Powered by Deep Web Technologies
Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

2

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

3

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

4

Potential for CO2 storage in depleted fields on the Dutch Continental Shelf–Cost estimate for offshore facilities  

Science Journals Connector (OSTI)

A study was performed on capital and operational costs for offshore injection of CO2 into depleted fields. The main focus was on the design and costs of process requirements for injection, required conservation (hibernation) and modification of existing platforms between end of gas/oil production and start of CO2 injection. Also cost estimates for new platforms are provided. The study is ‘high level’ and generic in nature as no specific target for CO2 storage has been selected. For the purpose of this study a simplified approach is used for determination of the required injection facilities and platform modifications. Nevertheless, the study provides a good indication on the level of expenditures that can be expected.

Floor Jansen; Rob Steinz; Boudewijn van Gelder

2011-01-01T23:59:59.000Z

5

Safe storage and effective monitoring of CO2 in depleted gas fields  

Science Journals Connector (OSTI)

...Department of Exploration Geophysics...engineering and the oil and gas industries...The higher costs of offshore storage...rate was the benchmark for the...because of cost. Figure S4...Asia Pacific Oil & Gas Conference...2009), A benchmark study on...sequestration process. Exploration Geophysics...

Charles R. Jenkins; Peter J. Cook; Jonathan Ennis-King; James Undershultz; Chris Boreham; Tess Dance; Patrice de Caritat; David M. Etheridge; Barry M. Freifeld; Allison Hortle; Dirk Kirste; Lincoln Paterson; Roman Pevzner; Ulrike Schacht; Sandeep Sharma; Linda Stalker; Milovan Urosevic

2012-01-01T23:59:59.000Z

6

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

7

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

8

Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.  

SciTech Connect

This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

2001-01-24T23:59:59.000Z

9

Radiological air quality in a depleted uranium storage vault  

SciTech Connect

The radiological air quality of two storage vaults, one with depleted uranium (DU) and one without, was evaluated and compared. The intent of the study was to determine if the presence of stored DU would significantly contribute to the gaseous/airborne radiation level compared to natural background. Both vaults are constructed out of concrete and are dimensionally similar. The vaults are located on the first floor of the same building. Neither vault has air supply or air exhaust. The doors to both vaults remained closed during the evaluation period, except for brief and infrequent access by the operational group. One vault contained 700 KG of depleted uranium, and the other vault contained documents inside of file cabinets. Radon detectors and giraffe air samplers were used to gather data on the quantity of gaseous/airborne radionuclides in both vaults. The results of this study indicated that there was no significant difference in the quantity of gaseous/airborne radionuclides in the two vaults. This paper gives a discussion of the effects of the stored DU on the air quality, and poses several theories supporting the results.

Robinson, T.; Cucchiara, A.L.

1999-03-01T23:59:59.000Z

10

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

11

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

12

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

13

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

14

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

15

Number of Existing Natural Gas Depleted Fields Storage  

Gasoline and Diesel Fuel Update (EIA)

326 324 331 331 329 330 1999-2012 326 324 331 331 329 330 1999-2012 Alabama 1 1 1 1 1 1 1999-2012 Arkansas 2 2 2 2 2 2 1999-2012 California 12 12 13 13 13 14 1999-2012 Colorado 8 8 9 9 9 10 1999-2012 Illinois 11 10 10 11 11 11 1999-2012 Indiana 10 10 10 9 9 10 1999-2012 Kansas 18 18 18 18 18 18 1999-2012 Kentucky 20 20 20 20 20 20 1999-2012 Louisiana 8 8 8 8 8 7 1999-2012 Maryland 1 1 1 1 1 1 1999-2012 Michigan 43 43 43 43 43 43 1999-2012 Mississippi 5 5 6 6 6 6 1999-2012 Montana 5 5 5 5 5 5 1999-2012 Nebraska 1 1 1 1 1 1 1999-2012 New Mexico 2 2 2 2 2 2 1999-2012 New York 23 23 25 25 25 26 1999-2012 Ohio 24 24 24 24 24 24 1999-2012 Oklahoma 13 13 13 13 13 12 1999-2012 Oregon 7 7 7 7 7 7 1999-2012

16

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

dimensions. Vertical discretization of grid size allows to improve aquifer influx modeling......................................... 55 Table 4.2? Reservoir model properties. ................................................................ 58 Table 4... fuel dependency will continue in the near future, increasing the need to develop economic and technologically feasible approaches to reduce and capture and dispose CO2 emissions. Geological storage of CO2 in aquifers and depleted oil and gas...

Valbuena Olivares, Ernesto

2012-02-14T23:59:59.000Z

17

Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities  

SciTech Connect

A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

NONE

1997-12-31T23:59:59.000Z

18

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

19

D0 Decomissioning : Storage of Depleted Uranium Modules Inside D0 Calorimeters after the Termination of D0 Experiment  

SciTech Connect

Dzero liquid Argon calorimeters contain hadronic modules made of depleted uranium plates. After the termination of DO detector's operation, liquid Argon will be transferred back to Argon storage Dewar, and all three calorimeters will be warmed up. At this point, there is no intention to disassemble the calorimeters. The depleted uranium modules will stay inside the cryostats. Depleted uranium is a by-product of the uranium enrichment process. It is slightly radioactive, emits alpha, beta and gamma radiation. External radiation hazards are minimal. Alpha radiation has no external exposure hazards, as dead layers of skin stop it; beta radiation might have effects only when there is a direct contact with skin; and gamma rays are negligible - levels are extremely low. Depleted uranium is a pyrophoric material. Small particles (such as shavings, powder etc.) may ignite with presence of Oxygen (air). Also, in presence of air and moisture it can oxidize. Depleted uranium can absorb moisture and keep oxidizing later, even after air and moisture are excluded. Uranium oxide can powder and flake off. This powder is also pyrographic. Uranium oxide may create health problems if inhaled. Since uranium oxide is water soluble, it may enter the bloodstream and cause toxic effects.

Sarychev, Michael; /Fermilab

2011-09-21T23:59:59.000Z

20

Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride  

Science Journals Connector (OSTI)

The production of enriched uranium used in nuclear weapons and fuel for ... power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually ... DU mass is stored as environ-men...

N. P. Laverov; V. I. Velichkin; B. I. Omel’yanenko…

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics  

E-Print Network (OSTI)

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

Koledintseva, Marina Y.

22

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

23

Porous media experience applicable to field evaluation for compressed air energy storage  

SciTech Connect

A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

Allen, R.D.; Gutknecht, P.J.

1980-06-01T23:59:59.000Z

24

,"Underground Natural Gas Storage - Salt Cavern Storage Fields"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Storage Fields" Salt Cavern Storage Fields" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm10vmall.xls" ,"Available from Web Page:","http://www.eia.gov/oil_gas/natural_gas/data_publications/natural_gas_monthly/ngm.html" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

25

NETL: Carbon Storage - Small-Scale Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Scale Field Tests Small-Scale Field Tests Carbon Storage Small-Scale Field Tests The U.S. Department of Energy (DOE) is supporting a number of small-scale field tests (injection of less than 500,000 million metric tons of CO2 per year) to explore various geologic CO2 storage opportunities within the United States and portions of Canada. DOE's small-scale field test efforts are designed to demonstrate that regional reservoirs have the capability to store thousands of years of CO2 emissions and provide the basis for larger volume, commercial-scale CO2 tests. The field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The data gathered during these small-scale tests provides valuable information regarding specific formations that have historically not been evaluated for the purpose of CO2 storage. The Carbon Storage Program strategy includes an established set of field test objectives applicable to the small-scale projects:

26

SOI detector with drift field due to majority carrier flow - an alternative to biasing in depletion  

SciTech Connect

This paper reports on a SOI detector with drift field induced by the flow of majority carriers. It is proposed as an alternative method of detector biasing compared to standard depletion. N-drift rings in n-substrate are used at the front side of the detector to provide charge collecting field in depth as well as to improve the lateral charge collection. The concept was verified on a 2.5 x 2.5 mm{sup 2} large detector array with 20 {micro}m and 40 {micro}m pixel pitch fabricated in August 2009 using the OKI semiconductor process. First results, obtained with a radioactive source to demonstrate spatial resolution and spectroscopic performance of the detector for the two different pixel sizes will be shown and compared to results obtained with a standard depletion scheme. Two different diode designs, one using a standard p-implantation and one surrounded by an additional BPW implant will be compared as well.

Trimpl, M.; Deptuch, G.; Yarema, R.; /Fermilab

2010-11-01T23:59:59.000Z

27

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

28

Geochemical evaluation of CO2 injection and containment in a depleted gas field  

Science Journals Connector (OSTI)

Abstract The short- and long-term geochemical impact of CO2 injection into a depleted gas reservoir (DGR) is investigated using reservoir/geochemical modeling with TOUGH2/TOUGHREACT and 1D kinetic diffusion modeling with PHREEQC (caprock/well-cement). Simulations of CO2 injection into the reservoir predict displacement and buoyancy of post-production CH4, as well as dry-out of the near-well zone. We computed that the areal extent of the CH4/brine dominated zone and the dry-out zone are relatively small compared to the CO2/brine dominated zone after well-closure. For the current DGR model we therefore conclude that it is reasonable to model geochemical reactions in the reservoir without taking into account post-production CH4. Although the CO2 dissolution capacity of the studied DGR is smaller compared to a deep saline aquifer of similar size, the modeling predicts that dissolution and subsequent CO2 mineral trapping proceed faster. Precipitation of dawsonite and magnesite were yet predicted at initial CO2 partial pressure (PCO2) of 9.3 bar, while these minerals were not identified in reservoir samples. This could indicate that their tendency of precipitation is overestimated by the model and hence the database used. This has significant impact on long-term modeled bulk porosity and PCO2. Simulations of CO2 diffusion through the caprock show that mineral reactions significantly retard the total dissolved carbon (TDC) plume. After 10,000 years, 99% of the TDC is present within the first 6.4 m above the reservoir contact. The progression of the TDC plume in the caprock is sensitive to the composition, kinetic rates, and surface area of primary and secondary minerals. Cement alteration modeling shows progressive carbonation of cement phases, resulting in three zones of distinct mineralogy and porosity. The three zones are predominantly characterized by: (i) unaltered cement, (ii) portlandite dissolution, and (iii) calcite precipitation. The simulated thickness of the affected zone is 3.8 cm after 100 years. This distance is sensitive to kinetic rate constants of C–S–H phases, but less sensitive to kinetic rate constant of portlandite. In summary, our applied methodology provides quantitative predictions of the geochemical impact of CO2 on the DGR storage complex. The methodology can be used for screening of potential DGR storage locations and to define criteria for minimal caprock and cement sheet thickness, for assuring short- and long-term integrity of the storage location.

Tim J. Tambach; Mariëlle Koenen; Laura J. Wasch; Frank van Bergen

2015-01-01T23:59:59.000Z

29

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

30

Enhanced CO2 Storage and Sequestration in Deep Saline Aquifers by Nanoparticles: Commingled Disposal of Depleted Uranium and CO2  

Science Journals Connector (OSTI)

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer u...

Farzam Javadpour; Jean-Philippe Nicot

2011-09-01T23:59:59.000Z

31

Safe storage and effective monitoring of CO2 in depleted gas fields  

Science Journals Connector (OSTI)

...developed a communications strategy, based on market research of the area, and was proactive...equivalent to about 2 kt y -1 ) from the diesel engines used while drilling of CRC-1...confirms the origin in combustion (diesel engines). Emissions (estimated from...

Charles R. Jenkins; Peter J. Cook; Jonathan Ennis-King; James Undershultz; Chris Boreham; Tess Dance; Patrice de Caritat; David M. Etheridge; Barry M. Freifeld; Allison Hortle; Dirk Kirste; Lincoln Paterson; Roman Pevzner; Ulrike Schacht; Sandeep Sharma; Linda Stalker; Milovan Urosevic

2012-01-01T23:59:59.000Z

32

Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

33

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH  

E-Print Network (OSTI)

Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH Ojwang' J.G.O.*, Rutger van is the fall in potential energy surface during heating. Keywords: hydrogen storage, reactive force field governing hydrogen desorption in NaH. During the abstraction process of surface molecular hydrogen charge

Goddard III, William A.

34

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

35

DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Finds Potential for Permanent Storage of Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams November 4, 2010 - 1:00pm Addthis Washington, DC - A field test sponsored by the U.S. Department of Energy (DOE) has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented. This finding supports national efforts to address climate change through long-term storage of CO2 in underground geologic reservoirs. Lowering the core barrel at the PCOR Partnership lignite site.The PCOR Partnership, one of seven partnerships in DOE's Regional Carbon Sequestration Partnership Program, collaborated with Eagle Operating Inc. (Kenmare, N.D.) to complete the field test in Burke County, N.D. In March

36

Depleted uranium management alternatives  

SciTech Connect

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

37

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

38

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

39

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

40

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Test Demonstrates Viability of Simultaneous CO2 Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs June 28, 2010 - 1:00pm Addthis Washington, DC - A field test conducted by a U.S. Department of Energy (DOE) team of regional partners has demonstrated that using carbon dioxide (CO2) in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources. The Plains CO2 Reduction (PCOR) Partnership, one of seven in DOE's Regional Carbon Sequestration Partnership program, collaborated with Eagle Operating Inc. to complete the test in the Northwest McGregor Oil Field in Williams

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gas storage and separation by electric field swing adsorption  

DOE Patents (OSTI)

Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.

Currier, Robert P; Obrey, Stephen J; Devlin, David J; Sansinena, Jose Maria

2013-05-28T23:59:59.000Z

42

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

0.5 seconds 0.5 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 83.2 MPH Acceleration 1 Mile Maximum Speed: 100.6 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 10.6 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 82.8 MPH Acceleration 1 Mile Maximum Speed: 101.9 MPH Brake Test @ 60 MPH Distance Required: 145.1 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6,10 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 10 118.5 2.85 10 53.0 1.80 20 116.8 5.49 20 56.6 3.37 40 116.0 10.50 40 58.0 6.38 60 90.7 11.34 60 55.3 9.48 80 76.6 11.34 80 51.4 11.11 100 68.0 11.34 100 47.2 11.13 200 50.9 11.34 200 38.7 11.13 Fuel Economy with A/C Off 1 Cold Start Charge Depleting 2 : Fuel Economy: 119.7 MPG AC kWh Consumed 7 : 0.282 kWh/mi Charge Depleting

43

PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato  

E-Print Network (OSTI)

PLANT RESISTANCE Field and Storage Testing Bt Potatoes for Resistance to Potato Tuberworm Lansing, MI 48824 J. Econ. Entomol. 97(4): 1425Ð1431 (2004) ABSTRACT Potato tuberworm, Phthorimaea operculella (Zeller), is the most serious insect pest of potatoes worldwide. The introduction of the Bacillus

Douches, David S.

44

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

45

Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing  

SciTech Connect

The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

Katayama, I. [Interdisciplinary Research Center, Yokohama National University, Yokohama 240-8501 (Japan); Shimosato, H.; Bito, M.; Furusawa, K. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); Adachi, M.; Zen, H.; Kimura, S.; Katoh, M. [UVSOR, Institute of Molecular Science, Okazaki 444-8585 (Japan); School of Physical Sciences, Graduate Universities for Advanced Studies (SOKENDAI), Okazaki 444-8585 (Japan); Shimada, M. [High Energy Accelerator Research Organization, KEK, Tsukuba 305-0801 (Japan); Yamamoto, N.; Hosaka, M. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Ashida, M. [Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan); PRESTO, JST (Japan)

2012-03-12T23:59:59.000Z

46

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network (OSTI)

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

47

Polyethylene Encapsulated Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

48

Depleted Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

49

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

2009-03-01T23:59:59.000Z

50

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

2010-06-01T23:59:59.000Z

51

Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings  

E-Print Network (OSTI)

Isochronous mass spectrometry (IMS) in storage rings is a successful technique for accurate mass measurements of short-lived nuclides with relative precision of about $10^{-5}-10^{-7}$. Instabilities of the magnetic fields in storage rings are one of the major contributions limiting the achievable mass resolving power, which is directly related to the precision of the obtained mass values. A new data analysis method is proposed allowing one to minimise the effect of such instabilities. The masses of the previously measured at the CSRe $^{41}$Ti, $^{43}$V, $^{47}$Mn, $^{49}$Fe, $^{53}$Ni and $^{55}$Cu nuclides were re-determined with this method. An improvement of the mass precision by a factor of $\\sim 1.7$ has been achieved for $^{41}$Ti and $^{43}$V. The method can be applied to any isochronous mass experiment irrespective of the accelerator facility. Furthermore, the method can be used as an on-line tool for checking the isochronous conditions of the storage ring.

P. Shuai; H. S. Xu; Y. H. Zhang; Yu. A. Litvinov; M. Wang; X. L. Tu; K. Blaum; X. H. Zhou; Y. J. Yuan; G. Audi; X. L. Yan; X. C. Chen; X. Xu; W. Zhang; B. H. Sun; T. Yamaguchi; R. J. Chen; C. Y. Fu; Z. Ge; W. J. Huang; D. W. Liu; Y. M. Xing; Q. Zeng

2014-07-13T23:59:59.000Z

52

Depleted uranium: A DOE management guide  

SciTech Connect

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

53

Depleted Uranium Technical Brief  

E-Print Network (OSTI)

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

54

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

55

Depleted uranium hexafluoride: Waste or resource?  

SciTech Connect

the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

1995-07-01T23:59:59.000Z

56

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

SciTech Connect

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

57

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

58

Feasibility of Aquifer Storage Recovery for the Mustang, Oklahoma Well Field.  

E-Print Network (OSTI)

??The purpose of this study was to determine the economic and geochemical feasibility of utilizing aquifer storage recovery (ASR) technology to store water in the… (more)

Wright, Krishna E.

2007-01-01T23:59:59.000Z

59

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

60

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon How best to achieve the benchmark of 300 miles of travel without refueling? It may be to use the lightweight compound ammonia-borane to carry the hydrogen. With hydrogen accounting for almost 20 percent of its weight, this stable, non-flammable compound is one of the highest-capacity materials for storing hydrogen. In a car, the introduction of a chemical catalyst would release the hydrogen as needed, thus avoiding on-board storage of large quantities of flammable hydrogen gas. When the ammonia-borane fuel is depleted of hydrogen, it would be regenerated at a

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

62

RADIOACTIVE WASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK-RESULTS OF FIELD INVESTIGATIONS AT STRIPA, SWEDEN  

E-Print Network (OSTI)

Waste Storage in Mined Caverns—Program Summary. LawrenceWASTE STORAGE IN MINED CAVERNS IN CRYSTALLINE ROCK- BESULTS

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

63

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

64

Physics of Fully Depleted CCDs  

E-Print Network (OSTI)

In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

Holland, S E; Kolbe, W F; Lee, J S

2014-01-01T23:59:59.000Z

65

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

66

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

67

Seismic modeling to monitor CO2 geological storage: The Atzbach ...  

E-Print Network (OSTI)

Jun 8, 2012 ... greenhouse effect. In order to avoid these emissions, one of the options is the geological storage of carbon dioxide in depleted hydrocarbon ...

2012-05-30T23:59:59.000Z

68

Compilation and summary of technical and economic assessments in the field of energy storage  

SciTech Connect

Information is presented which was extracted from various assessments of energy storage technologies conducted during the past four years, primarily under the auspices of the Office of Energy Systems Research and Development (formerly the Division of Energy Storage Systems). A thorough search of the relevant literature was conducted using the DOE/RECON computerized data base and other sources. Only tabular or graphic material was abstracted from the documents. The material has been organized in two ways: by the intended end use, i.e., vehicles, utility load leveling, residential load leveling, industrial, and solar, and within each end use, by technology. The summary tables attempt to compare the results of different studies of the same technology or end use. No attempt is made to summarize the conclusions of each individual study, but rather to point out areas of agreement or disagreement between them. The reader should be aware of the risks in making comparisons between studies conducted by researchers with possibly differing purposes and assumptions. Any conclusions based on the summary sections are more indicative than definitive.

DeVries, J.

1981-10-01T23:59:59.000Z

69

The ultimate disposition of depleted uranium  

SciTech Connect

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

70

A feasibility study of ECBM recovery and CO2 storage for a producing CBM field in Southeast Qinshui Basin, China  

Science Journals Connector (OSTI)

Abstract This paper presents a geo-engineering and economic analysis of the potential for enhanced coalbed methane (ECBM) recovery and CO2 storage in the South Shizhuang CBM Field, Southeast Qinshui Basin, China. We construct a static model using the well log and laboratory data and then upscale this model to use in dynamic simulations. We history match field water and gas rates using the dynamic model. The parameters varied during the history match include porosity and permeability. Using the history matched dynamic model, we make predictions of CBM and ECBM recoveries for various field developments. We build a techno-economic model that calculates the incremental nominal net present value (NPV) of the ECBM incremental recovery and CO2 storage over the CBM recovery. We analyse how the NPV is affected by well spacing, CH4 price, carbon credit and the type of coal. Our analyses suggest that 300 m is the optimum well spacing for the study area under the current CH4 price in China and with a zero carbon credit. Using this well spacing, we predict the recoveries for different injection gas compositions of CO2 and N2 and different injection starting times. The results show that gas injection yields incremental CBM production whatever the composition of the injected gas. Pure CO2 injection yields highest ECBM for low swelling coals while flue gas injection gives highest ECBM for high swelling coals. However, the differences in recoveries are small. Injection can be economically viable depending on the CH4 price and the carbon credit. At current prices and no carbon credit, flue gas injection is commercial. At higher CH4 prices and/or with the introduction of carbon credits, co-optimisation could be commercially viable. High carbon credits favour injecting pure CO2 rather than other gases because this stores more CO2. Injecting CO2 at late stage increases CO2 storage but decreases the project's NPV. High-swelling coals require about $20/tonnes additional carbon credit.

Fengde Zhou; Wanwan Hou; Guy Allinson; Jianguang Wu; Jianzhong Wang; Yildiray Cinar

2013-01-01T23:59:59.000Z

71

Disposal Options for Depleted Uranium Trioxide (DU03) Study  

SciTech Connect

There exists at SRS 50 million pounds of depleted UO3 (DUO) stored in 55-gallon drums stacked three high in several buildings. This storage configuration does not allow access to the individual drums for monitoring drum integrity and material accountability.

Jones, T.M.

2002-08-02T23:59:59.000Z

72

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

73

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

74

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

SciTech Connect

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

75

Ozone Depletion and Global Warming.  

E-Print Network (OSTI)

??Abstract This thesis examines global warming and the possible contribution that ozone depletion provides to this warming. An examination is performed to determine the extent… (more)

Fow, Alista John

2006-01-01T23:59:59.000Z

76

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

77

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

78

Underground Natural Gas Storage by Storage Type  

NLE Websites -- All DOE Office Websites (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

79

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

80

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

82

Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II  

SciTech Connect

This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

2009-06-01T23:59:59.000Z

83

Fully depleted back illuminated CCD  

DOE Patents (OSTI)

A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

Holland, Stephen Edward (Hercules, CA)

2001-01-01T23:59:59.000Z

84

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

85

Potential Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

86

Depleted Uranium Uses Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

87

Field lines twisting in a noisy corona: implications for energy storage and release, and initiation of solar eruptions  

E-Print Network (OSTI)

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. But previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the co...

Rappazzo, A F; Einaudi, G

2013-01-01T23:59:59.000Z

88

Copper-triazole interaction and coolant inhibitor depletion  

SciTech Connect

To a large extent, the depletion of tolyltriazole (TTZ) observed in several field tests may be attributed to the formation of a protective copper-triazole layer. Laboratory aging studies, shown to correlate with field experience, reveal that copper-TTZ layer formation depletes coolant TTZ levels in a fashion analogous to changes observed in the field. XPS and TPD-MS characterization of the complex formed indicates a strong chemical bond between copper and the adsorbed TTZ which can be desorbed thermally only at elevated temperatures. Electrochemical polarization experiments indicate that the layer provides good copper protection even when TTZ is absent from the coolant phase. Examination of copper cooling system components obtained after extensive field use reveals the presence of a similar protective layer.

Bartley, L.S.; Fritz, P.O.; Pellet, R.J.; Taylor, S.A.; Van de Ven, P. [Texaco Fuels and Lubricants Technology Dept., Beacon, NY (United States)

1999-08-01T23:59:59.000Z

89

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

90

Field Lines Twisting in a Noisy Corona: Implications for Energy Storage and Release, and Initiation of Solar Eruptions  

Science Journals Connector (OSTI)

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

A. F. Rappazzo; M. Velli; G. Einaudi

2013-01-01T23:59:59.000Z

91

FIELD LINES TWISTING IN A NOISY CORONA: IMPLICATIONS FOR ENERGY STORAGE AND RELEASE, AND INITIATION OF SOLAR ERUPTIONS  

SciTech Connect

We present simulations modeling closed regions of the solar corona threaded by a strong magnetic field where localized photospheric vortical motions twist the coronal field lines. The linear and nonlinear dynamics are investigated in the reduced magnetohydrodynamic regime in Cartesian geometry. Initially the magnetic field lines get twisted and the system becomes unstable to the internal kink mode, confirming and extending previous results. As typical in this kind of investigations, where initial conditions implement smooth fields and flux-tubes, we have neglected fluctuations and the fields are laminar until the instability sets in. However, previous investigations indicate that fluctuations, excited by photospheric motions and coronal dynamics, are naturally present at all scales in the coronal fields. Thus, in order to understand the effect of a photospheric vortex on a more realistic corona, we continue the simulations after kink instability sets in, when turbulent fluctuations have already developed in the corona. In the nonlinear stage the system never returns to the simple initial state with ordered twisted field lines, and kink instability does not occur again. Nevertheless, field lines get twisted, although in a disordered way, and energy accumulates at large scales through an inverse cascade. This energy can subsequently be released in micro-flares or larger flares, when interaction with neighboring structures occurs or via other mechanisms. The impact on coronal dynamics and coronal mass ejections initiation is discussed.

Rappazzo, A. F. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Velli, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Einaudi, G., E-mail: rappazzo@udel.edu [Berkeley Research Associates, Inc., 6537 Mid Cities Avenue, Beltsville, MD 20705 (United States)

2013-07-10T23:59:59.000Z

92

A statistical analysis of well production rates from UK oil and gas fields – Implications for carbon capture and storage  

Science Journals Connector (OSTI)

Abstract The number of wells required to dispose of global CO2 emissions by injection into geological formations is of interest as a key indicator of feasible deployment rate, scale and cost. Estimates have largely been driven by forecasts of sustainable injection rate from mathematical modelling of the CO2 injection process. Recorded fluid production rates from oil and gas fields can be considered an observable analogue in this respect. The article presents statistics concerning Cumulative average Bulk fluid Production (CBP) rates per well for 104 oil and gas fields from the UK offshore region. The term bulk fluid production is used here to describe the composite volume of oil, gas and water produced at reservoir conditions. Overall, the following key findings are asserted: (1) CBP statistics for UK offshore oil and gas fields are similar to those observed for CO2 injection projects worldwide. (2) 50% probability of non-exceedance (PNE) for CBP for oil and gas fields without water flood is around 0.35 Mt/yr/well of CO2 equivalent. (3) There is negligible correlation between reservoir transmissivity and CBP. (4) Study of net and gross CBP for water flood fields suggest a 50% PNE that brine co-production during CO2 injection could lead to a 20% reduction in the number of wells required.

Simon A. Mathias; Jon G. Gluyas; Eric J. Mackay; Ward H. Goldthorpe

2013-01-01T23:59:59.000Z

93

Carbon Capture and Storage Poster | Department of Energy  

Office of Environmental Management (EM)

Carbon Capture and Storage - In Depth (poster) More Documents & Publications Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Training...

94

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon...

95

Depleted Argon from Underground Sources  

SciTech Connect

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

96

Impacts of Contaminan t Storage on Indoor Air Quality: Model Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Title Impacts of Contaminan t Storage on Indoor Air Quality: Model Development Publication Type Journal Article LBNL Report Number LBNL-6114E Year of Publication 2013 Authors Sherman, Max H., and Erin L. Hult Journal Atmospheric Environment Volume 72 Start Page 41 Pagination 41-49 Date Published 01/2013 Keywords Buffering capacity, formaldehyde, moisture Abstract A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

97

Energy Storage  

SciTech Connect

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

98

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

99

FAQ 7-How is depleted uranium produced?  

NLE Websites -- All DOE Office Websites (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

100

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat,” says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

102

Depleted argon from underground sources  

SciTech Connect

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

103

Investigation of breached depleted UF{sub 6} cylinders  

SciTech Connect

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

104

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network (OSTI)

experimental Thermal energy storage in confined aquifers. ©lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

105

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 22, 2010 July 22, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. July 20, 2010 U.S. Partners with Canada to Renew Funding for World's Largest International CO2 Storage Project in Depleted Oil Fields The U.S. Department of Energy and Natural Resources Canada announced today a total of $5.2 million has been committed by the two governments to bring a benchmark carbon dioxide injection project to successful conclusion in 2011. July 9, 2010 Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative

106

field  

National Nuclear Security Administration (NNSA)

9%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

field field-type-text field-field-page-name">

107

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

108

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

109

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

110

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

111

HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO 2 ). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability.

112

Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect

The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

Dubrin, J.W., Rahm-Crites, L.

1997-09-01T23:59:59.000Z

113

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of µg), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting  1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

114

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

115

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

116

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb…

2002-01-01T23:59:59.000Z

117

Investigation of breached depleted UF{sub 6} cylinders  

SciTech Connect

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

118

Investigation of breached depleted UF sub 6 cylinders  

SciTech Connect

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

119

Selection of a management strategy for depleted uranium hexafluoride  

SciTech Connect

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

120

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

122

Carbon capture and sequestration versus carbon capture utilisation and storage for enhanced oil recovery  

Science Journals Connector (OSTI)

There are 74 integrated carbon capture projects worldwide currently listed by the Global ... oil recovery and those for permanent storage of carbon dioxide in saline aquifers or in depleted ... challenges related...

Bob Harrison; Gioia Falcone

2014-02-01T23:59:59.000Z

123

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

124

Depleted Uranium (DU) Cermet Waste Package  

NLE Websites -- All DOE Office Websites (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

125

Neutral depletion and the helicon density limit  

SciTech Connect

It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States)

2013-12-15T23:59:59.000Z

126

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

127

Tritium Transport Vessel Using Depleted Uranium  

Science Journals Connector (OSTI)

Tritium Storage, Distribution, and Transportation / Proceedings of the Fifth Topical Meeting on Tritium Technology In Fission, Fusion, and Isotopic Applications Belgirate, Italy May 28-June 3, 1995

L. K. Heung

128

NETL: Carbon Storage - Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Overview Program Overview Carbon Storage Program Overview The Carbon Storage Program involves three key elements for technology development: Core Research and Development (Core R&D), Infrastructure, and Global Collaborations. The image below displays the relationship among the three elements and provides a means for navigation throughout NETL's Storage Program Website. Click on Image to Navigate Storage Website Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player NETL's Carbon Storage Program Structure CORE R&D Core R&D is driven by industry's technology needs and segregates those needs into focus areas to more efficiently obtain solutions that can then be tested and deployed in the field. The Core R&D Element contains four

129

NETL: Natural Gas and Petroleum Storage Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Strategic Petroleum Reserve Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-FE0014830 Strategic Petroleum Reserve Core Laboratories Natural Gas Storage There are currently no active storage projects Storage - Completed Projects Click on project number for a more detailed description of the project Project Number Project Name Primary Performer DE-DT0000358 Strategic Petroleum Reserve Northrop Grumman Missions System DE-FC26-03NT41813 Geomechanical Analysis and Design Criteria Terralog Technologies DE-FC26-03NT41779 Natural Gas Storage Technology Consortium Pennsylvania State University (PSU) DE-FC26-03NT41743 Improved Deliverability in Gas Storage Fields by Identifying the Timing and Sources of Damage Using Smart Storage Technology Schlumberger Technology Corporation

130

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

131

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

132

Nuclear conflict and ozone depletion Quick summary  

E-Print Network (OSTI)

Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

Toohey, Darin W.

133

INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA  

SciTech Connect

We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr{sup -1} at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr{sup -1} for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

Connick, David E.; Smith, Charles W.; Schwadron, Nathan A., E-mail: davideconnick@gmail.com, E-mail: Charles.Smith@unh.edu, E-mail: N.Schwadron@unh.edu [Physics Department, Space Science Center, University of New Hampshire, Durham, NH (United States)

2011-01-20T23:59:59.000Z

134

Hydrate Control for Gas Storage Operations  

SciTech Connect

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

135

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

136

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

137

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

138

Depleted Uranium Uses: Regulatory Requirements and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

139

Depleted uranium plasma reduction system study  

SciTech Connect

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

140

Improvements in EBR-2 core depletion calculations  

SciTech Connect

The need for accurate core depletion calculations in Experimental Breeder Reactor No. 2 (EBR-2) is discussed. Because of the unique physics characteristics of EBR-2, it is difficult to obtain accurate and computationally efficient multigroup flux predictions. This paper describes the effect of various conventional and higher order schemes for group constant generation and for flux computations; results indicate that higher-order methods are required, particularly in the outer regions (i.e. the radial blanket). A methodology based on Nodal Equivalence Theory (N.E.T.) is developed which allows retention of the accuracy of a higher order solution with the computational efficiency of a few group nodal diffusion solution. The application of this methodology to three-dimensional EBR-2 flux predictions is demonstrated; this improved methodology allows accurate core depletion calculations at reasonable cost. 13 refs., 4 figs., 3 tabs.

Finck, P.J.; Hill, R.N.; Sakamoto, S.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Carbon sequestration in depleted oil shale deposits  

SciTech Connect

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

142

The ultimate disposition of depleted uranium  

SciTech Connect

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

143

Uranio impoverito: perché? (Depleted uranium: why?)  

E-Print Network (OSTI)

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-05-28T23:59:59.000Z

144

Nuclear materials management storage study  

SciTech Connect

The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

Becker, G.W. Jr.

1994-02-01T23:59:59.000Z

145

Chemical and radiochemical characterization of depleted uranium in contaminated soils  

Science Journals Connector (OSTI)

The main results of chemical and radiochemical characterization and fractionation of depleted uranium in soils contaminated during the Balkan conflict ... the paper. Alpha-spectrometric analysis of used depleted

M. B. Radenkovi?; A. B. Kandi?; I. S. Vukana?…

2007-09-01T23:59:59.000Z

146

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...transmission of genetic damage by depleted uranium and tungsten alloy Alexandra Miller...The radioactive heavy metal, depleted uranium (DU), an alpha-particle emitter...fragments will affect the long-term health of offspring conceived by these...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

147

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 May 2005...Proc Amer Assoc Cancer Res, Volume 46, 2005 Depleted uranium internal contamination...Proc Amer Assoc Cancer Res, Volume 46, 2005] 2080 Depleted uranium is a heavy metal...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

148

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Proc Amer Assoc Cancer Res, Volume 47, 2006 Depleted uranium - induced malignant...Proc Amer Assoc Cancer Res, Volume 47, 2006] 5215 Depleted uranium (DU) has been...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

149

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

150

Numerical simulation for formed projectile of depleted uranium alloy  

Science Journals Connector (OSTI)

The numerical simulation for forming projectile of depleted uranium alloy with the SPH (Smooth Particle Hydrodynamic ... . To describe the deformed behaviors of the depleted uranium alloy under high pressure and ...

Song Shun-cheng; Gao Ping; Cai Hong-nian

2003-09-01T23:59:59.000Z

151

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

152

ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS  

SciTech Connect

This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

2003-02-01T23:59:59.000Z

153

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

154

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

155

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

156

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

157

RESEARCH ARTICLE Open Access Susceptibility to ATP depletion of primary  

E-Print Network (OSTI)

RESEARCH ARTICLE Open Access Susceptibility to ATP depletion of primary proximal tubular cell subjected to ATP depletion using antimycin A. Results: Surprisingly, there was no difference in the amount, Viability, Survival, Apoptosis knockout mice, shRNA, ATP depletion, Metabolic stress, Antimycin Background

Paris-Sud XI, Université de

158

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

159

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

160

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

162

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

163

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

164

Seasonal thermal energy storage  

SciTech Connect

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

165

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

166

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

167

CO2 Storage and Sink Enhancements: Developing Comparable Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage and Sink Enhancements: Storage and Sink Enhancements: Developing Comparable Economics Richard G. Rhudy (rrhudy@epri.com; 650-855-2421) Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303-0813 Bert R. Bock (brbock@tva.gov; 256-386-3095) David E. Nichols (denichols@tva.gov; 256-386-2489) Tennessee Valley Authority P.O. Box 1010 Muscle Shoals, AL 35662-1010 Abstract One of the major difficulties in evaluating CO 2 sequestration technologies and practices, both geologic storage of captured CO 2 and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This paper reports on a project that compares the economics of major technologies and practices under development for CO 2 sequestration, including captured CO 2 storage options, such as active oil reservoirs, depleted oil and gas

168

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

169

Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Depleted Uranium Hexafluoride Management Program: Data Compilation for the Paducah Site in Support of Site-Specific NEPA Requirements for Continued Cylinder Storage, Cylinder Preparation, Conversion, and Long-Term Storage Activities Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering

170

A critical comparison of ionospheric depletion chemicals  

SciTech Connect

Six chemicals, H{sub 2}, H{sub 2}O, CO{sub 2}, SF{sub 6}, CF{sub 3}BR, and Ni(CO){sub 4}, are considered as ionospheric modification agents. Each of these species reacts in the F region to produce localized plasma depletions. The first three interact with O{sup +} and yield polyatomic ions which dissociatively recombine with electrons to give neutrals. The last three dissociatively attach electrons to produce heavy negative ions which become mutually neutralized by reactions with O{sup +}. The effectiveness of these chemicals depends on the amount which goes into the vapor state upon release. Thermodynamic calculations show that H{sub 2}O has the lowest vapor yield of about 20% from a heated, pressurized tank. Over 60% of the other substances should be vented in gaseous form. Based on estimates of plasma density reduction and airglow stimulation, nickel carbonyl is the most efficient of the six species for modifying the nighttime ionosphere. During the daytime, CF{sub 3}BR and SF{sub 6} provide the largest depletions.

Bernhardt, P.A. (Los Alamos National Lab., NM (United States))

1987-05-01T23:59:59.000Z

171

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

172

Design and Assessment of a Battery-Supercapacitor Hybrid Energy Storage System for Remote Area Wind Power Systems.  

E-Print Network (OSTI)

??Recent advances in innovative energy storage devices such as supercapacitors have made battery-supercapacitor hybrid energy storage systems technically attractive. However the field of hybrid energy… (more)

Gee, A

2012-01-01T23:59:59.000Z

173

Gas Storage Technology Consortium  

SciTech Connect

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

174

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

175

Overview of Depleted Uranium Hexafluoride Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

176

Regulation of New Depleted Uranium Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

2-5 2-5 Regulation of New Depleted Uranium Uses Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

177

Depleted uranium waste assay at AWE  

SciTech Connect

The Atomic Weapons Establishment (AWE) at Aldermaston has recently conducted a Best Practical Means (BPM) study, for solid Depleted Uranium (DU) waste assay, in order to satisfy key stakeholders that AWE is applying best practice. This study has identified portable passive High Resolution Gamma Spectrometry (HRGS), combined with an analytical software package called Spectral Nondestructive Assay Platform (SNAP), as the preferred option with the best balance between performance and costs. HRGS/SNAP performance has been assessed by monitoring 200 l DU waste drum standards and also heterogeneous, high density drums from DU firing trials. Accuracy was usually within 30 % with Detection Limits (DL) in the region of 10 g DU for short count times. Monte Carlo N-Particle (MCNP) calculations have been used to confirm the shape of the calibration curve generated by the SNAP software procured from Eberline Services Inc. (authors)

Miller, T.J. [AWE, Aldermaston, Reading, Berkshire, England, RG7 4PR (United Kingdom)

2007-07-01T23:59:59.000Z

178

Processing depleted uranium quad alloy penetrator rods  

SciTech Connect

Two depleted uranium (DU) quad alloys were cast, extruded and rolled to produce penetrator rods. The two alloy combinations were (1) 1 wt % molybdenum (Mo), 1 wt % niobium (Nb), and 0.75 wt % titanium (Ti); and (2) 1 wt % tantalum (Ta), 1 wt % Nb, and 0.75 wt % Ti. This report covers the processing and results with limited metallographic information available. The two alloys were each vacuum induction melted (VIM) into an 8-in. log, extruded into a 3-in. log, then cut into 4 logs and extruded at 4 different temperatures into 0.8-in. bars. From the 8 conditions (2 alloys, 4 extrusion temperatures each), 10 to 13 16-in. rods were cut for rolling and swaging. Due to cracking problems, the final processing changed from rolling and swaging to limited rolling and heat treating. The contracted work was completed with the delivery of 88 rods to Dr. Zabielski. 28 figs.

Bokan, S.L.

1987-02-19T23:59:59.000Z

179

The health effects of depleted uranium  

Science Journals Connector (OSTI)

There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU) munitions. In response to this concern the Royal Society set up an independent, expert working group to investigate the health effects of DU munitions. The Royal Society has now produced two reports, and this summary covering the key conclusions and recommendations from both reports. The part I report considered the increased risks of radiation-induced cancer from exposures to DU on the battlefield. Part II dealt with the risks from the chemical toxicity of uranium, non-malignant radiation effects from DU intakes, the long-term environmental consequences of the deployment of DU munitions and responses to part I including issues arising at a public meeting to discuss the part I report.

The Royal Society Working Group on the Health Hazards of

2002-01-01T23:59:59.000Z

180

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Deuterium depletion and magnesium enhancement in the local disc  

E-Print Network (OSTI)

The local disc deuter is known to be depleted in comparison to the local bubble. We show, that the same lines of sight that are depleted in deuter, are enhanced in magnesium. Heavier elements - Si and Fe do not show any difference in the abundance between the local disc and the local bubble. This observation implicates that astration is responsible for both deuter depletion and magnesium enhancement.

Piotr Gnacinski

2005-07-19T23:59:59.000Z

182

AZ CO2 Storage Pilot  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

183

Subsurface transformations of depleted uranium at Aberdeen Proving Ground, Maryland.  

E-Print Network (OSTI)

?? Approximately 130,000 kg of depleted uranium (DU) from ammunition testing have been deposited in soils since 1974 and remain in the environment at Aberdeen… (more)

Oxenberg, Tanya Palmateer

2007-01-01T23:59:59.000Z

184

Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests. Analysis of Serum Total and Free PSA Using Immunoaffinity...

185

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

186

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

187

Microscale Depletion of High Abundance Proteins in Human Biofluids...  

NLE Websites -- All DOE Office Websites (Extended Search)

by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides...

188

NREL: Energy Storage - Energy Storage Thermal Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

189

NREL: Energy Storage - Energy Storage Systems Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

190

Surface Depletion in the Vacuum Distillation of Metals from Bismuth  

SciTech Connect

Surface depletion was investigated in laboratory- and plant-scale distillation units with mixing by natural convection or by mechanical surface agitation. A model was developed for predicting the degree of surface depletion during the distillation of metals from bismuth as a function of temperature, still pot dimensions, and degree of agitation. This paper discusses those findings.

Bradley, R.F.

2001-08-29T23:59:59.000Z

191

Pumping induced depletion from two streams Dongmin Sun a  

E-Print Network (OSTI)

Author's personal copy Pumping induced depletion from two streams Dongmin Sun a , Hongbin Zhan b-domain and becomes identical to that of Hunt [Hunt B. Unsteady stream depletion from ground water pumping. Ground of the shortest distance from the pumping well to the other stream over the shortest distance between the two

Zhan, Hongbin

192

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

by Storage Type" by Storage Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","All Operators",6,"Monthly","9/2013","1/15/1973" ,"Data 2","Salt Cavern Storage Fields",6,"Monthly","9/2013","1/15/1994" ,"Data 3","Nonsalt Cavern Storage",6,"Monthly","9/2013","1/15/1994" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_type_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_type_s1_m.htm"

193

Exploratory Simulation Studies of Caprock Alteration Induced by Storage of CO2 in Depleted Gas Reservoirs  

E-Print Network (OSTI)

Anhydrite 6.5e-04 100.0e-1 Halite 6.2e-01 100.0e-1 AnorthiteCa-smectite Anhydrite Muscovite Halite Anorthite In order to

Gherardi, Fabrizio; Xu, Tianfu; Pruess, Karsten

2005-01-01T23:59:59.000Z

194

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

195

Depleted Uranium: Exposure and Possible Health Effects  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a by-product of the enrichment process of 235U used for fission in nuclear reactors and nuclear weapons. It has both civilian and military applications. The military use of DU is of defensive as well as of offensive nature, being mainly employed as armor-piercing ammunition. So far, the usage of ammunitions containing DU has been officially confirmed in four military conflicts: Iraq (1991), Bosnia (1994), Kosovo (1999), and again Iraq (2003). During their deployment in the military actions, most penetrators are thought to have missed their intended targets. Therefore, a substantial amount of DU is still present in the environment and may act as a source of contamination for the environment and the population. The possible effects of this radioactive and chemically toxic material have attracted particular notice. To evaluate these consequences, it is important to have accurate methods to assess the exposure to DU in both environmental and biological samples. This article is therefore intended to point out the problematic nature of the experimental techniques and of the analytical methods so far used to quantify the exposure to DU in the light of possible health effects of DU.

U. Oeh

2011-01-01T23:59:59.000Z

196

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

197

NETL: Carbon Storage - Knowledge Sharing  

NLE Websites -- All DOE Office Websites (Extended Search)

Knowledge Sharing Knowledge Sharing Carbon Storage Knowledge Sharing Outreach Efforts at SECARB's Anthropogenic Test Site in Alabama Outreach Efforts at SECARB's Anthropogenic Test Site in Alabama In order to achieve the commercialization of CO2 storage technologies, the U.S. Department of Energy (DOE) acknowledges that knowledge sharing between various entities is essential. Distribution of the results and lessons learned from both field projects and Core R&D efforts will provide the foundation for future, large-scale CCS field tests across North America and in addressing future challenges associated with public acceptance, infrastructure (pipelines, compressor stations, etc.), and regulatory framework. DOE promotes information and knowledge sharing through various avenues including the Regional Carbon Sequestration Partnerships (RCSP)

198

Onboard Storage Tank Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

199

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

200

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

202

Cool Storage Performance  

E-Print Network (OSTI)

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

203

Safe Home Food Storage  

E-Print Network (OSTI)

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

204

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

205

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

206

Thermochemical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

207

Energy Storage Systems  

SciTech Connect

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

208

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

209

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

210

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

211

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

212

North Sea reserve appreciation, production, and depletion  

E-Print Network (OSTI)

Oil field "growth" has become a well-recognized phenomenon in mature, well-explored provinces such as the United States leading to the continual under-estimation in oil production forecasts. This working paper explores the ...

Sem, Tone

1999-01-01T23:59:59.000Z

213

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

214

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

215

Design Considerations for High Energy Electron -- Positron Storage Rings  

DOE R&D Accomplishments (OSTI)

High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

Richter, B.

1966-11-00T23:59:59.000Z

216

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......I (2009) Depleted uranium: properties, military...Teratogenicity of depleted uranium aerosols: a review...expression in female breast cancer among an Iraqi population exposed to depleted uranium. J Carcinog 7: 8......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

217

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations...and Jadranko SIMIC2 Health risks/Depleted uranium/Chromosome aberrations...Institute symposia "The Health Effects of Depleted Uranium." Remarks and slides......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

218

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......Society. The Health Hazards of Depleted Uranium Munitions-Part...Carpenter D. O. Depleted uranium contamination...implications for health assessment...Sunder S. Depleted uranium dust from fired...properties. Health Phys (2004......

Marcelo Valdés

2009-02-01T23:59:59.000Z

219

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......War about the health significance of exposure to depleted uranium (DU), the...perforated by depleted uranium ammunition...War about the health significance of exposure to depleted uranium (DU), the......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

220

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...the study was hit by depleted uranium projectiles during...M. , Haldimann M. Depleted uranium in Kosovo: an assessment...exposure for aid workers. Health Phys. (2002) 82......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Fairlie I (2009) Depleted uranium: properties, military use and health risks. Med Confl...et al (2002) Health effects of embedded depleted uranium. Mil Med 167...et al (2000) Health effects of depleted uranium on exposed Gulf......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

222

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......Abou-Donia, M. Depleted and natural uranium: chemistry...Environ. Health B Crit...et al. Health effects of embedded depleted uranium. Mil. Med...determinations in depleted uranium exposed Gulf...veterans. Health Phys. 77......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

223

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

224

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Association for Cancer Research April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

225

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

226

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Carefree, AZ Abstract B41: Depleted uranium-induced oxidative stress in...as occupational exposures to depleted uranium via military action. Cellular...to evaluate the toxicity of depleted uranium (DU) in its soluble and insoluble...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

227

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......from exposure to aerosols of depleted uranium Marcelo Valdes * * Corresponding...Following exposure to aerosols of depleted uranium (DU), biological samples...uranyl phosphates. INTRODUCTION Depleted uranium (DU) is a waste product of......

Marcelo Valdés

2009-02-01T23:59:59.000Z

228

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

229

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......armoured vehicles perforated by depleted uranium ammunition M. A. Parkhurst...significance of exposure to depleted uranium (DU), the US Department of...armoured vehicles perforated by depleted uranium ammunition. | In response to......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

230

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......the Terrains Contaminated with Depleted Uranium Snezana Milacic 1 * Jadranko...originated from ammunition containing depleted uranium (DU). The studied population...ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations| J......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

231

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to Low-dose Depleted Uranium Yuhui Hao Rong Li * Yanbing...study evaluated the effects of depleted uranium (DU) on reproduction in rats...effects were obvious in F1 rats. Depleted uranium|Ingestion|Reproductive effects......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

232

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......villages in Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric 2...included in the study was hit by depleted uranium projectiles during the North...1999. Although no impact of depleted uranium on radon levels has been observed......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

233

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......intramuscularly injected with depleted uranium S. Fukuda 1 M. Ikeda 1 M...related to kidney and bone in depleted uranium (DU)-injected rats were...injected is low. INTRODUCTION Depleted uranium (DU) accumulates like natural......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

234

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

235

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

236

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

237

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

238

Machining of depleted uranium using coated cutting tools  

Science Journals Connector (OSTI)

The machining of depleted uranium and its alloys are discussed in this...1-x-y-z Al x Cr y Y2N alloys, with y=0.03 and z=0.02, h...

M. J. Jackson; G. M. Robinson

2006-04-01T23:59:59.000Z

239

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Science Journals Connector (OSTI)

During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most...

Mirjana B. Radenkovi?; Svjetlana A. Cupa?…

2008-01-01T23:59:59.000Z

240

Lichens as Biomonitors of Depleted Uranium in Kosovo  

Science Journals Connector (OSTI)

This paper reports the results of a study using lichens as biomonitors to investigate the environmental distribution of depleted uranium (DU) at selected Kosovo sites as...235U/238U measurements did not indicate ...

S. Loppi; L. A. Di Lella; L. Frati; G. Protano…

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hyperspectral stimulated emission depletion microscopy and methods of use thereof  

DOE Patents (OSTI)

A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

Timlin, Jerilyn A; Aaron, Jesse S

2014-04-01T23:59:59.000Z

242

Depleted uranium: a contemporary controversy for the teaching of radioactivity  

Science Journals Connector (OSTI)

Depleted uranium has been used in recent military conflicts and the media have reported the danger from radioactivity. This context provides a good way to keep students' attention when introducing the subject of radioactivity at GCSE or advanced level.

Mark Whalley

2006-01-01T23:59:59.000Z

243

Carbon Capture, Utilization & Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Carbon capture, utilization and storage (CCUS), also referred to as carbon

244

Retrieval of buried depleted uranium from the T-1 trench  

SciTech Connect

The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

Burmeister, M. [Rocky Mountain Remediation Services, Golden, CO (United States); Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Greengard, T. [Kaiser-Hill Co., Golden, CO (United States)]|[Science Applications International Corp. (United States); Hull, C. [S.M. Stoller Corp., Boulder, CO (United States); Barbour, D.; Quapp, W.J. [Starmet Corp. (United States)

1998-07-01T23:59:59.000Z

245

Packaging and Disposal of a Radium-beryllium Source using Depleted Uranium Polyethylene Composite Shielding  

SciTech Connect

Two, 111-GBq (3 Curie) radium-beryllium (RaBe) sources were in underground storage at the Brookhaven National Laboratory (BNL) since 1988. These sources originated from the Princeton Plasma Physics Laboratory (PPPL) where they were used to calibrate neutron detection diagnostics. In 1999, PPPL and BNL began a collaborative effort to expand the use of an innovative pilot-scale technology and bring it to full-scale deployment to shield these sources for eventual transport and burial at the Hanford Burial site. The transport/disposal container was constructed of depleted uranium oxide encapsulated in polyethylene to provide suitable shielding for both gamma and neutron radiation. This new material can be produced from recycled waste products (depleted uranium and polyethylene), is inexpensive, and can be disposed with the waste, unlike conventional lead containers, thus reducing exposure time for workers. This paper will provide calculations and information that led to the initial design of the shielding. We will also describe the production-scale processing of the container, cost, schedule, logistics, and many unforeseen challenges that eventually resulted in the successful fabrication and deployment of this shield. We will conclude with a description of the final configuration of the shielding container and shipping package along with recommendations for future shielding designs.

Keith Rule; Paul Kalb; Pete Kwaschyn

2003-02-11T23:59:59.000Z

246

E-Print Network 3.0 - aerosol depletion test Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

depletion test Search Powered by Explorit Topic List Advanced Search Sample search results for: aerosol depletion test Page: << < 1 2 3 4 5 > >> 1 Supervolcanoes General feedback...

247

Impact of carbon dioxide sequestration in depleted gas-condensate reservoirs.  

E-Print Network (OSTI)

??Depleted gas-condensate reservoirs are becoming important targets for carbon dioxide sequestration. Since depleted below the dew point, retrograde condensate has been deposited in the pore… (more)

Ramharack, Richard M.

2010-01-01T23:59:59.000Z

248

Brain accumulation of depleted uranium in rats following 3- or 6-month treatment with implanted depleted uranium pellets  

Science Journals Connector (OSTI)

Depleted uranium (DU) is used to reinforce armor ... were weighed weekly as a measure of general health, with no statistically significant differences observed among ... midbrain, hippocampus, striatum, and corte...

Vanessa A. Fitsanakis; Keith M. Erikson…

2006-01-01T23:59:59.000Z

249

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

250

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

251

Sorption Storage Technology Summary  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

252

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

253

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

254

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network (OSTI)

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

255

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

256

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

257

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

258

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu…

2009-04-01T23:59:59.000Z

259

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (1×2×0.75)m3 size was designed and constructed. The...

F. Çömez; R. Oskay; A. ?. Üçer

1987-01-01T23:59:59.000Z

260

Carbon Capture and Storage  

SciTech Connect

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

262

Sandia National Laboratories: evaluate energy storage opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

263

Sandia National Laboratories: implement energy storage projects  

NLE Websites -- All DOE Office Websites (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

264

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

265

Compressed Air Storage Strategies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

266

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

267

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector  

E-Print Network (OSTI)

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

1980-01-01T23:59:59.000Z

268

International aspects of restrictions of ozone-depleting substances  

SciTech Connect

This report summarizes international efforts to protect stratospheric ozone. Also included in this report is a discussion of activities in other countries to meet restrictions in the production and use of ozone-depleting substances. Finally, there is a brief presentation of trade and international competitiveness issues relating to the transition to alternatives for the regulated chlorofluorocarbons (CFCs) and halons. The stratosphere knows no international borders. Just as the impact of reduced stratospheric ozone will be felt internationally, so protection of the ozone layer is properly an international effort. Unilateral action, even by a country that produces and used large quantities of ozone-depleting substances, will not remedy the problem of ozone depletion if other countries do not follow suit. 32 refs., 7 tabs.

McDonald, S.C.

1989-10-01T23:59:59.000Z

269

Effect of Shim Arm Depletion in the NBSR  

SciTech Connect

The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

Hanson A. H.; Brown N.; Diamond, D.J.

2013-02-22T23:59:59.000Z

270

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

271

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

272

Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride  

SciTech Connect

The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

1995-12-01T23:59:59.000Z

273

EXERGETIC ANALYSIS OF A STEAM-FLASHING THERMAL STORAGE SYSTEM  

E-Print Network (OSTI)

cost benefits are still evident. Currently, there are many solar power plants that have been announced Abstract Thermal energy storage is attractive in the design of concentrator solar thermal systems because, power output from a solar field. At the right cost, a storage system can improve overall economics

274

Microsoft Word - CCS Geologic Storage-Intro_2011l.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Geologic carbon sequestration involves the storage of carbon dioxide (CO 2 ) in deep underground geologic formations. The majority of geologic formations considered for CO 2 storage, deep saline or depleted oil and gas reservoirs, are layers of subsurface porous rock that are overlain by a layer or multiple layers of low-permeability rock. Under high pressures, CO 2 is a supercritical fluid, with the high- density characteristics of a liquid but behaves like a gas by filling all available volume. Coal seams are also a viable option for geologic storage. When CO 2 is injected into a coal formation it is adsorbed onto the coal surfaces and methane gas is released and produced in adjacent wells. NETL's Core R&D research is focused on developing the ability to characterize a geologic formation

275

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

276

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

277

NREL: Transportation Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

278

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

279

Hydrogen storage gets new hope  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

280

Energy Storage | Department of Energy  

Energy Savers (EERE)

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Utility Battery Storage Systems Program Overview  

SciTech Connect

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

282

FE Carbon Capture and Storage News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon-capture-storage-news Office of Fossil Energy carbon-capture-storage-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution http://energy.gov/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

283

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

284

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

285

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

286

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

287

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

288

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

289

Multiported storage devices  

E-Print Network (OSTI)

In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

Grande, Marcus Bryan

2012-06-07T23:59:59.000Z

290

Fundamental differences between Arctic and Antarctic ozone depletion  

Science Journals Connector (OSTI)

...binary sulfuric acid?water aerosols can deplete...National Oceanic and Atmospheric Administration. Satellite observations...Relative influences of atmospheric chemistry and transport...RP Pinto J ( 1986 ) Condensation of HNO 3 and HCl in...Implications for recovery of springtime Antarctic...

Susan Solomon; Jessica Haskins; Diane J. Ivy; Flora Min

2014-01-01T23:59:59.000Z

291

Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer  

E-Print Network (OSTI)

Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer Received: 12 January 2007 Mainz, Germany M. Oppenheimer (*) Department of Geosciences, Princeton University, Princeton, NJ 08544, USA e-mail: omichael@princeton.edu M. Oppenheimer Woodrow Wilson School of Public and International

Oppenheimer, Michael

292

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network (OSTI)

that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA...

Humrickhouse, Carissa Joy

2012-07-16T23:59:59.000Z

293

Defending Resource Depletion Attacks on Implantable Medical Devices  

E-Print Network (OSTI)

that could deplete IMD resources (e.g., battery power) quickly. The RD attacks could reduce the lifetime are powered by a non-rechargeable battery and replacing the battery requires surgery. Re-charging an IMD from an external RF electromagnetic source causes thermal effects in the organs and thus is not recommended. Unlike

Wu, Jie

294

The Variation of Magnesium Depletion with Line of Sight Conditions  

E-Print Network (OSTI)

In this paper we report on the gas-phase abundance of singly-ionized magnesium (Mg II) in 44 lines of sight, using data from the Hubble Space Telescope (HST). We measure Mg II column densities by analyzing medium- and high-resolution archival STIS spectra of the 1240 A doublet of Mg II. We find that Mg II depletion is correlated with many line of sight parameters (e.g. F(H_2), E_(B-V), E_(B-V)/r, A_V, and A_V/r) in addition to the well-known correlation with . These parameters should be more directly related to dust content and thus have more physical significance with regard to the depletion of elements such as magnesium. We examine the significance of these additional correlations as compared to the known correlation between Mg II depletion and . While none of the correlations are better predictors of Mg II depletion than , some are statistically significant even assuming fixed . We discuss the ranges over which these correlations are valid, their strength at fixed , and physical interpretations.

Adam G. Jensen; Theodore P. Snow

2007-10-04T23:59:59.000Z

295

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells Andras G. Pattantyus-Abraham,, Illan J and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada-circuit voltage (Voc) and fill factor (FF). The power conversion efficiency ( ) for an in- put solar intensity

296

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Architectures for Solar Energy Production, Storage andArchitectures for Solar Energy Production, Storage and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

297

Efficiency optimization for atomic frequency comb storage  

SciTech Connect

We study the efficiency of the atomic frequency comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a Tm{sup 3+}:YAG crystal. We observe a net gain in efficiency from 10 to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction.

Bonarota, M.; Ruggiero, J.; Le Goueet, J.-L.; Chaneliere, T. [Laboratoire Aime Cotton, CNRS-UPR 3321, Univ. Paris-Sud, Bat. 505, F-91405 Orsay Cedex (France)

2010-03-15T23:59:59.000Z

298

DOE Partner Begins Carbon Storage Test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Carbon Storage Test Partner Begins Carbon Storage Test DOE Partner Begins Carbon Storage Test June 25, 2009 - 1:00pm Addthis Washington, D.C. -- A Department of Energy sponsored project in Hopkins County, Kentucky has begun injecting carbon dioxide (CO2) into a mature oil field to assess the region's CO2 storage capacity and feasibility for enhanced oil recovery. The project is part of DOE's Regional Carbon Sequestration Partnership (RCSP) program and is being conducted by The Midwest Geological Sequestration Consortium (MGSC). The project is part of the RCSP's "validation phase," where field tests are being conducted nationwide to assess the most promising sites to deploy carbon capture and storage technologies. This project is expected to create 13 full time jobs which will be

299

Savannah River Hydrogen Storage Technology  

Energy.gov (U.S. Department of Energy (DOE))

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

300

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

302

1 2/13/2012 Ground Referencing GRACE Satellite Estimates of Groundwater Storage Changes in the1  

E-Print Network (OSTI)

California Central Valley, US2 3 4 Scanlon, B.R. 1 , Longuevergne, L.2 and Long, D.2 5 6 7 1 Bureau footprint. The Central Valley is a17 heavily irrigated region with large-scale groundwater depletion during Valley19 using GRACE satellites with storage changes from groundwater level data. A new processing20

Paris-Sud XI, Université de

303

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

304

DOE Global Energy Storage Database  

DOE Data Explorer (OSTI)

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

305

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b  

E-Print Network (OSTI)

Studies of solid state hydrogen storage materials by SAXS and QENS Qing Shi a, b , Hjalte S than that of other chemical fuels1 . However, hydrogen storage is still a key problem remaining on reversible hydrogen storage in complex metal hydrides, these materials have dominated the research field due

306

Prediction of the effects of compositional mixing in a reservoir on conversion to natural gas storage.  

E-Print Network (OSTI)

??The increased interest in the development of new Gas Storage Fields over the lastseveral decades has created some interesting challenges for the industry. Most existinggas… (more)

Brannon, Alan W.

2011-01-01T23:59:59.000Z

307

Energy conversions and storage caused by an unsteady poloidal flow in active solar regions  

Science Journals Connector (OSTI)

In this paper we discuss coupling processes between a magnetic field and an unsteady plasma motion, and analyze the features of energy storage and conversions in active region.

Zhongyuan Li; W. R. Hu

308

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

309

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

310

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

311

Impacts of contaminant storage on indoor air quality: Model development  

NLE Websites -- All DOE Office Websites (Extended Search)

of of contaminant storage on indoor air quality: Model development Max H. Sherman, Erin L. Hult * Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 90R3083, Berkeley, CA 94720-8133, USA h i g h l i g h t s < A lumped parameter model is applied to describe emission and storage buffering of contaminants. < Model is used to assess impact of ventilation on indoor formaldehyde exposure. < Observations of depletion of stored contaminants can be described by model. a r t i c l e i n f o Article history: Received 8 November 2012 Received in revised form 7 February 2013 Accepted 11 February 2013 Keywords: Buffering capacity Formaldehyde Moisture a b s t r a c t A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde

312

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

313

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

314

Storage Ring Operation Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

315

Optimization to reduce fuel consumption in charge depleting mode  

DOE Patents (OSTI)

A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

Roos, Bryan Nathaniel; Martini, Ryan D.

2014-08-26T23:59:59.000Z

316

AB Levitator and Electricity Storage  

E-Print Network (OSTI)

The author researched this new idea - support of flight by any aerial vehicles at significant altitude solely by the magnetic field of the planet. It is shown that current technology allows humans to create a light propulsion (AB engine) which does not depend on air, water or ground terrain. Simultaniosly, this revolutionary thruster is a device for the storage of electricity which is extracted and is replenished (during braking) from/into the storage with 100 percent efficiency. The relative weight ratio of this engine is 0.01 - 0.1 (from thrust). For some types of AB engine (toroidal form) the thrust easily may be changed in any direction without turning of engine. The author computed many projects using different versions of offered AB engine: small device for levitation-flight of a human (including flight from Earth to Outer Space), fly VTOL car (track), big VTOL aircrat, suspended low altitude stationary satellite, powerful Space Shuttle-like booster for travel to the Moon and Mars without spending energ...

Bolonkin, A

2007-01-01T23:59:59.000Z

317

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

NLE Websites -- All DOE Office Websites (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

318

Shock induced multi-mode damage in depleted uranium  

SciTech Connect

Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

Koller, Darcie D [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

319

FOREST CENTRE STORAGE BUILDING  

E-Print Network (OSTI)

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

320

Marketing Cool Storage Technology  

E-Print Network (OSTI)

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Safety evaluation for packaging (onsite) depleted uranium waste boxes  

SciTech Connect

This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

McCormick, W.A.

1997-08-27T23:59:59.000Z

322

Uranio impoverito: perch'e? (Depleted uranium: why?)  

E-Print Network (OSTI)

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of the author of understanding the reasons of the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

D'Abramo, G

2003-01-01T23:59:59.000Z

323

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

NLE Websites -- All DOE Office Websites (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

324

E-Print Network 3.0 - allogeneic t-cell depleted Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

t-cell depleted Search Powered by Explorit Topic List Advanced Search Sample search results for: allogeneic t-cell depleted Page: << < 1 2 3 4 5 > >> 1 haematologicathe hematology...

325

Diversity of Glycosyl Hydrolases from Cellulose-Depleting Communities Enriched from Casts of Two Earthworm Species  

Science Journals Connector (OSTI)

...metagenomic fosmid libraries from cellulose-depleting...annotated in public databases as...introducing myRDP space and quality controlled public data. Nucleic...metagenomic fosmid libraries from cellulose-depleting...annotated in public databases as...

Ana Beloqui; Taras Y. Nechitaylo; Nieves López-Cortés; Azam Ghazi; María-Eugenia Guazzaroni; Julio Polaina; Axel W. Strittmatter; Oleg Reva; Agnes Waliczek; Michail M. Yakimov; Olga V. Golyshina; Manuel Ferrer; Peter N. Golyshin

2010-07-09T23:59:59.000Z

326

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model.  

E-Print Network (OSTI)

??Texture evolution of depleted uranium is investigated using a viscoplastic self-consistent model. Depleted uranium, which has the same structure as alpha-uranium, is difficult to model… (more)

Ho, John

2012-01-01T23:59:59.000Z

327

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra Miller

2007-05-01T23:59:59.000Z

328

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......M. Depleted and natural uranium: chemistry and toxicological...internal contamination with uranium. Croat. Med. J. 40...1999). 5. Mould, R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

329

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......p 105185. 5. UNEP. (2001) Depleted Uranium in Kosovo. Post Conflict Environmental...pp 98115. 6. UNEP. (2002) Depleted Uranium in Serbia and Montenegro Post...Lundin, A. (2004) Incidence of cancer among Swedish military and civil......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

330

E-Print Network 3.0 - antarctic ozone depletion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

-B and Biosphere." Oecologia 128(1-2): 1-296. (1997). Ozone depletion FAQ Part IV: UV radiation and its effects... -B radiation due to stratospheric ozone depletion on global...

331

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Epigenetic mechanism is involved in depleted uranium-induced transformation in human...Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military...research information on the potential health hazards of DU exposure. In our...

Alexandra Miller

2007-05-01T23:59:59.000Z

332

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Science of Cancer Health Disparities- Feb...AZ Abstract B41: Depleted uranium-induced oxidative...Science of Cancer Health Disparities- Feb...high deposits of uranium or tailings. There...occupational exposures to depleted uranium via military...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

333

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 February...The Science of Cancer Health Disparities...Abstract B41: Depleted uranium-induced oxidative...Carefree, AZ Cancer and mortality...deposits of uranium or tailings...exposures to depleted uranium via...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

334

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...American Association for Cancer Research April 15, 2010...mechanism is involved in depleted uranium-induced transformation...Maine, Portland, ME. Depleted uranium (DU) is commonly...American Association for Cancer Research; 2010 Apr 17-21...

Alexandra Miller

2007-05-01T23:59:59.000Z

335

Depleted uranium hexafluoride – technogenic raw material for obtaining high-purity inorganic fluorides  

Science Journals Connector (OSTI)

The problem of handling depleted uranium hexafluoride is discussed. An effective and ecologically safe variant of complex recycling of depleted uranium hexafluoride with uranium oxides, organic compounds, and hig...

E. P. Magomedbekov; S. V. Chizhevskaya; O. M. Klimenko; A. V. Davydov…

2012-02-01T23:59:59.000Z

336

NETL: Carbon Storage - Geologic Characterization Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Geologic Characterization Efforts RCSP Geologic Characterization Efforts The U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) in 2003 to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon storage in different regions of the United States and Canada. The RCSP Initiative is being implemented in three phases: (1) Characterization Phase (2003-2005) to collect data on CO2 stationary sources and geologic formations and develop the human capital to support and enable future carbon storage field tests, (2) Validation Phase (2005-2011) to evaluate promising CO2 storage opportunities through a series of small-scale (<1 million metric tons of CO2) field tests, and (3) Development Phase (2008-2018+) that involves the injection of 1 million metric tons or more of CO2 by each RCSP into regionally significant geologic formations. In addition to working toward developing human capital, encouraging stakeholder networking, and enhancing public outreach and education on carbon capture and storage (CCS), the RCSPs are conducting extensive geologic characterization across all three project phases, as well as CO2 stationary source identification and re-evaluation over time.

337

Interim storage of recyclable materials. Final report  

SciTech Connect

The purpose of this study was to investigate long-term, economical, outdoor storage of a variety of postconsumer recyclable materials. Field investigations and laboratory analysis were performed to examine how protected and unprotected storage would affect marketability and product quality of baled plastics, papers, and other miscellaneous potentially recyclable materials. Baled materials were stored and evaluated over a period of approximately two years. Evaluation of the stored paper products was undertaken using handsheets to perform tests as published by the Technical Association of the Pulp and Paper Industry (TAPPI). A beater curve analysis of selected stored papers, a pilot-scale papermaking run on a Number 2 Fourdrinier Paper machine, and two microbial analysis of the paper materials were also undertaken. Plastic samples obtained from the field were evaluated for oxidation using an Infrared Spectrophotometer (IR), and a controlled `blackbox` IR study was completed. Liquid run-off from bales was analyzed on a quarterly basis. The authors` investigations show that inexpensive outdoor storage for some paper and plastic products is potentially viable as some postconsumer paper and plastic products can be stored outdoors for long periods of time, 300 days or more, without protection. Few potential negative environmental impacts of such storage were found.

NONE

1998-11-01T23:59:59.000Z

338

Storage Business Model White Paper  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

339

Spent-fuel-storage alternatives  

SciTech Connect

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

340

Isotopic investigation of the colloidal mobility of depleted uranium in a podzolic soil  

Science Journals Connector (OSTI)

Abstract The mobility and colloidal migration of uranium were investigated in a soil where limited amounts of anthropogenic uranium (depleted in the 235U isotope) were deposited, adding to the naturally occurring uranium. The colloidal fraction was assumed to correspond to the operational fraction between 10 kDa and 1.2 ?m after (ultra)filtration. Experimental leaching tests indicate that approximately 8–15% of uranium is desorbed from the soil. Significant enrichment of the leachate in the depleted uranium (DU) content indicates that uranium from recent anthropogenic DU deposit is weakly bound to soil aggregates and more mobile than geologically occurring natural uranium (NU). Moreover, 80% of uranium in leachates was located in the colloidal fractions. Nevertheless, the percentage of DU in the colloidal and dissolved fractions suggests that NU is mainly associated with the non-mobile coarser fractions of the soil. A field investigation revealed that the calculated percentages of DU in soil and groundwater samples result in the enhanced mobility of uranium downstream from the deposit area. Colloidal uranium represents between 10% and 32% of uranium in surface water and between 68% and 90% of uranium in groundwater where physicochemical parameters are similar to those of the leachates. Finally, as observed in batch leaching tests, the colloidal fractions of groundwater contain slightly less DU than the dissolved fraction, indicating that DU is primarily associated with macromolecules in dissolved fraction.

S. Harguindeguy; P. Crançon; F. Pointurier; M. Potin-Gautier; G. Lespes

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dust acoustic solitary waves in a magnetized electron depleted superthermal dusty plasma  

SciTech Connect

A theoretical investigation has been made on the oblique propagation of arbitrary dust-acoustic solitary waves in an electron depleted magnetized dusty plasma which consists of kappa distributed ions and negatively charged warm dust fluid. The electron number density is assumed to be sufficiently depleted owing to the electron attachment during the dust charging process, i.e., n{sub e} Much-Less-Than n{sub i}. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that deviation of ions from thermodynamic equilibrium leads to a decrease of the phase velocity of both modes. A nonlinear pseudopotential approach is employed to derive an energy-like equation which admits to investigate the occurrence of stationary solitary wave solution for the propagation of arbitrary amplitude. The effects of superthermality, obliqueness, and external magnetic field on the existence domain and nature of these solitary waves are discussed. Only negative polarity of solitary waves is found to exist. It is shown that an increase of ion superthermality leads to the appearance of the solitary waves with smaller Mach numbers. The influence of dust temperature on the existence domain of solitary structures is increase of the permitted Mach number. It is also found that the superthermality supports the solitary structures with larger amplitude.

Shahmansouri, M. [Department of Physics, Faculty of Science, Arak University, Arak 38156-8-8349 (Iran, Islamic Republic of); Alinejad, H. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

342

Solar Energy Storage Methods  

Science Journals Connector (OSTI)

Solar Energy Storage Methods ... Conducting polymers have superior specific energies to the carbon-based supercapacitors and have greater power capability, compared to inorganic battery material. ... The question of load redistribution for better energetic usage is of vital importance since these new renewable energy sources are often intermittent. ...

Yu Hou; Ruxandra Vidu; Pieter Stroeve

2011-06-09T23:59:59.000Z

343

Seed Cotton Handling & Storage  

E-Print Network (OSTI)

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

344

Underground pumped hydroelectric storage  

SciTech Connect

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

345

Are plasma depletions in Saturn's ionosphere a signature of time-dependent water input?  

E-Print Network (OSTI)

Are plasma depletions in Saturn's ionosphere a signature of time- dependent water input? Luke Moore the presence of numerous ``ionospheric holes'', or plasma depletions, in Saturn's upper atmosphere that cannot the observed plasma depletions. The required influxes present a target to assess for the possible sources

Mendillo, Michael

346

Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies  

Science Journals Connector (OSTI)

...Spacelab-2 Plasma Depletion...Spacelab-2 Plasma Depletion...releasing large amounts of...Earth's upper atmosphere to chemically...spanned an area of several...16.5-MHZ AND THE GALACTIC...Spacelab-2 plasma depletion...releasing large amounts of...Earth's upper atmosphere to chemically...spanned an area of several...

M. MENDILLO; J. BAUMGARDNER; D. P. ALLEN; J. FOSTER; J. HOLT; G. R.A. ELLIS; A. KLEKOCIUK; G. REBER

1987-11-27T23:59:59.000Z

347

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

348

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

349

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

350

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

351

Storage/Handling | Department of Energy  

Energy Savers (EERE)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

352

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

353

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

354

Hydrogen Storage Challenges | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

355

Chemical Hydrogen Storage Research and Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage Research and Development Chemical Hydrogen Storage Research and Development DOE's chemical hydrogen storage R&D is focused on developing low-cost...

356

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

357

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

358

Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants  

SciTech Connect

Isotopically depleted UF{sub 6} (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF{sub 6}. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wall pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life.

Barlow, C.R.; Alderson, J.H.; Blue, S.C.; Boelens, R.A.; Conkel, M.E.; Dorning, R.E.; Ecklund, C.D.; Halicks, W.G.; Henson, H.M.; Newman, V.S.; Philpot, H.E.; Taylor, M.S.; Vournazos, J.P. [Oak Ridge K-25 Site, TN (United States). UEO Enrichment Technical Operations Div.; Russell, J.R. [USDOE Oak Ridge Field Office, TN (United States); Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States); Ziehlke, K.T. [MJB Technical Associates (United States)

1992-07-01T23:59:59.000Z

359

HYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES  

E-Print Network (OSTI)

, Michael D. HamptonDarlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FLFL Solar Energy Center, U. of Central FL #12;Objective · Identify a hydrogen storage system that meets the DOEHYDROGEN STORAGE USINGHYDROGEN STORAGE USING COMPLEX HYDRIDESCOMPLEX HYDRIDES Darlene K. Slattery

360

An update on corrosion monitoring in cylinder storage yards  

SciTech Connect

Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Efficient checkpointing schemes for depletion perturbation solutions on memory-limited architectures  

SciTech Connect

We describe a methodology for decreasing the memory footprint and machine I/O load associated with the need to access a forward solution during an adjoint solve. Specifically, we are interested in the depletion perturbation equations, where terms in the adjoint Bateman and transport equations depend on the forward flux solution. Checkpointing is the procedure of storing snapshots of the forward solution to disk and using these snapshots to recompute the parts of the forward solution that are necessary for the adjoint solve. For large problems, however, the storage cost of just a few copies of an angular flux vector can exceed the available RAM on the host machine. We propose a methodology that does not checkpoint the angular flux vector; instead, we write and store converged source moments, which are typically of a much lower dimension than the angular flux solution. This reduces the memory footprint and I/O load of the problem, but requires that we perform single sweeps to reconstruct flux vectors on demand. We argue that this trade-off is exactly the kind of algorithm that will scale on advanced, memory-limited architectures. We analyze the cost, in terms of FLOPS and memory footprint, of five checkpointing schemes. We also provide computational results that support the analysis and show that the memory-for-work trade off does improve time to solution. (authors)

Stripling, H. F.; Adams, M. L.; Hawkins, W. D. [Texas A and M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133 (United States)

2013-07-01T23:59:59.000Z

362

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......A. (2001) Depleted uranium and public health. BMJ. 322...phenotype by depleted uranium-uranyl chloride. Environ. Health Perspect 106...radiological risk from depleted uranium in war scenarious. Health Phys. 82: 1420......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

363

Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Hong Xie; Carolyne LaCerte; and John P. Wise

2010-04-15T23:59:59.000Z

364

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

365

Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank  

Science Journals Connector (OSTI)

......Characterisation and dissolution of depleted uranium aerosols produced during impacts...Aerosols produced during impacts of depleted uranium (DU) penetrators against the...Characterisation and dissolution of depleted uranium aerosols produced during impacts......

V. Chazel; P. Gerasimo; V. Debouis; P. Laroche; F. Paquet

2003-07-01T23:59:59.000Z

366

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to a Low Dose of Depleted Uranium Yuhui Hao Rong Li * Yanbing...by chronic oral exposure to depleted uranium (DU). Materials and methods...exposure to a low dose of DU. Depleted uranium|Ingestion|Genotoxicity......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

367

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

368

Enhanced Integrity LNG Storage Tanks  

Science Journals Connector (OSTI)

In recent years close attention has been given to increasing the integrity of LNG storage tanks. The M.W. Kellogg Company is a participant in four major LNG projects that incorporate enhanced integrity LNG storag...

W. S. Jacobs; S. E. Handman

1986-01-01T23:59:59.000Z

369

Hydrogen storage in molecular compounds  

Science Journals Connector (OSTI)

...have application for energy storage. We synthesized...automobiles, is very energy intensive; up to 40% of the energy content must be spent...concerns and logistical obstacles. Other storage methods, including...satellites of the outer solar system...

Wendy L. Mao; Ho-kwang Mao

2004-01-01T23:59:59.000Z

370

Gaseous and Liquid Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

371

Storage Systems for Solar Steam  

Science Journals Connector (OSTI)

Three different basic concepts (encapsulation, composite material and fins) for isothermal energy storage systems using phase change materials in the ... the most promising concept for the design of storage syste...

Wolf-Dieter Steinmann; Doerte Laing…

2009-01-01T23:59:59.000Z

372

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Züttel

2007-03-01T23:59:59.000Z

373

Thin Film Hydrogen Storage System  

Science Journals Connector (OSTI)

In the last one decade the use of hydrogen as an energy carrier has attracted world ... on the technology involved for the production, storage and use of hydrogen. In this paper we discuss storage aspect of hydrogen

I. P. Jain; Y. K. Vijay

1987-01-01T23:59:59.000Z

374

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

375

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

376

Electromagnetic energy storage and power dissipation in nanostructures  

E-Print Network (OSTI)

The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.

Zhao, J M

2014-01-01T23:59:59.000Z

377

Webinar: Hydrogen Storage Materials Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled, Hydrogen Storage Materials Requirements, originally presented on June 25, 2013.

378

Compressed Air Energy Storage System  

E-Print Network (OSTI)

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

379

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science Journals Connector (OSTI)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on...

Jinchao Liu; Xinjing Zhang; Yujie Xu; Zongyan Chen…

2014-12-01T23:59:59.000Z

380

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 19, 2012 December 19, 2012 DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource The United States has at least 2,400 billion metric tons of possible carbon dioxide storage resource in saline formations, oil and gas reservoirs, and unmineable coal seams, according to a new U.S. Department of Energy publication. November 20, 2012 DOE Approves Field Test for Promising Carbon Capture Technology A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide from a pulverized coal plant has been successfully demonstrated and received Department of Energy approval to advance to a larger-scale field test. November 19, 2012 Carbon Storage Partner Completes First Year of CO2 Injection Operations in

382

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 24, 2011 August 24, 2011 Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. July 6, 2011 Confirming CCS Security and Environmental Safety Aim of Newly Selected Field Projects The U.S. Department of Energy's portfolio of field projects aimed at confirming that long-term geologic carbon dioxide storage is safe and environmentally secure has been expanded by three projects selected to collectively receive $34.5 million over four years. June 28, 2011 Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects A wealth of information about worldwide carbon capture and storage technologies and projects is available on the newly launched, updated and

383

Inhibition of lytic infection of pseudorabies virus by arginine depletion  

SciTech Connect

Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.

Wang, H.-C. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Kao, Y.-C. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Chang, T-J. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Wong, M.-L. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China)]. E-mail: mlwong@dragon.nchu.edu.tw

2005-08-26T23:59:59.000Z

384

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

385

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

386

gas cylinder storage guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gas Cylinder Storage Guidelines Compressed Gas Cylinder Storage Guidelines All cylinders must be stored vertical, top up across the upper half the cylinder but below the shoulder. Small cylinder stands or other methods may be appropriate to ensure that the cylinders are secured from movement. Boxes, cartons, and other items used to support small cylinders must not allow water to accumulate and possible cause corrosion. Avoid corrosive chemicals including salt and fumes - keep away from direct sunlight and keep objects away that could fall on them. Use Gas pressure regulators that have been inspected in the last 5 years. Cylinders that contain fuel gases whether full or empty must be stored away from oxidizer cylinders at a minimum of 20 feet. In the event they are stored together, they must be separated by a wall 5 feet high with

387

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

388

NSLS VUV Storage Ring  

NLE Websites -- All DOE Office Websites (Extended Search)

VUV Storage Ring VUV Storage Ring VUV Normal Operations Operating Parameters (pdf) Insertion Devices Flux & Brightness Orbit Stability Lattice Information (pdf) Lattice : MAD Dataset Mechanical Drawing (pdf) VUV Operating Schedule Introduction & History The VUV Ring at the National Synchrotron Light Source was one of the first of the 2nd generation light sources to operate in the world. Initially designed in 1976 the final lattice design was completed in 1978 shortly after funding was approved. Construction started at the beginning of FY 1979 and installation of the magnets was well underway by the end of FY 1980. The first stored beam was achieved in December of 1981 at 600 MeV and the first photons were delivered to beamlines in May 1982, with routine beam line operations underway by the start of FY 1983. The number of beam

389

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

390

Microstructure of depleted uranium under uniaxial strain conditions  

Science Journals Connector (OSTI)

Uranium samples of two different purities were used for spall strength measurements. Samples of depleted uranium were taken from very high purity material (38 ppm of carbon) and from material containing 280 ppm carbon. Experimental conditions were chosen to effectively arrest the microstructural damage at two places in the development to full spall separation. Samples were soft recovered and characterized with respect to the microstructure and the form of damage. This allowed determination of the dependence of spall mechanisms on stress level stress state and sample purity. This information is used in developing a model to predict the mode of fracture.

A. K. Zurek; J. D. Embury; A. Kelly; W. R. Thissell; R. L. Gustavsen; J. E. Vorthman; R. S. Hixson

1998-01-01T23:59:59.000Z

391

Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Background Fact Sheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions At the direction of Energy Secretary Steven Chu, over many months, the Energy Department (DOE) has been working closely with Energy Northwest (ENW), the Tennessee Valley Authority (TVA), and USEC Inc. (USEC) to develop a plan to address the challenges at USEC's Paducah Gaseous Diffusion Plant (GDP) that advances America's national security interests, protects taxpayers, and provides benefits for TVA and the Bonneville Power Administration's (BPA's) electric ratepayers and business operations. BPA is ENW's sole customer, purchasing 100 percent of ENW's Columbia Generating Station's electric power as part of BPA's overall

392

Solar energy storage: A demonstration experiment  

Science Journals Connector (OSTI)

Solar energy storage: A demonstration experiment ... A demonstration of a phase transition that can be used for heat storage. ...

Howard S. Kimmel; Reginald P. T. Tomkins

1979-01-01T23:59:59.000Z

393

Combinatorial Approaches for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approaches for Hydrogen Storage Materials (presentation) Combinatorial Approaches for Hydrogen Storage Materials (presentation) Presentation on NIST Combinatorial...

394

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

395

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

396

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

397

Far-Field Optical Nanoscopy  

Science Journals Connector (OSTI)

...speed, sensitivity, and cost-efficiency are constantly...mathematically. Operating with oil, glycerol, and water-immersion...recent field-corrected oil-immersion lenses...Setting the current benchmark, these STED-4Pi...fluorophores encourages the exploration of this concept. Depleting...

Stefan W. Hell

2007-05-25T23:59:59.000Z

398

Assessment of plutonium storage safety issues at Department of Energy facilities  

SciTech Connect

The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

Not Available

1994-01-01T23:59:59.000Z

399

Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium  

SciTech Connect

This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

Ivan R. Thomas

2011-11-01T23:59:59.000Z

400

Depleted uranium residual radiological risk assessment for Kosovo sites  

Science Journals Connector (OSTI)

During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 ?Sv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity.

Marco Durante; Mariagabriella Pugliese

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SHOCKWAVE PROFILE AND BAUSCHINGER EFFECT IN DEPLETED URANIUM  

Science Journals Connector (OSTI)

Dynamic damage evolution in materials is of growing interest in particular the role of defect structure on material strength during a dynamic experiment. Many studies in the past have seen strong correlations between the shockwave profile and the defect structure during dynamic experiments such as quasi?elastic release behavior. Bauschinger effect is a microstructurally controlled process in which a material displays a change in stress?strain characterisitics due to a change in the defect structure. Studies on depleted uranium have revealed indications of Bauschinger effect being a mechanism present during quasi?static experiments which could be a result of the large amount of twinning observed in these materials. As work continues to improve strength models it becomes imperitive to understand the role of defect structure on the properties of materials under dynamic conditions. The study reported here is an observation of the release wave behavior in depleted uranium that first undergoes compressive shock loading followed by a reversal of the loading direction upon release.

D. D. Koller; G. T. Gray III; R. S. Hixson

2007-01-01T23:59:59.000Z

402

Depleted uranium instead of lead in munitions: the lesser evil  

Science Journals Connector (OSTI)

Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment.

Sergei V Jargin

2014-01-01T23:59:59.000Z

403

Parametric down conversion with a depleted pump as a model for classical information transmission capacity of quantum black holes  

E-Print Network (OSTI)

In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. \\textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump' source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump' mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump' source. We also analytically and dynamically verify the `Page information time' for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.

Paul M. Alsing

2015-02-04T23:59:59.000Z

404

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

405

Potential for future development of salt cavern storage in the upper Silurian Syracuse Formation of south-central New York  

SciTech Connect

Although depleted reservoirs remain the dominant structures used for storage fulfilling the demand for base load gas supply during the heating season, the current general surge in storage projects, nationwide, takes advantage of opportunities in Order 636, and makes greater use of salt caverns for gas storage. This reflects the increasing need by gas users, local distribution companies in particular, to quickly cycle a storage facility`s gas supply for services such as peak shaving, emergency supply, and system balancing to meet hourly swings. Occurrence of thick deposits of bedded salt deposits provides New York the capability to develop high deliverability salt cavern storage facilities. Furthermore, New York is uniquely positioned at the gateway to major northeastern markets to provide peak load storage services of natural gas supply. The thickest units of bedded salt in New York occur in the {open_quotes}F{close_quotes} horizon of the Upper Silurian Syracuse Formation. Three bedded salt cavern storage facilities have been recently proposed in New York. Two of these projects is much larger (with 5 Bcfg ultimate capacity), is under construction, and will provide valuable storage service to the Ellisburg-Leidy market center hub in Pennsylvania. Identification of possible sites for future salt cavern storage projects has been achieved chiefly by defining areas of thick beds of salt at sufficient depths close to gas transmission lines, with access to a freshwater supply for leaching, and possessing an acceptable method of brine disposal.

Bass, J.P.; Sarwar, G.; Guo, B. [Brooklyn College of the City Univ. of New York, Troy, NY (United States)] [and others

1995-09-01T23:59:59.000Z

406

NETL: Carbon Storage Best Practices Manuals  

NLE Websites -- All DOE Office Websites (Extended Search)

Best Practices Manuals Best Practices Manuals Developing best practices - or reliable and consistent standards and operational characteristics for CO2 collection, injection and storage - is essential for providing the basis for a legal and regulatory framework and encouraging widespread global CCS deployment. The lessons learned during the Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase small-scale field tests are being utilized to generate a series of Best Practices Manuals (BPMs) that serve as the basis for the design and implementation of both large-scale field tests and commercial carbon capture and storage (CCS) projects. NETL has released six BPMS: NETL's "Monitoring, Verification, and Accounting (MVA) of CO2 Stored in Deep Geologic Formations - 2012 Update" BPM provides an overview of MVA techniques that are currently in use or are being developed; summarizes DOE's MVA R&D program; and presents information that can be used by regulatory organizations, project developers, and policymakers to ensure the safety and efficacy of carbon storage projects.

407

Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

Previous experiments - injecting pure CO2 into carbonate cores - showed that the process is a win-win technology, sequestrating CO2 while recovering a significant amount of hitherto unrecoverable natural gas that could help defray the cost of CO2...

Nogueira de Mago, Marjorie Carolina

2005-11-01T23:59:59.000Z

408

Groundwater contaminant interaction with aquifer thermal energy storage systems on the scale of a large urban area.  

E-Print Network (OSTI)

??This research thesis attempts to answer the question if a pathline analysis can be applied to a transient flow field where aquifer thermal energy storage… (more)

Lieshout, R. van

2013-01-01T23:59:59.000Z

409

A geochemical assessment of petroleum from underground oil storage caverns in relation to petroleum from natural reservoirs offshore Norway.  

E-Print Network (OSTI)

??The aim of this study is to compare oils from known biodegraded fields offshore Norway to waxes and oils from an artificial cavern storage facility,… (more)

Østensen, Marie

2005-01-01T23:59:59.000Z

410

Neutron field characterisation at mixed oxide fuel plant  

Science Journals Connector (OSTI)

......plutonium oxide (PuO2) and 70 % depleted uranium oxide (UO2) are blended together...and typical field conditions. Health Phys. (1990) 58(6):691-704...Power Plants Quality Assurance, Health Care Radiation Dosage Radiation......

C. Passmore; M. Million; M. Kirr; J. Bartz; M. S. Akselrod; A. Devita; J. Berard

2012-06-01T23:59:59.000Z

411

Heat storage with CREDA  

SciTech Connect

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

412

Magnetic-field-dosimetry system  

DOE Patents (OSTI)

A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

1981-01-21T23:59:59.000Z

413

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

414

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

415

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

416

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

417

Repository Applications: Potential Benefits of Using Depleted Uranium (DU)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository Applications Repository Applications Repository Applications: Potential Benefits of Using Depleted Uranium (DU) in a Geological Repository The United States is investigating the Yucca Mountain (YM) site in Nevada for the disposal of radioactive spent nuclear fuel (SNF)—the primary waste from nuclear power plants. The SNF would be packaged and then emplaced 200 to 300 m underground in parallel disposal tunnels. The repository isolates the SNF from the biosphere until the radionuclides decay to safe levels. DU may improve the performance of geological repositories for disposal of SNF via three mechanisms: Radiation shielding for waste packages to protect workers Lowering the potential for long-term nuclear criticality in the repository Reducing the potential for releases of radionuclides from the SNF

418

Measurement of Holmium Rydberg series through MOT depletion spectroscopy  

E-Print Network (OSTI)

We report measurements of the absolute excitation frequencies of $^{165}$Ho $4f^{11}6sns$ and $4f^{11}6snd$ odd-parity Rydberg series. The states are detected through depletion of a magneto-optical trap via a two-photon excitation scheme. Measurements of 162 Rydberg levels in the range $n=40-101$ yield quantum defects well described by the Rydberg-Ritz formula. We observe a strong perturbation in the $ns$ series around $n=51$ due to an unidentified interloper at 48515.47(4) cm$^{-1}$. From the series convergence, we determine the first ionization potential $E_\\mathrm{IP}=48565.939(4)$ cm$^{-1}$, which is three orders of magnitude more accurate than previous work. This work represents the first time such spectroscopy has been done in Holmium and is an important step towards using Ho atoms for collective encoding of a quantum register.

Hostetter, J; Lawler, J E; Saffman, M

2014-01-01T23:59:59.000Z

419

Military use of depleted uranium assessment of prolonged population exposure  

E-Print Network (OSTI)

This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

Giannardi, C

2001-01-01T23:59:59.000Z

420

Depleted Uranium Report from the Health Council of the Netherlands  

Science Journals Connector (OSTI)

The Health Council of the Netherlands, which is an independent scientific advisory body established in 1902 `to advise the government and Parliament on the current level of knowledge with respect to public health issues', has recently published an overview report on depleted uranium. The title of the report is `Health risks of exposure to depleted uranium' and it is freely available in both English and the original Dutch language. A brief summary of the report that was published on 16 May 2001 is presented here. The use of ammunition containing depleted uranium (DU) in Kosovo and elsewhere in the Balkans has provoked disquiet in Europe. In the Netherlands, concern over the release of this material had already been aroused previously following the crash of the El-Al airliner in the Bijlmermeer district of Amsterdam in 1992. It was against this background that the President of the Health Council decided to set up a Committee charged with the task of reviewing the health risks of exposure to DU and the preventive measures required for individuals present in areas where DU has been released into the environment. After reviewing the properties of uranium in general and depleted uranium in particular, and presenting data on the occurrence of the element in the environment and biological tissues, the committee assessed the chemical and radiological health effect of uranium and uranium compounds. The Health Council Committee concludes that radioactive contamination of the lungs is the principal health risk to be considered in connection with exposure to slightly soluble uranium compounds in the atmosphere. For soluble compounds, the chemical toxic effect in the kidneys is the primary consideration. The toxicological effects are to some extent concordant with those of other heavy metals. For relevant exposure scenarios the Committee does not anticipate that exposure to DU will result in a demonstrable increased risk of diseases and symptoms among exposed individuals as a result of a radiological or chemical toxic effect exerted by this substance. Cancer In view of the fact that DU emits ionising radiation in the form of alpha particles, the induction of cancer, in principle, needs to be taken into account in relation to individuals exhibiting internal contamination with DU. In case of inhalation of slightly soluble DU compounds, attention will in particular need to be focused on the lungs. The radiation dose caused by incidental exposure to DU in the exposure scenarios considered is limited compared with the radiation dose received during a lifetime of exposure to natural uranium. As at the common levels of exposure to natural uranium a contribution to the induction of cancer in the population cannot be demonstrated, the Committee concludes that the same is true for exposure to DU. This general conclusion is also valid for the appearance of lung cancer and for the appearance of leukaemia after the inhalation of dust containing slightly soluble uranium compounds. Renal damage For soluble compounds, the risk posed by exposure to DU is principally of a chemical toxic nature. In the case of increasing exposure, abnormalities will first of all appear in the kidneys. Exposure to small amounts (milligrams) of uranium over short periods will therefore result in changes in the kidneys, which lead to acute, usually reversible, renal impairment. No such dose-dependency has been observed, however, in the frequency of chronic renal disorders among population groups who are chronically exposed to enhanced quantities of natural uranium. Nor have studies involving workers in the uranium industry and ex-military personnel (including the group with shrapnel in the body) to date produced any evidence that uranium can cause renal impairment. Thus the present body of scientific data tends to suggest an absence of irreparable renal damage as a result of the intake of DU in the exposure scenarios considered. Prevention Although the risks associated with exposure to DU for the exposure scenarios considered appear to be very limited, the fundamental prin

W F Passchier; J W N Tuyn

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Data Sheet No. 140 - World Energy Reserves and Depletion Policy  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on world energy reserves and depletion policy. Viewed in the long term, it is extremely difficult to obtain an accurate view of the total energy reserves of the world. Even small, very well-explored countries such as the United Kingdom and Holland have discovered new reserves in the past 20 years. Solar power and wave power are available in vast quantities, but the percentage that can be recovered is debatable. The percentage recovery of oil and gas is open to improvement, and it may be that much smaller percentage recoveries of coal will be contemplated in the future when undersea mining or extraction without miners is contemplated. Nuclear power, using thermal reactors, does not extract all the power within the uranium or any of the power available from reserves of thorium. The coal industry will have to double its output and even greater demands may be made on it to provide liquid fuels for the transport industry.

Wilfrid Francis; Martin C. Peters

1980-01-01T23:59:59.000Z

422

The Lithium Depletion Boundary as a Clock and Thermometer  

E-Print Network (OSTI)

We take a critical look at the lithium depletion boundary (LDB) technique that has recently been used to derive the ages of open clusters. We identify the sources of experimental and systematic error and show that the probable errors are larger by approximately a factor two than presently claimed in the literature. We then use the Pleiades LDB age and photometry in combination with evolutionary models to define empirical colour-T_eff relations that can be applied to younger clusters. We find that these relationships DO NOT produce model isochrones that match the younger cluster data. We propose that this is due either to systematic problems in the evolutionary models or an age (gravity) sensitivity in the colour-T_eff relation which is not present in published atmospheric models.

R. D. Jeffries; T. Naylor

2000-09-12T23:59:59.000Z

423

MAXIMIZING MAGNETIC ENERGY STORAGE IN THE SOLAR CORONA  

SciTech Connect

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s{sup -1}. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface-suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to 'hold down' the nonpotential flux as its magnetic energy increases.

Wolfson, Richard; Drake, Christina; Kennedy, Max, E-mail: wolfson@middlebury.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

2012-05-01T23:59:59.000Z

424

Maximizing Magnetic Energy Storage in the Solar Corona  

Science Journals Connector (OSTI)

The energy that drives solar eruptive events such as coronal mass ejections (CMEs) almost certainly originates in coronal magnetic fields. Such energy may build up gradually on timescales of days or longer before its sudden release in an eruptive event, and the presence of free magnetic energy capable of rapid release requires nonpotential magnetic fields and associated electric currents. For magnetic energy to power a CME, that energy must be sufficient to open the magnetic field to interplanetary space, to lift the ejecta against solar gravity, and to accelerate the material to speeds of typically several hundred km s–1. Although CMEs are large-scale structures, many originate from relatively compact active regions on the solar surface—suggesting that magnetic energy storage may be enhanced when it takes place in smaller magnetic structures. This paper builds on our earlier work exploring energy storage in large-scale dipolar and related bipolar magnetic fields. Here we consider two additional cases: quadrupolar fields and concentrated magnetic bipoles intended to simulate active regions. Our models yield stored energies whose excess over that of the corresponding open field state can be greater than 100% of the associated potential field energy; this contrasts with maximum excess energies of only about 20% for dipolar and symmetric bipolar configurations. As in our previous work, energy storage is enhanced when we surround a nonpotential field with a strong overlying potential field that acts to "hold down" the nonpotential flux as its magnetic energy increases.

Richard Wolfson; Christina Drake; Max Kennedy

2012-01-01T23:59:59.000Z

425

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

426

Electrochemical hydrogen Storage Systems  

SciTech Connect

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

427

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

428

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

429

Savannah River Hydrogen Storage Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Member of DOE Carbon Working Group - Developed novel method for forming doped carbon nanotubes as part of DOE Storage Program (patent pending) - Collaborated with universities and...

430

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

431

Energy storage in carbon nanoparticles.  

E-Print Network (OSTI)

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage… (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

432

Powertech: Hydrogen Expertise Storage Needs  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Angela Das of Powertech was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013.

433

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

434

Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium  

SciTech Connect

Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

Gillas, D. L.; Chambers, B. K.

2002-02-26T23:59:59.000Z

435

E-Print Network 3.0 - arctic ozone depletion Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Introduction Stratospheric ozone depletion has been one... (Chubachi, 1984; Farman et al., 1985), winter ozone ... Source: Ecole Polytechnique, Centre de mathmatiques...

436

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

437

Alloy of depleted uranium: Material for ?-protection of shipment packing sets  

Science Journals Connector (OSTI)

The effect of thermal action on the structure and physical and mechanical properties of an alloy based on depleted uranium and used for biological protection from ionizing...

V. K. Orlov; V. M. Sergeev; A. G. Semenov; V. V. Noskov…

438

E-Print Network 3.0 - antioxidant defence depletion Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for: antioxidant defence depletion Page: << < 1 2 3 4 5 > >> 1 Journal of Applied Ecology 2007 Summary: of antioxidants during their annual migrations to neutralize free...

439

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00: Managing Treatment, Storage, and Disposal of Radioactive 00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This EIS evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 7, 2011 EIS-0200-SA-03: Supplement Analysis Treatment of Transuranic Waste at the Idaho National Laboratory, Carlsbad Field Office March 7, 2008 EIS-0200: Amendment to the Record of Decision Treatment and Storage of Transuranic Waste

440

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.  

SciTech Connect

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Creating a programmable object storage stack  

Science Journals Connector (OSTI)

The current file system and storage stack is restricted in the amount of information that flows from application to storage and from storage to application. This limits the ability of applications to tailor the storage system to particular needs of the ... Keywords: filesystems, object storage

Orko Momin, Cengiz Karakoyunlu, Michael T. Runde, John A. Chandy

2014-06-01T23:59:59.000Z

442

NIAGARA FALLS STORAGE SITE  

Office of Legacy Management (LM)

:i" :i" _,, ' _~" ORISE 95/C-70 :E : i:; :' l,J : i.: RADIOLOGICAL SURVEY Op BUILDINGS 401, ' 403, AND ' m HITTMAN BUILDING $ <,' 2:. NIAGARA FALLS STORAGE SITE I .~~ ; " LEWISTON, ' NEW YORK : f? j:,:i I ,.J- ;b f" /: Li _e.*. ~,, I ,,~, ,:,,;:, Prepared by T. .I. Vitkus i,c Environmental Survey and Site Assessment Program Energy/Environment Systems Division ;>::; Oak Ridge Institute for Science and Education .,:, "Oak Ridge, Temressee 37831-0117 .F P ., ? :_ &,d ,,,, ;<:x,, Prepared for the 3 I. Office of Environmental Restoration I, U.S. Department of Energy i gy i. ~: ,,, "! ? ' :' : "' ,//, FINAL REPORT ".$ :,a ,,, MARCH 1995 ; m L ,, ,, ,,,. ., ,,. ' 1 jq ,Ij:,., .,~ _,I_ 1 This report is based on work performed under contract number DE-AC05-760R00033 with the

443

Reversible hydrogen storage materials  

DOE Patents (OSTI)

In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

2012-04-10T23:59:59.000Z

444

Core assembly storage structure  

DOE Patents (OSTI)

A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

Jones, Jr., Charles E. (Northridge, CA); Brunings, Jay E. (Chatsworth, CA)

1988-01-01T23:59:59.000Z

445

The Silver Bullet: Storage!  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Philly High X-prize PHEV The Silver Bullet... Storage! Terry Boston President & CEO PJM Interconnection July 12, 2011 PJM©2011 2 United States PJM Eastern Interconnection PJM as Part of the Eastern Interconnection KEY STATISTICS PJM member companies 700+ millions of people served 58 peak load in megawatts 158,448 MWs of generating capacity 180,400 miles of transmission lines 61,200 GWh of annual energy 794,335 generation sources 1,365 square miles of territory 211,000 area served 13 states + DC Internal/external tie lines 142 * 24% of generation in Eastern Interconnection * 27% of load in Eastern Interconnection * 19% of transmission assets in Eastern Interconnection 20% of U.S. GDP produced in PJM www.pjm.com As of 6/1/2011 PJM©2011 3 43,623 0 5,000 10,000 15,000

446

Superconducting energy storage  

SciTech Connect

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

447

A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields  

E-Print Network (OSTI)

Here we develop a lherzolite melting model and explore the effects of variations in mantle composition, pressure, temperature, and H[subscript 2]O content on melt composition. New experiments and a compilation of experimental ...

Till, Christy B.

448

Argonne leads hydrogen storage project  

Science Journals Connector (OSTI)

A new $1.88m research project on on-board hydrogen storage at the US Department of Energy's Argonne National Laboratory in Illinois aims to develop a hydrogen storage system that can hold enough hydrogen for a driving range of 300 miles (480 km).

2007-01-01T23:59:59.000Z

449

Reversible Seeding in Storage Rings  

SciTech Connect

We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

Ratner, Daniel; Chao, Alex; /SLAC

2011-12-14T23:59:59.000Z

450

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

451

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

452

Grid Storage and the Energy Frontier Research Centers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

453

salt-water pumped-storage hydroelectric plant  

Science Journals Connector (OSTI)

salt-water pumped-storage hydroelectric plant, saltwater pumped-storage hydroelectric station, seawater pumped-storage hydroelectric plant, seawater pumped-storage hydroelectric station ? Salzwasser-...

2014-08-01T23:59:59.000Z

454

Sandia National Laboratories: DOE Energy Storage Systems program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

455

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage...

456

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the second quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

457

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion  

SciTech Connect

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing, waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. This report includes work on the reservoir characterization and project design objective and the demonstration project objective.

NONE

1996-08-09T23:59:59.000Z

458

DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successfully Demonstrates Terrestrial CO2 Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada DOE Regional Partnership Successfully Demonstrates Terrestrial CO2 Storage Practices in Great Plains Region of U.S. and Canada August 19, 2010 - 1:00pm Addthis Washington, DC - A field test demonstrating the best approaches for terrestrial carbon dioxide (CO2) storage in the heartland of North America has been successfully completed by one of the U.S. Department of Energy's (DOE) seven Regional Carbon Sequestration Partnerships (RCSPs). The Plains CO2 Reduction (PCOR) Partnership , a collaboration of over 80 U.S. and Canadian stakeholders, conducted the field test at sites in the Prairie Pothole Region, extending from central Iowa into Northern Alberta,

459

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil...

460

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

in floor tiles for thermal energy storage,” working paper,D. R. (2000). Thermal energy storage for space cooling,A simple model of thermal energy storage is developed as a

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

462

NATURAL GAS STORAGE ENGINEERING Kashy Aminian  

E-Print Network (OSTI)

NATURAL GAS STORAGE ENGINEERING Kashy Aminian Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Shahab D. Mohaghegh Petroleum & Natural Gas Engineering, West Virginia University, Morgantown, WV, USA. Keywords: Gas Storage, Natural Gas, Storage, Deliverability, Inventory

Mohaghegh, Shahab

463

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

Zakhidov, R. A. 8 1971, Storage of solar energy in a sandy-aquifers for heat storage, solar captors for heat productionthermal energy storage for cogeneration and solar systems,

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

464

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the1974. Geothermal Storage of Solar Energy, in "Governors

Authors, Various

2011-01-01T23:59:59.000Z

465

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

R. A. 8 1971, Storage of solar energy in a sandy-gravelthermal energy storage for cogeneration and solar systems,storage, solar captors for heat production 9 and heat pumps for energy

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

466

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network (OSTI)

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

467

DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION  

SciTech Connect

This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

OGDEN DM; KIRCH NW

2007-10-31T23:59:59.000Z

468

Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles  

E-Print Network (OSTI)

Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles RUTH Matthews. Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. J a pool of readily releasable synaptic vesicles that undergo rapid calcium-dependent release. ATP

Pennsylvania, University of

469

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...major cause of lung cancer, second only to cigarette...Kosovo was initiated by uranium prospecting in the period...the study was hit by depleted uranium projectiles during the......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

470

Can ozone depletion and global warming interact to produce rapid climate change?  

E-Print Network (OSTI)

Can ozone depletion and global warming interact to produce rapid climate change? Dennis L. Hartmann of Climate Change (IPCC) assess- ment of the status of global warming, which reported that winter stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible

Limpasuvan, Varavut

471

Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America  

E-Print Network (OSTI)

. In this paper we focus on South Eastern South America (SESA), a region that has exhibited one of the largest South America 1 Introduction The depletion of ozone in the polar Antarctic strato- sphere (i.e. `theStratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South

472

Abortive HIV Infection Mediates CD4 T-Cell Depletion and Inflammation in Human Lymphoid Tissue  

E-Print Network (OSTI)

factors like HIV-1 Tat, Vpr, and Nef released from infected cells (Schindler et al., 2006; Westendorp etAbortive HIV Infection Mediates CD4 T-Cell Depletion and Inflammation in Human Lymphoid Tissue 94143 Summary The mechanism by which CD4 T-cells are depleted in HIV-infected hosts remains poorly

Levin, Judith G.

473

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network (OSTI)

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

474

Structure Optimization of FePt Nanoparticles of Various Sizes for Magnetic Data Storage  

E-Print Network (OSTI)

to a modified reaction route based on Sun et al.[1] Hexane dispersions of nanoparticles were dried increases with particle size and with the temperature in the range 600 °C to 650 °C, being close to unity-assembly over large areas, and a narrow distribution of switching fields. The long storage time and high storage

Laughlin, David E.

475

Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage  

E-Print Network (OSTI)

Microporous Metal Organic Materials: Promising Candidates as Sorbents for Hydrogen Storage Long Pan coordination structures represent a promising new entry to the field of hydrogen storage materials.2 To fully that effectively store hydrogen are needed for use in fuel cell powered vehicles. Among the various candidate

Li, Jing

476

Properties, use and health effects of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) has been claimed to contribute to health problems both in military personnel directly involved in war actions as well in military and civilian individuals who resided in areas where DU ammunition was expended. Due to the low specific radioactivity and the dominance of alpha-radiation, no acute health risk can be attributed to external exposure to DU. Internalised DU is both chemo- and radio-toxic. The major risk is from inhalation of DU dust or particles with less than 10 ?m aerodynamic-equivalent diameter, formed when DU ammunitions hit hard targets (aerosol formation) or during weathering of DU penetrators. One major conclusion is that for all post-conflict situations, the inhaled DU quantities (central estimates) produced radiation doses that would be only a fraction of those normally received by the lung from natural radiation. Hence no long term lung effects due to these DU amounts can be expected. These conclusions also hold for whole-body exposure from ingestion of DU in local food and water.

W. Burkart; P.R. Danesi; J.H. Hendry

2005-01-01T23:59:59.000Z

477

Depleted-Uranium Weapons the Whys and Wherefores  

E-Print Network (OSTI)

The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

Gsponer, A

2003-01-01T23:59:59.000Z

478

Assessment of depleted uranium in South-Western Iran  

Science Journals Connector (OSTI)

Abstract Depleted uranium (DU) has been used in a number of conflicts most notably during the Gulf War in Iraq and existence of it has been reported in Kuwait by IAEA experts. Due to heavy sand storms prevailing into the direction to South West of Iran transporting sand originating from Iraq, the probability that DU could be moved is considered high. Therefore it was decided to take some air and soil samples near border line and some nearest cities. The study was focused on finding DU in air and soil of these south-west provinces. 22 air samples and 20 soil samples were collected and analyzed on their contents of uranium isotopes by alpha, beta and gamma spectrometry. The air and soil samples have been measured by use of an alpha-beta counter and by a gamma spectrometer, respectively. Results showed that there is no radiation impact from DU and so no DU has been transported via sand storms since all results were obtained below the detection limit.

Hossein Yousefi; Abdullah Najafi

2013-01-01T23:59:59.000Z

479

Kr ion irradiation study of the depleted-uranium alloys.  

SciTech Connect

Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M. (Materials Science Division); (INL); (Univ. of Wisconsin)

2010-12-01T23:59:59.000Z

480

Kr Ion Irradiation Study of the Depleted-Uranium Alloys  

SciTech Connect

Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200ºC to ion doses up to 2.5 × 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 × 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted storage field" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network (OSTI)

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

482

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

Energy Storage Computational Tool Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool Agency/Company /Organization: Navigant Consulting Sector: Energy Focus Area: Grid Assessment and Integration Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Country: United States Web Application Link: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Cost: Free Northern America Language: English Energy Storage Computational Tool Screenshot References: Energy Storage Computational Tool[1] SmartGrid.gov[2] Logo: Energy Storage Computational Tool This tool is used for identifying, quantifying, and monetizing the benefits

483

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems New Liquid Salt Electrolytes Could Lead to Cost-Effective Flow Batteries On February 22, 2012, in Energy, Energy Storage Systems, Grid Integration, News,...

484

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

485

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

486

Agenda: Natural Gas: Transmission, Storage and Distribution ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas: Transmission, Storage and Distribution Agenda: Natural Gas: Transmission, Storage and Distribution A Public Meeting on the Quadrennial Energy Review, Hosted by the...

487

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

488

Hydrogen for Energy Storage Analysis Overview (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

competing technologies for utility- scale energy storage systems. Explore the cost and GHG emissions impacts of interaction of hydrogen storage and variable renewable resources...

489

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

490

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

491

Sandia National Laboratories: solar thermal energy storage  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

492

Permitted Mercury Storage Facility Notifications | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages Permitted Mercury Storage Facility...

493

Structured Storage in ATLAS Distributed Data Management  

E-Print Network (OSTI)

CHEP'12 Talk Structured Storage - Concepts - Technologies ATLAS DDM Use Cases - Storage facility - Data intensive analytics Operational Experiences - Software - Hardware Conclusions

Lassnig, M; The ATLAS collaboration; Molfetas, A; Beermann, T; Dimitrov, G; Canali, L; Zang, D

2012-01-01T23:59:59.000Z

494

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

495

Overview of Gridscale Rampable Intermittent Dispatchable Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rampable Intermittent Dispatchable Storage (GRIDS) Program Presentation by Mark Johnson, Advanced Research Projects Agency - Energy, at the Flow Cells for Energy Storage...

496

Migrating enterprise storage applications to the cloud  

E-Print Network (OSTI)

2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

Vrable, Michael Daniel

2011-01-01T23:59:59.000Z

497

Prediction of Novel Hydrogen Storage Reactions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miwa Computational Physics Lab. Toyota Central R&D Labs., Inc. Theory Focus Session on Hydrogen Storage Materials, 18 MAY 2006 Prediction of Novel Hydrogen Storage Reactions 0...

498

Combinatorial Approach for Hydrogen Storage Materials (presentation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combinatorial Approach for Hydrogen Storage Materials (presentation) Combinatorial Approach for Hydrogen Storage Materials (presentation) Presented at the U.S. Department of...

499

Agenda: Electricity Transmission, Storage and Distribution -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Transmission, Storage and Distribution - West Agenda: Electricity Transmission, Storage and Distribution - West A Public Meeting on the Quadrennial Energy Review,...

500

Sandia National Laboratories: Batteries & Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...