Powered by Deep Web Technologies
Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Analysis of Serum Total and Free PSA Using Immunoaffinity Depletion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Serum Total and Free PSA Using Immunoaffinity Depletion Coupled to SRM: Correlation with Clinical Immunoassay Tests. Analysis of Serum Total and Free PSA Using Immunoaffinity...

2

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

3

Frustrated total internal reflection acoustic field sensor  

DOE Patents [OSTI]

A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

Kallman, Jeffrey S. (Pleasanton, CA)

2000-01-01T23:59:59.000Z

4

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

5

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

6

SOI detector with drift field due to majority carrier flow - an alternative to biasing in depletion  

SciTech Connect (OSTI)

This paper reports on a SOI detector with drift field induced by the flow of majority carriers. It is proposed as an alternative method of detector biasing compared to standard depletion. N-drift rings in n-substrate are used at the front side of the detector to provide charge collecting field in depth as well as to improve the lateral charge collection. The concept was verified on a 2.5 x 2.5 mm{sup 2} large detector array with 20 {micro}m and 40 {micro}m pixel pitch fabricated in August 2009 using the OKI semiconductor process. First results, obtained with a radioactive source to demonstrate spatial resolution and spectroscopic performance of the detector for the two different pixel sizes will be shown and compared to results obtained with a standard depletion scheme. Two different diode designs, one using a standard p-implantation and one surrounded by an additional BPW implant will be compared as well.

Trimpl, M.; Deptuch, G.; Yarema, R.; /Fermilab

2010-11-01T23:59:59.000Z

7

Geochemical evaluation of CO2 injection and containment in a depleted gas field  

Science Journals Connector (OSTI)

Abstract The short- and long-term geochemical impact of CO2 injection into a depleted gas reservoir (DGR) is investigated using reservoir/geochemical modeling with TOUGH2/TOUGHREACT and 1D kinetic diffusion modeling with PHREEQC (caprock/well-cement). Simulations of CO2 injection into the reservoir predict displacement and buoyancy of post-production CH4, as well as dry-out of the near-well zone. We computed that the areal extent of the CH4/brine dominated zone and the dry-out zone are relatively small compared to the CO2/brine dominated zone after well-closure. For the current DGR model we therefore conclude that it is reasonable to model geochemical reactions in the reservoir without taking into account post-production CH4. Although the CO2 dissolution capacity of the studied DGR is smaller compared to a deep saline aquifer of similar size, the modeling predicts that dissolution and subsequent CO2 mineral trapping proceed faster. Precipitation of dawsonite and magnesite were yet predicted at initial CO2 partial pressure (PCO2) of 9.3 bar, while these minerals were not identified in reservoir samples. This could indicate that their tendency of precipitation is overestimated by the model and hence the database used. This has significant impact on long-term modeled bulk porosity and PCO2. Simulations of CO2 diffusion through the caprock show that mineral reactions significantly retard the total dissolved carbon (TDC) plume. After 10,000 years, 99% of the TDC is present within the first 6.4 m above the reservoir contact. The progression of the TDC plume in the caprock is sensitive to the composition, kinetic rates, and surface area of primary and secondary minerals. Cement alteration modeling shows progressive carbonation of cement phases, resulting in three zones of distinct mineralogy and porosity. The three zones are predominantly characterized by: (i) unaltered cement, (ii) portlandite dissolution, and (iii) calcite precipitation. The simulated thickness of the affected zone is 3.8 cm after 100 years. This distance is sensitive to kinetic rate constants of C–S–H phases, but less sensitive to kinetic rate constant of portlandite. In summary, our applied methodology provides quantitative predictions of the geochemical impact of CO2 on the DGR storage complex. The methodology can be used for screening of potential DGR storage locations and to define criteria for minimal caprock and cement sheet thickness, for assuring short- and long-term integrity of the storage location.

Tim J. Tambach; Mariëlle Koenen; Laura J. Wasch; Frank van Bergen

2015-01-01T23:59:59.000Z

8

Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

9

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

10

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

11

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

12

Potential for CO2 storage in depleted fields on the Dutch Continental Shelf–Cost estimate for offshore facilities  

Science Journals Connector (OSTI)

A study was performed on capital and operational costs for offshore injection of CO2 into depleted fields. The main focus was on the design and costs of process requirements for injection, required conservation (hibernation) and modification of existing platforms between end of gas/oil production and start of CO2 injection. Also cost estimates for new platforms are provided. The study is ‘high level’ and generic in nature as no specific target for CO2 storage has been selected. For the purpose of this study a simplified approach is used for determination of the required injection facilities and platform modifications. Nevertheless, the study provides a good indication on the level of expenditures that can be expected.

Floor Jansen; Rob Steinz; Boudewijn van Gelder

2011-01-01T23:59:59.000Z

13

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

14

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

15

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

16

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

17

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

18

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

19

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

20

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

22

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

23

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

24

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

25

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

26

Charge Depleting:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.5 seconds 0.5 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 83.2 MPH Acceleration 1 Mile Maximum Speed: 100.6 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 10.6 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 82.8 MPH Acceleration 1 Mile Maximum Speed: 101.9 MPH Brake Test @ 60 MPH Distance Required: 145.1 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6,10 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 10 118.5 2.85 10 53.0 1.80 20 116.8 5.49 20 56.6 3.37 40 116.0 10.50 40 58.0 6.38 60 90.7 11.34 60 55.3 9.48 80 76.6 11.34 80 51.4 11.11 100 68.0 11.34 100 47.2 11.13 200 50.9 11.34 200 38.7 11.13 Fuel Economy with A/C Off 1 Cold Start Charge Depleting 2 : Fuel Economy: 119.7 MPG AC kWh Consumed 7 : 0.282 kWh/mi Charge Depleting

27

Total cross-section for photon-axion conversions in external electromagnetic field  

E-Print Network [OSTI]

We reconsider the conversion of the photon into axion in the external electromagnetic fields, namely in the static fields and in a periodic field of the wave guide. The total cross-sections for the conversion are evaluated in detail. The result shows that with strong strength of external electromagnetic fields, the cross-sections are large enough to measure the axion production. In the wave guide there exists the resonant conversion at the low energies, in which the value of cross-sections is much enhanced

D. V. Soa; H. N. Long; T. D. Tham

2014-02-20T23:59:59.000Z

28

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

29

Depleted Uranium Health Effects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

30

HIGH RESOLUTION NMR IN INHOMOGENEOUS MAGNETIC FIELDS: APPLICATION OF TOTAL SPIN COHERENCE TRANSFER ECHOES  

E-Print Network [OSTI]

APPLICATION OF TOTAL SPIN COHERENCE TRANSFER ECHOES D.P.by total spin coherence transfer echo spectroscopy. (a) Thesequence to use total spin coherence transfer echoes to

Weitekamp, D.P.

2014-01-01T23:59:59.000Z

31

Depleted Uranium Technical Brief  

E-Print Network [OSTI]

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

32

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

33

Field Evaluation of the SFE-lnfrared Method for Total Petroleum Hydrocarbon (TPH) Determinations  

Science Journals Connector (OSTI)

......No differences in operation (e.g., warm-up...several hours of operation. Contrary to our...frustrate future field operations were the lack of...that the restrictor heater supplied with the...at the expense of cold fin gers). Based...conducted in cold weather. Other extractor......

Steven B. Hawthorne; David J. Miller; Kristin M. Hegvik

1993-01-01T23:59:59.000Z

34

Physics of Fully Depleted CCDs  

E-Print Network [OSTI]

In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

Holland, S E; Kolbe, W F; Lee, J S

2014-01-01T23:59:59.000Z

35

Total Carbon Measurement in Soils Using Laser-Induced Breakdown Spectroscopy: Results from the Field and Implications for Carbon Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Carbon Measurement in Soils using Laser-Induced Breakdown Total Carbon Measurement in Soils using Laser-Induced Breakdown Spectroscopy: Results from the Field and Implications for Carbon Sequestration Michael H. Ebinger (mhe@lanl.gov, 505-667-3147) Environmental Dynamics and Spatial Analysis Group (EES-10), MS J495 Earth and Environmental Sciences Division Los Alamos National Laboratory, Los Alamos, NM 87545, USA. David A. Cremers (cremers_david@lanl.gov, 505-665-4180) Advanced Chemical Diagnostics and Instrumentation Group, MS J565 Chemistry Division Los Alamos National Laboratory, Los Alamos, NM 87545 David D. Breshears (daveb@lanl.gov, 505-665-2803) Environmental Dynamics and Spatial Analysis Group (EES-10), MS J495 Earth and Environmental Sciences Division Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

36

Depleted uranium management alternatives  

SciTech Connect (OSTI)

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

37

Polyethylene Encapsulated Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

38

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

39

Depleted Uranium Hexafluoride Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

40

Ozone Depletion and Global Warming.  

E-Print Network [OSTI]

??Abstract This thesis examines global warming and the possible contribution that ozone depletion provides to this warming. An examination is performed to determine the extent… (more)

Fow, Alista John

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Depleted uranium plasma reduction system study  

SciTech Connect (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

42

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

43

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

44

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

45

On p-adic L-functions for ${\\rm GL}(n)\\times{\\rm GL}(n-1)$ over totally real fields  

E-Print Network [OSTI]

We refine and extend previous constructions of p-adic L-functions for Rankin-Selberg convolutions on ${\\rm GL}(n)\\times{\\rm GL}(n-1)$ for regular algebraic representations over totally real fields. We also proof a functional equation for this p-adic L-function, which will be of interest in further study of its arithmetic properties.

Januszewski, Fabian

2011-01-01T23:59:59.000Z

46

What is Depleted Uranium?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

47

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect (OSTI)

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

48

Fully depleted back illuminated CCD  

DOE Patents [OSTI]

A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

Holland, Stephen Edward (Hercules, CA)

2001-01-01T23:59:59.000Z

49

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of µg), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting  1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

50

Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations  

Science Journals Connector (OSTI)

Abstract This study investigated factors enhancing the performance of the bioremediation of Total Petroleum Hydrocarbons (TPHs) in crude oil-contaminated soil in laboratory and field observations. The bioaugmentation process used local microbial consortia (MC1, MC2 and MC3) combined with the biostimulation processes of nutrient addition (mineral–salt medium, MSM and NPK) and enhanced air stimulation (air supply and Oxygen Releasing Compound (ORC™)). The microcosm tests were conducted in tank and soil column setups, whereas the field test was performed in test plots inside an oil and gas facility in Malaysia. In the microcosm tank experiment, the combination of bioaugmentation (10% inoculum size of MC3) and MSM biostimulation yielded the highest TPH degradation of 79% of the total. In the column experiments, the degradation of \\{TPHs\\} in the top soil was highest in columns combining bioaugmentation and nutrient addition, whereas in the bottom soil, the degradation of \\{TPHs\\} was highest in columns combining bioaugmentation with the addition of both nutrients and ORCs. In the field demonstration, 97% of the \\{TPHs\\} were degraded in the top soil (0–1 m) when bioaugmented with MC2. The kinetic analysis study of the microcosm tank showed that a combination of both biostimulation and bioaugmentation in the soil column achieved the fastest rate constant of 0.0390 day?1. The field test also demonstrated a comparable rate constant of 0.0339 day?1. The kinetic rate constants in both the laboratory and field indicated that the best treatment method for the contaminated site is a combination of MC3 bioaugmentation and nutrient biostimulation.

Fatihah Suja; Fazli Rahim; Mohd Raihan Taha; Nuraini Hambali; M. Rizal Razali; Alia Khalid; Ainon Hamzah

2014-01-01T23:59:59.000Z

51

Potential Uses of Depleted Uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

52

Overview of Depleted Uranium Hexafluoride Management Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

53

Depleted Uranium Uses Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

54

Copper-triazole interaction and coolant inhibitor depletion  

SciTech Connect (OSTI)

To a large extent, the depletion of tolyltriazole (TTZ) observed in several field tests may be attributed to the formation of a protective copper-triazole layer. Laboratory aging studies, shown to correlate with field experience, reveal that copper-TTZ layer formation depletes coolant TTZ levels in a fashion analogous to changes observed in the field. XPS and TPD-MS characterization of the complex formed indicates a strong chemical bond between copper and the adsorbed TTZ which can be desorbed thermally only at elevated temperatures. Electrochemical polarization experiments indicate that the layer provides good copper protection even when TTZ is absent from the coolant phase. Examination of copper cooling system components obtained after extensive field use reveals the presence of a similar protective layer.

Bartley, L.S.; Fritz, P.O.; Pellet, R.J.; Taylor, S.A.; Van de Ven, P. [Texaco Fuels and Lubricants Technology Dept., Beacon, NY (United States)

1999-08-01T23:59:59.000Z

55

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

56

The $^4$He total photo-absorption cross section with two- plus three-nucleon interactions from chiral effective field theory  

E-Print Network [OSTI]

The total photo-absorption cross section of $^4$He is evaluated microscopically using two- (NN) and three-nucleon (NNN) interactions based upon chiral effective field theory ($\\chi$EFT). The calculation is performed using the Lorentz integral transform method along with the {\\em ab initio} no-core shell model approach. An important feature of the present study is the consistency of the NN and NNN interactions and also, through the Siegert theorem, of the two- and three-body current operators. This is due to the application of the $\\chi$EFT framework. The inclusion of the NNN interaction produces a suppression of the low-energy peak and enhancement of the high-energy tail of the cross section. We compare to calculations obtained using other interactions and to representative experiments. The rather confused experimental situation in the giant resonance region prevents discrimination among different interaction models.

S. Quaglioni; P. Navratil

2007-04-11T23:59:59.000Z

57

TOTAL Full-TOTAL Full-  

E-Print Network [OSTI]

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

58

Depleted Argon from Underground Sources  

SciTech Connect (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

59

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

60

FAQ 7-How is depleted uranium produced?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

62

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat,” says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

63

Depleted argon from underground sources  

SciTech Connect (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

64

field  

National Nuclear Security Administration (NNSA)

9%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

field field-type-text field-field-page-name">

65

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

66

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

67

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

68

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect (OSTI)

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

69

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Höllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

70

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb…

2002-01-01T23:59:59.000Z

71

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

72

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

73

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

74

Depleted Uranium (DU) Cermet Waste Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

75

Neutral depletion and the helicon density limit  

SciTech Connect (OSTI)

It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States)

2013-12-15T23:59:59.000Z

76

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

77

Nuclear conflict and ozone depletion Quick summary  

E-Print Network [OSTI]

Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

Toohey, Darin W.

78

INTERPLANETARY MAGNETIC FLUX DEPLETION DURING PROTRACTED SOLAR MINIMA  

SciTech Connect (OSTI)

We examine near-Earth solar wind observations as assembled within the Omni data set over the past 15 years that constitute the latest solar cycle. We show that the interplanetary magnetic field continues to be depleted at low latitudes throughout the protracted solar minimum reaching levels below previously predicted minima. We obtain a rate of flux removal resulting in magnetic field reduction by 0.5 nT yr{sup -1} at 1 AU when averaged over the years 2005-2009 that reduces to 0.3 nT yr{sup -1} for 2007-2009. We show that the flux removal operates on field lines that follow the nominal Parker spiral orientation predicted for open field lines and are largely unassociated with recent ejecta. We argue that the field line reduction can only be accomplished by ongoing reconnection of nominally open field lines or very old closed field lines and we contend that these two interpretations are observationally equivalent and indistinguishable.

Connick, David E.; Smith, Charles W.; Schwadron, Nathan A., E-mail: davideconnick@gmail.com, E-mail: Charles.Smith@unh.edu, E-mail: N.Schwadron@unh.edu [Physics Department, Space Science Center, University of New Hampshire, Durham, NH (United States)

2011-01-20T23:59:59.000Z

79

Physical modeling and computer graphic simulation of the depletion of world energy reserve  

Science Journals Connector (OSTI)

A physical modeling device and a computer graphic simulation program of the depletion of world energy reserve are developed to demonstrate how rapidly our energy reserve is depleted, how quickly and enormously our demands for energy grows, and how important energy conservation is to us. In both modeling and simulation cases, the total world energy reserve, the current energy usage annual growth rate, and the current energy consumption rate are given as parameters. One can view the energy shortage in terms of the rapidly falling levels in the physical water tank or the simulated oil barrels.

Chih Wu

1981-01-01T23:59:59.000Z

80

Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium  

SciTech Connect (OSTI)

This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

Ivan R. Thomas

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Number of Existing Natural Gas Depleted Fields Storage  

Gasoline and Diesel Fuel Update (EIA)

326 324 331 331 329 330 1999-2012 326 324 331 331 329 330 1999-2012 Alabama 1 1 1 1 1 1 1999-2012 Arkansas 2 2 2 2 2 2 1999-2012 California 12 12 13 13 13 14 1999-2012 Colorado 8 8 9 9 9 10 1999-2012 Illinois 11 10 10 11 11 11 1999-2012 Indiana 10 10 10 9 9 10 1999-2012 Kansas 18 18 18 18 18 18 1999-2012 Kentucky 20 20 20 20 20 20 1999-2012 Louisiana 8 8 8 8 8 7 1999-2012 Maryland 1 1 1 1 1 1 1999-2012 Michigan 43 43 43 43 43 43 1999-2012 Mississippi 5 5 6 6 6 6 1999-2012 Montana 5 5 5 5 5 5 1999-2012 Nebraska 1 1 1 1 1 1 1999-2012 New Mexico 2 2 2 2 2 2 1999-2012 New York 23 23 25 25 25 26 1999-2012 Ohio 24 24 24 24 24 24 1999-2012 Oklahoma 13 13 13 13 13 12 1999-2012 Oregon 7 7 7 7 7 7 1999-2012

82

Depleted UF6 Conversion facility EIS Topics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

83

Depleted Uranium Uses: Regulatory Requirements and Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

84

Depleted uranium hexafluoride: Waste or resource?  

SciTech Connect (OSTI)

the US Department of Energy is evaluating technologies for the storage, disposal, or re-use of depleted uranium hexafluoride (UF{sub 6}). This paper discusses the following options, and provides a technology assessment for each one: (1) conversion to UO{sub 2} for use as mixed oxide duel, (2) conversion to UO{sub 2} to make DUCRETE for a multi-purpose storage container, (3) conversion to depleted uranium metal for use as shielding, (4) conversion to uranium carbide for use as high-temperature gas-cooled reactor (HTGR) fuel. In addition, conversion to U{sub 3}O{sub 8} as an option for long-term storage is discussed.

Schwertz, N.; Zoller, J.; Rosen, R.; Patton, S. [Lawrence Livermore National Lab., CA (United States); Bradley, C. [USDOE Office of Nuclear Energy, Science, Technology, Washington, DC (United States); Murray, A. [SAIC (United States)

1995-07-01T23:59:59.000Z

85

Improvements in EBR-2 core depletion calculations  

SciTech Connect (OSTI)

The need for accurate core depletion calculations in Experimental Breeder Reactor No. 2 (EBR-2) is discussed. Because of the unique physics characteristics of EBR-2, it is difficult to obtain accurate and computationally efficient multigroup flux predictions. This paper describes the effect of various conventional and higher order schemes for group constant generation and for flux computations; results indicate that higher-order methods are required, particularly in the outer regions (i.e. the radial blanket). A methodology based on Nodal Equivalence Theory (N.E.T.) is developed which allows retention of the accuracy of a higher order solution with the computational efficiency of a few group nodal diffusion solution. The application of this methodology to three-dimensional EBR-2 flux predictions is demonstrated; this improved methodology allows accurate core depletion calculations at reasonable cost. 13 refs., 4 figs., 3 tabs.

Finck, P.J.; Hill, R.N.; Sakamoto, S.

1991-01-01T23:59:59.000Z

86

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

87

Carbon sequestration in depleted oil shale deposits  

SciTech Connect (OSTI)

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

88

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

89

The ultimate disposition of depleted uranium  

SciTech Connect (OSTI)

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

90

Uranio impoverito: perché? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-05-28T23:59:59.000Z

91

Data Sheet No. 140 - World Energy Reserves and Depletion Policy  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on world energy reserves and depletion policy. Viewed in the long term, it is extremely difficult to obtain an accurate view of the total energy reserves of the world. Even small, very well-explored countries such as the United Kingdom and Holland have discovered new reserves in the past 20 years. Solar power and wave power are available in vast quantities, but the percentage that can be recovered is debatable. The percentage recovery of oil and gas is open to improvement, and it may be that much smaller percentage recoveries of coal will be contemplated in the future when undersea mining or extraction without miners is contemplated. Nuclear power, using thermal reactors, does not extract all the power within the uranium or any of the power available from reserves of thorium. The coal industry will have to double its output and even greater demands may be made on it to provide liquid fuels for the transport industry.

Wilfrid Francis; Martin C. Peters

1980-01-01T23:59:59.000Z

92

Chemical and radiochemical characterization of depleted uranium in contaminated soils  

Science Journals Connector (OSTI)

The main results of chemical and radiochemical characterization and fractionation of depleted uranium in soils contaminated during the Balkan conflict ... the paper. Alpha-spectrometric analysis of used depleted

M. B. Radenkovi?; A. B. Kandi?; I. S. Vukana?…

2007-09-01T23:59:59.000Z

93

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...transmission of genetic damage by depleted uranium and tungsten alloy Alexandra Miller...The radioactive heavy metal, depleted uranium (DU), an alpha-particle emitter...fragments will affect the long-term health of offspring conceived by these...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

94

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 May 2005...Proc Amer Assoc Cancer Res, Volume 46, 2005 Depleted uranium internal contamination...Proc Amer Assoc Cancer Res, Volume 46, 2005] 2080 Depleted uranium is a heavy metal...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

95

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Proc Amer Assoc Cancer Res, Volume 47, 2006 Depleted uranium - induced malignant...Proc Amer Assoc Cancer Res, Volume 47, 2006] 5215 Depleted uranium (DU) has been...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

96

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

97

Numerical simulation for formed projectile of depleted uranium alloy  

Science Journals Connector (OSTI)

The numerical simulation for forming projectile of depleted uranium alloy with the SPH (Smooth Particle Hydrodynamic ... . To describe the deformed behaviors of the depleted uranium alloy under high pressure and ...

Song Shun-cheng; Gao Ping; Cai Hong-nian

2003-09-01T23:59:59.000Z

98

Monte Carlo depletion calculations using VESTA 2.1 new features and perspectives  

SciTech Connect (OSTI)

VESTA is a Monte Carlo depletion interface code that is currently under development at IRSN. With VESTA, the emphasis lies on both accuracy and performance, so that the code will be capable of providing accurate and complete answers in an acceptable amount of time compared to other Monte Carlo depletion codes. From its inception, VESTA is intended to be a generic interface code so that it will ultimately be capable of using any Monte-Carlo code or depletion module and that can be tailored to the users needs. A new version of the code (version 2.1.x) will be released in 2012. The most important additions to the code are a burn up dependent isomeric branching ratio treatment to improve the prediction of metastable nuclides such as {sup 242m}Am and the integration of the PHOENIX point depletion module (also developed at IRSN) to overcome some of the limitations of the ORIGEN 2.2 module. The task of extracting and visualising the basic results and also the calculation of physical quantities or other data that can be derived from the basic output provided by VESTA will be the task of the AURORA depletion analysis tool which will be released at the same time as VESTA 2.1.x. The experimental validation database was also extended for this new version and it now contains a total of 35 samples with chemical assay data and 34 assembly decay heat measurements. (authors)

Haeck, W.; Cochet, B.; Aguiar, L. [Institut de Radioprotection et de Surete Nucleaire IRSN, BP 17, 92262 Fontenay-aux-Roses Cedex (France)

2012-07-01T23:59:59.000Z

99

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect (OSTI)

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

100

RESEARCH ARTICLE Open Access Susceptibility to ATP depletion of primary  

E-Print Network [OSTI]

RESEARCH ARTICLE Open Access Susceptibility to ATP depletion of primary proximal tubular cell subjected to ATP depletion using antimycin A. Results: Surprisingly, there was no difference in the amount, Viability, Survival, Apoptosis knockout mice, shRNA, ATP depletion, Metabolic stress, Antimycin Background

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Barge Truck Total  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

102

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

103

A critical comparison of ionospheric depletion chemicals  

SciTech Connect (OSTI)

Six chemicals, H{sub 2}, H{sub 2}O, CO{sub 2}, SF{sub 6}, CF{sub 3}BR, and Ni(CO){sub 4}, are considered as ionospheric modification agents. Each of these species reacts in the F region to produce localized plasma depletions. The first three interact with O{sup +} and yield polyatomic ions which dissociatively recombine with electrons to give neutrals. The last three dissociatively attach electrons to produce heavy negative ions which become mutually neutralized by reactions with O{sup +}. The effectiveness of these chemicals depends on the amount which goes into the vapor state upon release. Thermodynamic calculations show that H{sub 2}O has the lowest vapor yield of about 20% from a heated, pressurized tank. Over 60% of the other substances should be vented in gaseous form. Based on estimates of plasma density reduction and airglow stimulation, nickel carbonyl is the most efficient of the six species for modifying the nighttime ionosphere. During the daytime, CF{sub 3}BR and SF{sub 6} provide the largest depletions.

Bernhardt, P.A. (Los Alamos National Lab., NM (United States))

1987-05-01T23:59:59.000Z

104

Regulation of New Depleted Uranium Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-5 2-5 Regulation of New Depleted Uranium Uses Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

105

Depleted uranium waste assay at AWE  

SciTech Connect (OSTI)

The Atomic Weapons Establishment (AWE) at Aldermaston has recently conducted a Best Practical Means (BPM) study, for solid Depleted Uranium (DU) waste assay, in order to satisfy key stakeholders that AWE is applying best practice. This study has identified portable passive High Resolution Gamma Spectrometry (HRGS), combined with an analytical software package called Spectral Nondestructive Assay Platform (SNAP), as the preferred option with the best balance between performance and costs. HRGS/SNAP performance has been assessed by monitoring 200 l DU waste drum standards and also heterogeneous, high density drums from DU firing trials. Accuracy was usually within 30 % with Detection Limits (DL) in the region of 10 g DU for short count times. Monte Carlo N-Particle (MCNP) calculations have been used to confirm the shape of the calibration curve generated by the SNAP software procured from Eberline Services Inc. (authors)

Miller, T.J. [AWE, Aldermaston, Reading, Berkshire, England, RG7 4PR (United Kingdom)

2007-07-01T23:59:59.000Z

106

Processing depleted uranium quad alloy penetrator rods  

SciTech Connect (OSTI)

Two depleted uranium (DU) quad alloys were cast, extruded and rolled to produce penetrator rods. The two alloy combinations were (1) 1 wt % molybdenum (Mo), 1 wt % niobium (Nb), and 0.75 wt % titanium (Ti); and (2) 1 wt % tantalum (Ta), 1 wt % Nb, and 0.75 wt % Ti. This report covers the processing and results with limited metallographic information available. The two alloys were each vacuum induction melted (VIM) into an 8-in. log, extruded into a 3-in. log, then cut into 4 logs and extruded at 4 different temperatures into 0.8-in. bars. From the 8 conditions (2 alloys, 4 extrusion temperatures each), 10 to 13 16-in. rods were cut for rolling and swaging. Due to cracking problems, the final processing changed from rolling and swaging to limited rolling and heat treating. The contracted work was completed with the delivery of 88 rods to Dr. Zabielski. 28 figs.

Bokan, S.L.

1987-02-19T23:59:59.000Z

107

The health effects of depleted uranium  

Science Journals Connector (OSTI)

There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU) munitions. In response to this concern the Royal Society set up an independent, expert working group to investigate the health effects of DU munitions. The Royal Society has now produced two reports, and this summary covering the key conclusions and recommendations from both reports. The part I report considered the increased risks of radiation-induced cancer from exposures to DU on the battlefield. Part II dealt with the risks from the chemical toxicity of uranium, non-malignant radiation effects from DU intakes, the long-term environmental consequences of the deployment of DU munitions and responses to part I including issues arising at a public meeting to discuss the part I report.

The Royal Society Working Group on the Health Hazards of

2002-01-01T23:59:59.000Z

108

Deuterium depletion and magnesium enhancement in the local disc  

E-Print Network [OSTI]

The local disc deuter is known to be depleted in comparison to the local bubble. We show, that the same lines of sight that are depleted in deuter, are enhanced in magnesium. Heavier elements - Si and Fe do not show any difference in the abundance between the local disc and the local bubble. This observation implicates that astration is responsible for both deuter depletion and magnesium enhancement.

Piotr Gnacinski

2005-07-19T23:59:59.000Z

109

Subsurface transformations of depleted uranium at Aberdeen Proving Ground, Maryland.  

E-Print Network [OSTI]

?? Approximately 130,000 kg of depleted uranium (DU) from ammunition testing have been deposited in soils since 1974 and remain in the environment at Aberdeen… (more)

Oxenberg, Tanya Palmateer

2007-01-01T23:59:59.000Z

110

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

111

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

112

Microscale Depletion of High Abundance Proteins in Human Biofluids...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides...

113

A novel hohlraum with ultrathin depleted-uranium-nitride coating layer for low hard x-ray emission and high radiation temperature  

E-Print Network [OSTI]

An ultra-thin layer of uranium nitrides (UN) has been coated on the inner surface of the depleted uranium hohlraum (DUH), which has been proved by our experiment can prevent the oxidization of Uranium (U) effectively. Comparative experiments between the novel depleted uranium hohlraum and pure golden (Au) hohlraum are implemented on Shenguang III prototype laser facility. Under the laser intensity of 6*10^14 W/cm2, we observe that, the hard x-ray (> 1.8 keV) fraction of this uranium hohlraum decreases by 61% and the peak intensity of total x-ray flux (0.1 keV ~ 5 keV) increases by 5%. Two dimensional radiation hydrodynamic code LARED are exploited to interpret the above observations. Our result for the first time indicates the advantage of the UN-coated DUH in generating the uniform x-ray field with a quasi Planckian spectrum and thus has important implications in optimizing the ignition hohlraum design.

Guo, Liang; Xing, Peifeng; Li, Sanwei; Yi, Taimin; Kuang, Longyu; Li, Zhichao; Li, Renguo; Wu, Zheqing; Jing, Longfei; Zhang, Wenhai; Zhan, Xiayu; Yang, Dong; Jiang, Bobi; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Li, Yongsheng; Liu, Jie; Huo, Wenyi; Lan, Ke

2014-01-01T23:59:59.000Z

114

Surface Depletion in the Vacuum Distillation of Metals from Bismuth  

SciTech Connect (OSTI)

Surface depletion was investigated in laboratory- and plant-scale distillation units with mixing by natural convection or by mechanical surface agitation. A model was developed for predicting the degree of surface depletion during the distillation of metals from bismuth as a function of temperature, still pot dimensions, and degree of agitation. This paper discusses those findings.

Bradley, R.F.

2001-08-29T23:59:59.000Z

115

Pumping induced depletion from two streams Dongmin Sun a  

E-Print Network [OSTI]

Author's personal copy Pumping induced depletion from two streams Dongmin Sun a , Hongbin Zhan b-domain and becomes identical to that of Hunt [Hunt B. Unsteady stream depletion from ground water pumping. Ground of the shortest distance from the pumping well to the other stream over the shortest distance between the two

Zhan, Hongbin

116

Depleted Uranium: Exposure and Possible Health Effects  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a by-product of the enrichment process of 235U used for fission in nuclear reactors and nuclear weapons. It has both civilian and military applications. The military use of DU is of defensive as well as of offensive nature, being mainly employed as armor-piercing ammunition. So far, the usage of ammunitions containing DU has been officially confirmed in four military conflicts: Iraq (1991), Bosnia (1994), Kosovo (1999), and again Iraq (2003). During their deployment in the military actions, most penetrators are thought to have missed their intended targets. Therefore, a substantial amount of DU is still present in the environment and may act as a source of contamination for the environment and the population. The possible effects of this radioactive and chemically toxic material have attracted particular notice. To evaluate these consequences, it is important to have accurate methods to assess the exposure to DU in both environmental and biological samples. This article is therefore intended to point out the problematic nature of the experimental techniques and of the analytical methods so far used to quantify the exposure to DU in the light of possible health effects of DU.

U. Oeh

2011-01-01T23:59:59.000Z

117

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Broader source: Energy.gov (indexed) [DOE]

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

118

Cost estimate report for the long-term management of depleted uranium hexafluoride : storage of depleted uranium metal.  

SciTech Connect (OSTI)

This report contains a cost analysis of the long-term storage of depleted uranium in the form of uranium metal. Three options are considered for storage of the depleted uranium. These options are aboveground buildings, partly underground vaults, and mined cavities. Three cases are presented. In the first case, all the depleted uranium metal that would be produced from the conversion of depleted uranium hexafluoride (UF{sub 6}) generated by the US Department of Energy (DOE) prior to July 1993 would be stored at the storage facility (100% Case). In the second case, half the depleted uranium metal would be stored at this storage facility (50% Case). In the third case, one-quarter of the depleted uranium metal would be stored at the storage facility (25% Case). The technical basis for the cost analysis presented in this report is principally found in the companion report, ANL/EAD/TM-100, ''Engineering Analysis Report for the Long-Term Management of Depleted Uranium Hexafluoride: Storage of Depleted Uranium Metal'', prepared by Argonne National Laboratory.

Folga, S.M.; Kier, P.H.; Thimmapuram, P.R.

2001-01-24T23:59:59.000Z

119

Variations of Total Domination  

Science Journals Connector (OSTI)

The study of locating–dominating sets in graphs was pioneered by Slater [186, 187...], and this concept was later extended to total domination in graphs. A locating–total dominating set, abbreviated LTD-set, in G

Michael A. Henning; Anders Yeo

2013-01-01T23:59:59.000Z

120

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

North Sea reserve appreciation, production, and depletion  

E-Print Network [OSTI]

Oil field "growth" has become a well-recognized phenomenon in mature, well-explored provinces such as the United States leading to the continual under-estimation in oil production forecasts. This working paper explores the ...

Sem, Tone

1999-01-01T23:59:59.000Z

122

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......I (2009) Depleted uranium: properties, military...Teratogenicity of depleted uranium aerosols: a review...expression in female breast cancer among an Iraqi population exposed to depleted uranium. J Carcinog 7: 8......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

123

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations...and Jadranko SIMIC2 Health risks/Depleted uranium/Chromosome aberrations...Institute symposia "The Health Effects of Depleted Uranium." Remarks and slides......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

124

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......Society. The Health Hazards of Depleted Uranium Munitions-Part...Carpenter D. O. Depleted uranium contamination...implications for health assessment...Sunder S. Depleted uranium dust from fired...properties. Health Phys (2004......

Marcelo Valdés

2009-02-01T23:59:59.000Z

125

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......War about the health significance of exposure to depleted uranium (DU), the...perforated by depleted uranium ammunition...War about the health significance of exposure to depleted uranium (DU), the......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

126

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...the study was hit by depleted uranium projectiles during...M. , Haldimann M. Depleted uranium in Kosovo: an assessment...exposure for aid workers. Health Phys. (2002) 82......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

127

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Fairlie I (2009) Depleted uranium: properties, military use and health risks. Med Confl...et al (2002) Health effects of embedded depleted uranium. Mil Med 167...et al (2000) Health effects of depleted uranium on exposed Gulf......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

128

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......Abou-Donia, M. Depleted and natural uranium: chemistry...Environ. Health B Crit...et al. Health effects of embedded depleted uranium. Mil. Med...determinations in depleted uranium exposed Gulf...veterans. Health Phys. 77......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

129

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

130

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Association for Cancer Research April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

131

Abstract 3590: Depleted uranium-induced leukemia: Epigenetic and genetic changes.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Alexandra C. Miller; Hailey Clancy; Thomas Kluz; Stuart Cohen; Rafael Rivas; Karvelisse Miller; and Max Costa

2013-04-15T23:59:59.000Z

132

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Carefree, AZ Abstract B41: Depleted uranium-induced oxidative stress in...as occupational exposures to depleted uranium via military action. Cellular...to evaluate the toxicity of depleted uranium (DU) in its soluble and insoluble...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

133

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......from exposure to aerosols of depleted uranium Marcelo Valdes * * Corresponding...Following exposure to aerosols of depleted uranium (DU), biological samples...uranyl phosphates. INTRODUCTION Depleted uranium (DU) is a waste product of......

Marcelo Valdés

2009-02-01T23:59:59.000Z

134

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

135

Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition  

Science Journals Connector (OSTI)

......armoured vehicles perforated by depleted uranium ammunition M. A. Parkhurst...significance of exposure to depleted uranium (DU), the US Department of...armoured vehicles perforated by depleted uranium ammunition. | In response to......

M. A. Parkhurst

2003-07-01T23:59:59.000Z

136

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......the Terrains Contaminated with Depleted Uranium Snezana Milacic 1 * Jadranko...originated from ammunition containing depleted uranium (DU). The studied population...ionizing radiation. Health risks|Depleted uranium|Chromosome aberrations| J......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

137

The Reproductive Effects in Rats after Chronic Oral Exposure to Low-dose Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to Low-dose Depleted Uranium Yuhui Hao Rong Li * Yanbing...study evaluated the effects of depleted uranium (DU) on reproduction in rats...effects were obvious in F1 rats. Depleted uranium|Ingestion|Reproductive effects......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2012-05-01T23:59:59.000Z

138

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......villages in Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric 2...included in the study was hit by depleted uranium projectiles during the North...1999. Although no impact of depleted uranium on radon levels has been observed......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

139

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......intramuscularly injected with depleted uranium S. Fukuda 1 M. Ikeda 1 M...related to kidney and bone in depleted uranium (DU)-injected rats were...injected is low. INTRODUCTION Depleted uranium (DU) accumulates like natural......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

140

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

142

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

143

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

144

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Broader source: Energy.gov (indexed) [DOE]

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

145

Machining of depleted uranium using coated cutting tools  

Science Journals Connector (OSTI)

The machining of depleted uranium and its alloys are discussed in this...1-x-y-z Al x Cr y Y2N alloys, with y=0.03 and z=0.02, h...

M. J. Jackson; G. M. Robinson

2006-04-01T23:59:59.000Z

146

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Science Journals Connector (OSTI)

During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most...

Mirjana B. Radenkovi?; Svjetlana A. Cupa?…

2008-01-01T23:59:59.000Z

147

Lichens as Biomonitors of Depleted Uranium in Kosovo  

Science Journals Connector (OSTI)

This paper reports the results of a study using lichens as biomonitors to investigate the environmental distribution of depleted uranium (DU) at selected Kosovo sites as...235U/238U measurements did not indicate ...

S. Loppi; L. A. Di Lella; L. Frati; G. Protano…

2004-11-01T23:59:59.000Z

148

Hyperspectral stimulated emission depletion microscopy and methods of use thereof  

DOE Patents [OSTI]

A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

Timlin, Jerilyn A; Aaron, Jesse S

2014-04-01T23:59:59.000Z

149

Depleted uranium: a contemporary controversy for the teaching of radioactivity  

Science Journals Connector (OSTI)

Depleted uranium has been used in recent military conflicts and the media have reported the danger from radioactivity. This context provides a good way to keep students' attention when introducing the subject of radioactivity at GCSE or advanced level.

Mark Whalley

2006-01-01T23:59:59.000Z

150

Health Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

151

SFR with once-through depleted uranium breed & burn blanket  

Science Journals Connector (OSTI)

Abstract This paper assesses the feasibility of Sodium-cooled Fast Reactor (SFR) cores that have TRU recycled seeds and once-through depleted uranium blankets. The design objective of these Seed-and-Blanket (S&B) cores is to maximize the power generated by the blanket. As the blanket fuel cost is significantly lower than the cost of the seed fuel and does not need reprocessing, increasing the fraction of reactor power generated by the blanket will reduce the total fuel cycle cost and the fuel reprocessing capacity required per unit of electricity generated. The S&B core is designed to have a prolate (“cigar”) shape seed (“driver”) to maximize the fraction of neutrons that radially leak into the subcritical blanket and reduce neutron loss via axial leakage. Both seed and blanket contain multiple batches; the blanket batches are gradually shuffled inward, while one third of the fuel batches in the seed are recycled. The preliminary study found that it is possible to design the seed to accommodate a wide range of TRU conversion ratios (CR) without significantly penalizing the burnup reactivity swing. The relatively small burnup reactivity swing enables to design the S&B core to operate at longer cycles and discharge its fuel at a higher burnup relative to conventional TRU transmutation cores with identical CR. The S&B cores can generate 1000 \\{MWth\\} and fit within the S-PRISM reactor vessel. The fraction of core power generated by the blanket is between 40% and 50% without exceeding the radiation damage constraint of 200 Displacements per Atom (DPA); this fraction increases when the seed is designed to have a smaller CR. These features are expected to improve the economics of SFR.

Guanheng Zhang; Ehud Greenspan; Alejandra Jolodosky; Jasmina Vujic

2014-01-01T23:59:59.000Z

152

Retrieval of buried depleted uranium from the T-1 trench  

SciTech Connect (OSTI)

The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

Burmeister, M. [Rocky Mountain Remediation Services, Golden, CO (United States); Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Greengard, T. [Kaiser-Hill Co., Golden, CO (United States)]|[Science Applications International Corp. (United States); Hull, C. [S.M. Stoller Corp., Boulder, CO (United States); Barbour, D.; Quapp, W.J. [Starmet Corp. (United States)

1998-07-01T23:59:59.000Z

153

E-Print Network 3.0 - aerosol depletion test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depletion test Search Powered by Explorit Topic List Advanced Search Sample search results for: aerosol depletion test Page: << < 1 2 3 4 5 > >> 1 Supervolcanoes General feedback...

154

Impact of carbon dioxide sequestration in depleted gas-condensate reservoirs.  

E-Print Network [OSTI]

??Depleted gas-condensate reservoirs are becoming important targets for carbon dioxide sequestration. Since depleted below the dew point, retrograde condensate has been deposited in the pore… (more)

Ramharack, Richard M.

2010-01-01T23:59:59.000Z

155

Lifetime of the Embedded Phase of Low-Mass Star Formation and the Envelope Depletion Rates  

Science Journals Connector (OSTI)

Motivated by a considerable scatter in the observationally inferred lifetimes of the embedded phase of star formation, we study the duration of the Class 0 and Class I phases in upper-mass brown dwarfs and low-mass stars using numerical hydrodynamic simulations of the gravitational collapse of a large sample of cloud cores. We resolve the formation of a star/disk/envelope system and extend our numerical simulations to the late accretion phase when the envelope is nearly totally depleted of matter. We adopt the classification scheme of André et al. and calculate the lifetimes of the Class 0 and Class I phases (?C0 and ?CI, respectively) based on the mass remaining in the envelope. When cloud cores with various rotation rates, masses, and sizes (but identical otherwise) are considered, our modeling reveals a sub-linear correlation between the Class 0 lifetimes and stellar masses in the Class 0 phase with the least-squares fit exponent m = 0.8 ± 0.05. The corresponding correlation between the Class I lifetimes and stellar masses in Class I is super-linear with m = 1.2 ± 0.05. If a wider sample of cloud cores is considered, which includes possible variations in the initial gas temperature, cloud core truncation radii, density enhancement amplitudes, initial gas density and angular velocity profiles, and magnetic fields, then the corresponding exponents may decrease by as much as 0.3. The duration of the Class I phase is found to be longer than that of the Class 0 phase in most models, with a mean ratio ?CI/?C0? 1.5-2. A notable exception are young stellar objects that form from cloud cores with large initial density enhancements, in which case ?C0 may be greater than ?CI. Moreover, the upper-mass (1.0 M ?) cloud cores with frozen-in magnetic fields and high cloud core rotation rates may have the ?CI/?C0 ratios as large as 3.0-4.0. We calculate the rate of mass accretion from the envelope onto the star/disk system and provide an approximation formula that can be used in semi-analytic models of cloud core collapse.

Eduard I. Vorobyov

2010-01-01T23:59:59.000Z

156

Brain accumulation of depleted uranium in rats following 3- or 6-month treatment with implanted depleted uranium pellets  

Science Journals Connector (OSTI)

Depleted uranium (DU) is used to reinforce armor ... were weighed weekly as a measure of general health, with no statistically significant differences observed among ... midbrain, hippocampus, striatum, and corte...

Vanessa A. Fitsanakis; Keith M. Erikson…

2006-01-01T23:59:59.000Z

157

ARM - Measurement - Total cloud water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

158

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector  

E-Print Network [OSTI]

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

1980-01-01T23:59:59.000Z

159

Environmental Risks Associated with Conversion of Depleted UF6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

160

International aspects of restrictions of ozone-depleting substances  

SciTech Connect (OSTI)

This report summarizes international efforts to protect stratospheric ozone. Also included in this report is a discussion of activities in other countries to meet restrictions in the production and use of ozone-depleting substances. Finally, there is a brief presentation of trade and international competitiveness issues relating to the transition to alternatives for the regulated chlorofluorocarbons (CFCs) and halons. The stratosphere knows no international borders. Just as the impact of reduced stratospheric ozone will be felt internationally, so protection of the ozone layer is properly an international effort. Unilateral action, even by a country that produces and used large quantities of ozone-depleting substances, will not remedy the problem of ozone depletion if other countries do not follow suit. 32 refs., 7 tabs.

McDonald, S.C.

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Effect of Shim Arm Depletion in the NBSR  

SciTech Connect (OSTI)

The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

Hanson A. H.; Brown N.; Diamond, D.J.

2013-02-22T23:59:59.000Z

162

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

163

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

164

21 briefing pages total  

Broader source: Energy.gov (indexed) [DOE]

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

165

The distribution of depleted uranium contamination in Colonie, NY, USA  

Science Journals Connector (OSTI)

Uranium oxide particles were dispersed into the environment from a factory in Colonie (NY, USA) by prevailing winds during the 1960s and '70s. Uranium concentrations and isotope ratios from bulk soil samples have been accurately measured using inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) without the need for analyte separation chemistry. The natural range of uranium concentrations in the Colonie soils has been estimated as 0.7–2.1 ?g g? 1, with a weighted geometric mean of 1.05 ?g g? 1; the contaminated soil samples comprise uranium up to 500 ± 40 ?g g? 1. A plot of 236U/238U against 235U/238U isotope ratios describes a mixing line between natural uranium and depleted uranium (DU) in bulk soil samples; scatter from this line can be accounted for by heterogeneity in the DU particulate. The end-member of DU compositions aggregated in these bulk samples comprises (2.05 ± 0.06) × 10? 3 235U/238U, (3.2 ± 0.1) × 10? 5 236U/238U, and (7.1 ± 0.3) × 10? 6 234U/238U. The analytical method is sensitive to as little as 50 ng g? 1 DU mixed with the natural uranium occurring in these soils. The contamination footprint has been mapped northward from site, and at least one third of the uranium in a soil sample from the surface 5 cm, collected 5.1 km NNW of the site, is DU. The distribution of contamination within the surface soil horizon follows a trend of exponential decrease with depth, which can be approximated by a simple diffusion model. Bioturbation by earthworms can account for dispersal of contaminant from the soil surface, in the form of primary uranium oxide particulates, and uranyl species that are adsorbed to organic matter. Considering this distribution, the total mass of uranium contamination emitted from the factory is estimated to be c. 4.8 tonnes.

N.S. Lloyd; S.R.N. Chenery; R.R. Parrish

2009-01-01T23:59:59.000Z

166

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

167

Summary Max Total Units  

Broader source: Energy.gov (indexed) [DOE]

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

168

Total Precipitable Water  

SciTech Connect (OSTI)

The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

None

2012-01-01T23:59:59.000Z

169

Total Sustainability Humber College  

E-Print Network [OSTI]

1 Total Sustainability Management Humber College November, 2012 SUSTAINABILITY SYMPOSIUM Green An Impending Global Disaster #12;3 Sustainability is NOT Climate Remediation #12;Our Premises "We cannot, you cannot improve it" (Lord Kelvin) "First rule of sustainability is to align with natural forces

Thompson, Michael

170

Fundamental differences between Arctic and Antarctic ozone depletion  

Science Journals Connector (OSTI)

...binary sulfuric acid?water aerosols can deplete...National Oceanic and Atmospheric Administration. Satellite observations...Relative influences of atmospheric chemistry and transport...RP Pinto J ( 1986 ) Condensation of HNO 3 and HCl in...Implications for recovery of springtime Antarctic...

Susan Solomon; Jessica Haskins; Diane J. Ivy; Flora Min

2014-01-01T23:59:59.000Z

171

Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer  

E-Print Network [OSTI]

Learning about ozone depletion Paul J. Crutzen & Michael Oppenheimer Received: 12 January 2007 Mainz, Germany M. Oppenheimer (*) Department of Geosciences, Princeton University, Princeton, NJ 08544, USA e-mail: omichael@princeton.edu M. Oppenheimer Woodrow Wilson School of Public and International

Oppenheimer, Michael

172

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network [OSTI]

that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA...

Humrickhouse, Carissa Joy

2012-07-16T23:59:59.000Z

173

Defending Resource Depletion Attacks on Implantable Medical Devices  

E-Print Network [OSTI]

that could deplete IMD resources (e.g., battery power) quickly. The RD attacks could reduce the lifetime are powered by a non-rechargeable battery and replacing the battery requires surgery. Re-charging an IMD from an external RF electromagnetic source causes thermal effects in the organs and thus is not recommended. Unlike

Wu, Jie

174

Disposal Options for Depleted Uranium Trioxide (DU03) Study  

SciTech Connect (OSTI)

There exists at SRS 50 million pounds of depleted UO3 (DUO) stored in 55-gallon drums stacked three high in several buildings. This storage configuration does not allow access to the individual drums for monitoring drum integrity and material accountability.

Jones, T.M.

2002-08-02T23:59:59.000Z

175

The Variation of Magnesium Depletion with Line of Sight Conditions  

E-Print Network [OSTI]

In this paper we report on the gas-phase abundance of singly-ionized magnesium (Mg II) in 44 lines of sight, using data from the Hubble Space Telescope (HST). We measure Mg II column densities by analyzing medium- and high-resolution archival STIS spectra of the 1240 A doublet of Mg II. We find that Mg II depletion is correlated with many line of sight parameters (e.g. F(H_2), E_(B-V), E_(B-V)/r, A_V, and A_V/r) in addition to the well-known correlation with . These parameters should be more directly related to dust content and thus have more physical significance with regard to the depletion of elements such as magnesium. We examine the significance of these additional correlations as compared to the known correlation between Mg II depletion and . While none of the correlations are better predictors of Mg II depletion than , some are statistically significant even assuming fixed . We discuss the ranges over which these correlations are valid, their strength at fixed , and physical interpretations.

Adam G. Jensen; Theodore P. Snow

2007-10-04T23:59:59.000Z

176

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells  

E-Print Network [OSTI]

Depleted-Heterojunction Colloidal Quantum Dot Solar Cells Andras G. Pattantyus-Abraham,, Illan J and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada-circuit voltage (Voc) and fill factor (FF). The power conversion efficiency ( ) for an in- put solar intensity

177

Total isomerization gains flexibility  

SciTech Connect (OSTI)

Isomerization extends refinery flexibility to meet changing markets. TIP (Total Isomerization Process) allows conversion of paraffin fractions in the gasoline boiling region including straight run naptha, light reformate, aromatic unit raffinate, and hydrocrackate. The hysomer isomerization is compared to catalytic reforming. Isomerization routes are graphed. Cost estimates and suggestions on the use of other feedstocks are given. TIP can maximize gas production, reduce crude runs, and complement cat reforming. In four examples, TIP reduces reformer severity and increases reformer yield.

Symoniak, M.F.; Holcombe, T.C.

1983-05-01T23:59:59.000Z

178

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

179

Determination of Total Solids in Biomass and Total Dissolved...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3312008 A. Sluiter, B. Hames, D. Hyman, C. Payne,...

180

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

182

Shock induced multi-mode damage in depleted uranium  

SciTech Connect (OSTI)

Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

Koller, Darcie D [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

183

depleted underground oil shale for the permanent storage of carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

184

Safety evaluation for packaging (onsite) depleted uranium waste boxes  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

McCormick, W.A.

1997-08-27T23:59:59.000Z

185

Uranio impoverito: perch'e? (Depleted uranium: why?)  

E-Print Network [OSTI]

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of the author of understanding the reasons of the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

D'Abramo, G

2003-01-01T23:59:59.000Z

186

E-Print Network 3.0 - allogeneic t-cell depleted Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

t-cell depleted Search Powered by Explorit Topic List Advanced Search Sample search results for: allogeneic t-cell depleted Page: << < 1 2 3 4 5 > >> 1 haematologicathe hematology...

187

Diversity of Glycosyl Hydrolases from Cellulose-Depleting Communities Enriched from Casts of Two Earthworm Species  

Science Journals Connector (OSTI)

...metagenomic fosmid libraries from cellulose-depleting...annotated in public databases as...introducing myRDP space and quality controlled public data. Nucleic...metagenomic fosmid libraries from cellulose-depleting...annotated in public databases as...

Ana Beloqui; Taras Y. Nechitaylo; Nieves López-Cortés; Azam Ghazi; María-Eugenia Guazzaroni; Julio Polaina; Axel W. Strittmatter; Oleg Reva; Agnes Waliczek; Michail M. Yakimov; Olga V. Golyshina; Manuel Ferrer; Peter N. Golyshin

2010-07-09T23:59:59.000Z

188

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model.  

E-Print Network [OSTI]

??Texture evolution of depleted uranium is investigated using a viscoplastic self-consistent model. Depleted uranium, which has the same structure as alpha-uranium, is difficult to model… (more)

Ho, John

2012-01-01T23:59:59.000Z

189

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra Miller

2007-05-01T23:59:59.000Z

190

Clinical diagnostic indicators of renal and bone damage in rats intramuscularly injected with depleted uranium  

Science Journals Connector (OSTI)

......M. Depleted and natural uranium: chemistry and toxicological...internal contamination with uranium. Croat. Med. J. 40...1999). 5. Mould, R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J......

S. Fukuda; M. Ikeda; M. Chiba; K. Kaneko

2006-06-01T23:59:59.000Z

191

Identification of Health Risks in Workers Staying and Working on the Terrains Contaminated with Depleted Uranium  

Science Journals Connector (OSTI)

......p 105185. 5. UNEP. (2001) Depleted Uranium in Kosovo. Post Conflict Environmental...pp 98115. 6. UNEP. (2002) Depleted Uranium in Serbia and Montenegro Post...Lundin, A. (2004) Incidence of cancer among Swedish military and civil......

Snezana Milacic; Jadranko Simic

2009-05-01T23:59:59.000Z

192

E-Print Network 3.0 - antarctic ozone depletion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-B and Biosphere." Oecologia 128(1-2): 1-296. (1997). Ozone depletion FAQ Part IV: UV radiation and its effects... -B radiation due to stratospheric ozone depletion on global...

193

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...Epigenetic mechanism is involved in depleted uranium-induced transformation in human...Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military...research information on the potential health hazards of DU exposure. In our...

Alexandra Miller

2007-05-01T23:59:59.000Z

194

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Science of Cancer Health Disparities- Feb...AZ Abstract B41: Depleted uranium-induced oxidative...Science of Cancer Health Disparities- Feb...high deposits of uranium or tailings. There...occupational exposures to depleted uranium via military...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

195

Abstract B41: Depleted uranium-induced oxidative stress in human bronchial epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 February...The Science of Cancer Health Disparities...Abstract B41: Depleted uranium-induced oxidative...Carefree, AZ Cancer and mortality...deposits of uranium or tailings...exposures to depleted uranium via...

Monica Yellowhair; Leigh A. Henricksen; Aneesha Hossain; Kathleen Dixon; and R. Clark Lantz

2009-02-01T23:59:59.000Z

196

Transgenerational transmission of genetic damage by depleted uranium and tungsten alloy  

Science Journals Connector (OSTI)

...American Association for Cancer Research April 15, 2010...mechanism is involved in depleted uranium-induced transformation...Maine, Portland, ME. Depleted uranium (DU) is commonly...American Association for Cancer Research; 2010 Apr 17-21...

Alexandra Miller

2007-05-01T23:59:59.000Z

197

Depleted uranium hexafluoride – technogenic raw material for obtaining high-purity inorganic fluorides  

Science Journals Connector (OSTI)

The problem of handling depleted uranium hexafluoride is discussed. An effective and ecologically safe variant of complex recycling of depleted uranium hexafluoride with uranium oxides, organic compounds, and hig...

E. P. Magomedbekov; S. V. Chizhevskaya; O. M. Klimenko; A. V. Davydov…

2012-02-01T23:59:59.000Z

198

Isotopic investigation of the colloidal mobility of depleted uranium in a podzolic soil  

Science Journals Connector (OSTI)

Abstract The mobility and colloidal migration of uranium were investigated in a soil where limited amounts of anthropogenic uranium (depleted in the 235U isotope) were deposited, adding to the naturally occurring uranium. The colloidal fraction was assumed to correspond to the operational fraction between 10 kDa and 1.2 ?m after (ultra)filtration. Experimental leaching tests indicate that approximately 8–15% of uranium is desorbed from the soil. Significant enrichment of the leachate in the depleted uranium (DU) content indicates that uranium from recent anthropogenic DU deposit is weakly bound to soil aggregates and more mobile than geologically occurring natural uranium (NU). Moreover, 80% of uranium in leachates was located in the colloidal fractions. Nevertheless, the percentage of DU in the colloidal and dissolved fractions suggests that NU is mainly associated with the non-mobile coarser fractions of the soil. A field investigation revealed that the calculated percentages of DU in soil and groundwater samples result in the enhanced mobility of uranium downstream from the deposit area. Colloidal uranium represents between 10% and 32% of uranium in surface water and between 68% and 90% of uranium in groundwater where physicochemical parameters are similar to those of the leachates. Finally, as observed in batch leaching tests, the colloidal fractions of groundwater contain slightly less DU than the dissolved fraction, indicating that DU is primarily associated with macromolecules in dissolved fraction.

S. Harguindeguy; P. Crançon; F. Pointurier; M. Potin-Gautier; G. Lespes

2014-01-01T23:59:59.000Z

199

Dust acoustic solitary waves in a magnetized electron depleted superthermal dusty plasma  

SciTech Connect (OSTI)

A theoretical investigation has been made on the oblique propagation of arbitrary dust-acoustic solitary waves in an electron depleted magnetized dusty plasma which consists of kappa distributed ions and negatively charged warm dust fluid. The electron number density is assumed to be sufficiently depleted owing to the electron attachment during the dust charging process, i.e., n{sub e} Much-Less-Than n{sub i}. The propagation properties of two possible modes (in the linear regime) are investigated. It is found that deviation of ions from thermodynamic equilibrium leads to a decrease of the phase velocity of both modes. A nonlinear pseudopotential approach is employed to derive an energy-like equation which admits to investigate the occurrence of stationary solitary wave solution for the propagation of arbitrary amplitude. The effects of superthermality, obliqueness, and external magnetic field on the existence domain and nature of these solitary waves are discussed. Only negative polarity of solitary waves is found to exist. It is shown that an increase of ion superthermality leads to the appearance of the solitary waves with smaller Mach numbers. The influence of dust temperature on the existence domain of solitary structures is increase of the permitted Mach number. It is also found that the superthermality supports the solitary structures with larger amplitude.

Shahmansouri, M. [Department of Physics, Faculty of Science, Arak University, Arak 38156-8-8349 (Iran, Islamic Republic of); Alinejad, H. [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

200

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Are plasma depletions in Saturn's ionosphere a signature of time-dependent water input?  

E-Print Network [OSTI]

Are plasma depletions in Saturn's ionosphere a signature of time- dependent water input? Luke Moore the presence of numerous ``ionospheric holes'', or plasma depletions, in Saturn's upper atmosphere that cannot the observed plasma depletions. The required influxes present a target to assess for the possible sources

Mendillo, Michael

202

Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies  

Science Journals Connector (OSTI)

...Spacelab-2 Plasma Depletion...Spacelab-2 Plasma Depletion...releasing large amounts of...Earth's upper atmosphere to chemically...spanned an area of several...16.5-MHZ AND THE GALACTIC...Spacelab-2 plasma depletion...releasing large amounts of...Earth's upper atmosphere to chemically...spanned an area of several...

M. MENDILLO; J. BAUMGARDNER; D. P. ALLEN; J. FOSTER; J. HOLT; G. R.A. ELLIS; A. KLEKOCIUK; G. REBER

1987-11-27T23:59:59.000Z

203

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......A. (2001) Depleted uranium and public health. BMJ. 322...phenotype by depleted uranium-uranyl chloride. Environ. Health Perspect 106...radiological risk from depleted uranium in war scenarious. Health Phys. 82: 1420......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

204

Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial cells  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Abstract 3590: Depleted uranium-induced leukemia...development. Depleted uranium is used in military...Max Costa. Depleted uranium-induced leukemia...Association for Cancer Research; 2013...

Hong Xie; Carolyne LaCerte; and John P. Wise

2010-04-15T23:59:59.000Z

205

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

206

Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank  

Science Journals Connector (OSTI)

......Characterisation and dissolution of depleted uranium aerosols produced during impacts...Aerosols produced during impacts of depleted uranium (DU) penetrators against the...Characterisation and dissolution of depleted uranium aerosols produced during impacts......

V. Chazel; P. Gerasimo; V. Debouis; P. Laroche; F. Paquet

2003-07-01T23:59:59.000Z

207

A study Assessing the Genotoxicity in Rats after Chronic Oral Exposure to a Low Dose of Depleted Uranium  

Science Journals Connector (OSTI)

......Oral Exposure to a Low Dose of Depleted Uranium Yuhui Hao Rong Li * Yanbing...by chronic oral exposure to depleted uranium (DU). Materials and methods...exposure to a low dose of DU. Depleted uranium|Ingestion|Genotoxicity......

Yuhui Hao; Rong Li; Yanbing Leng; Jiong Ren; Jing Liu; Guoping Ai; Hui Xu; Yongping Su; Tianmin Cheng

2009-11-01T23:59:59.000Z

208

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

209

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect (OSTI)

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

210

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

211

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

212

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

213

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

214

Selection of a management strategy for depleted uranium hexafluoride  

SciTech Connect (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

215

Inhibition of lytic infection of pseudorabies virus by arginine depletion  

SciTech Connect (OSTI)

Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.

Wang, H.-C. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Kao, Y.-C. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Chang, T-J. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China); Wong, M.-L. [Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan (China)]. E-mail: mlwong@dragon.nchu.edu.tw

2005-08-26T23:59:59.000Z

216

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

217

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

218

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

219

Microstructure of depleted uranium under uniaxial strain conditions  

Science Journals Connector (OSTI)

Uranium samples of two different purities were used for spall strength measurements. Samples of depleted uranium were taken from very high purity material (38 ppm of carbon) and from material containing 280 ppm carbon. Experimental conditions were chosen to effectively arrest the microstructural damage at two places in the development to full spall separation. Samples were soft recovered and characterized with respect to the microstructure and the form of damage. This allowed determination of the dependence of spall mechanisms on stress level stress state and sample purity. This information is used in developing a model to predict the mode of fracture.

A. K. Zurek; J. D. Embury; A. Kelly; W. R. Thissell; R. L. Gustavsen; J. E. Vorthman; R. S. Hixson

1998-01-01T23:59:59.000Z

220

Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions  

Broader source: Energy.gov (indexed) [DOE]

Background Fact Sheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions At the direction of Energy Secretary Steven Chu, over many months, the Energy Department (DOE) has been working closely with Energy Northwest (ENW), the Tennessee Valley Authority (TVA), and USEC Inc. (USEC) to develop a plan to address the challenges at USEC's Paducah Gaseous Diffusion Plant (GDP) that advances America's national security interests, protects taxpayers, and provides benefits for TVA and the Bonneville Power Administration's (BPA's) electric ratepayers and business operations. BPA is ENW's sole customer, purchasing 100 percent of ENW's Columbia Generating Station's electric power as part of BPA's overall

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Far-Field Optical Nanoscopy  

Science Journals Connector (OSTI)

...speed, sensitivity, and cost-efficiency are constantly...mathematically. Operating with oil, glycerol, and water-immersion...recent field-corrected oil-immersion lenses...Setting the current benchmark, these STED-4Pi...fluorophores encourages the exploration of this concept. Depleting...

Stefan W. Hell

2007-05-25T23:59:59.000Z

222

Radiological air quality in a depleted uranium storage vault  

SciTech Connect (OSTI)

The radiological air quality of two storage vaults, one with depleted uranium (DU) and one without, was evaluated and compared. The intent of the study was to determine if the presence of stored DU would significantly contribute to the gaseous/airborne radiation level compared to natural background. Both vaults are constructed out of concrete and are dimensionally similar. The vaults are located on the first floor of the same building. Neither vault has air supply or air exhaust. The doors to both vaults remained closed during the evaluation period, except for brief and infrequent access by the operational group. One vault contained 700 KG of depleted uranium, and the other vault contained documents inside of file cabinets. Radon detectors and giraffe air samplers were used to gather data on the quantity of gaseous/airborne radionuclides in both vaults. The results of this study indicated that there was no significant difference in the quantity of gaseous/airborne radionuclides in the two vaults. This paper gives a discussion of the effects of the stored DU on the air quality, and poses several theories supporting the results.

Robinson, T.; Cucchiara, A.L.

1999-03-01T23:59:59.000Z

223

Depleted uranium residual radiological risk assessment for Kosovo sites  

Science Journals Connector (OSTI)

During the recent conflict in Yugoslavia, depleted uranium rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of areas in Kosovo with depleted uranium penetrators and dust. Although chemical toxicity is the most significant health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict. Uranium munitions are considered to be a source of radiological contamination of the environment. Based on measurements and estimates from the recent Balkan Task Force UNEP mission in Kosovo, we have estimated effective doses to resident populations using a well-established food-web mathematical model (RESRAD code). The UNEP mission did not find any evidence of widespread contamination in Kosovo. Rather than the actual measurements, we elected to use a desk assessment scenario (Reference Case) proposed by the UNEP group as the source term for computer simulations. Specific applications to two Kosovo sites (Planeja village and Vranovac hill) are described. Results of the simulations suggest that radiation doses from water-independent pathways are negligible (annual doses below 30 ?Sv). A small radiological risk is expected from contamination of the groundwater in conditions of effective leaching and low distribution coefficient of uranium metal. Under the assumptions of the Reference Case, significant radiological doses (>1 mSv/year) might be achieved after many years from the conflict through water-dependent pathways. Even in this worst-case scenario, DU radiological risk would be far overshadowed by its chemical toxicity.

Marco Durante; Mariagabriella Pugliese

2003-01-01T23:59:59.000Z

224

SHOCKWAVE PROFILE AND BAUSCHINGER EFFECT IN DEPLETED URANIUM  

Science Journals Connector (OSTI)

Dynamic damage evolution in materials is of growing interest in particular the role of defect structure on material strength during a dynamic experiment. Many studies in the past have seen strong correlations between the shockwave profile and the defect structure during dynamic experiments such as quasi?elastic release behavior. Bauschinger effect is a microstructurally controlled process in which a material displays a change in stress?strain characterisitics due to a change in the defect structure. Studies on depleted uranium have revealed indications of Bauschinger effect being a mechanism present during quasi?static experiments which could be a result of the large amount of twinning observed in these materials. As work continues to improve strength models it becomes imperitive to understand the role of defect structure on the properties of materials under dynamic conditions. The study reported here is an observation of the release wave behavior in depleted uranium that first undergoes compressive shock loading followed by a reversal of the loading direction upon release.

D. D. Koller; G. T. Gray III; R. S. Hixson

2007-01-01T23:59:59.000Z

225

Depleted uranium instead of lead in munitions: the lesser evil  

Science Journals Connector (OSTI)

Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment.

Sergei V Jargin

2014-01-01T23:59:59.000Z

226

Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground  

SciTech Connect (OSTI)

This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation.

Ebinger, M.H.; Hansen, W.R.

1994-05-11T23:59:59.000Z

227

A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath  

SciTech Connect (OSTI)

Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth`s quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H{sup +} population in the quasi-parallel magnetosheath near the magnetopause in the energy range from {approximately}10 to {approximately}80 keV/e and substantially less than this limit for the energetic He{sup 2+} population. The rest of the energetic H{sup +} population and nearly all of the energetic He{sup 2+} population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He{sup 2+} and H{sup +} populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2-3 times more efficient at accelerating He{sup 2+} than H{sup +}. This result is consistent with previous estimates from shock acceleration theory and simulations. 34 refs., 10 figs.

Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States)] [Lockheed Palo Alto Research Lab., CA (United States)

1994-04-01T23:59:59.000Z

228

Parametric down conversion with a depleted pump as a model for classical information transmission capacity of quantum black holes  

E-Print Network [OSTI]

In this paper we extend the investigation of Adami and Ver Steeg [Class. Quantum Grav. \\textbf{31}, 075015 (2014)] to treat the process of black hole particle emission effectively as the analogous quantum optical process of parametric down conversion (PDC) with a dynamical (depleted vs. non-depleted) `pump' source mode which models the evaporating black hole (BH) energy degree of freedom. We investigate both the short time (non-depleted pump) and long time (depleted pump) regimes of the quantum state and its impact on the Holevo channel capacity for communicating information from the far past to the far future in the presence of Hawking radiation. The new feature introduced in this work is the coupling of the emitted Hawking radiation modes through the common black hole `source pump' mode which phenomenologically represents a quantized energy degree of freedom of the gravitational field. This (zero-dimensional) model serves as a simplified arena to explore BH particle production/evaporation and back-action effects under an explicitly unitary evolution which enforces quantized energy/particle conservation. Within our analogous quantum optical model we examine the entanglement between two emitted particle/anti-particle and anti-particle/particle pairs coupled via the black hole (BH) evaporating `pump' source. We also analytically and dynamically verify the `Page information time' for our model which refers to the conventionally held belief that the information in the BH radiation becomes significant after the black hole has evaporated half its initial energy into the outgoing radiation. Lastly, we investigate the effect of BH particle production/evaporation on two modes in the exterior region of the BH event horizon that are initially maximally entangled, when one mode falls inward and interacts with the black hole, and the other remains forever outside and non-interacting.

Paul M. Alsing

2015-02-04T23:59:59.000Z

229

Mujeres Hombres Total Hombres Total 16 5 21 0 10  

E-Print Network [OSTI]

Julio de 2011 Tipo de Discapacidad Sexo CENTRO 5-Distribución del estudiantado con discapacidad por centro, tipo de discapacidad, sexo y totales. #12;

Autonoma de Madrid, Universidad

230

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

231

Neutron field characterisation at mixed oxide fuel plant  

Science Journals Connector (OSTI)

......plutonium oxide (PuO2) and 70 % depleted uranium oxide (UO2) are blended together...and typical field conditions. Health Phys. (1990) 58(6):691-704...Power Plants Quality Assurance, Health Care Radiation Dosage Radiation......

C. Passmore; M. Million; M. Kirr; J. Bartz; M. S. Akselrod; A. Devita; J. Berard

2012-06-01T23:59:59.000Z

232

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

233

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

234

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

235

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

236

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

237

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

238

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

239

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

240

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

242

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

243

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

244

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

245

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

246

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

247

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

248

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

249

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

250

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

251

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

252

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

253

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

254

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

255

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

256

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

257

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

258

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

259

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

260

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

262

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

263

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

264

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.7 0.5 0.2 Million U.S. Housing Units Home Electronics Usage Indicators Table HC12.12 Home Electronics Usage Indicators by Midwest Census Region,...

265

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 1.8 1.2 0.5 Table HC11.10 Home Appliances Usage Indicators by Northeast Census Region, 2005 Million U.S. Housing Units Home Appliances...

266

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 2.8 1.1 0.7 Q 0.4 Million U.S. Housing Units Home Electronics Usage Indicators Table HC13.12 Home Electronics Usage Indicators by South Census Region,...

267

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 3.1 1.0 2.2 Table HC14.10 Home Appliances Usage Indicators by West Census Region, 2005 Million U.S. Housing Units Home Appliances...

268

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four Most Populated...

269

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 2.7 3.5 2.2 1.3 3.5 1.3 3.8 Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line Eligible for Federal...

270

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 3.4 2.0 1.4 Table HC12.10 Home Appliances Usage Indicators by Midwest Census Region, 2005 Million U.S. Housing Units Home Appliances...

271

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Census Region Northeast Midwest South West Million U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005...

272

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(as Self-Reported) City Town Suburbs Rural Million U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location,...

273

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 4.4 2.5 3.0 3.4 Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural...

274

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 2.8 0.6 Q 0.5 Million U.S. Housing Units Home Electronics Usage Indicators Table HC14.12 Home Electronics Usage Indicators by West Census Region, 2005...

275

Total..........................................................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 13.2 4.9 2.3 1.1 1.5 Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region...

276

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

... 51.9 7.0 4.8 2.2 Not Asked (Mobile Homes or Apartment in Buildings with 5 or More Units)... 23.7...

277

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

278

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment... 1.2 Q Q N Q Have Main Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating...

279

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

280

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

282

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

283

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

284

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

285

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

286

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

287

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

288

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

289

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

290

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

291

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

292

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

293

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

294

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

295

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

296

Repository Applications: Potential Benefits of Using Depleted Uranium (DU)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Repository Applications Repository Applications Repository Applications: Potential Benefits of Using Depleted Uranium (DU) in a Geological Repository The United States is investigating the Yucca Mountain (YM) site in Nevada for the disposal of radioactive spent nuclear fuel (SNF)—the primary waste from nuclear power plants. The SNF would be packaged and then emplaced 200 to 300 m underground in parallel disposal tunnels. The repository isolates the SNF from the biosphere until the radionuclides decay to safe levels. DU may improve the performance of geological repositories for disposal of SNF via three mechanisms: Radiation shielding for waste packages to protect workers Lowering the potential for long-term nuclear criticality in the repository Reducing the potential for releases of radionuclides from the SNF

297

Measurement of Holmium Rydberg series through MOT depletion spectroscopy  

E-Print Network [OSTI]

We report measurements of the absolute excitation frequencies of $^{165}$Ho $4f^{11}6sns$ and $4f^{11}6snd$ odd-parity Rydberg series. The states are detected through depletion of a magneto-optical trap via a two-photon excitation scheme. Measurements of 162 Rydberg levels in the range $n=40-101$ yield quantum defects well described by the Rydberg-Ritz formula. We observe a strong perturbation in the $ns$ series around $n=51$ due to an unidentified interloper at 48515.47(4) cm$^{-1}$. From the series convergence, we determine the first ionization potential $E_\\mathrm{IP}=48565.939(4)$ cm$^{-1}$, which is three orders of magnitude more accurate than previous work. This work represents the first time such spectroscopy has been done in Holmium and is an important step towards using Ho atoms for collective encoding of a quantum register.

Hostetter, J; Lawler, J E; Saffman, M

2014-01-01T23:59:59.000Z

298

Investigation of breached depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

299

Investigation of breached depleted UF sub 6 cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

300

Military use of depleted uranium assessment of prolonged population exposure  

E-Print Network [OSTI]

This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

Giannardi, C

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Depleted Uranium Report from the Health Council of the Netherlands  

Science Journals Connector (OSTI)

The Health Council of the Netherlands, which is an independent scientific advisory body established in 1902 `to advise the government and Parliament on the current level of knowledge with respect to public health issues', has recently published an overview report on depleted uranium. The title of the report is `Health risks of exposure to depleted uranium' and it is freely available in both English and the original Dutch language. A brief summary of the report that was published on 16 May 2001 is presented here. The use of ammunition containing depleted uranium (DU) in Kosovo and elsewhere in the Balkans has provoked disquiet in Europe. In the Netherlands, concern over the release of this material had already been aroused previously following the crash of the El-Al airliner in the Bijlmermeer district of Amsterdam in 1992. It was against this background that the President of the Health Council decided to set up a Committee charged with the task of reviewing the health risks of exposure to DU and the preventive measures required for individuals present in areas where DU has been released into the environment. After reviewing the properties of uranium in general and depleted uranium in particular, and presenting data on the occurrence of the element in the environment and biological tissues, the committee assessed the chemical and radiological health effect of uranium and uranium compounds. The Health Council Committee concludes that radioactive contamination of the lungs is the principal health risk to be considered in connection with exposure to slightly soluble uranium compounds in the atmosphere. For soluble compounds, the chemical toxic effect in the kidneys is the primary consideration. The toxicological effects are to some extent concordant with those of other heavy metals. For relevant exposure scenarios the Committee does not anticipate that exposure to DU will result in a demonstrable increased risk of diseases and symptoms among exposed individuals as a result of a radiological or chemical toxic effect exerted by this substance. Cancer In view of the fact that DU emits ionising radiation in the form of alpha particles, the induction of cancer, in principle, needs to be taken into account in relation to individuals exhibiting internal contamination with DU. In case of inhalation of slightly soluble DU compounds, attention will in particular need to be focused on the lungs. The radiation dose caused by incidental exposure to DU in the exposure scenarios considered is limited compared with the radiation dose received during a lifetime of exposure to natural uranium. As at the common levels of exposure to natural uranium a contribution to the induction of cancer in the population cannot be demonstrated, the Committee concludes that the same is true for exposure to DU. This general conclusion is also valid for the appearance of lung cancer and for the appearance of leukaemia after the inhalation of dust containing slightly soluble uranium compounds. Renal damage For soluble compounds, the risk posed by exposure to DU is principally of a chemical toxic nature. In the case of increasing exposure, abnormalities will first of all appear in the kidneys. Exposure to small amounts (milligrams) of uranium over short periods will therefore result in changes in the kidneys, which lead to acute, usually reversible, renal impairment. No such dose-dependency has been observed, however, in the frequency of chronic renal disorders among population groups who are chronically exposed to enhanced quantities of natural uranium. Nor have studies involving workers in the uranium industry and ex-military personnel (including the group with shrapnel in the body) to date produced any evidence that uranium can cause renal impairment. Thus the present body of scientific data tends to suggest an absence of irreparable renal damage as a result of the intake of DU in the exposure scenarios considered. Prevention Although the risks associated with exposure to DU for the exposure scenarios considered appear to be very limited, the fundamental prin

W F Passchier; J W N Tuyn

2002-01-01T23:59:59.000Z

302

The Lithium Depletion Boundary as a Clock and Thermometer  

E-Print Network [OSTI]

We take a critical look at the lithium depletion boundary (LDB) technique that has recently been used to derive the ages of open clusters. We identify the sources of experimental and systematic error and show that the probable errors are larger by approximately a factor two than presently claimed in the literature. We then use the Pleiades LDB age and photometry in combination with evolutionary models to define empirical colour-T_eff relations that can be applied to younger clusters. We find that these relationships DO NOT produce model isochrones that match the younger cluster data. We propose that this is due either to systematic problems in the evolutionary models or an age (gravity) sensitivity in the colour-T_eff relation which is not present in published atmospheric models.

R. D. Jeffries; T. Naylor

2000-09-12T23:59:59.000Z

303

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

304

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Broader source: Energy.gov (indexed) [DOE]

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

305

E-Print Network 3.0 - arctic ozone depletion Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Introduction Stratospheric ozone depletion has been one... (Chubachi, 1984; Farman et al., 1985), winter ozone ... Source: Ecole Polytechnique, Centre de mathmatiques...

306

EIS-0329: Proposed Construction, Operation, Decontamination/Decommissioning of Depleted Uranium Hexafluoride Conversion Facilities  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposal to construct, operate, maintain, and decontaminate and decommission two depleted uranium hexafluoride (DUF 6) conversion facilities, at Portsmouth, Ohio, and Paducah, Kentucky.

307

Alloy of depleted uranium: Material for ?-protection of shipment packing sets  

Science Journals Connector (OSTI)

The effect of thermal action on the structure and physical and mechanical properties of an alloy based on depleted uranium and used for biological protection from ionizing...

V. K. Orlov; V. M. Sergeev; A. G. Semenov; V. V. Noskov…

308

E-Print Network 3.0 - antioxidant defence depletion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: antioxidant defence depletion Page: << < 1 2 3 4 5 > >> 1 Journal of Applied Ecology 2007 Summary: of antioxidants during their annual migrations to neutralize free...

309

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

310

Safe storage and effective monitoring of CO2 in depleted gas fields  

Science Journals Connector (OSTI)

...developed a communications strategy, based on market research of the area, and was proactive...equivalent to about 2 kt y -1 ) from the diesel engines used while drilling of CRC-1...confirms the origin in combustion (diesel engines). Emissions (estimated from...

Charles R. Jenkins; Peter J. Cook; Jonathan Ennis-King; James Undershultz; Chris Boreham; Tess Dance; Patrice de Caritat; David M. Etheridge; Barry M. Freifeld; Allison Hortle; Dirk Kirste; Lincoln Paterson; Roman Pevzner; Ulrike Schacht; Sandeep Sharma; Linda Stalker; Milovan Urosevic

2012-01-01T23:59:59.000Z

311

Safe storage and effective monitoring of CO2 in depleted gas fields  

Science Journals Connector (OSTI)

...Department of Exploration Geophysics...engineering and the oil and gas industries...The higher costs of offshore storage...rate was the benchmark for the...because of cost. Figure S4...Asia Pacific Oil & Gas Conference...2009), A benchmark study on...sequestration process. Exploration Geophysics...

Charles R. Jenkins; Peter J. Cook; Jonathan Ennis-King; James Undershultz; Chris Boreham; Tess Dance; Patrice de Caritat; David M. Etheridge; Barry M. Freifeld; Allison Hortle; Dirk Kirste; Lincoln Paterson; Roman Pevzner; Ulrike Schacht; Sandeep Sharma; Linda Stalker; Milovan Urosevic

2012-01-01T23:59:59.000Z

312

A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields  

E-Print Network [OSTI]

Here we develop a lherzolite melting model and explore the effects of variations in mantle composition, pressure, temperature, and H[subscript 2]O content on melt composition. New experiments and a compilation of experimental ...

Till, Christy B.

313

Total Number of Existing Underground Natural Gas Storage Fields  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 400 401 409 411 410 414 1989-2012 Alabama 2 2 2 2 2 2 1995-2012 Arkansas 2 2 2 2 2 2 1989-2012 California 12 12 13 13 13 14 1989-2012 Colorado 8 8 9 9 9 10 1989-2012 Illinois 29 28 28 28 28 28 1989-2012 Indiana 22 22 22 22 22 22 1989-2012 Iowa 4 4 4 4 4 4 1989-2012 Kansas 19 19 19 19 19 19 1989-2012 Kentucky 23 23 23 23 23 23 1989-2012 Louisiana 15 17 18 18 18 18 1989-2012 Maryland 1 1 1 1 1 1 1989-2012 Michigan 45 45 45 45 45 45 1989-2012 Minnesota 1 1 1 1 1 1 1989-2012

314

Total field aeromagnetic map of the Raft River known Geothermal...  

Open Energy Info (EERE)

IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Authors Geological Survey, Denver and CO (USA) Published DOE Information Bridge, 11...

315

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect (OSTI)

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the second quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

316

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion  

SciTech Connect (OSTI)

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing, waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. This report includes work on the reservoir characterization and project design objective and the demonstration project objective.

NONE

1996-08-09T23:59:59.000Z

317

DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION  

SciTech Connect (OSTI)

This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

OGDEN DM; KIRCH NW

2007-10-31T23:59:59.000Z

318

Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles  

E-Print Network [OSTI]

Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles RUTH Matthews. Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. J a pool of readily releasable synaptic vesicles that undergo rapid calcium-dependent release. ATP

Pennsylvania, University of

319

Radon levels and doses in dwellings in two villages in Kosovo, affected by depleted uranium  

Science Journals Connector (OSTI)

......Kosovo, affected by depleted uranium G. Nafezi 1 A. Gregoric...major cause of lung cancer, second only to cigarette...Kosovo was initiated by uranium prospecting in the period...the study was hit by depleted uranium projectiles during the......

G. Nafezi; A. Gregoric; J. Vaupotic; M. Bahtijari; M. Kuqali

2014-02-01T23:59:59.000Z

320

Can ozone depletion and global warming interact to produce rapid climate change?  

E-Print Network [OSTI]

Can ozone depletion and global warming interact to produce rapid climate change? Dennis L. Hartmann of Climate Change (IPCC) assess- ment of the status of global warming, which reported that winter stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible

Limpasuvan, Varavut

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Stratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South America  

E-Print Network [OSTI]

. In this paper we focus on South Eastern South America (SESA), a region that has exhibited one of the largest South America 1 Introduction The depletion of ozone in the polar Antarctic strato- sphere (i.e. `theStratospheric ozone depletion: a key driver of recent precipitation trends in South Eastern South

322

Abortive HIV Infection Mediates CD4 T-Cell Depletion and Inflammation in Human Lymphoid Tissue  

E-Print Network [OSTI]

factors like HIV-1 Tat, Vpr, and Nef released from infected cells (Schindler et al., 2006; Westendorp etAbortive HIV Infection Mediates CD4 T-Cell Depletion and Inflammation in Human Lymphoid Tissue 94143 Summary The mechanism by which CD4 T-cells are depleted in HIV-infected hosts remains poorly

Levin, Judith G.

323

Total Sky Imager (TSI) Handbook  

SciTech Connect (OSTI)

The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.

Morris, VR

2005-06-01T23:59:59.000Z

324

Investigation of breached depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

325

Properties, use and health effects of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) has been claimed to contribute to health problems both in military personnel directly involved in war actions as well in military and civilian individuals who resided in areas where DU ammunition was expended. Due to the low specific radioactivity and the dominance of alpha-radiation, no acute health risk can be attributed to external exposure to DU. Internalised DU is both chemo- and radio-toxic. The major risk is from inhalation of DU dust or particles with less than 10 ?m aerodynamic-equivalent diameter, formed when DU ammunitions hit hard targets (aerosol formation) or during weathering of DU penetrators. One major conclusion is that for all post-conflict situations, the inhaled DU quantities (central estimates) produced radiation doses that would be only a fraction of those normally received by the lung from natural radiation. Hence no long term lung effects due to these DU amounts can be expected. These conclusions also hold for whole-body exposure from ingestion of DU in local food and water.

W. Burkart; P.R. Danesi; J.H. Hendry

2005-01-01T23:59:59.000Z

326

Depleted-Uranium Weapons the Whys and Wherefores  

E-Print Network [OSTI]

The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

Gsponer, A

2003-01-01T23:59:59.000Z

327

Assessment of depleted uranium in South-Western Iran  

Science Journals Connector (OSTI)

Abstract Depleted uranium (DU) has been used in a number of conflicts most notably during the Gulf War in Iraq and existence of it has been reported in Kuwait by IAEA experts. Due to heavy sand storms prevailing into the direction to South West of Iran transporting sand originating from Iraq, the probability that DU could be moved is considered high. Therefore it was decided to take some air and soil samples near border line and some nearest cities. The study was focused on finding DU in air and soil of these south-west provinces. 22 air samples and 20 soil samples were collected and analyzed on their contents of uranium isotopes by alpha, beta and gamma spectrometry. The air and soil samples have been measured by use of an alpha-beta counter and by a gamma spectrometer, respectively. Results showed that there is no radiation impact from DU and so no DU has been transported via sand storms since all results were obtained below the detection limit.

Hossein Yousefi; Abdullah Najafi

2013-01-01T23:59:59.000Z

328

Kr ion irradiation study of the depleted-uranium alloys.  

SciTech Connect (OSTI)

Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M. (Materials Science Division); (INL); (Univ. of Wisconsin)

2010-12-01T23:59:59.000Z

329

Kr Ion Irradiation Study of the Depleted-Uranium Alloys  

SciTech Connect (OSTI)

Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200ºC to ion doses up to 2.5 × 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 × 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

2010-12-01T23:59:59.000Z

330

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Broader source: Energy.gov (indexed) [DOE]

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

331

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network [OSTI]

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

332

Radiological and Depleted Uranium Weapons: Environmental and Health Consequences  

Science Journals Connector (OSTI)

The effects of nuclear weapons are due to the release of blast and thermal energy and the immediate and residual ionizing radiation energy. Most of the short-term damages to the environment and the human health are caused by the blast and thermal energies. Ionizing radiation energy received in large doses at high dose rates (victims of nuclear explosions) can produce acute radiation sickness and can even be lethal. Individuals having received lower radiation doses, or even high doses at low dose rates, may suffer from stochastic effects, primarily, the induction of cancer. Studies of exposed populations suggest the probability of developing a lethal cancer following low dose rate exposure is increased by approximately 5% for each Sv the whole-body receives. This risk is added, of course, to the risk of dying from cancer without exposure to radiation, which is more than 20% worldwide. For radiological weapons (radiological dispersion devices or dirty bombs), the health effects due to radiation are expected to be minor in most cases. Casualties will mainly occur due to the conventional explosive. Fear, panic, and decontamination costs will be the major effects. Significant radiation damage to individuals would likely be limited to very few persons. Depleted uranium (DU) weapons leave in the battlefield fragmented or intact DU penetrators as well as DU dust. The latter, if inhaled, could represent a radiological risk, especially to individuals spending some time in vehicles hit by DU munitions. All studies conducted so far have shown the outdoors doses to be so low not to represent a significant risk. For those spending 10 h per year in vehicles hit by DU munitions, the risk of developing a lethal cancer is slightly higher (?0.2%).

P.R. Danesi

2011-01-01T23:59:59.000Z

333

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect (OSTI)

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

334

Radiological Risk Assessment of Capstone Depleted Uranium Aerosols  

SciTech Connect (OSTI)

Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-yr doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. The methodologies of the ICRP International Steering Committee on Radiation Standards (ISCORS) were used for determining the whole body cancer risk. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.

Hahn, Fletcher; Roszell, Laurie E.; Daxon, Eric G.; Guilmette, Ray A.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

335

The corrosion of depleted uranium in terrestrial and marine environments  

Science Journals Connector (OSTI)

Depleted Uranium alloyed with titanium is used in armour penetrating munitions that have been fired in a number of conflict zones and testing ranges including the UK ranges at Kirkcudbright and Eskmeals. The study presented here evaluates the corrosion of DU alloy cylinders in soil on these two UK ranges and in the adjacent marine environment of the Solway Firth. The estimated mean initial corrosion rates and times for complete corrosion range from 0.13 to 1.9 g cm?2 y?1 and 2.5–48 years respectively depending on the particular physical and geochemical environment. The marine environment at the experimental site was very turbulent. This may have caused the scouring of corrosion products and given rise to a different geochemical environment from that which could be easily duplicated in laboratory experiments. The rate of mass loss was found to vary through time in one soil environment and this is hypothesised to be due to pitting increasing the surface area, followed by a build up of corrosion products inhibiting further corrosion. This indicates that early time measurements of mass loss or corrosion rate may be poor indicators of late time corrosion behaviour, potentially giving rise to incorrect estimates of time to complete corrosion. The DU alloy placed in apparently the same geochemical environment, for the same period of time, can experience very different amounts of corrosion and mass loss, indicating that even small variations in the corrosion environment can have a significant effect. These effects are more significant than other experimental errors and variations in initial surface area.

C. Toque; A.E. Milodowski; A.C. Baker

2014-01-01T23:59:59.000Z

336

Toxicity of depleted uranium on isolated rat kidney mitochondria  

Science Journals Connector (OSTI)

Background Kidney is known as the most sensitive target organ for depleted uranium (DU) toxicity in comparison to other organs. Although the oxidative stress and mitochondrial damage induced by DU has been well investigated, the precise mechanism of DU-induced nephrotoxicity has not been thoroughly recognized yet. Methods Kidney mitochondria were obtained using differential centrifugation from Wistar rats and mitochondrial toxicity endpoints were then determined in both in vivo and in vitro uranyl acetate (UA) exposure cases. Results Single injection of UA (0, 0.5, 1 and 2 mg/kg, i.p.) caused a significant increase in blood urea nitrogen and creatinine levels. Isolated mitochondria from the UA-treated rat kidney showed a marked elevation in oxidative stress accompanied by mitochondrial membrane potential (MMP) collapse as compared to control group. Incubation of isolated kidney mitochondria with UA (50, 100 and 200 ?M) manifested that UA can disrupt the electron transfer chain at complex II and III that leads to induction of reactive oxygen species (ROS) formation, lipid peroxidation, and glutathione oxidation. Disturbances in oxidative phosphorylation were also demonstrated through decreased ATP concentration and ATP/ADP ratio in UA-treated mitochondria. In addition, UA induced a significant damage in mitochondrial outer membrane. Moreover, MMP collapse, mitochondrial swelling and cytochrome c release were observed following the UA treatment in isolated mitochondria. General significance Both our in vivo and in vitro results showed that UA-induced nephrotoxicity is linked to the impairment of electron transfer chain especially at complex II and III which leads to subsequent oxidative stress.

Fatemeh Shaki; Mir-Jamal Hosseini; Mahmoud Ghazi-Khansari; Jalal Pourahmad

2012-01-01T23:59:59.000Z

337

FEASIBILITY STUDY OF DUPOLY TO RECYCLE DEPLETED URANIUM.  

SciTech Connect (OSTI)

DUPoly, depleted uranium (DU) powder microencapsulated in a low-density polyethylene binder, has been demonstrated as an innovative and efficient recycle product, a very durable high density material with significant commercial appeal. DUPoly was successfully prepared using uranium tetrafluoride (UF{sub 4}) ''green salt'' obtained from Fluor Daniel-Fernald, a U.S. Department of Energy reprocessing facility near Cincinnati, Ohio. Samples containing up to 90 wt% UF{sub 4} were produced using a single screw plastics extruder, with sample densities of up to 3.97 {+-} 0.08 g/cm{sup 3} measured. Compressive strength of as-prepared samples (50-90 wt% UF4 ) ranged from 1682 {+-} 116 psi (11.6 {+-} 0.8 MPa) to 3145 {+-} 57 psi (21.7 {+-} 0.4 MPa). Water immersion testing for a period of 90 days produced no visible degradation of the samples. Leach rates were low, ranging from 0.02 % (2.74 x 10{sup {minus}6} gm/gm/d) for 50 wt% UF{sub 4} samples to 0.72 % (7.98 x 10{sup {minus}5} gm/gm/d) for 90 wt% samples. Sample strength was not compromised by water immersion. DUPoly samples containing uranium trioxide (UO{sub 3}), a DU reprocessing byproduct material stockpiled at the Savannah River Site, were gamma irradiated to 1 x 10{sup 9} rad with no visible deterioration. Compressive strength increased significantly, however: up to 200% for samples with 90 wt% UO{sub 3}. Correspondingly, percent deformation (strain) at failure was decreased for all samples. Gamma attenuation data on UO{sub 3} DUPoly samples yielded mass attenuation coefficients greater than those for lead. Neutron removal coefficients were calculated and shown to correlate well with wt% of DU. Unlike gamma attenuation, both hydrogenous and nonhydrogenous materials interact to attenuate neutrons.

ADAMS,J.W.; LAGERAAEN,P.R.; KALB,P.D.; RUTENKROGER,S.P.

1998-02-01T23:59:59.000Z

338

Depleted uranium ( U 238 92 ) induced preionization for enhanced and reproducible x-ray emission from plasma focus  

Science Journals Connector (OSTI)

The effect of preionization induced by depleted uranium ( U 238 92 ) around the insulator sleeve on the x-ray emission of ( 2.3 – 3.9 kJ ) plasma focusdevice is investigated by employing Quantrad Si p - i - n diodes and a multipinhole camera. X-ray emission in 4 ? geometry is measured as a function of charging voltage with and without preionization. It is found that the preionization enhances Cu K ? and total x-ray yield about 100% broadens the x-ray emission pressure range and x-ray pulse width and improves shot to shot reproducibility of plasma focus operation. The pinhole images of x-ray emitting zones indicate that dominant x-ray emission is from the anode tip.

S. Ahmad; M. Shafiq; M. Zakaullah; A. Waheed

2006-01-01T23:59:59.000Z

339

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......chemical forms of the uranium in the body after intake...REFERENCES 1 Mould R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J...Abou-Donia M. B. Depleted and natural uranium: chemistry and toxicological......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

340

Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial cells  

Science Journals Connector (OSTI)

...Epigenetic mechanism is involved in depleted uranium-induced transformation in human...Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military...research information on the potential health hazards of DU exposure. In our...

Hong Xie; Carolyne LaCerte; and John P. Wise

2010-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......contaminated accidentally with uranium. INTRODUCTION Depleted uranium (DU) can affect human health via chemical and radiation...B. Teratogenicity of depleted uranium aerosols: a review from...perspective. Environ. Health (2005) 4:17-35......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

342

Page (Total 3) Philadelphia University  

E-Print Network [OSTI]

of materials and equipment and expected cost of materials needed (purchasing material that are not available in the department will take long time and should be avoided when possible). 3. Conduct the research work (field

343

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading  

E-Print Network [OSTI]

Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading

1985-01-01T23:59:59.000Z

344

Dupoly process for treatment of depleted uranium and production of beneficial end products  

DOE Patents [OSTI]

The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

2000-02-29T23:59:59.000Z

345

Depleted uranium human health risk assessment, Jefferson Proving Ground, Indiana  

SciTech Connect (OSTI)

The risk to human health from fragments of depleted uranium (DU) at Jefferson Proving Ground (JPG) was estimated using two types of ecosystem pathway models. A steady-state, model of the JPG area was developed to examine the effects of DU in soils, water, and vegetation on deer that were hunted and consumed by humans. The RESRAD code was also used to estimate the effects of farming the impact area and consuming the products derived from the farm. The steady-state model showed that minimal doses to humans are expected from consumption of deer that inhabit the impact area. Median values for doses to humans range from about 1 mrem ({plus_minus}2.4) to 0.04 mrem ({plus_minus}0.13) and translate to less than 1 {times} 10{sup {minus}6} detriments (excess cancers) in the population. Monte Carlo simulation of the steady-state model was used to derive the probability distributions from which the median values were drawn. Sensitivity analyses of the steady-state model showed that the amount of DU in airborne dust and, therefore, the amount of DU on the vegetation surface, controlled the amount of DU ingested by deer and by humans. Human doses from the RESRAD estimates ranged from less than 1 mrem/y to about 6.5 mrem/y in a hunting scenario and subsistence fanning scenario, respectively. The human doses exceeded the 100 mrem/y dose limit when drinking water for the farming scenario was obtained from the on-site aquifer that was presumably contaminated with DU. The two farming scenarios were unrealistic land uses because the additional risk to humans due to unexploded ordnance in the impact area was not figured into the risk estimate. The doses estimated with RESRAD translated to less than 1 {times} 10{sup {minus}6} detriments to about 1 {times} 10{sup {minus}3} detriments. The higher risks were associated only with the farming scenario in which drinking water was obtained on-site.

Ebinger, M.H.; Hansen, W.R.

1994-04-29T23:59:59.000Z

346

Performance Period Total Fee Paid  

Broader source: Energy.gov (indexed) [DOE]

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

347

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

348

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

349

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

350

E-Print Network 3.0 - alarming oxygen depletion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

protecting life on Earth (1). In 1985, scientists and the public became alarmed when Farman et al. (2... studies (5-8). These studies showed that ozone depletion has a large...

351

Effect of catechins and tannins on depleted uranium-induced DNA strand breaks  

Science Journals Connector (OSTI)

The effects of polyphenols on plasmid DNA strand breaks by depleted uranium were studied using four catechins: (+)...2 2+) with hydrogen peroxide (H2O2) were strongly enhanced by EGC, EGCG, MMT, a...

Emiko Matsuda; Akira Nakajima

2012-08-01T23:59:59.000Z

352

Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium.  

E-Print Network [OSTI]

??The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and… (more)

Stone, Joseph C.

2012-01-01T23:59:59.000Z

353

Effects of hydroxyl radicals generated from the depleted uranium-hydrogen peroxide systems  

Science Journals Connector (OSTI)

A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxy...

A. Nakajima; Y. Ueda

2007-05-01T23:59:59.000Z

354

Delayed neutron measurements for Th-232, Np-237, Pu-239, Pu-241 and depleted uranium  

E-Print Network [OSTI]

The neutron emission rates from five very pure actinide samples (Th-232, Np-237, Pu-239, Pu-241 and depleted uranium) were measured following equilibrium irradiation in fast and thermal neutron fluxes. The relative abundances (alphas) for the first...

Stone, Joseph C.

2012-06-07T23:59:59.000Z

355

Leukemic transformation of hematopoietic cells in mice internally exposed to depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a dense heavy metal ... have been wounded by DU shrapnel. The health effects of embedded DU are unknown. Published...in vitro can transform immortalized human osteoblast cells (HOS) to th...

Alexandra C. Miller; Catherine Bonait-Pellie…

2005-11-01T23:59:59.000Z

356

Teratogenicity of depleted uranium aerosols: A review from an epidemiological perspective  

Science Journals Connector (OSTI)

Depleted uranium is being used increasingly often as a component of munitions in military conflicts. Military personnel, civilians and the DU munitions producers are being exposed to the DU aerosols that are g...

Rita Hindin; Doug Brugge; Bindu Panikkar

2005-08-01T23:59:59.000Z

357

Evaluation of Environmental and Health Consequences of Depleted Uranium Armor use in Yugoslavia  

Science Journals Connector (OSTI)

In the paper there is discussed a possible radiation effect a combat application of armor - piercing ammunitions with a “depleted uranium” (DU) in Iraqian and Yugoslavian conflicts ... a noticeable additional inf...

V. A. Vetrov; O. A. Pavlovsky

2003-01-01T23:59:59.000Z

358

Depleted Uranium Disturbs Immune Parameters in Zebrafish, Danio rerio: An Ex Vivo/In Vivo Experiment  

Science Journals Connector (OSTI)

In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system...Danio rerio, using flow cytometry. Several im...

Béatrice Gagnaire; Anne Bado-Nilles…

2014-10-01T23:59:59.000Z

359

Long-term corrosion and leaching of depleted uranium (DU) in soil  

Science Journals Connector (OSTI)

Corrosion and leaching of depleted uranium (DU) was investigated for 3 years...238U was determined in the effluents by inductively coupled plasma mass spectrometry. In addition, 235U was measured occasionally to ...

W. Schimmack; U. Gerstmann; W. Schultz; G. Geipel

2007-08-01T23:59:59.000Z

360

Leaching of depleted uranium in soil as determined by column experiments  

Science Journals Connector (OSTI)

The basic features of the leachability of depleted uranium (DU) projectiles in soil was investigated...235U and 238U were determined by inductively coupled plasma mass spectrometry. The leaching rates of 238U fro...

W. Schimmack; U. Gerstmann; U. Oeh; W. Schultz…

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biological monitoring and surveillance results of Gulf War I veterans exposed to depleted uranium  

Science Journals Connector (OSTI)

Objective: To relate medical surveillance outcomes to uranium biomonitoring results in a group of depleted uranium (DU)-exposed, Gulf War I veterans...Methods...: Thirty-two veterans of Gulf War ...

Melissa A. McDiarmid; Susan M. Engelhardt…

2006-01-01T23:59:59.000Z

362

Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium  

Science Journals Connector (OSTI)

We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064?nm) and femtosecond Ti:sapphire (800?nm) laser pulses. The latter pulses produce...

Emmert, Luke A; Chinni, Rosemarie C; Cremers, David A; Jones, C Randy; Rudolph, Wolfgang

2011-01-01T23:59:59.000Z

363

Depleted uranium is not toxic to rat brain endothelial (RBE4) cells  

Science Journals Connector (OSTI)

Studies on Gulf War veterans with depleted uranium (DU) fragments embedded in their soft...3O8 uranyl chloride form of DU into RBE4 cells is efficient, but there are little or no resulting cytotoxic effects on th...

Allison W. Dobson; Anna K. Lack; Keith M. Erikson…

2006-04-01T23:59:59.000Z

364

Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115  

Science Journals Connector (OSTI)

Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a ... TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. T...

K. J. Mathew; G. L. Singleton; R. M. Essex…

2013-04-01T23:59:59.000Z

365

Effects of depleted uranium after short-term exposure on vitamin D metabolism in rat  

Science Journals Connector (OSTI)

Uranium is a natural radioactive heavy metal. Its ... brain. Effects of an acute contamination by depleted uranium (DU) were investigated in vivo on...3 biosynthetic pathway. Rats received an intragastric adminis...

E. Tissandie; Y. Guéguen; J. M. A. Lobaccaro; F. Paquet…

2006-08-01T23:59:59.000Z

366

Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride  

Science Journals Connector (OSTI)

The production of enriched uranium used in nuclear weapons and fuel for ... power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually ... DU mass is stored as environ-men...

N. P. Laverov; V. I. Velichkin; B. I. Omel’yanenko…

2010-08-01T23:59:59.000Z

367

Effects of Depleted Uranium on Oxidative Stress, Detoxification, and Defence Parameters of Zebrafish Danio rerio  

Science Journals Connector (OSTI)

In this study, we investigated the effects of depleted uranium (DU), the by-product of nuclear enrichment of uranium, on several parameters related to oxidative stress...Danio rerio. Several parameters were recor...

Beatrice Gagnaire; Isabelle Cavalie…

2013-01-01T23:59:59.000Z

368

Renal dysfunction induced by long-term exposure to depleted uranium in rats  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a kind of radioactive ... euthanized and tissue samples were collected, and uranium levels were measured in a variety of ... to analyze the dynamic changes and distribution of uranium in ...

Guoying Zhu; Xiqiao Xiang; Xiao Chen; Lihua Wang; Heping Hu…

2009-01-01T23:59:59.000Z

369

Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs  

E-Print Network [OSTI]

he feasibility of sequestering supercritical CO2 in depleted gas reservoirs. The experimental runs involved the following steps. First, the 1 ft long by 1 in. diameter carbonate core is inserted into a viton Hassler sleeve and placed inside...

Seo, Jeong Gyu

2004-09-30T23:59:59.000Z

370

Immunological changes of chronic oral exposure to depleted uranium in mice  

Science Journals Connector (OSTI)

Abstract Direct ingestion of contaminated soil by depleted uranium (DU) might lead to internal exposure to DU by local populations through hand contamination. The purpose of this study was to assess the immunological changes of long-term exposure to various doses of DU in mice. Three-week-old Kunming mice were divided into the following 4 groups based on the various feeding doses (containing DU): 0 (control group), 3 (DU3 group), 30 (DU30 group), and 300 mg/kg feed (DU300 group). After 4 months of exposure, in the DU300 group, the innate immune function decreased, manifesting as decreased secretion of nitric oxide, interleukin (IL)-1?, IL-18, and tumour necrosis factor (TNF)-? in the peritoneal macrophages, as well as reduced cytotoxicity of the splenic natural killer cells. Moreover, the cellular and humoral immune functions were abnormal, as manifested by decreased proliferation of the splenic T cells, proportion of the cluster of differentiation (CD) 3+ cells, ratio of CD4+/CD8+ cells and delayed-type hypersensitivity, and increased proliferation of the splenic B cells, total serum immunoglobin (Ig) G and IgE, and proportion of splenic mIgM+mIgD+ cells. Through stimulation, the secretion levels of interferon (IFN)-? and TNF-? in the splenic cells were reduced, and the levels of IL-4 and IL-10 were increased. By comparison, in the DU30 and DU3 groups, the effects were either minor or indiscernible. In conclusions, chronic intake of higher doses of DU (300 mg/kg) had a significant impact on the immune function, most likely due to an imbalance in T helper (Th) 1 and Th2 cytokines.

Yuhui Hao; Jiong Ren; Jing Liu; Zhangyou Yang; Cong Liu; Rong Li; Yongping Su

2013-01-01T23:59:59.000Z

371

FAQ 15-What are the dimensions of a depleted uranium hexafluoride cylinder?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are the dimensions of a depleted uranium hexafluoride cylinder? are the dimensions of a depleted uranium hexafluoride cylinder? What are the dimensions of a depleted uranium hexafluoride cylinder? Several different cylinder types are in use, although the vast majority of cylinders are designed to contain 14-tons (12-metric tons) of depleted UF6. The 14-ton-capacity cylinders are 12 ft (3.7 m) long by 4 ft (1.2 m) in diameter, with most having an initial wall thickness of 5/16 in. (0.79 cm) of steel. The cylinders have external stiffening rings that provide support. Lifting lugs for handling are attached to the stiffening rings. A small percentage of the cylinders have skirted ends (extensions of the cylinder walls past the rounded ends of the cylinder). Each cylinder has a single valve for filling and emptying located on one end at the 12 o'clock position. Similar, but slightly smaller, cylinders designed to contain 10 tons (9 metric tons) of depleted UF6 are also in use. Cylinders are manufactured in accordance with an American National Standards Institute standard (ANSI N14.1, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport) as specified in 49 CFR 173.420, the federal regulations governing transport of depleted UF6.

372

A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM  

SciTech Connect (OSTI)

A study of gas-phase element abundances reported in the literature for 17 different elements sampled over 243 sight lines in the local part of our Galaxy reveals that the depletions into solid form (dust grains) are extremely well characterized by trends that employ only three kinds of parameters. One is an index that describes the overall level of depletion applicable to the gas in any particular sight line, and the other two represent linear coefficients that describe how to derive each element's depletion from this sight-line parameter. The information from this study reveals the relative proportions of different elements that are incorporated into dust at different stages of grain growth. An extremely simple scheme is proposed for deriving the dust contents and metallicities of absorption-line systems that are seen in the spectra of distant quasars or the optical afterglows of gamma-ray bursts. Contrary to presently accepted thinking, the elements sulfur and krypton appear to show measurable changes in their depletions as the general levels of depletions of other elements increase, although more data are needed to ascertain whether or not these findings are truly compelling. Nitrogen appears to show no such increase. The incorporation of oxygen into solid form in the densest gas regions far exceeds the amounts that can take the form of silicates or metallic oxides; this conclusion is based on differential measurements of depletion and thus is unaffected by uncertainties in the solar abundance reference scale.

Jenkins, Edward B. [Princeton University Observatory, Princeton, NJ 08544-1001 (United States)], E-mail: ebj@astro.princeton.edu

2009-08-01T23:59:59.000Z

373

Effect of twinning on texture evolution of depleted uranium using a viscoplastic self-consistent model  

SciTech Connect (OSTI)

Ductility and fracture toughness is a major stumbling block in using depleted uranium as a structural material. The ability to correctly model deformation of uranium can be used to create process path methods to improve its structural design ability. The textural evolution of depleted uranium was simulated using a visco-plastic self consistent model and analyzed by comparing pole figures of the simulations and experimental samples. Depleted uranium has the same structure as alpha uranium, which is an orthorhombic phase of uranium. Both deformation slip and twin systems were compared. The VPSC model was chosen to simulate this material because the model encompasses both low-symmetry materials as well as twinning in materials. This is of particular interest since depleted uranium has a high propensity for twinning, which dominates deformation and texture evolution. Simulated results were compared to experimental results to measure the validity of the model. One specific twin system, the {l_brace}176{r_brace}[512] twin, was of specific notice. The VPSC model was used to simulate the influence of this twin on depleted uranium and was compared with a mechanically shocked depleted uranium sample. Under high strain rate shock deformation conditions, the {l_brace}176{r_brace}[512] twin system appears to be a dominant deformation system. By simulating a compression process using the VPSC model with the {l_brace}176{r_brace}[512] twin as the dominant deformation mode, a favorable comparison could be made between the experimental and simulated textures. (authors)

Ho, J.; Garmestani, H. [Georgia Inst. of Technology, Atlanta, GA 30332-0245 (United States); Burrell, R.; Belvin, A. [Y-12 National Security Complex, Oak Ridge, TN (United States); Li, D. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); McDowell, D. [Woodruff School of Mechanical Engineering, Atlanta, GA 30332-0245 (United States); Rollett, A. [Dept. of Materials Science and Engineering, Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States)

2012-07-01T23:59:59.000Z

374

ZPR-3 Assembly 11 : A cylindrical sssembly of highly enriched uranium and depleted uranium with an average {sup 235}U enrichment of 12 atom % and a depleted uranium reflector.  

SciTech Connect (OSTI)

Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 12 at.% and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV, approximately 20.3% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specificationsa and has historically been used as a data validation benchmark assembly. Loading of ZPR-3 Assembly 11 began in early January 1958, and the Assembly 11 program ended in late January 1958. The core consisted of highly enriched uranium (HEU) plates and depleted uranium plates loaded into stainless steel drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, six columns of 0.125 in.-wide (3.175 mm) depleted uranium plates and one column of 1.0 in.-wide (25.4 mm) depleted uranium plates. The length of each column was 10 in. (254.0 mm) in each half of the core. The axial blanket consisted of 12 in. (304.8 mm) of depleted uranium behind the core. The thickness of the depleted uranium radial blanket was approximately 14 in. (355.6 mm), and the length of the radial blanket in each half of the matrix was 22 in. (558.8 mm). The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed. According to the logbook and loading records for ZPR-3/11, the reference critical configuration was loading 10 which was critical on January 21, 1958. Subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/11 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment. A very accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/11 loading 10. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must do this without increasing the total uncertain

Lell, R. M.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; National Security; Inst. of Physics and Power Engineering

2010-09-30T23:59:59.000Z

375

Scientific research and field applications of polymer flooding in heavy oil recovery  

Science Journals Connector (OSTI)

The heavy oil resources worldwide are estimated at 3,396 billion barrels. With depletion of light oil, we have to face the technical and economical challenges of developing heavy oil fields. Due to severe visc...

Chang Hong Gao

2011-12-01T23:59:59.000Z

376

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

377

Solar total energy project Shenandoah  

SciTech Connect (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

378

Grantee Total Number of Homes  

Broader source: Energy.gov (indexed) [DOE]

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

379

ARM - Measurement - Shortwave narrowband total upwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

upwelling irradiance upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

380

ARM - Measurement - Shortwave narrowband total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

downwelling irradiance downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFRSR : Multifilter Rotating Shadowband Radiometer NFOV : Narrow Field of View Zenith Radiometer

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

382

Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size  

SciTech Connect (OSTI)

During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

2009-03-01T23:59:59.000Z

383

Total quality management implementation guidelines  

SciTech Connect (OSTI)

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

384

Depleted uranium munitions—where are we now?  

Science Journals Connector (OSTI)

Kinetic energy weapons that contain a penetrator of depleted uranium (DU) were first used in the Gulf War of 1991 and were subsequently used in the Balkans. DU penetrators are considered to have significant operational advantages over those made of tungsten as they are capable of penetrating the heavy armour of the modern battle tank. The use of DU rounds in military conflicts has, however, provoked a wide debate about the health consequences for soldiers and the local population since DU is a toxic metal and is radioactive. The Royal Society became involved in the debate about the health hazards of DU munitions as a result of public concern, to produce an independent view on the science and the uncertainties, uninfluenced by the conflicting interests of governments and the military, who consider that the risks are very slight, and of other individuals and organisations, some of whom have suggested that hundreds of thousands of deaths from cancer may result from the use of DU in the Gulf War. Large quantities of DU rounds were deployed in the Gulf War (about 340 tonnes) and much smaller amounts in the Balkans (about 11 tonnes). In both conflicts the majority of the DU rounds were fired from aircraft in strafing attacks where most of the penetrators miss their target and penetrate several metres into the soil. Consequently, large numbers of DU penetrators are believed to remain buried in the ground. Corrosion of these penetrators will occur with the possibility of a gradual rise in the uranium levels in local water supplies. About 10,000 larger calibre DU rounds were fired from tanks during the Gulf War, although these were not used in the Balkans. DU rounds that penetrate a target vehicle may pass straight through or, particularly if they hit heavy armour, may release a variable proportion of the penetrator as DU particles which ignite to produce an aerosol of DU oxides. The DU particles released during such impacts will be inhaled by those surviving within a struck tank or by those in the path of the DU aerosol. Unless adequate respiratory protection is used, DU particles will also be inhaled by those charged with cleaning up DU-contaminated vehicles. The fraction of a DU penetrator that is aerosolised and the fraction of the particles of DU oxides that are within the respirable range, as well as the solubility properties of the DU oxides, are not well documented and depend on the type of impact, but a range of values is available from test firings of DU rounds. A number of exposure scenarios were considered in the two Royal Society reports on the Health Hazards of DU Munitions [1, 2] and central and worst-case intakes of DU were estimated from the range of values obtained from test firings. These estimated intakes, and the range of reported values of the properties of the DU oxides released during an impact or fire, were used to produce central estimates and worst-case estimates of risks for soldiers on the battlefield. Although there are uncertainties about the intakes of DU, and of the properties of the DU oxides, there is a clear view among radiation biologists that, given the equivalent doses to tissues, the excess lifetime risks of various fatal cancers can be estimated, perhaps with an order of magnitude of uncertainty. Therefore if the intakes of DU, or the properties of DU oxides, are in future better defined, the estimates of risk given in the Royal Society reports can be adjusted appropriately. There are very different views on the health hazards of DU munitions. Most of the concerns of veterans and their advisors focus on the radiological effects of DU and consequently these are the focus of this editorial. Effects on the kidney and environmental consequences are, however, considered in the second of the Royal Society reports [2] and the main conclusions of both of the reports are outlined in the summary document published in this issue of the journal (page 131). The main radiological concerns focus on the irradiation of lung tissues from inhaled DU particles and irradiation resulting from the translocation

Brian G Spratt

2002-01-01T23:59:59.000Z

385

Total Heart Transplant: A Modern Overview  

E-Print Network [OSTI]

use of the total artificial heart. New England Journal ofJ. (1997). Artificial heart transplants. British medicala total artificial heart as a bridge to transplantation. New

Lingampalli, Nithya

2014-01-01T23:59:59.000Z

386

Arun field  

SciTech Connect (OSTI)

The Arun field is a giant gas-condensate field operated by Mobil and Pertamina with over 20,000 acres of closure at the top of the Arun reservoir. A middle-shelf patch reef complex of early to middle Miocene age is the producing facies at the Arun field. About 1,100 ft of porous limestones, encased in shales, create a stratigraphic trap for overpressure hydrocarbons. Three main carbonate lithologies were encountered during the examination of over 4,300 ft of core; (1) a reef facies consisting of vuggy, coral encrusting, red-algal boundstones, (2) a near-reef facies consisting of foraminiferal, mixed-skeletal packstones with gravel-size coral fragments, and (3) an interreef lagoonal facies consisting of benthonic-foram packstones. Twenty-two species of corals have been identified from Arun reef facies; major reef-forming coals, listed in order of decreasing abundance, are Porites cf P. Lutes, Cyphastrea microphthalma, Astreopora myriophthalma, Styloconiella gunetheri, Porites solida, and Acropora ssp. The Arun reef is comprised of limestones (with minor amounts of dolomite). No shale beds occur in the sequence, and all carbonate facies are in communication. A pervasive microporosity, occurring throughout the Arun Limestone, results from meteoric alteration of original carbonate mud to form a microrhombic porosity that accounts for about three-fourths of the field's total porosity.

Jordan, C.F. Jr.; Abdullah, M.

1988-01-01T23:59:59.000Z

387

FAQ 37-What are the potential health risks from transportation of depleted  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depleted uranium metal or oxide? depleted uranium metal or oxide? What are the potential health risks from transportation of depleted uranium metal or oxide? In the PEIS, risks associated with transportation of depleted uranium oxide and metal were estimated for transport by either rail or truck. Normal transport of oxide or metal would result in low-level external exposure to radiation for persons in the vicinity of a shipment. Based on estimates in the PEIS, the levels of exposure would result in negligible increased cancer risks. Risks from material released in an accident were also estimated. For a hypothetical railcar accident involving powder U3O8 that was assumed to occur in a highly-populated urban area under stable (nighttime) weather conditions, it was estimated that up to 20 people might experience irreversible adverse effects from chemical toxicity, with no fatalities expected. Approximately 2 potential latent cancer fatalities from radiological hazards are estimated for an accident under the same conditions. The probability of such an accident occurring is very low. The consequences from a truck accident would be lower, because trucks have a smaller shipment capacity. The consequences of transportation accidents involving depleted uranium metal would be much smaller than those involving uranium oxide because uranium metal would be in the form of solid blocks and would not be easily dispersed in an accident.

388

Ray-Based Calculations with DEPLETE of Laser Backscatter in ICF Targets  

SciTech Connect (OSTI)

A steady-state model for Brillouin and Raman backscatter along a laser ray path is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code Deplete, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as 'plane-wave' simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the Omega Laser Facility show that laser speckles greatly enhance the reflectivity over the Deplete results. An approximate upper bound on this enhancement is given by doubling the Deplete coupling coefficient. Analysis with Deplete of an ignition design for the National Ignition Facility (NIF), with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Doubling the coupling to bracket speckle effects suggests a less optimistic picture. Re-absorption of Raman light is seen to be significant in this design.

Strozzi, D J; Williams, E; Hinkel, D; Froula, D; London, R; Callahan, D

2008-05-19T23:59:59.000Z

389

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

390

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

391

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

392

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

393

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

394

HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO 2 ). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability.

395

Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride  

SciTech Connect (OSTI)

The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

Dubrin, J.W., Rahm-Crites, L.

1997-09-01T23:59:59.000Z

396

Parametric Analysis of PWR Spent Fuel Depletion Parameters for Long-Term-Disposal Criticality Safety  

SciTech Connect (OSTI)

Utilization of burnup credit in criticality safety analysis for long-term disposal of spent nuclear fuel allows improved design efficiency and reduced cost due to the large mass of fissile material that will be present in the repository. Burnup-credit calculations are based on depletion calculations that provide a conservative estimate of spent fuel contents (in terms of criticality potential), followed by criticality calculations to assess the value of the effective neutron multiplication factor (k(sub)eff) for the a spent fuel cask or a fuel configuration under a variety of probabilistically derived events. In order to ensure that the depletion calculation is conservative, it is necessary to both qualify and quantify assumptions that can be made in depletion models.

DeHart, M.D.

1999-08-01T23:59:59.000Z

397

Locating and total dominating sets in trees  

Science Journals Connector (OSTI)

A set S of vertices in a graph G = ( V , E ) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.

Teresa W. Haynes; Michael A. Henning; Jamie Howard

2006-01-01T23:59:59.000Z

398

Locating-total domination in graphs  

Science Journals Connector (OSTI)

In this paper, we continue the study of locating-total domination in graphs. A set S of vertices in a graph G is a total dominating set in G if every vertex of G is adjacent to a vertex in S . We consider total dominating sets S which have the additional property that distinct vertices in V ( G ) ? S are totally dominated by distinct subsets of the total dominating set. Such a set S is called a locating-total dominating set in G , and the locating-total domination number of G is the minimum cardinality of a locating-total dominating set in G . We obtain new lower and upper bounds on the locating-total domination number of a graph. Interpolation results are established, and the locating-total domination number in special families of graphs, including cubic graphs and grid graphs, is investigated.

Michael A. Henning; Nader Jafari Rad

2012-01-01T23:59:59.000Z

399

Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida  

SciTech Connect (OSTI)

Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

1995-05-01T23:59:59.000Z

400

Structure and Depletion at Fluorocarbon and Hydrocarbon/Water Liquid/Liquid Interfaces  

Science Journals Connector (OSTI)

The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vaporlike depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose superhydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These results are consistent with the subangstrom proximity of water to soft hydrophobic materials.

Kaoru Kashimoto; Jaesung Yoon; Binyang Hou; Chiu-hao Chen; Binhua Lin; Makoto Aratono; Takanori Takiue; Mark L. Schlossman

2008-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

402

DETERMINATION OF 234U/238U, 235U/238U AND 236U/238U ISOTOPE RATIOS IN URINE USING SECTOR FIELD INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY  

Science Journals Connector (OSTI)

......exposure of the US population to uranium through measurements of total uranium in urine using inductively...were exposed to aerosols of depleted uranium (DU) exhibit no clinically...effects that might result in cancer and birth defects remain......

Ge Xiao; Robert L. Jones; David Saunders; Kathleen L. Caldwell

2014-02-01T23:59:59.000Z

403

Micro-and Macrorheological Properties of Actin Networks Effectively Cross-Linked by Depletion Forces  

E-Print Network [OSTI]

Micro- and Macrorheological Properties of Actin Networks Effectively Cross-Linked by Depletion Universita¨t Mu¨nchen, 85747 Garching, Germany ABSTRACT The structure and rheology of cytoskeletal networks the properties of cytoskeletal networks. Here we demonstrate that the addition of poly(ethylene glycol) (PEG

Bausch, Andreas

404

Depletion of light cluster production in 1 GeV proton-nucleus collisions  

Science Journals Connector (OSTI)

Experimental results for the fragment production in 1 GeV proton collisions on various nuclei are presented. It is shown that the observed depletion of the light cluster production which is also found in other experiments can be explained by a Pauli quenching mechanism.

G. Roepke; H. Schulz; L. N. Andronenko; A. A. Kotov; W. Neubert; E. N. Volnin

1985-04-01T23:59:59.000Z

405

Ozone depletion during the solar proton events of October//November 2003 as seen by SCIAMACHY  

E-Print Network [OSTI]

Ozone depletion during the solar proton events of October//November 2003 as seen by SCIAMACHY G changes caused by the solar proton events from 26 October to 6 November 2003, known as the ``Halloween differences are given. Two regimes can be distinguished, one above about 50 km dominated by HOx (H, OH, HO2

Steinhoff, Heinz-Jürgen

406

Econometric Modelling of World Oil Supplies: Terminal Price and the Time to Depletion  

E-Print Network [OSTI]

This paper develops a novel approach by which to identify the price of oil at the time of depletion; the so-called terminal price of oil. It is shown that while the terminal price is independent of both GDP growth and the price elasticity of energy...

Mohaddes, Kamiar

2012-03-02T23:59:59.000Z

407

Modulation of Immune Responses to Mycobacterium bovis in Cattle Depleted of WC1+ ?? T Cells  

Science Journals Connector (OSTI)

...depletion of WC1 T cells following administration of CC15 MAb resulted in an enhanced...Phenotype analysis of PBMC following administration of CC15 or AV37 MAba Day % Gated PBMC...J. Ivanyi, J. J. Fournie, M. Bonneville, M. A. Peyrat, G. Sireci, and...

Hilary E. Kennedy; Michael D. Welsh; David G. Bryson; Joseph P. Cassidy; Fiona I. Forster; Christopher J. Howard; Robert A. Collins; John M. Pollock

2002-03-01T23:59:59.000Z

408

Exploitation-related reef fish species richness depletion in the epicenter of marine biodiversity  

E-Print Network [OSTI]

Exploitation-related reef fish species richness depletion in the epicenter of marine biodiversity historically has the highest concentration of coral reef fishes than any other large marine area in the world in Marine Protected Areas in this region in increasing species richness at local scales suggests

Hynes, Wayne L.

409

Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies  

Science Journals Connector (OSTI)

...the fact that atmospheric winds can move...lines), whereas plasma is constrained...frequencies (fMHz). The full set...frequency. At 1.7 MHz, however, the...within about 100 kHz ofthe receiver...that at 2.108 MHz and to the corresponding...shuttle-induced plasma depletion. Observations...

M. MENDILLO; J. BAUMGARDNER; D. P. ALLEN; J. FOSTER; J. HOLT; G. R.A. ELLIS; A. KLEKOCIUK; G. REBER

1987-11-27T23:59:59.000Z

410

Adjoint-Based Uncertainty Quantification and Sensitivity Analysis for Reactor Depletion Calculations  

E-Print Network [OSTI]

-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new...

Stripling, Hayes Franklin

2013-08-02T23:59:59.000Z

411

As elephant numbers increase and they begin to deplete food and water  

E-Print Network [OSTI]

As elephant numbers increase and they begin to deplete food and water resources, births may decline limits on numbers. When food is less readily available, the impact of elephants on their sur- rounds may M I mpact is complex and difficult to define. Elephants are a highly interactive species and

Pretoria, University of

412

Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary  

E-Print Network [OSTI]

extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largestCoastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary G. Curtis Roegner1 States of America Abstract Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water

413

Inhalation class for depleted uranium at a major uranium applications facility  

SciTech Connect (OSTI)

A primary concern in determining internal dose from inhalation of radioactive material is the half-time of the material within the human body. Inhalation classes have been established by the ICRP for radioactive materials with half-times of a few days (Class D), several weeks (Class W), or periods up to one year (Class Y). Bioassay data at a facility using large quantities of depleted uranium have been collected for several years. These data have been analyzed to estimate the first order decay constant. From the decay constant, the half-time for retention (biological half-life) is determined. This half-time is used to identify the inhalation class for depleted uranium and its oxides. The data presented demonstrate that the retention half-time for depleted uranium and its oxides ranges from about 7 d to about 6 wk, depending on the quantity of material inhaled and the subject`s metabolism. This shows that the correct inhalation class for depleted uranium is Class W.

Barg, D.C.; Grewing, H.L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1996-06-01T23:59:59.000Z

414

Sustainable Use and Depletion of Natural Resources: The Quest for Energy  

E-Print Network [OSTI]

resource Caspian sturgeon landings & caviar price #12;US/global whale oil production & price Also renewable or less #12;Price phases of oil development-depletion model First half of U-shaped price curve, calmed of oil Quest for energy substitution What about other natural resources? #12;How Do We Add 2 billion

Pilyugin, Sergei S.

415

Direct ion flux measurements at high-pressure-depletion conditions for microcrystalline silicon deposition  

SciTech Connect (OSTI)

The contribution of ions to the growth of microcrystalline silicon thin films has been investigated in the well-known high-pressure-depletion (HPD) regime by coupling thin-film analysis with plasma studies. The ion flux, measured by means of a capacitive probe, has been studied in two regimes, i.e., the amorphous-to-microcrystalline transition regime and a low-to-high power regime; the latter regime had been investigated to evaluate the impact of the plasma power on the ion flux in collisional plasmas. The ion flux was found not to change considerably under the conditions where the deposited material undergoes a transition from the amorphous to the microcrystalline silicon phase; for solar-grade material, an ion-to-Si deposition flux of ?0.30 has been determined. As an upper-estimation of the ion energy, a mean ion energy of ?19 eV has been measured under low-pressure conditions (<1 mbar) by means of a retarding field energy analyzer. Combining this upper-estimate with an ion per deposited Si atom ratio of ?0.30, it is concluded that less than 6 eV is available per deposited Si atom. The addition of a small amount of SiH{sub 4} to an H{sub 2} plasma resulted in an increase of the ion flux by about 30% for higher power values, whereas the electron density, deduced from optical emission spectroscopy analysis, decreased. The electron temperature, also deduced from optical emission spectroscopy analysis, reveals a slight decrease with power. Although the dominant ion in the HPD regime is SiH{sub 3}{sup +}, i.e., a change from H{sub 3}{sup +} in pure hydrogen HPD conditions, the measured larger ion loss can be explained by assuming steeper electron density profiles. These results, therefore, confirm the results reported so far: the ion-to-Si deposition flux is relatively large but has neither influence on the microcrystalline silicon film properties nor on the phase transition. Possible explanations are the reported high atomic hydrogen to deposition flux ratio, mitigating the detrimental effects of an excessive ion flux.

Bronneberg, A. C.; Kang, X.; Palmans, J.; Janssen, P. H. J.; Lorne, T. [Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven (Netherlands)] [Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven (Netherlands); Creatore, M. [Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven (Netherlands) [Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven (Netherlands); Solliance Solar Research, High Tech Campus 5, 5656AE Eindhoven (Netherlands); Sanden, M. C. M. van de [Applied Physics Department, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430BE Nieuwegein (Netherlands)

2013-08-14T23:59:59.000Z

416

Performance Period Total Fee Paid FY2001  

Broader source: Energy.gov (indexed) [DOE]

01 01 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400 $4,871,000 $6,177,902 October 2000 - September 2012 Minimum Fee $0 Fee Available EM Contractor Fee Site: Carlsbad Field Office - Carlsbad, NM Contract Name: Waste Isolation Pilot Plant Operations March 2013 $13,196,690 $9,262,042 $10,064,940 $14,828,770 $12,348,558 $12,204,247 $17,590,414 $17,856,774

417

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

418

Total cost model for making sourcing decisions  

E-Print Network [OSTI]

This thesis develops a total cost model based on the work done during a six month internship with ABB. In order to help ABB better focus on low cost country sourcing, a total cost model was developed for sourcing decisions. ...

Morita, Mark, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

419

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

420

Depleted uranium contamination by inhalation exposure and its detection after ? 20 years: Implications for human health assessment  

Science Journals Connector (OSTI)

Inhaled depleted uranium (DU) aerosols are recognised as a distinct human health hazard and DU has been suggested to be responsible in part for illness in both military and civilian populations that may have been exposed. This study aimed to develop and use a testing procedure capable of detecting an individual's historic milligram-quantity aerosol exposure to DU up to 20 years after the event. This method was applied to individuals associated with or living proximal to a DU munitions plant in Colonie New York that were likely to have had a significant DU aerosol inhalation exposure, in order to improve DU-exposure screening reliability and gain insight into the residence time of DU in humans. We show using sensitive mass spectrometric techniques that when exposure to aerosol has been unambiguous and in sufficient quantity, urinary excretion of DU can be detected more than 20 years after primary DU inhalation contamination ceased, even when DU constitutes only ? 1% of the total excreted uranium. It seems reasonable to conclude that a chronically DU-exposed population exists within the contamination ‘footprint’ of the munitions plant in Colonie, New York. The method allows even a modest DU exposure to be identified where other less sensitive methods would have failed entirely. This should allow better assessment of historical exposure incidence than currently exists.

Randall R. Parrish; Matthew Horstwood; John G. Arnason; Simon Chenery; Tim Brewer; Nicholas S. Lloyd; David O. Carpenter

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

38 38 Nevada - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 4 4 4 3 4 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 4 4 4 3 4

422

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Idaho - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

423

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Washington - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

424

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Maine - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

425

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Minnesota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

426

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 South Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

427

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 North Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

428

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Iowa - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0

429

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Massachusetts - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

430

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Minnesota - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

431

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 New Jersey - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

432

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Vermont - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

433

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Wisconsin - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0 0 0

434

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 North Carolina - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

435

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 New Jersey - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

436

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Maryland - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 7 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells 35 28 43 43 34 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 35

437

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 New Hampshire - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

438

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Maryland - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 7 7 7 8 9 Production (million cubic feet) Gross Withdrawals From Gas Wells 28 43 43 34 44 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 28

439

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Missouri - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 53 100 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

440

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Massachusetts - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 South Carolina - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

442

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Rhode Island - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0 Total 0

443

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

444

TotalView Parallel Debugger at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Totalview Totalview Totalview Description TotalView from Rogue Wave Software is a parallel debugging tool that can be run with up to 512 processors. It provides both X Windows-based Graphical User Interface (GUI) and command line interface (CLI) environments for debugging. The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more about some of the advanced TotalView features. Accessing Totalview at NERSC To use TotalView at NERSC, first load the TotalView modulefile to set the correct environment settings with the following command: % module load totalview Compiling Code to Run with TotalView In order to use TotalView, code must be compiled with the -g option. We

445

Effects of environmental parameters to total, quantum and classical correlations  

E-Print Network [OSTI]

We quantify the total, quantum, and classical correlations with entropic measures, and quantitatively compare these correlations in a quantum system, as exemplified by a Heisenberg dimer which is subjected to the change of environmental parameters: temperature and nonuniform external field. Our results show that the quantum correlation may exceed the classical correlation at some nonzero temperatures, though the former is rather fragile than the later under thermal fluctuation. The effect of the external field to the classical correlation is quite different from the quantum correlation.

Wen-Ling Chan; Jun-Peng Cao; Dong Yang; Shi-Jian Gu

2006-12-29T23:59:59.000Z

446

Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds: Human health and ecological risk assessments  

SciTech Connect (OSTI)

The purpose of this study was to evaluate the immediate and long-term consequences of depleted uranium (DU) in the environment at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) for the Test and Evaluation Command (TECOM) of the US Army. Specifically, we examined the potential for adverse radiological and toxicological effects to humans and ecosystems caused by exposure to DU at both installations. We developed contaminant transport models of aquatic and terrestrial ecosystems at APG and terrestrial ecosystems at YPG to assess potential adverse effects from DU exposure. Sensitivity and uncertainty analyses of the initial models showed the portions of the models that most influenced predicted DU concentrations, and the results of the sensitivity analyses were fundamental tools in designing field sampling campaigns at both installations. Results of uranium (U) isotope analyses of field samples provided data to evaluate the source of U in the environment and the toxicological and radiological doses to different ecosystem components and to humans. Probabilistic doses were estimated from the field data, and DU was identified in several components of the food chain at APG and YPG. Dose estimates from APG data indicated that U or DU uptake was insufficient to cause adverse toxicological or radiological effects. Dose estimates from YPG data indicated that U or DU uptake is insufficient to cause radiological effects in ecosystem components or in humans, but toxicological effects in small mammals (e.g., kangaroo rats and pocket mice) may occur from U or DU ingestion. The results of this study were used to modify environmental radiation monitoring plans at APG and YPG to ensure collection of adequate data for ongoing ecological and human health risk assessments.

Ebinger, M.H.; Beckman, R.J.; Myers, O.B. [Los Alamos National Lab., NM (United States); Kennedy, P.L.; Clements, W.; Bestgen, H.T. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1996-09-01T23:59:59.000Z

447

Does Dissipation in AGN Disks Couple to the Total Pressure?  

E-Print Network [OSTI]

Recent work on the transport of angular momentum in accretion disks suggests that the Velikhov-Chandrasekhar instability, in which a large scale magnetic field generates small scale eddys in a shearing environment, may be ultimately responsible for this process. Although there is considerable controversy about the origin and maintenance of this field in accretion disks, it turns out that it is possible to argue, quite generally, using scaling arguments, that this process is sensitive to the total pressure in an AGN disk, rather than the pressure contributed by gas alone. We conclude that the resolution of the conceptual difficulties implied by the presence of strong thermal and viscous instabilities in radiation pressure and electron scattering dominated does not lie in models that couple the total dissipation rate to the gas pressure alone, or to some weighted mean of the gas and radiation pressures.

E. T. Vishniac

1993-08-12T23:59:59.000Z

448

THE GALACTIC MAGNETIC FIELD  

SciTech Connect (OSTI)

With this Letter, we complete our model of the Galactic magnetic field (GMF), by using the WMAP7 22 GHz total synchrotron intensity map and our earlier results to obtain a 13-parameter model of the Galactic random field, and to determine the strength of the striated random field. In combination with our 22-parameter description of the regular GMF, we obtain a very good fit to more than 40,000 extragalactic Faraday rotation measures and the WMAP7 22 GHz polarized and total intensity synchrotron emission maps. The data call for a striated component to the random field whose orientation is aligned with the regular field, having zero mean and rms strength Almost-Equal-To 20% larger than the regular field. A noteworthy feature of the new model is that the regular field has a significant out-of-plane component, which had not been considered earlier. The new GMF model gives a much better description of the totality of data than previous models in the literature.

Jansson, Ronnie; Farrar, Glennys R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

2012-12-10T23:59:59.000Z

449

Charge Depleting:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 seconds 3 seconds Acceleration 1/4 Mile Time: 20.3 seconds Maximum Speed: 74.3 MPH Acceleration 1 Mile Maximum Speed: 103.4 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 13.4 seconds Acceleration 1/4 Mile Time: 20.4 seconds Maximum Speed: 74.8 MPH Acceleration 1 Mile Maximum Speed: 104.0 MPH Brake Test @ 60 MPH Distance Required: 153.0 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6 Distance (miles)

450

Charge Depleting:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 seconds 0 seconds Acceleration 1/4 Mile Time: 20.1 seconds Maximum Speed: 75.7 MPH Acceleration 1 Mile Maximum Speed: 104.9 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 12.8 seconds Acceleration 1/4 Mile Time: 20.0 seconds Maximum Speed: 75.7 MPH Acceleration 1 Mile Maximum Speed: 105.0 MPH Brake Test @ 60 MPH Distance Required: 126.8 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6 Distance (miles)

451

Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel Melted and Granulated Depleted Uranium Dioxide for Use in Containers for Spent Nuclear Fuel Vitaly T. Gotovchikov a , Victor A. Seredenko a , Valentin V. Shatalov a , Vladimir N. Kaplenkov a , Alexander S. Shulgin a , Vladimir K. Saranchin a , Michail A. Borik a∗ , Charles W. Forsberg b , All-Russian Research Institute of Chemical Technology (ARRICT) 33, Kashirskoe ave., Moscow, Russia, 115409, E-mail: chem.conv@ru.net Oak Ridge National Laboratory (ORNL) Bethel Wall Road, P.O. Box 2008, MS-6165, Oak Ridge, TN, USA, 37831 Abstract - Induction cold crucible melters (ICCM) have the potential to be a very-low-cost high-throughput method for the production of DUO 2 for SNF casks. The proposed work would develop these melters for this specific application. If a

452

Design of Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Transport Casks with Depleted Uranium Gamma Shield and Advanced Safety Matveev V.Z., Morenko A.I., Shapovalov V.I. Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) 37 Mira Prospect, Sarov, Russia, 607190, matveev@vniief.ru Maslov A.A., Orlov V.K., Semenov A.G., Sergeev V.M., Yuferov O.I., Visik A.M. Bochvar Institute of Inorganic Materials (VNIINM) 5-A Rogova street, p.b. 369, Moscow, Russia, 123060, majul2000@mail.ru Abstract - The report is dedicated to a problem of creation of a new generation of dual-purpose transport packing complete sets (TPCS) 1 with advanced safety. These sets are intended for transportation and storage of spent nuclear fuel assemblies (SNFA) 2 of VVER reactors and spent spark elements (SSE)

453

Observations of small-scale plasma density depletions in arecibo HF heating experiments  

SciTech Connect (OSTI)

Observations of incoherent scattering of electromagnetic waves at UHF from Langmuir waves by a new scheme involving linear frequency modulation (chirping) of a UHF transmitter and the demodulation (dechirping) of the received signals have been applied during HF heating experiments. These observations show that the high power HF wave used for ionospheric modification creates small-scale plasma depletions instantly on a time scale of 5 ms. For a plasma frequency of 5.1 MHz, plasma frequency gradient of the order of 50 kHz/km, and power density input of the HF heater wave of 8.0 x 10/sup -5/ W/m/sup 2/ the depletion ranged from 3 to 5%. This appears to provide direct evidence that the HF-induced modifications involve Langmuir waves trapped in density cavities. copyrightAmerican Geophysical Union 1987

Isham, B.; Birkmayer, W.; Hagfors, T.; Kofman, W.

1987-05-01T23:59:59.000Z

454

Methods Used to Calculate Doses Resulting from Inhalation of Capstone Depleted Uranium Aerosols  

SciTech Connect (OSTI)

The methods used to calculate radiological and toxicological doses to hypothetical persons inside either a United States Army Abrams tank or Bradley Fighting Vehicle that has been perforated by depleted uranium munitions is described. Data from time- and particle-size-resolved measurements of depleted uranium aerosol as well as particle-size resolved measurements of aerosol solubility in lung fluids for aerosol produced in the breathing zones of the hypothetical occupants were used. The aerosol was approximated as a mixture of nine monodisperse (single particle size) components corresponding to particle size increments measured by the eight stages plus backup filter of the cascade impactors used. A Markov Chain Monte Carlo Bayesian analysis technique was employed, which straightforwardly calculates the uncertainties in doses. Extensive quality control checking of the various computer codes used is described.

Miller, Guthrie; Cheng, Yung-Sung; Traub, Richard J.; Little, Thomas T.; Guilmette, Ray A.

2009-02-26T23:59:59.000Z

455

Radiological assessment of depleted uranium migration offsite from an ordnance range  

SciTech Connect (OSTI)

The military utilizes ordnance loaded with depleted uranium in order to maximize armor penetrating capabilities. These weapons are tested on open ranges where the weapons are fired through a cloth target and impact into the soil. This paper examines the potential environmental impact from use of depleted uranium in an open setting. A preliminary pathway analysis was performed to examine potential routes of exposure to nonhuman species in the vicinity and ultimately to man. Generic data was used in the study to estimate the isotopic mix and weight of the ordnance. Key factors in the analysis included analyzing the physics of weapon impact on soil, chemical changes in material upon impact, and mechanisms of offsite transport (including atmospheric and overland transport). Non-standard exposure scenarios were investigated, including the possibility of offsite contaminant transport due to range grassfires. Two radiological assessment codes, MEPAS (Multi media Environmental Pollutant Assessment System) and RESRAD were used to help analyze the scenarios.

Rynders, D.G. [Oregon State Univ., Corvallis, OR (United States)

1996-06-01T23:59:59.000Z

456

Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium  

Science Journals Connector (OSTI)

The accumulations of both natural (U) and depleted (DU) uranium in the earthworms (Eisenia fetida) were studied to evaluate corresponding biological effects. Concentrations of metals in the experimental soil ranged from 1.86 to 600 mg kg?1. Five biological endpoints: mortality, animals’ weight increasing, lysosomal membrane stability by measuring the neutral red retention time (the NRRT), histological changes and genetic effects (Comet assay) were used to evaluate biological effects in the earthworms after 7 and 28 days of exposure. No effects have been observed in terms of mortality or weight reduction. Cytotoxic and genetic effects were identified at quite low U concentrations. For some of these endpoints, in particular for genetic effects, the dose (U concentration)-effect relationships have been found to be non-linear. The results have also shown a statistically significant higher level of impact on the earthworms exposed to natural U compared to depleted U.

Anna Giovanetti; Sergey Fesenko; Maria L. Cozzella; Lisbet D. Asencio; Umberto Sansone

2010-01-01T23:59:59.000Z

457

Summary of the Preliminary Analysis of Savannah River Depleted Uranium Trioxide  

SciTech Connect (OSTI)

This report summarizes a preliminary special analysis of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 2). The analysis is considered preliminary because a final waste profile has not been submitted for review. The special analysis is performed to determine the acceptability of the waste stream for shallow land burial at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The Savannah River Depleted Uranium Trioxide waste stream requires a special analysis because the waste stream’s sum of fractions exceeds one. The 99Tc activity concentration is 98 percent of the NNSS Waste Acceptance Criteria and the largest single contributor to the sum of fractions.

NSTec Environmental Management

2010-10-13T23:59:59.000Z

458

C sup 13 depleted authigenic carbonate buildups from hydrocarbon seeps, Louisiana Continental Slope  

SciTech Connect (OSTI)

Geohazard and geochemical survey data consisting of high-resolution profiles, side-scan sonographs, drop cores, dredge samples, and borings have substantiated the consistent association between carbonate buildups and hydrocarbon seeps on the Louisiana continental slope. Analyses of lithified bottom samples indicate a range of carbonate mineralogies including aragonite, Mg-calcite, and dolomite that are extremely depleted in the C{sup 13} isotope ({delta}C{sup 13} values to {minus} 48 {per thousand} PDB). Microbial oxidation of methane (biogenic and thermogenic) and crude oil creates a source of pore-water CO{sub 2} containing isotopically light carbon which triggers carbonate precipitation. Geophysical and geochemical evidence suggests that both surface and subsurface lithification is taking place. Recent observations and samples collected using a Pisces class research submersible confirm the abundance of C{sup 13} depleted sedimentary carbonates and massive authigenic buildups associated with the tops and flanks of shallow salt diapirs and gas hydrate hills.

Roberts, H.H.; Sassen, R.; Carney, R.; Aharon, P. (Louisiana State Univ., Baton Rouge (USA))

1989-09-01T23:59:59.000Z

459

Validation of a Monte Carlo Based Depletion Methodology Using HFIR Post-Irradiation Measurements  

SciTech Connect (OSTI)

Post-irradiation uranium isotopic atomic densities within the core of the High Flux Isotope Reactor (HFIR) were calculated and compared to uranium mass spectrographic data measured in the late 1960s and early 70s [1]. This study was performed in order to validate a Monte Carlo based depletion methodology for calculating the burn-up dependent nuclide inventory, specifically the post-irradiation uranium

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

460

Use of soil moisture depletion models and rainfall probability in predicting the irrigation requirements of crops  

E-Print Network [OSTI]

of precipitation events in estimating the probable success of his venture as related to the avail nb! lity of sufficient water resources precipitation is governed by chance phenomena, that is, there are so many causes at work that the influence of each cannot... depletion equations under optimum soil moisture conditions Recession constants Application of soil mcisture accounring model Irrigation requirements Retention relations Irrigation requirements distributions Raini'all probabilities Neekly rainfall...

David, Wilfredo P

1969-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

2007-01-22T23:59:59.000Z

462

Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium  

SciTech Connect (OSTI)

We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064 nm) and femtosecond Ti:sapphire (800 nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.

Emmert, Luke A.; Chinni, Rosemarie C.; Cremers, David A.; Jones, C. Randy; Rudolph, Wolfgang

2011-01-20T23:59:59.000Z

463

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Tennessee - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 285 310 230 210 212 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,700 5,478 5,144 4,851 5,825 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

464

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Connecticut - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

465

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Oregon - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 18 21 24 26 24 Production (million cubic feet) Gross Withdrawals From Gas Wells 409 778 821 1,407 1,344 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

466

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 District of Columbia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

467

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Oregon - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 21 24 26 24 27 Production (million cubic feet) Gross Withdrawals From Gas Wells 778 821 1,407 1,344 770 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

468

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

8 8 Georgia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

469

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

2 2 Delaware - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

470

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 District of Columbia - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

471

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Tennessee - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 305 285 310 230 210 Production (million cubic feet) Gross Withdrawals From Gas Wells NA 4,700 5,478 5,144 4,851 From Oil Wells 3,942 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

472

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

4 4 Nebraska - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 186 322 285 276 322 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,331 2,862 2,734 2,092 1,854 From Oil Wells 228 221 182 163 126 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

473

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Georgia - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

474

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

0 0 Connecticut - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

475

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

6 6 Florida - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 2,000 2,742 290 13,938 17,129 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

476

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Delaware - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S8. Summary statistics for natural gas - Delaware, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0 0 0 0 0

477

ARM - Measurement - Shortwave spectral total downwelling irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shadowband Spectroradiometer SPEC-TOTDN : Shortwave Total Downwelling Spectrometer UAV-EGRETT : UAV-Egrett Value-Added Products VISST : Minnis Cloud Products Using Visst...

478

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

479

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

480

Total Natural Gas Gross Withdrawals (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to...

Note: This page contains sample records for the topic "depleted fields total" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Indiana - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 525 563 620 914 819 Production (million cubic feet) Gross Withdrawals From Gas Wells 4,701 4,927 6,802 9,075 8,814 From Oil Wells 0 0 0 0 0 From Coalbed Wells 0 0 0 0 0 From Shale Gas Wells 0

482

Effect of the militarily-relevant heavy metals, depleted uranium and heavy metal tungsten-alloy on gene expression in human liver carcinoma cells (HepG2)  

Science Journals Connector (OSTI)

Depleted uranium (DU) and heavy-metal tungsten alloys ... in military applications. Chemically similar to natural uranium, but depleted of the higher activity 235U and 234U...in vitro. Using insoluble DU-UO2 and ...

Alexandra C. Miller; Kia Brooks; Jan Smith…

2004-01-01T23:59:59.000Z

483

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect (OSTI)

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

484

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

485

Regimes of nonlinear depletion and regularity in the 3D Navier-Stokes equations  

E-Print Network [OSTI]

The periodic $3D$ Navier-Stokes equations are analyzed in terms of dimensionless, scaled, $L^{2m}$-norms of vorticity $D_{m}$ ($1 \\leq m < \\infty$). The first in this hierarchy, $D_{1}$, is the global enstrophy. Three regimes naturally occur in the $D_{1}-D_{m}$ plane. Solutions in the first regime, which lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion. Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily depleted regime \\cite{DGGKPV13}\\,; new numerical evidence for this is presented. Estimates for the dimension of a global attractor and a corresponding inertial range are given for this regime. However, two more regimes can theoretically exist. In the second, which lies between the upper concave curve and a line, the depletion is insufficient to regularize solutions, so no more than Leray's weak solutions exist. In the third, which lies above this line, solutions are regular, but correspond to extreme initial conditions. The paper ends with a discussion on the possibility of transition between these regimes.

John D. Gibbon; Diego A. Donzis; Anupam Gupta; Robert M. Kerr; Rahul Pandit; Dario Vincenzi

2014-02-05T23:59:59.000Z

486

Practice Field Practice Field  

E-Print Network [OSTI]

Courts Soccer Field Swimming pool Bandeen Hall Mountain House # 3 # 2 Golf Course Security Patterson Hall.B. Scott Arena Library Centennial Theater Mc Greer Hall Pollack Hall New Johnson Science Building Dewhurst Dining Hall Champlain Regional College # 4 Mackinnon Hall Residence # 6 Memorial House Retired Faculty

487

Total Synthesis of Irciniastatin A (Psymberin)  

E-Print Network [OSTI]

Total Synthesis of Irciniastatin A (Psymberin) Michael T. Crimmins,* Jason M. Stevens, and Gregory, North Carolina 27599 crimmins@email.unc.edu Received July 21, 2009 ABSTRACT The total synthesis of a hemiaminal and acid chloride to complete the synthesis. In 2004, Pettit and Crews independently reported

488

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION  

E-Print Network [OSTI]

TOTAL REFLUX OPERATION OF MULTIVESSEL BATCH DISTILLATION BERND WITTGENS, RAJAB LITTO, EVA S RENSEN a generalization of previously proposed batch distillation schemes. A simple feedback control strategy for total re verify the simulations. INTRODUCTION Although batch distillation generally is less energy e cient than

Skogestad, Sigurd

489

Table 10: Total natural gas proved reserves, reserves changes, and production, w  

U.S. Energy Information Administration (EIA) Indexed Site

: Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" : Total natural gas proved reserves, reserves changes, and production, wet after lease separation, 2011" "billion cubic feet" ,,"Changes in reserves during 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

490

Potential Energy Total electric potential energy, U, of a system of  

E-Print Network [OSTI]

Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

491

Analysis of heat-labile sites generated by reactions of depleted uranium and ascorbate in plasmid DNA  

Science Journals Connector (OSTI)

The goal of this study was to characterize how depleted uranium (DU) causes DNA damage. Procedures were ... Radical scavengers did not affect the formation of uranium-induced SSB, suggesting that SSB arose from.....

Janice Wilson; Ashley Young…

2014-01-01T23:59:59.000Z

492

The presence of perforated synapses in the striatum after dopamine depletion, is this a sign of maladaptive brain plasticity?  

Science Journals Connector (OSTI)

......depletion, is this a sign of maladaptive brain plasticity? Veronica Anaya-Martinez...number of perforated synapses, suggesting brain plasticity that might be deleterious for...both during development and in the mature brain, is thus based upon the strengthening......

Verónica Anaya-Martínez; Ana Luisa Gutierrez-Valdez; Jose Luis Ordoñez-Librado; Enrique Montiel-Flores; Javier Sánchez-Betancourt; César Sánchez Vázquez del Mercado; Leonardo Reynoso-Erazo; Rocío Tron-Alvarez; Maria Rosa Avila-Costa

2014-12-01T23:59:59.000Z

493

Volume 121, number 2 FEBS LETTERS December 1980 EFFECTS OF CO,-DEPLETION ON PROTON UPTAKE AND RELEASE IN THYLAKOID  

E-Print Network [OSTI]

Thylakoid membranes were isolated from leaves of fresh market spinach (Spinacea oleracea) and depleted at 524 nm as in [161. Addition of nonactin accelerated the intrinsic electrochromic carotenoid changes so

Govindjee

494

A-Bomb Tests; Three Mile Island and Other Incidents; NPPs Under Normal Operation; Depleted Uranium Bombs  

Science Journals Connector (OSTI)

A few more examples will be given here on the health effects of radiation due to nuclear weapons...14 Bq per year. The health effects of depleted uranium munitions are also serious, and are likely due to radiatio...

Eiichiro Ochiai

2014-01-01T23:59:59.000Z

495

Effects of Depleted Uranium on Soil Microbial Activity: A Bioassay Approach Using 14C-labeled Glucose  

Science Journals Connector (OSTI)

The short and long term influence of depleted uranium (DU) on soil microbial populations remains...14C-labeled glucose. Two soils of contrasting texture (Eurtic cambisol and Haplic podzol) were amended with incre...

Rizwan Ahmad; David L. Jones

2010-01-01T23:59:59.000Z

496

Modifications of the Expression of Genes Involved in Cerebral Cholesterol Metabolism in the Rat Following Chronic Ingestion of Depleted Uranium  

Science Journals Connector (OSTI)

Depleted uranium results from the enrichment of natural uranium for energetic purpose. Its potential dispersion in ... at risk of being contaminated through ingestion. Uranium can build up in the brain and ... as...

Radjini Racine; Yann Gueguen; Patrick Gourmelon…

2009-06-01T23:59:59.000Z

497

Contractor Fee Payments - Carlsbad Field Office | Department...  

Broader source: Energy.gov (indexed) [DOE]

Carlsbad Field Office Contractor Fee Payments - Carlsbad Field Office See the amount of fees earned on EM's major contracts for each evaluated fee period and the total contract to...

498

The environmental protection agency's research program on total human exposure  

Science Journals Connector (OSTI)

The U.S. Environmental Protection Agency's (U.S. EPA) research program on total human exposure to environmental pollution seeks to develop a newly emerging concept in the environmental sciences. Instead of focusing purely on the sources of pollution or their transport and movement through the environment, this research focuses on human beings as the receptors of these pollutants. People and daily activities become the center of attention. The methodology measures and models the pollutant concentrations found at the physical boundaries of people, regardless of whether the pollutants arrive through the air, water, food, or skin. It seeks to characterize quantitatively the impact of pollution on people by determining if an environmental problem exists at the human interface and, if so, by determining the sources, nature, extent, and severity of this environmental problem. By exploiting an emerging new arsenal of miniaturized instruments and by developing statistically representative survey designs for sampling the population of cities, significant progress has been made in recent years in providing previously unavailable human exposure field data needed for making valid risk assessments. The U.S. EPA total human exposure research program includes: development of measurement methods and instruments, development of exposure models and statistical protocols, microenvironmental field studies, total human exposure studies, validation of human exposure models with empirical data, and dosage research investigations.

Wayne Ott; Lance Wallace; David Mage; Gerald Akland; Robert Lewis; Harold Sauls; Charles Rodes; David Kleffman; Donna Kuroda; Karen Morehouse

1986-01-01T23:59:59.000Z

499

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 Illinois - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 45 51 50 40 40 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,188 E 1,438 E 1,697 2,114 2,125 From Oil Wells E 5 E 5 E 5 7 0 From Coalbed Wells E 0 E 0 0 0 0 From Shale Gas Wells 0

500

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

50 50 North Dakota - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 194 196 188 239 211 Production (million cubic feet) Gross Withdrawals From Gas Wells 13,738 11,263 10,501 14,287 22,261 From Oil Wells 54,896 45,776 38,306 27,739 17,434 From Coalbed Wells 0