EIS Consultation Letters G-11 Paducah DUF 6 Conversion Final EIS Consultation Letters G-12 Paducah DUF 6 Conversion Final EIS

390

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit  

E-Print Network [OSTI]

Micro Electret Energy Harvesting Device with Analogue Impedance Conversion Circuit Yuji Suzuki1 using a low-power-consumption impedance conversion circuit. Key words: Energy harvesting, Electret, CYTOP, Parylene spring, Impedance conversion 1. INTRODUCTION Energy harvesting from environmental

Kasagi, Nobuhide

391

Efficient cascade quasi-synchronous parametric generation with up-conversion  

SciTech Connect (OSTI)

We report efficient cascade up-conversion generation due to two simultaneous quasi-synchronous processes of parametric decay {omega}{sub 3{yields}{omega}1}+ {omega}{sub 2} of pump quanta at the frequency {omega}{sub 3} and up-conversion of one of the generated waves {omega}{sub 1}+{omega}{sub 3{yields}{omega}4}>{omega}{sub 3} at the frequency {omega}{sub 1} in a medium with a quadratic nonlinearity. It is found that the necessary condition for this generation is the requirement |{gamma}{sub 1}|{sup 2}>({omega}{sub 2}/{omega}{sub 1})|{gamma}{sub 1}|{sup 2}, where {gamma}{sub 1,2} are the averaged constants of the nonlinear coupling for the processes {omega}{sub 1}+{omega}{sub 2,3{yields}{omega}3,4}, respectively. If this requirement is fulfilled, the plane monochromatic pump wave is completely depleted, while the limiting (the noise seed intensity is I{sub 10,20{yields}}0 at the input) efficiency of the energy conversion into radiation at the frequency {omega}{sub 4} is independent of I{sub 10,20} and determined only by the relations between |{gamma}{sub 1,2}|{sup 2} and the frequencies of the interacting waves. (nonlinear optical phenomena)

Petnikova, V M; Shuvalov, Vladimir V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

2010-06-23T23:59:59.000Z

392

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations  

SciTech Connect (OSTI)

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize food versus fuel concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-01-01T23:59:59.000Z

393

Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations  

SciTech Connect (OSTI)

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize food versus fuel concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-08-02T23:59:59.000Z

394

NREL: Biomass Research - Thermochemical Conversion Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Capabilities Conversion Capabilities NREL researchers are developing gasification and pyrolysis processes for the cost-effective thermochemical conversion of biomass to biofuels. Gasification-heating biomass with about one-third of the oxygen necessary for complete combustion-produces a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis-heating biomass in the absence of oxygen-produces a liquid bio-oil. Both syngas and bio-oil can be used directly or can be converted to clean fuels and other valuable chemicals. Areas of emphasis in NREL's thermochemical conversion R&D are: Gasification and fuel synthesis R&D Pyrolysis R&D Thermochemical process integration. Gasification and Fuel Synthesis R&D Get the Adobe Flash Player to see this video.

395

NREL: Biomass Research - Biochemical Conversion Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biochemical Conversion Projects Biochemical Conversion Projects A photo of a woman looking at the underside of a clear plastic tray. The tray has a grid of small holes to hold sample tubes. An NREL researcher examines a sample tray used in the BioScreen C, an instrument used to monitor the growth of microorganisms under different conditions. NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting these biomass intermediates using biocatalysts (microorganisms including yeast and bacteria) Processing the fermentation product to yield fuel-grade ethanol and other fuels. Among the current biochemical conversion RD&D projects at NREL are: Pretreatment and Enzymatic Hydrolysis

396

Overview of Capabilities Conversion System Technology  

E-Print Network [OSTI]

cycles Heat exchanger design and optimization TES Material Integration & Optimization: Solar power plantOverview of Capabilities Conversion System Technology - Power System Demonstrations - Systems Conceptual Design/Trade Space Exploration - Simulation Modeling for Manufacturing - Hybrid Energy Systems

Lee, Dongwon

397

Summer Series 2012 - Conversation with Omar Yaghi  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

Omar Yaghi

2013-06-24T23:59:59.000Z

398

Ris Energy Report 2 Bioenergy conversion  

E-Print Network [OSTI]

6.3 Risø Energy Report 2 Bioenergy conversion There is a wide range of technologies to derive operate automatically and are in many regions an economic alternative, e.g. Austria and Finland

399

Analyzing Biomass Conversion into Liquid Hydrocarbons  

Science Journals Connector (OSTI)

Variants of the FischerTropsch producer-gas conversion into liquid hydrocarbons are analyzed under the ... is attained in the reactions occurring in the biomass gasification. When the raw material is wood ... th...

V. D. Meshcheryakov; V. A. Kirillov

2002-09-01T23:59:59.000Z

400

Chapter 13 - Heterogeneous Catalysts and Biomass Conversion  

Science Journals Connector (OSTI)

Abstract The application of heterogeneous catalysts to conversion processes based on biomasses is described and discussed. The role of heterogeneous catalysts in the development of renewable industrial chemistry is emphasized.

Guido Busca

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CO2 Conversion to CH4  

Science Journals Connector (OSTI)

A power-to-gas technology that converts renewable energy to methane...16]. Conversion of renewable energy, that is, solar or wind, into fuel is an easy way to store solar energy, characterized by low energy densi...

V. Barbarossa; C. Bassano; P. Deiana; G. Vanga

2013-01-01T23:59:59.000Z

402

Energy Balances for Biomass Conversion Systems  

Science Journals Connector (OSTI)

Biomass conversion systems of any type, irrespective of ... measured on a consistent scale which identifies the energy efficiency of the process and of the overall system. Accurate energy balances, as well as mat...

Raphael Katzen

1983-01-01T23:59:59.000Z

403

Energy conversions of a desert depression  

Science Journals Connector (OSTI)

This work is concerned with the energy conversions of a developing atmospheric system in subtropical ... and temporal variations of various components of the energy budget are presented in a detailed analysis. T...

H. Abdel Basset

2001-04-01T23:59:59.000Z

404

The Conversion of Waste to Energy  

E-Print Network [OSTI]

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

405

Energy Conversion, an Energy Frontier Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Awards ... 12 S p r I N g 2 0 1 1 Intermediate Band Solar Energy Conversion in ZnTe:O and ZnTeZnSe Affordable photovoltaic solar cells are highly...

406

Principles of photoelectrochemical, solar energy conversion  

Science Journals Connector (OSTI)

Photoelectrochemical devices for conversion of solar energy into both electrical energy and chemical energy are discussed with emphasis on how the ... parameters as band gap, doping level, minority carrier lifeti...

M. A. Butler; D. S. Ginley

1980-01-01T23:59:59.000Z

407

Materials aspects of photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Stabilization of the light-harvesting semiconductor electrode is a key factor in the design of a photoelectrochemical (PEC) system for solar energy conversion. Approaches to circumvent the problem of PEC...

K. Rajeshwar

1985-01-01T23:59:59.000Z

408

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

409

Network Analysis of Photovoltaic Energy Conversion  

Science Journals Connector (OSTI)

Photovoltaic energy conversion in photovoltaic cells has been analyzed by the detailed balance approach or by thermodynamic arguments. Here we introduce a network representation to analyze the performance of such systems once a suitable kinetic model (...

Mario Einax; Abraham Nitzan

2014-11-03T23:59:59.000Z

410

Assessment of ocean thermal energy conversion  

E-Print Network [OSTI]

Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

Muralidharan, Shylesh

2012-01-01T23:59:59.000Z

411

Summer Series 2012 - Conversation with Kathy Yelick  

ScienceCinema (OSTI)

Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

Kathy Yelick

2013-06-24T23:59:59.000Z

412

Atlantic Biomass Conversions Inc | Open Energy Information  

Open Energy Info (EERE)

Conversions Inc Conversions Inc Jump to: navigation, search Name Atlantic Biomass Conversions Inc Place Frederick, Maryland Sector Biomass Product Atlantic Biomass Conversions is working on a system and a genetically modified bacteria to convert sugar beet pulp waste into methanol. Coordinates 45.836395°, -98.507249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.836395,"lon":-98.507249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

E-Print Network 3.0 - advanced conversion technologies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

establish efficient clean energy systems, we offer education Summary: * Advanced Energy Conversion * Highly Qualified Energy Conversion * Functional Energy Conversion...

414

Lattice effect in solid state internal conversion  

SciTech Connect (OSTI)

The effect of the crystal lattice on nuclear fusion reactions p+d{yields}{sup 3}He taking place in internal conversion channels is studied. Fusionable particles solved in the investigated crystalline material form a sublattice. Fusion reaction is generated by a flux of incoming fusionable particles. The calculated cross sections are compared with those of an ordinary fusion reaction. The internal conversion coefficients are also calculated.

Kalman, Peter; Keszthelyi, Tamas [Budapest University of Technology and Economics, Department of Experimental Physics, Budafoki ut 8. F. I.I.10, H-1521 Budapest (Hungary)

2009-03-15T23:59:59.000Z

415

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

416

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

417

First-of-its-Kind Carbon Capture and Conversion Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

418

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

419

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

420

WEC up! Energy Department Announces Wave Energy Conversion Prize...  

Broader source: Energy.gov (indexed) [DOE]

WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced, High Power, Next Scale, Wave Energy Conversion Device...  

Broader source: Energy.gov (indexed) [DOE]

Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy Conversion Device Advanced, High Power, Next Scale, Wave Energy...

422

Potential Impacts of Hydrokinetic and Wave Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

423

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The...

424

Process Design and Economics for the Conversion of Lignocellulosic...  

Broader source: Energy.gov (indexed) [DOE]

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion...

425

2011 Biomass Program Platform Peer Review: Biochemical Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

426

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

427

New process speeds conversion of biomass to fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of biomass to fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

428

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

429

Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle...

430

Conversation/Culture Partner Program Would you like to help  

E-Print Network [OSTI]

Conversation/Culture Partner Program Would you like to help another student improve their English different cultures; *Help another student improve their conversation English; and *Assist another student

Thomas, Andrew

431

Left Coast Electric Formerly Left Coast Conversions | Open Energy...  

Open Energy Info (EERE)

Left Coast Electric Formerly Left Coast Conversions Jump to: navigation, search Name: Left Coast Electric (Formerly Left Coast Conversions) Place: California Sector: Services...

432

Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...  

Open Energy Info (EERE)

Golden Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638...

433

Evaluation of Thermal to Electrical Energy Conversion of High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

434

Single-step conversion of cellulose to 5-hydroxymethylfurfural...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatileplatform chemical. Single-step conversion of cellulose to 5-hydroxymethylfurfural (HMF), a...

435

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

436

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

437

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

438

Light-Material Interactions in Energy Conversion - Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conversion efficiency for non-tracking converters must be reasonably independent of light incidence angle. To improve energy conversion efficiency with photonic design and...

439

U.S. domestic reactor conversion program  

SciTech Connect (OSTI)

The RERTR U.S. Domestic Conversion program continues in its support of the Global Treat Reduction Initiative (GTRI) to convert seven U.S reactors to low enriched uranium (LEU) by 2010. These reactors are located at the University of Florida, Texas A and M University, Purdue University, Washington State University, Oregon State University, the University of Wisconsin, and the Idaho National Laboratory. The reactors located at the University of Florida and Texas A and M Nuclear Science Center were successfully converted to LEU in September of 2006 through an integrated and collaborative effort involving INL, Argonne National Laboratory (ANL), DOE (headquarters and the field office), the Nuclear Regulatory Commission (NRC), the universities, and the contractors involved in analyses, fuel design and fabrication, and spent nuclear fuel (SNF) shipping and disposition. With this work completed and in anticipation of other impending conversion projects, a meeting was established to engage the project participants in a structured discussion to capture the lessons learned. The objectives of this meeting were to document the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts could be conducted with greater effectiveness, efficiency, and with fewer challenges. The lessons learned from completing the University of Florida and Texas A and M conversions, the Purdue reactor conversion status, and an overview of the upcoming reactor conversions will be presented at the meeting. (author)

Meyer, Dana M.; Woolstenhulme, Eric C. [Idaho National Laboratory, Idaho Falls, Idaho 83415 (United States)

2008-07-15T23:59:59.000Z

440

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

clean and efficient energy conversion in power systems," inSteam Power Plant," in Energy conversion, YG Goswami and Fazeotropic mixture energy conversion," Energy Conversion and

Ho, Tony

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION  

SciTech Connect (OSTI)

This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

OGDEN DM; KIRCH NW

2007-10-31T23:59:59.000Z

442

Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles  

E-Print Network [OSTI]

Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles RUTH Matthews. Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. J a pool of readily releasable synaptic vesicles that undergo rapid calcium-dependent release. ATP

Pennsylvania, University of

443

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...major cause of lung cancer, second only to cigarette...Kosovo was initiated by uranium prospecting in the period...the study was hit by depleted uranium projectiles during the......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

444

Can ozone depletion and global warming interact to produce rapid climate change?  

E-Print Network [OSTI]

Can ozone depletion and global warming interact to produce rapid climate change? Dennis L. Hartmann of Climate Change (IPCC) assess- ment of the status of global warming, which reported that winter stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible

Limpasuvan, Varavut

445

Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America  

E-Print Network [OSTI]

. In this paper we focus on South Eastern South America (SESA), a region that has exhibited one of the largest South America 1 Introduction The depletion of ozone in the polar Antarctic strato- sphere (i.e. `theStratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South

446

Abortive HIV Infection Mediates CD4 T-Cell Depletion and Inflammation in Human Lymphoid Tissue  

E-Print Network [OSTI]

factors like HIV-1 Tat, Vpr, and Nef released from infected cells (Schindler et al., 2006; Westendorp etAbortive HIV Infection Mediates CD4 T-Cell Depletion and Inflammation in Human Lymphoid Tissue 94143 Summary The mechanism by which CD4 T-cells are depleted in HIV-infected hosts remains poorly

Levin, Judith G.

447

Alternative Fuels Data Center: Natural Gas Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Conversions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Conversions Related Information Conversion Basics

448

Investigation of breached depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

449

INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA  

SciTech Connect (OSTI)

We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr{sup -1} at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr{sup -1} for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

Connick, David E.; Smith, Charles W.; Schwadron, Nathan A., E-mail: davideconnick@gmail.com, E-mail: Charles.Smith@unh.edu, E-mail: N.Schwadron@unh.edu [Physics Department, Space Science Center, University of New Hampshire, Durham, NH (United States)

2011-01-20T23:59:59.000Z

450

Properties, use and health effects of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) has been claimed to contribute to health problems both in military personnel directly involved in war actions as well in military and civilian individuals who resided in areas where DU ammunition was expended. Due to the low specific radioactivity and the dominance of alpha-radiation, no acute health risk can be attributed to external exposure to DU. Internalised DU is both chemo- and radio-toxic. The major risk is from inhalation of DU dust or particles with less than 10 ?m aerodynamic-equivalent diameter, formed when DU ammunitions hit hard targets (aerosol formation) or during weathering of DU penetrators. One major conclusion is that for all post-conflict situations, the inhaled DU quantities (central estimates) produced radiation doses that would be only a fraction of those normally received by the lung from natural radiation. Hence no long term lung effects due to these DU amounts can be expected. These conclusions also hold for whole-body exposure from ingestion of DU in local food and water.

W. Burkart; P.R. Danesi; J.H. Hendry

2005-01-01T23:59:59.000Z

451

Depleted-Uranium Weapons the Whys and Wherefores  

E-Print Network [OSTI]

The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

Gsponer, A

2003-01-01T23:59:59.000Z

452

Assessment of depleted uranium in South-Western Iran  

Science Journals Connector (OSTI)

Abstract Depleted uranium (DU) has been used in a number of conflicts most notably during the Gulf War in Iraq and existence of it has been reported in Kuwait by IAEA experts. Due to heavy sand storms prevailing into the direction to South West of Iran transporting sand originating from Iraq, the probability that DU could be moved is considered high. Therefore it was decided to take some air and soil samples near border line and some nearest cities. The study was focused on finding DU in air and soil of these south-west provinces. 22 air samples and 20 soil samples were collected and analyzed on their contents of uranium isotopes by alpha, beta and gamma spectrometry. The air and soil samples have been measured by use of an alpha-beta counter and by a gamma spectrometer, respectively. Results showed that there is no radiation impact from DU and so no DU has been transported via sand storms since all results were obtained below the detection limit.

Hossein Yousefi; Abdullah Najafi

2013-01-01T23:59:59.000Z

453

Kr ion irradiation study of the depleted-uranium alloys.  

SciTech Connect (OSTI)

Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M. (Materials Science Division); (INL); (Univ. of Wisconsin)

2010-12-01T23:59:59.000Z

454

Kr Ion Irradiation Study of the Depleted-Uranium Alloys  

SciTech Connect (OSTI)

Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200C to ion doses up to 2.5 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

2010-12-01T23:59:59.000Z

455

Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1  

SciTech Connect (OSTI)

This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-07-05T23:59:59.000Z

456

Radiological and Depleted Uranium Weapons: Environmental and Health Consequences  

Science Journals Connector (OSTI)

The effects of nuclear weapons are due to the release of blast and thermal energy and the immediate and residual ionizing radiation energy. Most of the short-term damages to the environment and the human health are caused by the blast and thermal energies. Ionizing radiation energy received in large doses at high dose rates (victims of nuclear explosions) can produce acute radiation sickness and can even be lethal. Individuals having received lower radiation doses, or even high doses at low dose rates, may suffer from stochastic effects, primarily, the induction of cancer. Studies of exposed populations suggest the probability of developing a lethal cancer following low dose rate exposure is increased by approximately 5% for each Sv the whole-body receives. This risk is added, of course, to the risk of dying from cancer without exposure to radiation, which is more than 20% worldwide. For radiological weapons (radiological dispersion devices or dirty bombs), the health effects due to radiation are expected to be minor in most cases. Casualties will mainly occur due to the conventional explosive. Fear, panic, and decontamination costs will be the major effects. Significant radiation damage to individuals would likely be limited to very few persons. Depleted uranium (DU) weapons leave in the battlefield fragmented or intact DU penetrators as well as DU dust. The latter, if inhaled, could represent a radiological risk, especially to individuals spending some time in vehicles hit by DU munitions. All studies conducted so far have shown the outdoors doses to be so low not to represent a significant risk. For those spending 10h per year in vehicles hit by DU munitions, the risk of developing a lethal cancer is slightly higher (?0.2%).

P.R. Danesi

2011-01-01T23:59:59.000Z

457

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect (OSTI)

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

458

Radiological Risk Assessment of Capstone Depleted Uranium Aerosols  

SciTech Connect (OSTI)

Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-yr doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. The methodologies of the ICRP International Steering Committee on Radiation Standards (ISCORS) were used for determining the whole body cancer risk. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.

Hahn, Fletcher; Roszell, Laurie E.; Daxon, Eric G.; Guilmette, Ray A.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

459

The corrosion of depleted uranium in terrestrial and marine environments  

Science Journals Connector (OSTI)

Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9gcm?2y?1 and 2.548 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area.

C. Toque; A.E. Milodowski; A.C. Baker

2014-01-01T23:59:59.000Z

460

Toxicity of depleted uranium on isolated rat kidney mitochondria  

Science Journals Connector (OSTI)

Background Kidney is known as the most sensitive target organ for depleted uranium (DU) toxicity in comparison to other organs. Although the oxidative stress and mitochondrial damage induced by DU has been well investigated, the precise mechanism of DU-induced nephrotoxicity has not been thoroughly recognized yet. Methods Kidney mitochondria were obtained using differential centrifugation from Wistar rats and mitochondrial toxicity endpoints were then determined in both in vivo and in vitro uranyl acetate (UA) exposure cases. Results Single injection of UA (0, 0.5, 1 and 2mg/kg, i.p.) caused a significant increase in blood urea nitrogen and creatinine levels. Isolated mitochondria from the UA-treated rat kidney showed a marked elevation in oxidative stress accompanied by mitochondrial membrane potential (MMP) collapse as compared to control group. Incubation of isolated kidney mitochondria with UA (50, 100 and 200?M) manifested that UA can disrupt the electron transfer chain at complex II and III that leads to induction of reactive oxygen species (ROS) formation, lipid peroxidation, and glutathione oxidation. Disturbances in oxidative phosphorylation were also demonstrated through decreased ATP concentration and ATP/ADP ratio in UA-treated mitochondria. In addition, UA induced a significant damage in mitochondrial outer membrane. Moreover, MMP collapse, mitochondrial swelling and cytochrome c release were observed following the UA treatment in isolated mitochondria. General significance Both our in vivo and in vitro results showed that UA-induced nephrotoxicity is linked to the impairment of electron transfer chain especially at complex II and III which leads to subsequent oxidative stress.

Fatemeh Shaki; Mir-Jamal Hosseini; Mahmoud Ghazi-Khansari; Jalal Pourahmad

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FEASIBILITY STUDY OF DUPOLY TO RECYCLE DEPLETED URANIUM.  

SciTech Connect (OSTI)

DUPoly, depleted uranium (DU) powder microencapsulated in a low-density polyethylene binder, has been demonstrated as an innovative and efficient recycle product, a very durable high density material with significant commercial appeal. DUPoly was successfully prepared using uranium tetrafluoride (UF{sub 4}) ''green salt'' obtained from Fluor Daniel-Fernald, a U.S. Department of Energy reprocessing facility near Cincinnati, Ohio. Samples containing up to 90 wt% UF{sub 4} were produced using a single screw plastics extruder, with sample densities of up to 3.97 {+-} 0.08 g/cm{sup 3} measured. Compressive strength of as-prepared samples (50-90 wt% UF4 ) ranged from 1682 {+-} 116 psi (11.6 {+-} 0.8 MPa) to 3145 {+-} 57 psi (21.7 {+-} 0.4 MPa). Water immersion testing for a period of 90 days produced no visible degradation of the samples. Leach rates were low, ranging from 0.02 % (2.74 x 10{sup {minus}6} gm/gm/d) for 50 wt% UF{sub 4} samples to 0.72 % (7.98 x 10{sup {minus}5} gm/gm/d) for 90 wt% samples. Sample strength was not compromised by water immersion. DUPoly samples containing uranium trioxide (UO{sub 3}), a DU reprocessing byproduct material stockpiled at the Savannah River Site, were gamma irradiated to 1 x 10{sup 9} rad with no visible deterioration. Compressive strength increased significantly, however: up to 200% for samples with 90 wt% UO{sub 3}. Correspondingly, percent deformation (strain) at failure was decreased for all samples. Gamma attenuation data on UO{sub 3} DUPoly samples yielded mass attenuation coefficients greater than those for lead. Neutron removal coefficients were calculated and shown to correlate well with wt% of DU. Unlike gamma attenuation, both hydrogenous and nonhydrogenous materials interact to attenuate neutrons.

ADAMS,J.W.; LAGERAAEN,P.R.; KALB,P.D.; RUTENKROGER,S.P.

1998-02-01T23:59:59.000Z

462

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

463

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

464

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

465

Overview of coal conversion process instrumentation  

SciTech Connect (OSTI)

A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

Liptak, B. G.; Leiter, C. P.

1980-05-01T23:59:59.000Z

466

NETL: Gasification Systems - Conversion and Fouling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Fouling Conversion and Fouling NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 3 Project Description The objective for this NETL in-house conversion and fouling project is to improve the reliability, availability and maintainability (RAM) of gasification plants by providing tools that can be used to evaluate the impact that fuel properties have on slag and refractory interaction, and to reduce plugging and fouling throughout the syngas cooling system. Utilizing these tools will aid in minimizing plugging and fouling-increasing overall plant efficiency due to improved heat transfer in heat exchangers. Particle deposition experimental schematic Particle deposition experimental schematic (click to enlarge) Project Details Program Background and Project Benefits

467

Energy Conversion | Global and Regional Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Conversion Group Energy Conversion Group The Energy Conversion Group offers advanced technical solutions to achieve reduced fossil fuel use in geothermal power and building energy applications. Focus is on advanced materials, biofuel end use, combustion and system concepts. We seek to continuously improve the capabilities of relevant research tools being applied in collaborative initiatives to achieving these goals. Capabilities The group conducts research in a number of energy-related areas. These include advanced materials for geothermal energy, applications of biofuels and alternative fuels, efficiency in heating/cooling equipment, advanced oil burner development and particulate emissions for wood boilers. Advanced Materials for Geothermal Energy Supercritical carbon dioxide has properties midway between a gas and a

468

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......chemical forms of the uranium in the body after intake...REFERENCES 1 Mould R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J...Abou-Donia M. B. Depleted and natural uranium: chemistry and toxicological......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

469

Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial cells  

Science Journals Connector (OSTI)

...Epigenetic mechanism is involved in depleted uranium-induced transformation in human...Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military...research information on the potential health hazards of DU exposure. In our...

Hong Xie; Carolyne LaCerte; and John P. Wise

2010-04-15T23:59:59.000Z

470

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......contaminated accidentally with uranium. INTRODUCTION Depleted uranium (DU) can affect human health via chemical and radiation...B. Teratogenicity of depleted uranium aerosols: a review from...perspective. Environ. Health (2005) 4:17-35......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

471

Lower Hybrid to Whistler Wave Conversion  

SciTech Connect (OSTI)

In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

Winske, Dan [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

472

Unit Conversion Factors Quantity Equivalent Values  

E-Print Network [OSTI]

Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2.921 inHg at 0 C Energy 1 J = 1 N·m = 107 ergs = 107 dyne·cm = 2.778?10-7 kW·h 1 J = 0.23901 cal = 0·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

Ashurst, W. Robert

473

Laser spectroscopy of primary energy conversion in  

Science Journals Connector (OSTI)

A review is given of the current status of research on primary processes of energy conversion in photosynthesis. The structural and functional organization of photosynthetic apparatus of higher plants is considered. A description is given of laser probing methods, applications of high-speed optical shutters, and picosecond spectrofluorometry involving the use of image converters. A functional scheme of primary energy conversion by Rhodopseudomonas sphaeroides bacteria is given for the 10?1210?4 sec range of time intervals. Some nonlinear processes resulting from intense excitation of the pigment apparatus of photosynthesizing organisms are considered.

V Z Pashchenko; L B Rubin

1978-01-01T23:59:59.000Z

474

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading  

E-Print Network [OSTI]

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading

1985-01-01T23:59:59.000Z

475

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

476

Dupoly process for treatment of depleted uranium and production of beneficial end products  

DOE Patents [OSTI]

The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

2000-02-29T23:59:59.000Z

477

Depleted uranium human health risk assessment, Jefferson Proving Ground, Indiana  

SciTech Connect (OSTI)

The risk to human health from fragments of depleted uranium (DU) at Jefferson Proving Ground (JPG) was estimated using two types of ecosystem pathway models. A steady-state, model of the JPG area was developed to examine the effects of DU in soils, water, and vegetation on deer that were hunted and consumed by humans. The RESRAD code was also used to estimate the effects of farming the impact area and consuming the products derived from the farm. The steady-state model showed that minimal doses to humans are expected from consumption of deer that inhabit the impact area. Median values for doses to humans range from about 1 mrem ({plus_minus}2.4) to 0.04 mrem ({plus_minus}0.13) and translate to less than 1 {times} 10{sup {minus}6} detriments (excess cancers) in the population. Monte Carlo simulation of the steady-state model was used to derive the probability distributions from which the median values were drawn. Sensitivity analyses of the steady-state model showed that the amount of DU in airborne dust and, therefore, the amount of DU on the vegetation surface, controlled the amount of DU ingested by deer and by humans. Human doses from the RESRAD estimates ranged from less than 1 mrem/y to about 6.5 mrem/y in a hunting scenario and subsistence fanning scenario, respectively. The human doses exceeded the 100 mrem/y dose limit when drinking water for the farming scenario was obtained from the on-site aquifer that was presumably contaminated with DU. The two farming scenarios were unrealistic land uses because the additional risk to humans due to unexploded ordnance in the impact area was not figured into the risk estimate. The doses estimated with RESRAD translated to less than 1 {times} 10{sup {minus}6} detriments to about 1 {times} 10{sup {minus}3} detriments. The higher risks were associated only with the farming scenario in which drinking water was obtained on-site.

Ebinger, M.H.; Hansen, W.R.

1994-04-29T23:59:59.000Z

478

The distribution of depleted uranium contamination in Colonie, NY, USA  

Science Journals Connector (OSTI)

Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.72.1?gg?1, with a weighted geometric mean of 1.05?gg?1; the contaminated soil samples comprise uranium up to 50040?gg?1. A plot of 236U/238U against 235U/238U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.050.06)נ10?3 235U/238U, (3.20.1)נ10?5 236U/238U, and (7.10.3)נ10?6 234U/238U. The analytical method is sensitive to as little as 50ngg?1 DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5cm, collected 5.1km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8tonnes.

N.S. Lloyd; S.R.N. Chenery; R.R. Parrish

2009-01-01T23:59:59.000Z

479

Power Conversion APEX Interim Report November, 1999  

E-Print Network [OSTI]

, the combined efficiency of the topping cycle and bottoming cycle will be less than the single cycle along. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

California at Los Angeles, University of

480

Solar energy conversion by chloroplast photoelectrochemical cells  

Science Journals Connector (OSTI)

... the photochemical cell has proved advantageous because of their ease of preparation and their power conversion efficiency of close to 1 %. Fig. l Time course of potential development. ... h even after the light was turned off, illustrated the system's ability to store energy. The ability of the cell to generate a voltage is equivalent to a generator ...

Ravindra Bhardwaj; Rong L. Pan; Elizabeth L. Gross

1981-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "depleted uf6 conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

On the Energy Conversion during Geostrophic Adjustment  

Science Journals Connector (OSTI)

It is found that for a continuously stratified fluid which remains so during the geostrophic adjustment, the energy conversion ratio ? (??KE/?PE) is , in contrast to the value of ? for a two-layer fluid. Since the two-layer fluid is an ...

Hsien Wang Ou

1986-12-01T23:59:59.000Z

482

Soft materials for linear electromechanical energy conversion  

E-Print Network [OSTI]

We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

Antal Jakli; Nandor Eber

2014-07-29T23:59:59.000Z

483

Ocean Thermal Energy Conversion Mostly about USA  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega or other energy carriers to be delivered to shore... 13luisvega@hawaii.edu #12;US Federal Government OTEC period estimated at 3 to 4 years. #12;luisvega@hawaii.edu 20 Energy Carriers · OTEC energy could

484

Defect Tolerant Semiconductors for Solar Energy Conversion  

Science Journals Connector (OSTI)

Defect Tolerant Semiconductors for Solar Energy Conversion ... He obtained his Ph.D. in Physics at Paris-Sud University where he modeled Hot Carrier Solar Cells by means of Ensemble Monte Carlo methods. ... These surface energies are significantly lower compared to 96 and 102 meV/2 for (1010) and (1120) low energy nonpolar GaN surfaces respectively. ...

Andriy Zakutayev; Christopher M. Caskey; Angela N. Fioretti; David S. Ginley; Julien Vidal; Vladan Stevanovic; Eric Tea; Stephan Lany

2014-03-13T23:59:59.000Z

485

2009 Thermochemical Conversion Platform Review Report  

Broader source: Energy.gov [DOE]

This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

486

2009 Biochemical Conversion Platform Review Report  

Broader source: Energy.gov [DOE]

This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

487

Existing potato markers and marker conversions  

E-Print Network [OSTI]

Existing potato markers and marker conversions Walter De Jong PAA Workshop August 2009 1 #12;What of us will continue to use agarose gels for years to come #12;Example of a potato marker 4 PVY (Ryadg) ­ Kasai et al. 2000 Genome 43:1-8 allele specific amplification of a diagnostic product - potatoes

Douches, David S.

488

E-Print Network 3.0 - alarming oxygen depletion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

protecting life on Earth (1). In 1985, scientists and the public became alarmed when Farman et al. (2... studies (5-8). These studies showed that ozone depletion has a large...

489

Effect of catechins and tannins on depleted uranium-induced DNA strand breaks  

Science Journals Connector (OSTI)

The effects of polyphenols on plasmid DNA strand breaks by depleted uranium were studied using four catechins: (+)...2 2+) with hydrogen peroxide (H2O2) were strongly enhanced by EGC, EGCG, MMT, a...

Emiko Matsuda; Akira Nakajima

2012-08-01T23:59:59.000Z

490

Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium.  

E-Print Network [OSTI]

??The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and (more)

Stone, Joseph C.

2012-01-01T23:59:59.000Z

491

Effects of hydroxyl radicals generated from the depleted uranium-hydrogen peroxide systems  

Science Journals Connector (OSTI)

A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxy...

A. Nakajima; Y. Ueda

2007-05-01T23:59:59.000Z

492

Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium  

E-Print Network [OSTI]

The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and thermal neutron fluxes. The relative abundances (alphas) for the first...

Stone, Joseph C.

2012-06-07T23:59:59.000Z

493

Leukemic transformation of hematopoietic cells in mice internally exposed to depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a dense heavy metal ... have been wounded by DU shrapnel. The health effects of embedded DU are unknown. Published...in vitro can transform immortalized human osteoblast cells (HOS) to th...

Alexandra C. Miller; Catherine Bonait-Pellie

2005-11-01T23:59:59.000Z

494

Teratogenicity of depleted uranium aerosols: A review from an epidemiological perspective  

Science Journals Connector (OSTI)

Depleted uranium is being used increasingly often as a component of munitions in military conflicts. Military personnel, civilians and the DU munitions producers are being exposed to the DU aerosols that are g...

Rita Hindin; Doug Brugge; Bindu Panikkar

2005-08-01T23:59:59.000Z

495

Evaluation of Environmental and Health Consequences of Depleted Uranium Armor use in Yugoslavia  

Science Journals Connector (OSTI)

In the paper there is discussed a possible radiation effect a combat application of armor - piercing ammunitions with a depleted uranium (DU) in Iraqian and Yugoslavian conflicts ... a noticeable additional inf...

V. A. Vetrov; O. A. Pavlovsky

2003-01-01T23:59:59.000Z

496

Depleted Uranium Disturbs Immune Parameters in Zebrafish, Danio rerio: An Ex Vivo/In Vivo Experiment  

Science Journals Connector (OSTI)

In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system...Danio rerio, using flow cytometry. Several im...

Batrice Gagnaire; Anne Bado-Nilles

2014-10-01T23:59:59.000Z

497

Long-term corrosion and leaching of depleted uranium (DU) in soil  

Science Journals Connector (OSTI)

Corrosion and leaching of depleted uranium (DU) was investigated for 3years...238U was determined in the effluents by inductively coupled plasma mass spectrometry. In addition, 235U was measured occasionally to ...

W. Schimmack; U. Gerstmann; W. Schultz; G. Geipel

2007-08-01T23:59:59.000Z

498

Leaching of depleted uranium in soil as determined by column experiments  

Science Journals Connector (OSTI)

The basic features of the leachability of depleted uranium (DU) projectiles in soil was investigated...235U and 238U were determined by inductively coupled plasma mass spectrometry. The leaching rates of 238U fro...

W. Schimmack; U. Gerstmann; U. Oeh; W. Schultz

2005-12-01T23:59:59.000Z

499

Biological monitoring and surveillance results of Gulf War I veterans exposed to depleted uranium  

Science Journals Connector (OSTI)

Objective: To relate medical surveillance outcomes to uranium biomonitoring results in a group of depleted uranium (DU)-exposed, Gulf War I veterans...Methods...: Thirty-two veterans of Gulf War ...

Melissa A. McDiarmid; Susan M. Engelhardt

2006-01-01T23:59:59.000Z

500

Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium  

Science Journals Connector (OSTI)

We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064?nm) and femtosecond Ti:sapphire (800?nm) laser pulses. The latter pulses produce...

Emmert, Luke A; Chinni, Rosemarie C; Cremers, David A; Jones, C Randy; Rudolph, Wolfgang

2011-01-01T23:59:59.000Z