Powered by Deep Web Technologies
Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"Natural Gas Depleted Fields Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural...

2

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

3

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

4

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

5

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

6

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

7

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

8

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

9

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

10

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

11

New Mexico Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

12

Natural Gas Depleted Fields Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

13

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

14

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

15

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

16

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

17

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

18

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

19

U.S. Working Natural Gas Underground Storage Depleted Fields...  

Annual Energy Outlook 2012 (EIA)

Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

20

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Working Gas Capacity of Depleted Fields  

Annual Energy Outlook 2012 (EIA)

,583,786 3,659,968 3,733,993 3,769,113 2008-2011 Alabama 9,000 9,000 9,000 11,200 2008-2011 Arkansas 14,500 13,898 13,898 12,036 2008-2011 California 283,796 296,096 311,096...

22

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

23

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

24

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

25

New Mexico Natural Gas Number of Underground Storage Depleted...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Number of Elements) New Mexico Natural Gas Number of Underground Storage Depleted Fields Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

26

HEAT CAPACITY MEASUREMENTS IN PULSED MAGNETIC FIELDS  

E-Print Network (OSTI)

(World Scientific, to be published) The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 35 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool. 1 I. TECHNIQUE The 60 Tesla Long-Pulse (60TLP) magnet was recently commissioned at the Los Alamos National Laboratory. This magnet produces a flat-top field for a period of 100 ms at 60

M. Jaime; R. Movshovich; J. L. Sarrao; J. Kim; G. Stewart; W. P. Beyermann

1999-01-01T23:59:59.000Z

27

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

Numerical simulation has been used, as common practice, to estimate the CO2 storage capacity of depleted reservoirs. However, this method is time consuming, expensive and requires detailed input data. This investigation proposes an analytical method to estimate the ultimate CO2 storage in depleted oil and gas reservoirs by implementing a volume constrained thermodynamic equation of state (EOS) using the reservoir?s average pressure and fluid composition. This method was implemented in an algorithm which allows fast and accurate estimations of final storage, which can be used to select target storage reservoirs, and design the injection scheme and surface facilities. Impurities such as nitrogen and carbon monoxide, usually contained in power plant flue gases, are considered in the injection stream and can be handled correctly in the proposed algorithm by using their thermodynamic properties into the EOS. Results from analytical method presented excellent agreement with those from reservoir simulation. Ultimate CO2 storage capacity was predicted with an average difference of 1.3%, molar basis, between analytical and numerical methods; average oil, gas, and water saturations were also matched. Additionally, the analytical algorithm performed several orders of magnitude faster than numerical simulation, with an average of 5 seconds per run.

Valbuena Olivares, Ernesto

2011-12-01T23:59:59.000Z

28

Peak production in an oil depletion model with triangular field profiles  

E-Print Network (OSTI)

Peak production in an oil depletion model with triangular field profiles Dudley Stark School;1 Introduction M. King Hubbert [5] used curve fitting to predict that the peak of oil produc- tion in the U.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been

Stark, Dudley

29

Capacity degradation of field-tested silica gel samples  

DOE Green Energy (OSTI)

Researchers at the Solar Energy Research Institute (SERI) have begun preliminary studies to quantify the effect of contamination of silica gel used in dehumidification processes of desiccant cooling systems. Sorption capacity degradation of field tested samples was measured, and the source of degradation was quantified using surface analysis experimental methods.

Penney, T.R.; Pesaran, A.A.; Thomas, T.M.

1985-06-01T23:59:59.000Z

30

Information channel capacity in the field theory estimation  

E-Print Network (OSTI)

The construction of the information capacity for the vector position parameter in the Minkowskian space-time is presented. This lays the statistical foundations of the kinematical term of the Lagrangian of the physical action for many field theory models, derived by the extremal physical information method of Frieden and Soffer.

J. S?adkowski; J. Syska

2012-12-26T23:59:59.000Z

31

Underground hydrogen storage. Final report. [Salt caverns, excavated caverns, aquifers and depleted fields  

DOE Green Energy (OSTI)

The technical and economic feasibility of storing hydrogen in underground storage reservoirs is evaluated. The past and present technology of storing gases, primarily natural gas is reviewed. Four types of reservoirs are examined: salt caverns, excavated caverns, aquifers, and depleted fields. A technical investigation of hydrogen properties reveals that only hydrogen embrittlement places a limit on the underground storage by hydrogen. This constraint will limit reservoir pressures to 1200 psi or less. A model was developed to determine economic feasibility. After making reasonable assumptions that a utility might make in determining whether to proceed with a new storage operation, the model was tested and verified on natural gas storage. A parameteric analysis was made on some of the input parameters of the model to determine the sensitivity of the cost of service to them. Once the model was verified it was used to compute the cost of service of storing hydrogen in the four reservoir types. The costs of service for hydrogen storage ranged from 26 to 150% of the cost of the gas stored. The study concludes that it is now both safe and economic to store hydrogen in underground reservoirs.

Foh, S.; Novil, M.; Rockar, E.; Randolph, P.

1979-12-01T23:59:59.000Z

32

Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

33

Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}  

Science Conference Proceedings (OSTI)

The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

2013-03-15T23:59:59.000Z

34

Maryland Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

64,000 64,000 64,000 64,000 64,000 64,000 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2011 Total Working Gas Capacity 17,300...

35

Tennessee Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

1,200 1,200 1,200 1,200 0 1998-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 1,200 1,200 1,200 1,200 0 1999-2011 Total Working Gas Capacity 860 860 0 2008-2011...

36

Iowa Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

275,200 278,238 284,747 284,811 288,010 288,210 1988-2011 Aquifers 275,200 278,238 284,747 284,811 288,010 288,210 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity...

37

Washington Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

43,316 39,341 39,287 39,210 41,309 43,673 1988-2011 Aquifers 43,316 39,341 39,287 39,210 41,309 43,673 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity 23,033...

38

Nebraska Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

39,469 34,850 34,850 34,850 34,850 34,850 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 39,469 34,850 34,850 34,850 34,850 34,850 1999-2011 Total Working Gas Capacity 13,619...

39

CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN  

E-Print Network (OSTI)

LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN B. B.Temperature Nonnal-State Heat Capacity of Tungsten* B. n.single crystal This work, heat capacity 57,000a 4 d' 1&11.

Triplett, B.B.

2008-01-01T23:59:59.000Z

40

Charge Depleting:  

NLE Websites -- All DOE Office Websites (Extended Search)

0.5 seconds 0.5 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 83.2 MPH Acceleration 1 Mile Maximum Speed: 100.6 MPH Charge Sustaining: Acceleration 0-60 MPH Time: 10.6 seconds Acceleration 1/4 Mile Time: 18.6 seconds Maximum Speed: 82.8 MPH Acceleration 1 Mile Maximum Speed: 101.9 MPH Brake Test @ 60 MPH Distance Required: 145.1 ft UDDS Fuel Economy 6 HWFET Fuel Economy 6,10 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 Distance (miles) Fuel Economy (mpg) AC Energy Consumed (kWh) 7 10 118.5 2.85 10 53.0 1.80 20 116.8 5.49 20 56.6 3.37 40 116.0 10.50 40 58.0 6.38 60 90.7 11.34 60 55.3 9.48 80 76.6 11.34 80 51.4 11.11 100 68.0 11.34 100 47.2 11.13 200 50.9 11.34 200 38.7 11.13 Fuel Economy with A/C Off 1 Cold Start Charge Depleting 2 : Fuel Economy: 119.7 MPG AC kWh Consumed 7 : 0.282 kWh/mi Charge Depleting

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN  

E-Print Network (OSTI)

y CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURECritical Field for Superconductivity and Low-Temperaturemagnetic field for superconductivity In tungsten from 5.5 to

Triplett, B.B.

2008-01-01T23:59:59.000Z

42

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF DEPLETED URANIUM HEXAFLUORIDE MANAGEMENT Issuance Of Final Report On Preconceptual Designs For Depleted Uranium Hexafluoride Conversion Plants The Department of Energy...

43

Carrier transport and collection in fully depleted semiconductors by a combined action of the space charge field and the field due to electrode voltages  

DOE Patents (OSTI)

A semiconductor charge transport device and method for making same, characterized by providing a thin semiconductor wafer having rectifying junctions on its opposing major surfaces and including a small capacitance ohmic contact, in combination with bias voltage means and associated circuit means for applying a predetermined voltage to effectively deplete the wafer in regions thereof between the rectifying junctions and the ohmic contact. A charge transport device of the invention is usable as a drift chamber, a low capacitance detector, or a charge coupled device each constructed according to the methods of the invention for making such devices. Detectors constructed according to the principles of the invention are characterized by having significantly higher particle position indicating resolution than is attainable with prior art detectors, while at the same time requiring substantially fewer readout channels to realize such high resolution.

Rehak, Pavel (Patchogue, NY); Gatti, Emilio (Lesmo, IT)

1987-01-01T23:59:59.000Z

44

Depleted Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

45

FAQ 23-How much depleted uranium -- including depleted uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

is stored in the United States? How much depleted uranium -- including depleted uranium hexafluoride -- is stored in the United States? In addition to the depleted uranium stored...

46

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

47

Depleted uranium valuation  

SciTech Connect

The following uses for depleted uranium were examined to determine its value: a substitute for lead in shielding applications, feed material in gaseous diffusion enrichment facilities, feed material for an advanced enrichment concept, Mixed Oxide (MOx) diluent and blanket material in LMFBRs, and fertile material in LMFBR systems. A range of depleted uranium values was calculated for each of these applications. The sensitivity of these values to analysis assumptions is discussed. 9 tables.

Lewallen, M.A.; White, M.K.; Jenquin, U.P.

1979-04-01T23:59:59.000Z

48

Improved braking torque generation capacity of an eddy current brake with time varying magnetic fields: A numerical study  

Science Conference Proceedings (OSTI)

Eddy current brakes (ECB) are electrically controlled and non-contact actuators used as assistive brakes in vehicles. ECBs exhibit insufficient generated braking torque at low speeds. In order to overcome this, the use of AC magnetic fields with fixed ... Keywords: Automotive applications, Brake-by-wire, Eddy current brakes, Finite element analysis, Time-varying magnetic field

Kerem Karakoc; Edward J. Park; Afzal Suleman

2012-10-01T23:59:59.000Z

49

Depleted uranium management alternatives  

SciTech Connect

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

50

Video: The Depleted Uranium Hexafluoride Story  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Story The Depleted Uranium Hexafluoride Story An overview of Uranium, its isotopes, the need and history of diffusive separation, the handling of the Depleted Uranium...

51

Polyethylene Encapsulated Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

52

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

53

Depleted UF6 Overview Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Information network Web Site. The presentation covers the following topics: The uranium mining and enrichment processes - how depleted UF6 is created, How and where...

54

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

55

News Media Exits for Depleted Uranium and Depleted UF6 Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

line line Archived News and Events News Media Links News Media Exits for Depleted Uranium and Depleted UF6 Articles Online editions of newspapers that cover Depleted Uranium...

56

Depletion modeling of liquid dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Depletion models for liquid-dominated geothermal reservoirs are derived and presented. The depletion models are divided into two categories: confined and unconfined. For both cases depletion models with no recharge (or influx), and depletion models including recharge, are used to match field data from the Svartsengi high temperature geothermal field in Iceland. The influx models included with the mass and energy balances are adopted from the petroleum engineering literature. The match to production data from Svartsengi is improved when influx was included. The Schilthuis steady-state influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and the unsteady state method of Hurst gave reasonable answers, but not as good. The best match is obtained using Hurst simplified solution when lambda = 1.3 x 10{sup -4} m{sup -1}. From the match the cross-sectional area of the aquifer was calculated as 3.6 km{sup 2}. The drawdown was predicted using the Hurst simplified method, and compared with predicted drawdown from a boiling model and an empirical log-log model. A large difference between the models was obtained. The predicted drawdown using the Hurst simplified method falls between the other two. Injection has been considered by defining the net rate as being the production rate minus the injection rate. No thermal of transient effects were taken into account. Prediction using three different net rates shows that the pressure can be maintained using the Hurst simplified method if there is significant fluid reinjection. 32 refs., 44 figs., 2 tabs.

Olsen, G.

1984-06-01T23:59:59.000Z

57

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

58

Depleted UF6 Health Risks  

NLE Websites -- All DOE Office Websites (Extended Search)

(depleted UF6) is released to the atmosphere, the uranium compounds and hydrogen fluoride (HF) gas that are formed by reaction with moisture in the air can be chemically...

59

Depleted UF6 Internet Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Internet Resources Depleted UF6 Internet Resources Links...

60

FAQ 6-What is depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium? What is depleted uranium? Depleted uranium is created during the processing that is done to make natural uranium suitable for use as fuel in nuclear power plants...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Environmental Risks of Depleted UF6 Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Disposal A discussion of the environmental impacts...

62

FAQ 26-Are there any uses for depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

uses for depleted uranium? Are there any uses for depleted uranium? Several current and potential uses exist for depleted uranium. Depleted uranium could be mixed with highly...

63

Challenges dealing with depleted uranium in Germany - Reuse or disposal  

SciTech Connect

During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to deal with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)

Moeller, Kai D. [Federal Office for Radiation Protection, Bundesamt fuer Strahlenschutz - BFS, Postfach 10 01 49, D-38201 Salzgitter (Germany)

2007-07-01T23:59:59.000Z

64

Depleted UF6 Management Program Overview Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Management Program Overview Presentation Cylinders Photo Next Screen A Legacy of Uranium Enrichment...

65

Load Capacity of Bodies  

E-Print Network (OSTI)

For the stress analysis in a plastic body $\\Omega$, we prove that there exists a maximal positive number $C$, the \\emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \\frac{1}{C}=\\sup_{w\\in LD(\\Omega)_D} \\frac{\\int_{\\partial\\Omega}|w|dA} {\\int_{\\Omega}|\\epsilon(w)|dV}=\\left\\|\\gamma_D\\right\\|. $$ Here, $LD(\\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\\epsilon(w)$ are assumed to be integrable and $\\gamma_D$ is the trace mapping assigning the boundary value $\\gamma_D(w)$ to any $w\\in LD(\\Omega)_D$.

Reuven Segev

2005-11-01T23:59:59.000Z

66

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

67

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andand Steven Stoft, “Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

68

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

69

Potential Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

70

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

71

Depleted Uranium Uses Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

72

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

73

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

74

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

75

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

76

Depleted uranium disposal options evaluation  

SciTech Connect

The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

1994-05-01T23:59:59.000Z

77

Depleted Argon from Underground Sources  

Science Conference Proceedings (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

78

High-voltage-compatible, fully depleted CCDs  

SciTech Connect

We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

2006-05-15T23:59:59.000Z

79

Accounting for Depletion of Oil and Gas Resources in Malaysia  

Science Conference Proceedings (OSTI)

Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

Othman, Jamal, E-mail: jortman@ukm.my; Jafari, Yaghoob, E-mail: yaghoob.jafari@gmail.com [Universiti Kebangsaan Malaysia, Faculty of Economics and Management (Malaysia)

2012-12-15T23:59:59.000Z

80

Depleted Uranium De-conversion  

E-Print Network (OSTI)

This Environmental Report (ER) constitutes one portion of an application being submitted by International Isotopes Fluorine Products (IIFP) to construct and operate a facility that will utilize depleted DUF6 to produce high purity inorganic fluorides, uranium oxides, and anhydrous hydrofluoric acid. The proposed IIFP facility will be located near Hobbs, New Mexico. IIFP has prepared the ER to meet the requirements specified in 10 CFR 51, Subpart A, particularly those requirements set forth in 10 CFR 51.45(b)-(e). The organization of this ER is generally consistent with NUREG-1748, “Environmental Review Guidance for Licensing Actions Associated with NMSS Programs, Final Report.” The Environmental Report for this proposed facility provides information that is specifically required by the NRC to assist it in meeting its obligations under the National Environmental Policy Act (NEPA) of 1969 and the agency’s NEPA-implementing regulations. This ER demonstrates that the environmental protection measures proposed by IIFP are adequate to protect both the environment and the health and safety of the public. This Environmental Report evaluates the potential environmental impacts of the Proposed Action and its reasonable alternatives. This ER also describes the environment potentially affected by IIEF’s proposal,

Fluorine Extraction Process

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Depleted argon from underground sources  

Science Conference Proceedings (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

82

Utah Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

129,480 129,480 129,480 129,480 129,480 124,465 1988-2011 Salt Caverns 0 1999-2011 Aquifers 11,980 11,980 11,980 11,980 11,980 4,265 1999-2011 Depleted Fields 117,500 117,500...

83

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

513,416 536,702 528,442 531,456 531,480 524,324 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 513,416 536,702 528,442 531,456 531,480 524,324 1999-2011 Total Working Gas...

84

California Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

484,711 487,711 498,705 513,005 542,511 570,511 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 0 1999-2011 Depleted Fields 484,711 487,711 498,705 513,005 542,511 570,511 1999-2011...

85

Ohio Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

572,477 572,477 572,477 580,380 580,380 580,380 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 572,477 572,477 572,477 580,380 580,380 580,380 1999-2011...

86

Michigan Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

1,031,290 1,060,558 1,062,339 1,069,405 1,069,898 1,075,472 1988-2011 Salt Caverns 3,838 3,851 3,827 3,821 3,834 3,834 1999-2011 Aquifers 0 1999-2011 Depleted Fields 1,027,452...

87

Mississippi Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

150,809 166,909 187,251 210,128 235,638 240,241 1988-2011 Salt Caverns 45,383 45,383 62,424 62,301 82,411 90,452 1999-2011 Aquifers 0 1999-2011 Depleted Fields 105,427 121,527...

88

Oklahoma Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

380,038 373,738 371,324 371,338 371,338 372,838 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 380,038 373,738 371,324 371,338 371,338 372,838 1999-2011...

89

Arkansas Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

22,000 22,000 22,000 21,760 21,760 21,359 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 22,000 22,000 22,000 21,760 21,760 21,359 1999-2011 Total Working...

90

Oregon Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

26,703 29,415 29,415 29,565 29,565 29,565 1989-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 26,703 29,415 29,415 29,565 29,565 29,565 1999-2011 Total Working...

91

Texas Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

690,061 690,678 740,477 766,768 783,579 812,394 1988-2011 Salt Caverns 126,026 124,686 160,786 182,725 196,140 224,955 1999-2011 Aquifers 0 1999-2011 Depleted Fields 564,035...

92

New York Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

213,225 229,013 228,613 245,579 245,579 245,579 1988-2011 Salt Caverns 2,340 2,340 2,340 2,340 2,340 2,340 1999-2011 Aquifers 0 1999-2011 Depleted Fields 210,885 226,673 226,273...

93

Indiana Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

114,294 114,294 114,937 114,274 111,271 111,313 1988-2011 Salt Caverns 0 1999-2011 Aquifers 81,490 81,490 81,991 81,328 81,268 81,310 1999-2011 Depleted Fields 32,804 32,804 32,946...

94

Colorado Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

98,068 98,068 95,068 105,768 105,768 105,858 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 98,068 98,068 95,068 105,768 105,768 105,858 1999-2011 Total...

95

Pennsylvania Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

750,054 759,365 759,153 776,964 776,822 776,845 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 750,054 759,365 759,153 776,964 776,822 776,845 1999-2011...

96

Louisiana Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

599,165 588,711 615,858 651,968 670,880 690,295 1988-2011 Salt Caverns 68,739 61,660 88,806 123,341 142,253 161,668 1999-2011 Aquifers 0 1999-2011 Depleted Fields 530,426 527,051...

97

Kentucky Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

18,394 220,359 220,359 220,368 221,751 221,751 1988-2011 Salt Caverns 0 1999-2011 Aquifers 9,567 9,567 9,567 9,567 9,567 9,567 1999-2011 Depleted Fields 208,827 210,792 210,792...

98

Kansas Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

288,383 288,926 282,221 282,300 284,821 284,731 1988-2011 Salt Caverns 1,088 931 931 931 931 931 1999-2011 Aquifers 0 1999-2011 Depleted Fields 287,295 287,996 281,291 281,370...

99

Montana Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

74,201 374,201 374,201 376,301 376,301 376,301 1988-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 374,201 374,201 374,201 376,301 376,301 376,301 1999-2011...

100

Alabama Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

19,300 19,300 26,900 26,900 32,900 35,400 1995-2011 Salt Caverns 8,300 8,300 15,900 15,900 21,900 21,900 1999-2011 Aquifers 0 1999-2011 Depleted Fields 11,000 11,000 11,000 11,000...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New Mexico Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

82,652 78,424 80,000 80,000 84,300 84,300 1988-2011 Salt Caverns 0 1999-2011 Aquifers 4,227 0 1999-2011 Depleted Fields 78,424 78,424 80,000 80,000 84,300 84,300 1999-2011 Total...

102

Wyoming Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

114,096 114,067 111,167 111,120 111,120 106,764 1988-2011 Salt Caverns 0 1999-2011 Aquifers 10,000 10,000 10,000 10,000 10,000 6,733 1999-2011 Depleted Fields 104,096 104,067...

103

FAQ 7-How is depleted uranium produced?  

NLE Websites -- All DOE Office Websites (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

104

THE RIMINI PROTOCOL Oil Depletion Protocol  

E-Print Network (OSTI)

Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil. This fact alone tells us that oil is a finite resource, which in turn means that it is subject to depletion1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict

Keeling, Stephen L.

105

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

106

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

107

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The supplier’s price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyer’s perspective. The buyer’s decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the supplier’s price is an exogenous parameter. We model the supplier’s price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

108

FAQ 15-What are the dimensions of a depleted uranium hexafluoride cylinder?  

NLE Websites -- All DOE Office Websites (Extended Search)

are the dimensions of a depleted uranium hexafluoride cylinder? are the dimensions of a depleted uranium hexafluoride cylinder? What are the dimensions of a depleted uranium hexafluoride cylinder? Several different cylinder types are in use, although the vast majority of cylinders are designed to contain 14-tons (12-metric tons) of depleted UF6. The 14-ton-capacity cylinders are 12 ft (3.7 m) long by 4 ft (1.2 m) in diameter, with most having an initial wall thickness of 5/16 in. (0.79 cm) of steel. The cylinders have external stiffening rings that provide support. Lifting lugs for handling are attached to the stiffening rings. A small percentage of the cylinders have skirted ends (extensions of the cylinder walls past the rounded ends of the cylinder). Each cylinder has a single valve for filling and emptying located on one end at the 12 o'clock position. Similar, but slightly smaller, cylinders designed to contain 10 tons (9 metric tons) of depleted UF6 are also in use. Cylinders are manufactured in accordance with an American National Standards Institute standard (ANSI N14.1, American National Standard for Nuclear Materials - Uranium Hexafluoride - Packaging for Transport) as specified in 49 CFR 173.420, the federal regulations governing transport of depleted UF6.

109

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License
field field-type-text

110

Depleted uranium: A DOE management guide  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

111

Audit Report on "Depleted Uranium Hexafluoride Conversion," DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Audit Report on "Depleted Uranium Hexafluoride Conversion," DOEIG-0642 Audit Report on "Depleted Uranium Hexafluoride...

112

Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Follow-up of Depleted Uranium Hexafluoride Conversion, IG-0751 Follow-up of Depleted Uranium Hexafluoride...

113

Depleted Uranium Operations at the Y-12 National Security Complex...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Depleted Uranium Operations at the Y-12 National Security Complex, G-0570 Depleted Uranium Operations...

114

Depleted UF6 Production and Handling Slide Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Production and Handling Depleted UF6 Production and Handling Slide Presentation An online slide presentation about production and handling of depleted UF6, from mining of uranium...

115

FAQ 14-What does a depleted uranium hexafluoride cylinder look...  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium hexafluoride cylinder look like? What does a depleted uranium hexafluoride cylinder look like? A picture is worth a thousand words The pictures below show typical...

116

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

Annual Energy Outlook 2012 (EIA)

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

117

Production and Handling Slide 42: Typical Depleted Cylinder Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Typical Depleted Cylinder Storage Yard Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Typical Depleted Cylinder Storage Yard...

118

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

119

Capacity Markets for Electricity  

E-Print Network (OSTI)

Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

120

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The New MCNP6 Depletion Capability  

SciTech Connect

The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. Both the MCNP5 and MCNPX codes have historically provided a successful combinatorial geometry based, continuous energy, Monte Carlo radiation transport solution for advanced reactor modeling and simulation. However, due to separate development pathways, useful simulation capabilities were dispersed between both codes and not unified in a single technology. MCNP6, the next evolution in the MCNP suite of codes, now combines the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. We describe here the new capabilities of the MCNP6 depletion code dating from the official RSICC release MCNPX 2.6.0, reported previously, to the now current state of MCNP6. NEA/OECD benchmark results are also reported. The MCNP6 depletion capability enhancements beyond MCNPX 2.6.0 reported here include: (1) new performance enhancing parallel architecture that implements both shared and distributed memory constructs; (2) enhanced memory management that maximizes calculation fidelity; and (3) improved burnup physics for better nuclide prediction. MCNP6 depletion enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. The enhancements described here help provide a powerful capability as well as dictate a path forward for future development to improve the usefulness of the technology.

Fensin, Michael Lorne [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; Goorley, John T. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

122

Capacity on Finsler Spaces  

E-Print Network (OSTI)

Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more familiar with the global Finsler geometry and one of its new applications.

Bidabad, B

2009-01-01T23:59:59.000Z

123

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

124

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

125

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

126

Virginia Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

9,692 9,560 6,200 9,500 9,500 9,500 1998-2011 Salt Caverns 6,275 6,260 6,200 6,200 6,200 6,200 1999-2011 Aquifers 0 1999-2011 Depleted Fields 3,417 3,300 3,300 3,300 3,300...

127

Depleted Uranium (DU) Cermet Waste Package  

NLE Websites -- All DOE Office Websites (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

128

FAQ 37-What are the potential health risks from transportation of depleted  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium metal or oxide? depleted uranium metal or oxide? What are the potential health risks from transportation of depleted uranium metal or oxide? In the PEIS, risks associated with transportation of depleted uranium oxide and metal were estimated for transport by either rail or truck. Normal transport of oxide or metal would result in low-level external exposure to radiation for persons in the vicinity of a shipment. Based on estimates in the PEIS, the levels of exposure would result in negligible increased cancer risks. Risks from material released in an accident were also estimated. For a hypothetical railcar accident involving powder U3O8 that was assumed to occur in a highly-populated urban area under stable (nighttime) weather conditions, it was estimated that up to 20 people might experience irreversible adverse effects from chemical toxicity, with no fatalities expected. Approximately 2 potential latent cancer fatalities from radiological hazards are estimated for an accident under the same conditions. The probability of such an accident occurring is very low. The consequences from a truck accident would be lower, because trucks have a smaller shipment capacity. The consequences of transportation accidents involving depleted uranium metal would be much smaller than those involving uranium oxide because uranium metal would be in the form of solid blocks and would not be easily dispersed in an accident.

129

Number of Existing Natural Gas Depleted Fields Storage  

Gasoline and Diesel Fuel Update (EIA)

326 324 331 331 329 330 1999-2012 326 324 331 331 329 330 1999-2012 Alabama 1 1 1 1 1 1 1999-2012 Arkansas 2 2 2 2 2 2 1999-2012 California 12 12 13 13 13 14 1999-2012 Colorado 8 8 9 9 9 10 1999-2012 Illinois 11 10 10 11 11 11 1999-2012 Indiana 10 10 10 9 9 10 1999-2012 Kansas 18 18 18 18 18 18 1999-2012 Kentucky 20 20 20 20 20 20 1999-2012 Louisiana 8 8 8 8 8 7 1999-2012 Maryland 1 1 1 1 1 1 1999-2012 Michigan 43 43 43 43 43 43 1999-2012 Mississippi 5 5 6 6 6 6 1999-2012 Montana 5 5 5 5 5 5 1999-2012 Nebraska 1 1 1 1 1 1 1999-2012 New Mexico 2 2 2 2 2 2 1999-2012 New York 23 23 25 25 25 26 1999-2012 Ohio 24 24 24 24 24 24 1999-2012 Oklahoma 13 13 13 13 13 12 1999-2012 Oregon 7 7 7 7 7 7 1999-2012

130

West Virginia Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

2000's 733,125 497,995 494,457 510,827 512,143 512,377 513,416 536,702 528,442 531,456 2010's 531,480 524,324 - No Data Reported; -- Not Applicable; NA Not Available; W...

131

Illinois Natural Gas Number of Underground Storage Depleted Fields ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 13: 2000's: 13: 13: 13: 12: 12: 11: 11: 11: 10: 10: 2010's: 11: 11-

132

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

133

Lateral Capacity Exchange and Its Impact on Capacity Investment Decisions  

E-Print Network (OSTI)

We study the problem of capacity exchange between two …rms in anticipation of the mismatch between demand and capacity and its impact on …rm’s capacity investment decisions. For given capacity investment levels of the two …rms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the …rms’capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of …rms’share of the capacity exchange surplus on their capacity investment levels.

Amiya K. Chakravartyz; Jun Zhangy

2005-01-01T23:59:59.000Z

134

Nuclear conflict and ozone depletion Quick summary  

E-Print Network (OSTI)

Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

Toohey, Darin W.

135

Capacity Markets for Electricity  

E-Print Network (OSTI)

Global Agenda, August 15. [6] FERC, Docket No. EL01-63-003,at http://www.pjm.com. [7] FERC, Docket No. ER01-1440-capacity of the others” (FERC, 2001). Therefore, if an LSE

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

136

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

137

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

138

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

139

Forward capacity market CONEfusion  

Science Conference Proceedings (OSTI)

In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

Wilson, James F.

2010-11-15T23:59:59.000Z

140

OpenEI - capacity  

Open Energy Info (EERE)

Scope: 

field-items">
field-item odd"> United States
Data<...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

142

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

143

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

144

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

145

Depleted Uranium Uses: Regulatory Requirements and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

146

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

147

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

148

Depleted uranium plasma reduction system study  

Science Conference Proceedings (OSTI)

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z

149

Uranio impoverito: perché? (Depleted uranium: why?)  

E-Print Network (OSTI)

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of understanding the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

Germano D'Abramo

2003-05-28T23:59:59.000Z

150

The ultimate disposition of depleted uranium  

SciTech Connect

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

151

Summary of modeling studies of the East Olkaria geothermal field, Kenya  

Science Conference Proceedings (OSTI)

A detailed three-dimensional well-by-well model of the East Olkaria geothermal field in Kenya has been developed. The model matches reasonably well the flow rate and enthalpy data from all wells, as well as the overall pressure decline in the reservoir. The model is used to predict the generating capacity of the field, well decline, enthalpy behavior, the number of make-up wells needed and the effects of injection on well performance and overall reservoir depletion. 26 refs., 10 figs.

Bodvarsson, G.S.; Pruess, K.; Stefansson, V.; Bjornsson, S.; Ojiambo, S.B.

1985-03-01T23:59:59.000Z

152

FAQ 24-Who is responsible for managing depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who is responsible for managing depleted uranium? Who is responsible for managing depleted uranium? In the United States, the U.S. Department of Energy is responsible for managing...

153

Unsubscribe from the Depleted UF6 E-mail List  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Unsubscribe Unsubscribe from the Depleted UF6 E-mail List This form allows you to remove yourself from the Depleted UF6 e-mail list. Type your e-mail address here:...

154

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

155

Quantum Zero-error Capacity  

E-Print Network (OSTI)

We define here a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

Rex A. C. Medeiros; Francisco M. De Assis

2006-11-08T23:59:59.000Z

156

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,465 124,465 124,465 124,465 124,465 124,465 2002-2013 Total Working Gas Capacity 54,898 54,898 54,898 54,898 54,898 54,898 2012-2013 Total Number of Existing Fields 3 3 3 3 3...

157

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

577,944 577,944 577,944 577,944 577,944 577,944 2002-2013 Total Working Gas Capacity 230,350 228,030 228,030 228,030 228,030 230,828 2012-2013 Total Number of Existing Fields 24 24...

158

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

774,309 774,309 774,309 774,309 774,309 774,309 2002-2013 Total Working Gas Capacity 434,174 433,084 433,084 433,084 433,084 433,214 2012-2013 Total Number of Existing Fields 51 51...

159

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

29,565 29,565 29,565 29,565 29,565 29,565 2002-2013 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2013 Total Number of Existing Fields 7 7 7 7 7 7...

160

Colorado Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

122,086 122,086 122,086 122,086 122,086 122,086 2002-2013 Total Working Gas Capacity 60,582 60,582 60,582 60,582 60,582 60,582 2012-2013 Total Number of Existing Fields 10 10 10 10...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Iowa Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

288,210 288,210 288,210 288,210 288,210 288,210 2002-2013 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2013 Total Number of Existing Fields 4 4 4 4 4 4...

162

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 Total Working Gas Capacity 12,178 12,178 12,178 12,178 12,178 12,178 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

163

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

9,500 9,500 9,500 9,500 9,500 9,500 2002-2013 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

164

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

592,711 592,711 592,711 592,711 592,711 599,711 2002-2013 Total Working Gas Capacity 349,296 349,296 349,296 349,296 349,296 374,296 2012-2013 Total Number of Existing Fields 14 14...

165

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

376,301 376,301 376,301 376,301 376,301 376,301 2002-2013 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2013 Total Number of Existing Fields 5 5 5...

166

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

4,000 64,000 64,000 64,000 64,000 64,000 2002-2013 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2013 Total Number of Existing Fields 1 1 1 1 1 1...

167

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

110,749 110,749 110,749 110,749 110,749 110,749 2002-2013 Total Working Gas Capacity 33,024 33,024 33,024 33,024 33,024 33,024 2012-2013 Total Number of Existing Fields 22 22 22 22...

168

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

524,332 524,337 524,337 524,337 524,337 524,337 2002-2013 Total Working Gas Capacity 256,454 257,322 257,319 257,315 257,311 258,072 2012-2013 Total Number of Existing Fields 30 30...

169

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

999,931 999,931 999,931 999,931 999,931 1,000,281 2002-2013 Total Working Gas Capacity 302,962 302,962 302,962 302,962 302,962 303,312 2012-2013 Total Number of Existing Fields 28...

170

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

370,838 370,838 370,838 370,838 370,838 370,838 2002-2013 Total Working Gas Capacity 180,358 180,358 180,358 180,358 180,358 180,358 2012-2013 Total Number of Existing Fields 13 13...

171

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

245,579 245,579 245,779 245,779 245,779 245,779 2002-2013 Total Working Gas Capacity 129,026 129,026 129,221 129,221 129,221 129,551 2012-2013 Total Number of Existing Fields 26 26...

172

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

74,940 674,940 708,440 708,303 715,203 714,443 2002-2013 Total Working Gas Capacity 399,572 399,572 424,021 423,472 428,072 428,482 2012-2013 Total Number of Existing Fields 17 17...

173

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,937 124,937 124,937 157,985 157,985 157,985 2002-2013 Total Working Gas Capacity 48,705 48,705 48,705 73,705 73,705 73,705 2012-2013 Total Number of Existing Fields 9 9 9 9 9 9...

174

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,723 221,723 221,723 221,723 221,723 221,723 2002-2013 Total Working Gas Capacity 107,600 107,600 107,600 107,600 107,600 107,600 2012-2013 Total Number of Existing Fields 23 23...

175

A modern depleted uranium manufacturing facility  

SciTech Connect

The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout the DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.

Zagula, T.A.

1995-07-01T23:59:59.000Z

176

Capacity Value of Solar Power  

Science Conference Proceedings (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

177

Depletion effects of silicon deposition from methyltrichlorosilane  

DOE Green Energy (OSTI)

The deposition rate of SiC on carbon-coated Nicalon fibers from methyltrichlorosilane in hydrogen was measured as a function of temperature, pressure, total flow rate, and simulated reactant depletion. The results, which are included in this paper together with kinetic information on the stability of methyltrichlorosilane, led to two conclusions: two different mechanisms of deposition can occur depending on whether the methyltrichlorosilane has an opportunity to dissociate into separate silicon- and carbon-containing precursors, and the deposition rate is strongly reduced by the generation of byproduct HCl. The data were fitted to a simple etch model to obtain a kinetic expression that accounts for the significant effect of HCl.

Besmann, T.M.; Sheldon, B.W.; Moss, T.S. III; Kaster, M.D. (Oak Ridge National Lab., TN (United States))

1992-10-01T23:59:59.000Z

178

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

179

FAQ 25-What are the options for managing depleted uranium in...  

NLE Websites -- All DOE Office Websites (Extended Search)

options for managing depleted uranium in the future? What are the options for managing depleted uranium in the future? The options for managing depleted uranium were evaluated in...

180

Synthetic liquid fuels development: assessment of critical factors. Volume III. Coal resource depletion  

DOE Green Energy (OSTI)

While US coal resources are known to be vast, their rate of depletion in a future based predominantly on coal has not been examined analytically heretofore. The Coal Depletion Model inventories the coal resource on a regional basis and calculates the cost of coal extraction by three technologies - strip and underground mining and in-situ combustion. A plausible coal demand scenario extending from 1975 to the year 2050 is used as a basis in applying the model. In the year 2050, plants in operation include 285 syncrude plants, each producing 100,000 B/D; 312 SNG plants, each producing 250 million SCF/D and 722 coal-fired electric power plants, each of 1000 MW capacity. In addition, there is 890 million tons per year of industrial coal consumption. Such a high level of coal use would deplete US coal resources much more rapidly than most people appreciate. Of course, the actual amount of US coal is unknown, and if the coal in the hypothetical reliability category is included, depletion is delayed. Coal in this category, however, has not been mapped; it is only presumed to exist on the basis of geological theory. The coal resource depletion model shows that unilateral imposition of a severance tax by a state tends to shift production to other coal producing regions. Boom and bust cycles are both delayed and reduced in their magnitude. When several states simultaneously impose severance taxes, the effect of each is weakened.Key policy issues that emerge from this analysis concern the need to reduce the uncertainty of the magnitude and geographic distribution of the US coal resource and the need to stimulate interaction among the parties at interest to work out equitable and acceptable coal conversion plant location strategies capable of coping with the challenges of a high-coal future.

Dickson, E.M.; Yabroff, I.W.; Kroll, C.A.; White, R.K.; Walton, B.L.; Ivory, M.E.; Fullen, R.E.; Weisbecker, L.W.; Hays, R.L.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Capacities associated with scalar signed Riesz kernels, and analytic capacity  

E-Print Network (OSTI)

The real and imaginari parts of the Cauchy kernel in the plane are scalar Riesz kernels of homogeneity -1. One can associate with each of them a natural notion of capacity related to bounded potentials. The main result of the paper asserts that these capacities are comparable to classical analytic capacity, thus stressing the real variables nature of analytic capacity. Higher dimensional versions of this result are also considered.

Mateu, Joan; Verdera, Joan

2010-01-01T23:59:59.000Z

182

Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications  

E-Print Network (OSTI)

most of which from natural gas storage and groundwaterconducted in the Hudson natural gas storage field in 1969 (storage of carbon dioxide in unused aquifers and in depleted natural gas

Birkholzer, J.T.

2009-01-01T23:59:59.000Z

183

Heat capacity of a two-component superfluid Fermi gas  

E-Print Network (OSTI)

We investigate mean-field effects in two- component trapped Fermi gases in the superfluid phase, in the vicinity of s-wave Feshbach resonances. Within the resonance superfluidity approach (Holland et al., 2001) we calculate the ground state energy and the heat capacity as function of temperature. Heat capacity is analyzed for different trap aspect ratios. We find that trap anisotropy is an important factor in determining both the value of heat capacity near the transition temperature and the transition temperature itself.

Alexander V. Avdeenkov

2003-09-25T23:59:59.000Z

184

Multipath Channels of Unbounded Capacity  

E-Print Network (OSTI)

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.

Koch, Tobias

2008-01-01T23:59:59.000Z

185

Overview of Depleted Uranium Hexafluoride Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

186

Regulation of New Depleted Uranium Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

2-5 2-5 Regulation of New Depleted Uranium Uses Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

187

Lithium Depletion of Nearby Young Stellar Associations  

E-Print Network (OSTI)

We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.

Erin Mentuch; Alexis Brandeker; Marten H. van Kerkwijk; Ray Jayawardhana; Peter H. Hauschildt

2008-08-26T23:59:59.000Z

188

Heat capacities of elastic solids  

E-Print Network (OSTI)

The work function is embedded in the equation describing the relationship between the constant volume and constant pressure heat capacities. The modification of the work function results that the relationship between these quantities must be changed accordingly. Using the newly derived work functions of elastic solids the description of the heat capacities and the relationship between the heat capacities are given for solid phase.

Garai, J

2005-01-01T23:59:59.000Z

189

Symmetrical Symplectic Capacity with Applications  

E-Print Network (OSTI)

In this paper, we first introduce the concept of symmetrical symplectic capacity for symmetrical symplectic manifolds, and by using this symmetrical symplectic capacity theory we prove that there exists at least one symmetric closed characteristic (brake orbit and $S$-invariant brake orbit are two examples) on prescribed symmetric energy surface which has a compact neighborhood with finite symmetrical symplectic capacity.

Liu, Chungen

2010-01-01T23:59:59.000Z

190

Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluorid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Perry, (865) 576-0885 September 24, 2001 www.oakridge.doe.gov DOE SEEKS PUBLIC INPUT FOR DEPLETED URANIUM HEXAFLUORIDE ENVIRONMENTAL IMPACT STATEMENT Public Meetings Planned in...

191

Numerical study of error propagation in Monte Carlo depletion simulations.  

E-Print Network (OSTI)

??Improving computer technology and the desire to more accurately model the heterogeneity of the nuclear reactor environment have made the use of Monte Carlo depletion… (more)

Wyant, Timothy Joseph

2012-01-01T23:59:59.000Z

192

DOE Selects Contractor for Depleted Hexafluoride Conversion Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Paducah, Kentucky and Portsmouth, Ohio. For several decades DOE was responsible for uranium enrichment, the uranium hexafluoride depleted in the 235U isotope (typically down...

193

Environmental Risks of Depleted UF6-related Manufacturing Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

and operation of a facility to fabricate representative products containing depleted uranium. Impacts Analyzed in the PEIS The PEIS evaluated the general environmental impacts...

194

Health Risks Associated with Disposal of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Disposal of Depleted Uranium A discussion of risks associated with disposal...

195

Environmental Impacts of Options for Disposal of Depleted Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

study by Oak Ridge National Laboratory evaluated the acceptability of several depleted uranium conversion products at potential LLW disposal sites to provide a basis for DOE...

196

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings:...

197

Depleted UF6 Management Information Network - A resource for...  

NLE Websites -- All DOE Office Websites (Extended Search)

is an online repository of information about the U.S. Department of Energy's (DOE's) inventory of depleted uranium hexafluoride (DUF6), a product of the uranium enrichment...

198

An Assessment of Railway Capacity  

E-Print Network (OSTI)

In this paper, we review the main concepts and methods to perform capacity analyses, and we present an automated tool that is able to perform several capacity analyses. Capacity is extremely dependent on infrastructure, traffic, and operating parameters. Therefore, an in-depth study of the main factors that influence railway capacity is performed on several Spanish railway infrastructures. The results show how the capacity varies according to factors such as train speed, commercial stops, train heterogeneity, distance between railway signals, and timetable robustness.

M. Abril; F. Barber; A L. Ingolotti; A M. A. Salido; P. Tormos; B A. Lova

2007-01-01T23:59:59.000Z

199

Entangling capacity with local ancilla  

E-Print Network (OSTI)

We investigate the entangling capacity of a dynamical operation with access to local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement measures including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Campbell, Earl T

2010-01-01T23:59:59.000Z

200

Analysis of Hydrogen Depletion Using a Scaled Passive Autocatalytic Recombiner  

DOE Green Energy (OSTI)

Hydrogen depletion tests of a scaled passive autocatalytic recombine (pAR) were performed in the Surtsey test vessel at Sandia National Laboratories (SNL). The experiments were used to determine the hydrogen depletion rate of a PAR in the presence of steam and also to evaluate the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations.

Blanchat, T.K.; Malliakos, A.

1998-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

202

Decentralized capacity management and internal pricing  

E-Print Network (OSTI)

Press. Goex, R. (2002). Capacity planning and pricing undermanufacturing on innovation, capacity and pro?tability.Mieghem, V. J. (2003). Capacity management, investment and

Dutta, Sunil; Reichelstein, Stefan

2010-01-01T23:59:59.000Z

203

Capacity consideration of wireless ad hoc networks  

E-Print Network (OSTI)

Capacity ProblemCurrent Research on Capacity of Wireless Ad HocChapter 3 Upper Bound on the Capacity of Wireless Ad Hoc

Tan, Yusong

2008-01-01T23:59:59.000Z

204

Are there capacity limitations in symmetry perception?  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitive1972). Visual processing capacity and attentional control.J. (1996). Goodness of CAPACITY LIMIT OF SYMMETRY PERCEPTION

Huang, L Q; Pashler, Harold; Junge, J A

2004-01-01T23:59:59.000Z

205

The Ergodic Capacity of Interference Networks  

E-Print Network (OSTI)

A. Jafar, “The ergodic capacity of interference networks,”Gupta and P. R. Kumar, “The capacity of wireless networks,”cooperation achieves optimal capacity scaling in ad hoc

Jafar, Syed A

2010-01-01T23:59:59.000Z

206

Mapping Individual Variations in Learning Capacity  

E-Print Network (OSTI)

in working memory capacity. Integrative Physiological andVariations in Learning Capacity Eduardo Mercado IIIdifferences in learning capacity are evident in humans and

Mercado III, Eduardo

2011-01-01T23:59:59.000Z

207

Definition: Capacity Emergency | Open Energy Information  

Open Energy Info (EERE)

Emergency Jump to: navigation, search Dictionary.png Capacity Emergency A capacity emergency exists when a Balancing Authority Area's operating capacity, plus firm purchases from...

208

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

209

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

210

Regulation of new depleted uranium uses.  

DOE Green Energy (OSTI)

This report evaluates how the existing U.S. Nuclear Regulatory Commission (NRC) regulatory structure and pending modifications would affect full deployment into radiologically uncontrolled areas of certain new depleted uranium (DU) uses being studied as part of the U.S. Department of Energy's DU uses research and development program. Such new DU uses include as catalysts (for destroying volatile organic compounds in off-gases from industrial processes and for hydrodesulfurization [HDS] of petroleum fuels), semiconductors (for fabricating integrated circuits, solar cells, or thermoelectric devices, especially if such articles are expected to have service in hostile environments), and electrodes (for service in solid oxide fuel cells, in photoelectrochemical cells used to produce hydrogen, and in batteries). The report describes each new DU use and provides a detailed analysis of whether any existing NRC licensing exemption or general license would be available to users of products and devices manufactured to deploy the new use. Although one existing licensing exemption was found to be possibly available for catalysts used for HDS of petroleum fuels and one general license was found to be possibly available for catalysts, semiconductors, and electrodes used in hydrogen production or batteries, existing regulations would require most users of products and devices deploying new DU uses to obtain specific source material licenses from the NRC or an Agreement State. This situation would not be improved by pending regulatory modifications. Thus, deployment of new DU uses may be limited because persons having no previous experience with NRC or Agreement State regulations may be hesitant to incur the costs and inconvenience of regulatory compliance, unless using a DU-containing product or device offers a substantial economic benefit over nonradioactive alternatives. Accordingly, estimating the risk of deploying new DU-containing products and devices in certain radiologically uncontrolled areas is recommended. If the estimated risks of such deployment are found to be acceptable, then it may be possible to justify adding new exemptions or general licenses to the NRC regulations.

Ranek, N. L.

2003-01-22T23:59:59.000Z

211

North Sea reserve appreciation, production, and depletion  

E-Print Network (OSTI)

Oil field "growth" has become a well-recognized phenomenon in mature, well-explored provinces such as the United States leading to the continual under-estimation in oil production forecasts. This working paper explores the ...

Sem, Tone

1999-01-01T23:59:59.000Z

212

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

213

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

214

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

215

Depleted Uranium Dioxide as SNF Waste Package Fill: A Disposal...  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPLETED URANIUM DIOXIDE AS SNF WASTE PACKAGE FILL: A DISPOSAL OPTION Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6179 Tel: (865)...

216

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Selects Contractor for Depleted Hexafluoride Conversion Project DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

217

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

218

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

219

DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor for Depleted Hexafluoride Conversion Project Contractor for Depleted Hexafluoride Conversion Project Support DOE Selects Contractor for Depleted Hexafluoride Conversion Project Support March 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business task order to Navarro Research and Engineering Inc. of Oak Ridge, Tennessee. The award is a $22 million, time and materials task order with a three-year performance period and two one-year extension options. Navarro Research and Engineering Inc. will provide engineering and operations technical support services to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and Portsmouth, Ohio.

220

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

222

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

223

Radiochemical Analysis Methodology for uranium Depletion Measurements  

SciTech Connect

This report provides sufficient material for a test sponsor with little or no radiochemistry background to understand and follow physics irradiation test program execution. Most irradiation test programs employ similar techniques and the general details provided here can be applied to the analysis of other irradiated sample types. Aspects of program management directly affecting analysis quality are also provided. This report is not an in-depth treatise on the vast field of radiochemical analysis techniques and related topics such as quality control. Instrumental technology is a very fast growing field and dramatic improvements are made each year, thus the instrumentation described in this report is no longer cutting edge technology. Much of the background material is still applicable and useful for the analysis of older experiments and also for subcontractors who still retain the older instrumentation.

Scatena-Wachel DE

2007-01-09T23:59:59.000Z

224

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

225

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

226

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities...

227

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

228

Capacity Markets and Market Stability  

Science Conference Proceedings (OSTI)

The good news is that market stability can be achieved through a combination of longer-term contracts, auctions for far enough in the future to permit new entry, a capacity management system, and a demand curve. The bad news is that if and when stable capacity markets are designed, the markets may seem to be relatively close to where we started - with integrated resource planning. Market ideologues will find this anathema. (author)

Stauffer, Hoff

2006-04-15T23:59:59.000Z

229

Capacity Value of Wind Power  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to overall system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America are highlighted with a description of open research questions also given.

Keane, Andrew; Milligan, Michael; Dent, Chris; Hasche, Bernhard; DAnnunzio, Claudine; Dragoon, Ken; Holttinen, Hannele; Samaan, Nader A.; Soder, Lennart; O'Malley, Mark J.

2011-05-04T23:59:59.000Z

230

Production and Handling Slide 38: 48G Depleted UF6 Storage Cylinder  

NLE Websites -- All DOE Office Websites (Extended Search)

48G Depleted UF6 Storage Cylinder Refer to caption below for image description After enrichment, depleted uranium hexafluoride is placed in large steel cylinders for storage....

231

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

232

Ozone depletion, greenhouse gases, and climate change: Proceedings  

SciTech Connect

This symposium was primarily concerned with the linkages between ozone depletion and increasing greenhouse gases and with their combined effect in causing climate change to occur on a global scale. The presentations in these proceedings review the current state of knowledge about stratospheric ozone depletion, discuss the probable effect of predicted greenhouse gas increase on future ozone trends, summarize observational data on changing atmospheric chemistry and associated atmospheric temperatures, and describe the continuing effort to model and predict future scenarios of climatic change relative to ozone and greenhouse gases in both the stratosphere and the troposphere. Some of the questions and answers that followed the presentations have been included when they highlight noteworthy points that were not covered in the presentation itself. The request by the National Climate Program Office for a symposium on the above related issues is included. The symposium agenda and participants are given. As well as a glossary of special terms and abbreviations. In summary, the Joint Symposium on Ozone Depletion, Greenhouse Gases, and Climate Change reviewed the magnitude and causes of stratospheric ozone depletion and examined the connections that exist between this problem and the impending climate warming to increasing greenhouse gases. The presentations of these proceedings indicate that the connections are real and important, and that the stratospheric ozone depletion and tropospheric greenhouse warming problems must be studied as parts of an interactive global system rather than as more or less unconnected events.

1989-01-01T23:59:59.000Z

233

Optimal Capacity Adjustments for Supply Chain Control  

E-Print Network (OSTI)

Decisions on capacity are often treated separately from those of production and inventory. In most situations, capacity issues are longer-term, so capacity-related decisions are considered strategic and thus not part of ...

Budiman, Benny

234

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

235

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

236

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

237

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

238

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

239

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

240

Effect of Shim Arm Depletion in the NBSR  

SciTech Connect

The cadmium shim arms in the NBSR undergo burnup during reactor operation and hence, require periodic replacement. Presently, the shim arms are replaced after every 25 cycles to guarantee they can maintain sufficient shutdown margin. Two prior reports document the expected change in the 113Cd distribution because of the shim arm depletion. One set of calculations was for the present high-enriched uranium fuel and the other for the low-enriched uranium fuel when it was in the COMP7 configuration (7 inch fuel length vs. the present 11 inch length). The depleted 113Cd distributions calculated for these cores were applied to the current design for an equilibrium low-enriched uranium core. This report details the predicted effects, if any, of shim arm depletion on the shim arm worth, the shutdown margin, power distributions and kinetics parameters.

Hanson A. H.; Brown N.; Diamond, D.J.

2013-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotonically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W.

1997-12-01T23:59:59.000Z

242

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

243

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

244

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

and tank farms. Excludes storage capacity of refineries, fuel ethanol plants, and pipelines. 2 Percent exclusive use is that portion of capacity in operation that is for the...

245

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

246

Property:Cooling Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Jump to: navigation, search This is a property of type Number. Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation...

247

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

248

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

249

Resource Adequacy Capacity - Power Marketing - Sierra Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Adequacy Capacity Resource Adequacy Capacity Resource Adequacy Plan - Current Local Resource Adequacy Plan (Word - 175K) - Notice of Proposed Final Resource Adequacy Plan...

250

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

251

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

252

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

253

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

254

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

255

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

256

EIA Crude Oil Distillation Capacity (Table 36)  

U.S. Energy Information Administration (EIA)

(Important Note on Sources of Crude Oil Distillation Capacity Estimates) Table 3.6 World Crude Oil Distillation Capacity, January 1, 1970 - January 1, 2009

257

OpenEI - production capacity  

Open Energy Info (EERE)

National Biorefineries National Biorefineries Database http://en.openei.org/datasets/node/50

License
field field-type-text field-field-license-type"> Type of License:  Other (please specify below)
Source of data Source name: 

258

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector  

E-Print Network (OSTI)

Status Report and Proposal Concerning the Supply of Depleted Uranium Metal Bands for a Particle Detector

1980-01-01T23:59:59.000Z

259

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

260

Lithium depletion and the rotational history of exoplanet host stars  

E-Print Network (OSTI)

Israelian et al. (2004) reported that exoplanet host stars are lithium depleted compared to solar-type stars without detected massive planets, a result recently confirmed by Gonzalez (2008). We investigate whether enhanced lithium depletion in exoplanet host stars may result from their rotational history. We have developed rotational evolution models for slow and fast solar-type rotators from the pre-main sequence (PMS) to the age of the Sun and compare them to the distribution of rotational periods observed for solar-type stars between 1 Myr and 5 Gyr. We show that slow rotators develop a high degree of differential rotation between the radiative core and the convective envelope, while fast rotators evolve with little core-envelope decoupling. We suggest that strong differential rotation at the base of the convective envelope is responsible for enhanced lithium depletion in slow rotators. We conclude that lithium-depleted exoplanet host stars were slow rotators on the zero-age main sequence (ZAMS) and argue that slow rotation results from a long lasting star-disk interaction during the PMS. Altogether, this suggests that long-lived disks (> 5 Myr) may be a necessary condition for massive planet formation/migration.

Jerome Bouvier

2008-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The depleted hydrogen atoms in chemical graph theory  

Science Conference Proceedings (OSTI)

A new algorithm which explicitly describes the depleted hydrogen atoms is proposed for chemical graph computations, and especially for molecular connectivity model studies. The new algorithm continues to be centred on the concepts of complete graphs ... Keywords: General chemical graphs, complete graphs, hydrogen perturbation, molecular connectivity computations

Lionello Pogliani

2008-12-01T23:59:59.000Z

262

Entangling and disentangling capacities of nonlocal maps  

E-Print Network (OSTI)

Entangling and disentangling capacities are the key manifestation of the nonlocal content of a quantum operation. A lot of effort has been put recently into investigating (dis)entangling capacities of unitary operations, but very little is known about capacities of non-unitary operations. Here we investigate (dis)entangling capacities of unital CPTP maps acting on two qubits.

Berry Groisman

2007-04-08T23:59:59.000Z

263

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

264

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

265

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

266

Full-field simulation for development planning and reservoir management at Kuparuk River field  

SciTech Connect

The Kuparuk River oil field on the Alaskan North Slope produces from two stratigraphically independent sands of the Kuparuk River formation. A full-field reservoir model was constructed to support field management and development planning. The model captures essential aspects of two independent producing horizons, hydraulically coupled at the wellbores, and simulates dynamic interactions between the reservoir stands and surface facilities. This paper reports that the field model is used to plan field development on the basis of performance ranking of drillsite expansions, to assess depletion performance effects of reservoir management strategies, and to evaluate alternative depletion processes and associated reservoir and facility interactions of field projects.

Starley, G.P.; Masino, W.H. Jr.; Weiss, J.L.; Bolling, J.D. (Arco Alaska Inc. (US))

1991-08-01T23:59:59.000Z

267

Tri-Laboratory Linux Capacity Cluster 2007 SOW  

SciTech Connect

The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

Seager, M

2007-03-22T23:59:59.000Z

268

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

269

Building Energy Software Tools Directory : CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

CHP Capacity Optimizer Back to Tool CHP Capacity Optimizer data entry screen CHP Capacity Optimizer results screen CHP Capacity Optimizer restult map...

270

CRDIAC: Coupled Reactor Depletion Instrument with Automated Control  

SciTech Connect

When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its depletion, unlike ORIGEN, which only depletes the isotopes specified by the user. This means that depletions done by MRTAU more accurately reflect reality. MRTAU also allows the user to build new isotope data sets, which means any isotope with nuclear data could be depleted, something that would help predict the outcomes of nuclear reaction testing in materials other than fuel, like beryllium or gold.

Steven K. Logan

2012-08-01T23:59:59.000Z

271

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

272

The Effect of Technological Improvement on Capacity  

E-Print Network (OSTI)

We formulate a model of capacity expansion that is relevant to a service provider for whom the cost of capacity shortages would be considerable but difficult to quantify exactly. Due to demand uncertainty and a lead time for adding capacity, not all shortages are avoidable. In addition, technological innovations will reduce the cost of adding capacity but may not be completely predictable. Analytical expressions for the infinite horizon expansion cost and shortages are optimized numerically. Sensitivity analyses allow us to determine the impact of technological change on the optimal timing and sizes of capacity expansions to account for economies of scale, the time value of money and penalties for insufficient capacity.

Expansion For Uncertain; Dohyun Pak; Nattapol Pornsalnuwat; Sarah M. Ryan

2004-01-01T23:59:59.000Z

273

Shock induced multi-mode damage in depleted uranium  

SciTech Connect

Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

Koller, Darcie D [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

274

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

NLE Websites -- All DOE Office Websites (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

275

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

276

Uranio impoverito: perch'e? (Depleted uranium: why?)  

E-Print Network (OSTI)

In this paper we develop a simple model of the penetration process of a long rod through an uniform target. Applying the momentum and energy conservation laws, we derive an analytical relation which shows how the penetration depth depends upon the density of the rod, given a fixed kinetic energy. This work was sparked off by the necessity of the author of understanding the reasons of the effectiveness of high density penetrators (e.g. depleted uranium penetrators) as anti-tank weapons.

D'Abramo, G

2003-01-01T23:59:59.000Z

277

Depletion-induced structure and dynamics in bimodal colloidal suspensions.  

Science Conference Proceedings (OSTI)

Combined small angle x-ray scattering and x-ray photon correlation spectroscopy studies of moderately concentrated bimodal hard-sphere colloidal suspensions in the fluid phase show that depletion-induced demixing introduces spatially heterogeneous dynamics with two distinct time scales. The adhesive nature, as well as the mobility, of the large particles is determined by the level of interaction within the monomodal domains. This interaction is driven by osmotic forces, which are governed by the relative concentration of the constituents.

Sikorski, M.; Sandy, A. R.; Narayanan, S. (X-Ray Science Division)

2011-05-03T23:59:59.000Z

278

CO depletion --- An evolutionary tracer for molecular clouds  

E-Print Network (OSTI)

Planck cold clumps are among the most promising objects to investigate the initial conditions of the evolution of molecular clouds. In this work, by combing the dust emission data from the survey of Planck satellite with the molecular data of $^{12}$CO/$^{13}$CO (1-0) lines from observations with the Purple Mountain Observatory (PMO) 14 m telescope, we investigate the CO abundance, CO depletion and CO-to-H$_{2}$ conversion factor of 674 clumps in the early cold cores (ECC) sample. The median and mean values of the CO abundance are 6.2$\\times10^{-5}$ and 9.1$\\times10^{-5}$, respectively. The mean and median of CO depletion factor are 2.8 and 1.4, respectively. The median value of $X_{CO-to-H_{2}}$ for the whole sample is $3.3\\times10^{20}$ cm$^{-2}$K$^{-1}$km$^{-1}$ s. The CO abundance, CO depletion factor and CO-to-H$_{2}$ conversion factor seems to be strongly correlated to other physical parameters (e.g. dust temperature, dust emissivity spectra index and column density). CO gas severely freeze out in colde...

Liu, Tie; Zhang, Huawei

2013-01-01T23:59:59.000Z

279

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

280

Capacity Factor Risk At Nuclear Power Plants  

E-Print Network (OSTI)

We develop a model of the dynamic structure of capacity factor risk. It incorporates the risk that the capacity factor may vary widely from year-to-year, and also the risk that the reactor may be permanently shutdown prior ...

Du, Yangbo

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Definition: Capacity Revenue | Open Energy Information  

Open Energy Info (EERE)

through the competitive capacity market for a capacity credit.1 References SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see...

282

Empirical Study of Ramp Metering and Capacity  

E-Print Network (OSTI)

Empirical Study of Ramp Metering and Capacity Michael J.EMPIRICAL STUDY OF RAMP METERING AND CAPACITY June 7, 2002Thus, the benefits of metering inflows at this on-ramp seem

Cassidy, Michael J.; Rudjanakanoknad, Jittichai

2002-01-01T23:59:59.000Z

283

On the capacity of bosonic channels  

E-Print Network (OSTI)

The capacity of the bosonic channel with additive Gaussian noise is unknown, but there is a known lower bound that is conjectured to be the capacity. We have quantified the gap that exists between this known achievable ...

Blake, Christopher Graham

2011-01-01T23:59:59.000Z

284

Capacity expansion in contemporary telecommunication networks  

E-Print Network (OSTI)

We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

Sivaraman, Raghavendran

2007-01-01T23:59:59.000Z

285

FAQ 16-How much depleted uranium hexafluoride is stored in the United  

NLE Websites -- All DOE Office Websites (Extended Search)

How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? How much depleted uranium hexafluoride is stored in the United States? U.S. DOE's inventory of depleted UF6 consists of approximately 700,000 metric tons of depleted UF6, containing about 470,000 metric tons of uranium, currently stored at the Paducah Site in Kentucky, the Portsmouth Site in Ohio, and the East Tennessee Technology Park (ETTP) in Tennessee (formerly known as the K-25 Site). This inventory of depleted UF6 is stored in about 57,000 steel cylinders. The inventory is listed in the table below. DOE Inventory of Depleted UF6 Location Total Cylinders Total Depleted UF6 (metric tons) Paducah, Kentucky 36,191 436,400 Portsmouth, Ohio 16,109 195,800 Oak Ridge, Tennessee 4,822 54,300

286

FAQ 35-What are the potential health risks from disposal of depleted...  

NLE Websites -- All DOE Office Websites (Extended Search)

health risks from disposal of depleted uranium as an oxide? Once depleted uranium has been converted from UF6 to the oxide form, the risk associated with handling at a disposal...

287

FAQ 33-What are the potential health risks from storage of depleted...  

NLE Websites -- All DOE Office Websites (Extended Search)

health risks from storage of depleted uranium as an oxide? Once depleted uranium has been converted from UF6 to the oxide form, the risk associated with storage and handling is...

288

Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Shelf Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The objective is to utilize reservoir characteristics and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. Also the project seeks to demonstrate the performance and economic viability of the project in the field.

None

1997-08-01T23:59:59.000Z

289

On Working Memory: Its organization and capacity limits  

E-Print Network (OSTI)

64 iii 6.2 Working memory capacity10 1.4 Capacity limits of workingcapacity . . . . . . . . . . . . . . . . . . . . . . . . . .

Lara, Antonio Homero

2010-01-01T23:59:59.000Z

290

Loads, capacity, and failure rate modeling  

SciTech Connect

Both failure rate and load capacity (stress-strength) interferenece methodologies are employed in the reliability analysis at nuclear facilities. Both of the above have been utilized in a heuristic failure rate model in terms of load capacity inference. Analytical solutions are used to demonstrate that infant mortality and random aging failures may be expressed implicity in terms of capacity variability, load variability, and capacity deterioration, and that mode interactions play a role in the formation of the bathtub curve for failure rates.

Lewis, E.E.; Chen, Hsin-Chieh

1994-12-31T23:59:59.000Z

291

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Peak Working Natural Gas Capacity. Data and Analysis from the Energy Information Administration (U.S. Dept. of Energy)

292

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

293

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

294

Optimization of the Refrigerant Capacity in Multiphase ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications. Presentation Title, Optimization of the Refrigerant Capacity in Multiphase Magnetocaloric Materials.

295

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

296

Shannon capacity of nonlinear regenerative channels  

E-Print Network (OSTI)

We compute Shannon capacity of nonlinear channels with regenerative elements. Conditions are found under which capacity of such nonlinear channels is higher than the Shannon capacity of the classical linear additive white Gaussian noise channel. We develop a general scheme for designing the proposed channels and apply it to the particular nonlinear sine-mapping. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived.

Sorokina, M A

2013-01-01T23:59:59.000Z

297

Robust Capacity Planning in Semiconductor Manufacturing  

E-Print Network (OSTI)

Oct 3, 2001 ... Abstract: We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing.

298

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

299

Capacity of shrinking condensers in the plane  

E-Print Network (OSTI)

We show that the capacity of a class of plane condensers is comparable to the capacity of corresponding "dyadic condensers". As an application, we show that for plane condensers in that class the capacity blows up as the distance between the plates shrinks, but there can be no asymptotic estimate of the blow-up.

Arcozzi, N

2011-01-01T23:59:59.000Z

300

The Compound Capacity of Polar Codes  

E-Print Network (OSTI)

We consider the compound capacity of polar codes under successive cancellation decoding for a collection of binary-input memoryless output-symmetric channels. By deriving a sequence of upper and lower bounds, we show that in general the compound capacity under successive decoding is strictly smaller than the unrestricted compound capacity.

Hassani, S Hamed; Urbanke, Ruediger

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Depletion Reactivity Benchmark for the International Handbook of Evaluated Reactor Physics Benchmark Experiments  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute– (EPRI-) sponsored depletion reactivity benchmarks documented in reports 1022909, Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty, and 1025203, Utilization of the EPRI Depletion Benchmarks for Burnup Credit Validation, have been translated to an evaluated benchmark for incorporation in the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE), published by the Organisation for Economic ...

2013-04-10T23:59:59.000Z

302

High current capacity electrical connector  

DOE Patents (OSTI)

An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

Bettis, Edward S. (Oak Ridge, TN); Watts, Harry L. (Lake City, TN)

1976-01-13T23:59:59.000Z

303

DOE Transmission Capacity Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

304

Capacity withholding in the Electricity Pool.  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which should be generating will raise energy prices but make the pattern of generation less efficient. This pattern improved significantly after privatisation. Withholding capacity that was not expected to generate would raise the Capacity Payments based on spare capacity. On a multi-year basis, these did not usually exceed “competitive ” levels, the cost of keeping stations open. The evidence for large-scale capacity withholding is weak. Keywords: JEL:

Richard Green; Richard Green

2004-01-01T23:59:59.000Z

305

Capacity Value of Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

306

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

307

Optimal entangling capacity of dynamical processes  

SciTech Connect

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result, a property we call resource independence of the entangling capacity. We prove several useful upper bounds on the entangling capacity that hold for general qudit dynamical operations and for a whole family of entanglement monotones including log negativity and log robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independent for all two-qudit unitary operators.

Campbell, Earl T. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

308

Optimal Entangling Capacity of Dynamical Processes  

E-Print Network (OSTI)

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement monotones including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Earl T. Campbell

2010-07-08T23:59:59.000Z

309

Selection of a management strategy for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

310

Grid orientation effects in the simulation of cold water injection into depleted vapor zones  

DOE Green Energy (OSTI)

A considerable body of field experience with injection has been accumulated at Larderello, Italy and The Geysers, California; the results have been mixed. There are well documented cases where injection has increased flow rates of nearby wells. Return of injected fluid as steam from production wells has been observed directly through chemical and isotopic changes of produced fluids (Giovannoni et al., 1981; Nuti et al., 1981). In other cases injection has caused thermal interference and has degraded the temperature and pressure of production wells. Water injection into depleted vapor zones gives rise to complex two-phase fluid flow and heat transfer processes with phase change. These are further complicated by the fractured-porous nature of the reservoir rocks. An optimization of injection design and operating practice is desirable; this requires realistic and robust mathematical modeling capabilities.

Pruess, K.

1991-01-01T23:59:59.000Z

311

Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF4)  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Engineering Analysis for Disposal of Depleted Uranium Tetrafluoride (UF 4 ) Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy. This technical memorandum is a product of Argonne's Environmental Assessment Division (EAD). For information on the division's scientific and engineering activities, contact: Director, Environmental Assessment Division Argonne National Laboratory Argonne, Illinois 60439-4832

312

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

313

Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Background Fact Sheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions At the direction of Energy Secretary Steven Chu, over many months, the Energy Department (DOE) has been working closely with Energy Northwest (ENW), the Tennessee Valley Authority (TVA), and USEC Inc. (USEC) to develop a plan to address the challenges at USEC's Paducah Gaseous Diffusion Plant (GDP) that advances America's national security interests, protects taxpayers, and provides benefits for TVA and the Bonneville Power Administration's (BPA's) electric ratepayers and business operations. BPA is ENW's sole customer, purchasing 100 percent of ENW's Columbia Generating Station's electric power as part of BPA's overall

314

REVIEW ARTICLE Depletion of atrial natriuretic peptide during longstanding atrial fibrillation  

E-Print Network (OSTI)

atrial fibrillation; heart failure; depletion; cardioversion; maze procedure Abstract This review focuses on the relation between atrial fibrillation (AF) and atrial natriuretic peptide (ANP). ANP is produced by the atria secondary to atrial stretch. By causing atrial stretch, acute AF leads to an increase in plasma ANP concentration, which serves to normalize haemodynamics through natriuresis and vasodilation. However, data have been reported suggesting that prolonged AF, by inflicting structural atrial damage, is associated with a reduced capacity by the atria to produce ANP. An inverse relation was thus demonstrated between the duration of AF and plasma ANP concentration. In addition, a reduced ANP response to exercise has been shown to be predictive of unsuccessful cardioversion of AF to sinus rhythm. Finally, ANP has also been shown to predict outcome after a maze operation. Outcome was poor when preoperative plasma ANP concentration was low. Moreover, a high atrial collagen content, as a measure of atrial degeneration, correlated with low ANP. These data indicate that ANP may serve as a marker of atrial integrity, which may help in selecting AF patients for therapeutic interventions. ª 2004 The European Society of Cardiology. Published by Elsevier Ltd. All rights reserved. Downloaded from

Maarten P. Van Den Berg; Isabelle C. Van Gelder; Dirk J. Van Veldhuisen

2004-01-01T23:59:59.000Z

315

Record of Decision for Long-term Management and Use of Depleted Uranium Hexafluoride  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride AGENCY: Department of Energy ACTION: Record of Decision SUMMARY: The Department of Energy ("DOE" or "the Department") issued the Final Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride (Final PEIS) on April 23, 1999. DOE has considered the environmental impacts, benefits, costs, and institutional and programmatic needs associated with the management and use of its approximately 700,000 metric tons of depleted uranium hexafluoride (DUF 6 ). DOE has decided to promptly convert the depleted UF 6 inventory to depleted uranium oxide, depleted uranium metal, or a combination of both. The depleted uranium oxide will be

316

Attainable Burnup in a LIFE Engine Loaded with Depleted Uranium  

Science Conference Proceedings (OSTI)

The Laser Inertial Fusion-based Energy (LIFE) system uses a laser-based fusion source for electricity production. The (D,T) reaction, beside a pure fusion system, allows the option to drive a sub-critical fission blanket in order to increase the total energy gain. In a typical fusion-fission LIFE engine the fission blanket is a spherical shell around the fusion source, preceded by a beryllium shell for neutron multiplications by means of (n,2n) reactions. The fuel is in the form of TRISO particles dispersed in carbon pebbles, cooled by flibe. The optimal design features 80 cm thick blanket, 16 cm multiplier, and 20% TRISO packing factor. A blanket loaded with depleted uranium and depleted in a single batch with continuous mixing can achieve burnup as high as {approx}85% FIMA while generating 2,000 MW of total thermal power and producing enough tritium to be used for fusion. A multi-segment blanket with a central promotion shuffling scheme enhances burnup to {approx}90% FIMA, whereas a blanket that is operated with continuous refueling achieves only 82% FIMA under the same constraints of thermal power and tritium self-sufficiency. Both, multi-segment and continuous refueling eliminate the need for a fissile breeding phase.

Fratoni, M; Kramer, K J; Latkowski, J F

2009-11-30T23:59:59.000Z

317

Ozone-depleting-substance control and phase-out plan  

SciTech Connect

Title VI of the Federal Clean Air Act Amendments of 1990 requires regulation of the use and disposal of ozone-depleting substances (ODSs) (e.g., Halon, Freon). Several important federal regulations have been promulgated that affect the use of such substances at the Hanford Site. On April 23, 1993, Executive Order (EO) 12843, Procurement Requirements and Policies for Federal Agencies for Ozone-Depleting Substances (EPA 1993) was issued for Federal facilities to conform to the new US Environmental Protection Agency (EPA) regulations implementing the Clean Air Act of 1963 (CAA), Section 613, as amended. To implement the requirements of Title VI the US Department of Energy, Richland Operations Office (RL), issued a directive to the Hanford Site contractors on May 25, 1994 (Wisness 1994). The directive assigns Westinghouse Hanford Company (WHC) the lead in coordinating the development of a sitewide comprehensive implementation plan to be drafted by July 29, 1994 and completed by September 30, 1994. The implementation plan will address several areas where immediate compliance action is required. It will identify all current uses of ODSs and inventories, document the remaining useful life of equipment that contains ODS chemicals, provide a phase-out schedule, and provide a strategy that will be implemented consistently by all the Hanford Site contractors. This plan also addresses the critical and required elements of Federal regulations, the EO, and US Department of Energy (DOE) guidance. This plan is intended to establish a sitewide management system to address the clean air requirements.

Nickels, J.M.; Brown, M.J.

1994-07-01T23:59:59.000Z

318

The scale analysis sequence for LWR fuel depletion  

Science Conference Proceedings (OSTI)

The SCALE (Standardized Computer Analyses for Licensing Evaluation) code system is used extensively to perform away-from-reactor safety analysis (particularly criticality safety, shielding, heat transfer analyses) for spent light water reactor (LWR) fuel. Spent fuel characteristics such as radiation sources, heat generation sources, and isotopic concentrations can be computed within SCALE using the SAS2 control module. A significantly enhanced version of the SAS2 control module, which is denoted as SAS2H, has been made available with the release of SCALE-4. For each time-dependent fuel composition, SAS2H performs one-dimensional (1-D) neutron transport analyses (via XSDRNPM-S) of the reactor fuel assembly using a two-part procedure with two separate unit-cell-lattice models. The cross sections derived from a transport analysis at each time step are used in a point-depletion computation (via ORIGEN-S) that produces the burnup-dependent fuel composition to be used in the next spectral calculation. A final ORIGEN-S case is used to perform the complete depletion/decay analysis using the burnup-dependent cross sections. The techniques used by SAS2H and two recent applications of the code are reviewed in this paper. 17 refs., 5 figs., 5 tabs.

Hermann, O.W.; Parks, C.V.

1991-01-01T23:59:59.000Z

319

Numerical study of error propagation in Monte Carlo depletion simulations  

Science Conference Proceedings (OSTI)

Improving computer technology and the desire to more accurately model the heterogeneity of the nuclear reactor environment have made the use of Monte Carlo depletion codes more attractive in recent years, and feasible (if not practical) even for 3-D depletion simulation. However, in this case statistical uncertainty is combined with error propagating through the calculation from previous steps. In an effort to understand this error propagation, a numerical study was undertaken to model and track individual fuel pins in four 17 x 17 PWR fuel assemblies. By changing the code's initial random number seed, the data produced by a series of 19 replica runs was used to investigate the true and apparent variance in k{sub eff}, pin powers, and number densities of several isotopes. While this study does not intend to develop a predictive model for error propagation, it is hoped that its results can help to identify some common regularities in the behavior of uncertainty in several key parameters. (authors)

Wyant, T.; Petrovic, B. [Nuclear and Radiological Engineering, Georgia Inst. of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

2012-07-01T23:59:59.000Z

320

Sampling Plan for Assaying Plates Containing Depleted or Normal Uranium  

Science Conference Proceedings (OSTI)

This paper describes the rationale behind the proposed method for selecting a 'representative' sample of uranium metal plates, portions of which will be destructively assayed at the Y-12 Security Complex. The total inventory of plates is segregated into two populations, one for Material Type 10 (depleted uranium (DU)) and one for Material Type 81 (normal [or natural] uranium (NU)). The plates within each population are further stratified by common dimensions. A spreadsheet gives the collective mass of uranium element (and isotope for DU) and the piece count of all plates within each stratum. These data are summarized in Table 1. All plates are 100% uranium metal, and all but approximately 60% of the NU plates have Kel-F{reg_sign} coating. The book inventory gives an overall U-235 isotopic percentage of 0.22% for the DU plates, ranging from 0.19% to 0.22%. The U-235 ratio of the NU plates is assumed to be 0.71%. As shown in Table 1, the vast majority of the plates are comprised of depleted uranium, so most of the plates will be sampled from the DU population.

Ivan R. Thomas

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Including environmental concerns in management strategies for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

One of the major programs within the Office of Nuclear Energy, Science, and Technology of the US Department of Energy (DOE) is the depleted uranium hexafluoride (DUF{sub 6}) management program. The program is intended to find a long-term management strategy for the DUF{sub 6} that is currently stored in approximately 46,400 cylinders at Paducah, KY; Portsmouth, OH; and Oak Ridge, TN, USA. The program has four major components: technology assessment, engineering analysis, cost analysis, and the environmental impact statement (EIS). From the beginning of the program, the DOE has incorporated the environmental considerations into the process of strategy selection. Currently, the DOE has no preferred alternative. The results of the environmental impacts assessment from the EIS, as well as the results from the other components of the program, will be factored into the strategy selection process. In addition to the DOE`s current management plan, other alternatives continued storage, reuse, or disposal of depleted uranium, will be considered in the EIS. The EIS is expected to be completed and issued in its final form in the fall of 1997.

Goldberg, M. [Argonne National Laboratory, Washington, DC (United States); Avci, H.I. [Argonne National Lab., IL (United States); Bradley, C.E. [USDOE, Washington, DC (United States)

1995-12-31T23:59:59.000Z

322

On the Presence of Depleted Zones in Platinum  

SciTech Connect

In the bombardment of materials with heavy particles a large amount of energy can be deposited in a very small region by a primary knock-on atom and the local atomic arrangement can be thereby drastically disrupted. Various measurements of physical properties of such irradiated materials indicate the presence of distributions of defects which are removed in a step-like manner by annealing. One of the more interesting physical property changes accompanying fast particle irradiation is the attendant change in mechanical properties of irradiated crystals. The defect which is responsible for the mechanical property changes of irradiated crystals is only removed at high temperatures, temperatures coresponding to self diffusion. This observation, as well as others, has led to the model of a depleted zone as being responsible for the changes of mechanical properties of irradiated crystals. A depleted zone is envisioned as a region of crystal where a high local concentration of point defects exists - a belt of interstitials surrounding a multiply connected complex of vacancy clusters. We would like to present here some evidence which lends support to the existence of such defects.

Attardo, M J; Galligan, J M

1966-08-05T23:59:59.000Z

323

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

324

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

325

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

326

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

327

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

328

The quantum capacity with symmetric side channels  

E-Print Network (OSTI)

We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity quantum communication when assisted by a family of channels that have no capacity on their own. This family of assistance channels, which we call symmetric side channels, consists of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few entanglement measures that is monotonic under local operations with one-way classical communication (1-LOCC), but not under the more general class of local operations with classical communication (LOCC).

Graeme Smith; John A. Smolin; Andreas Winter

2006-07-05T23:59:59.000Z

329

Channel capacities via $p$-summing norms  

E-Print Network (OSTI)

In this paper we show how \\emph{the metric theory of tensor products} developed by Grothendieck perfectly fits in the study of channel capacities, a central topic in \\emph{Shannon's information theory}. Furthermore, in the last years Shannon's theory has been generalized to the quantum setting to let the \\emph{quantum information theory} step in. In this paper we consider the classical capacity of quantum channels with restricted assisted entanglement. In particular these capacities include the classical capacity and the unlimited entanglement-assisted classical capacity of a quantum channel. To deal with the quantum case we will use the noncommutative version of $p$-summing maps. More precisely, we prove that the (product state) classical capacity of a quantum channel with restricted assisted entanglement can be expressed as the derivative of a completely $p$-summing norm.

Marius Junge; Carlos palazuelos

2013-05-05T23:59:59.000Z

330

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

331

Table 8. Capacity and Fresh Feed Input to Selected Downstream ...  

U.S. Energy Information Administration (EIA)

Capacity Inputs CapacityInputs Capacity Inputs Table 8. ... (EIA) Form EIA-820, "Annual Refinery Report." Inputs are from the form EIA-810, "Monthly Refinery Report."

332

Building Energy Software Tools Directory: CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links CHP Capacity Optimizer CHP Capacity Optimizer logo Selecting the proper installed capacity for cooling, heating, and power (CHP) equipment is critical to the...

333

On the capacity of isolated, curbside bus stops  

E-Print Network (OSTI)

New Jersey. Kohler, U. , 1991. Capacity of transit lanes.Symposium on Highway Capacity, Karlsruhe, Germany. St.Paulo. TRB, 1985. Highway Capacity Manual. Transportation

Gu, Weihua; Li, Yuwei; Cassidy, Michael J.; Griswold, Julia B.

2010-01-01T23:59:59.000Z

334

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:InstalledCapac...

335

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

capacity constraints, using simple penalties for capacities violations. In particular, we take a closer look at the knapsack problem with weights and capacity ...

336

Zero-rate feedback can achieve the empirical capacity  

E-Print Network (OSTI)

Achieving the empirical capacity using feedback: MemorylessGaussian feedback capacity,” IEEE Trans. Inf. Theory, vol.14] Y. -H. Kim, “Feedback capacity of stationary Gaussian

Eswaran, Krishnan; Sarwate, A D; Sahai, Anant; Gastpar, M

2010-01-01T23:59:59.000Z

337

Attention capacity and task difficulty in visual search  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitiveof automatic detection: Capacity and scanning in visualD. L. (1984). Central capacity limits in consistent mapping

Huang, L Q; Pashler, Harold

2005-01-01T23:59:59.000Z

338

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

339

End-to-end asymmetric link capacity estimation  

E-Print Network (OSTI)

A Simple and Accurate Capacity Estimation Technique. InGerla. Accuracy of Link Capacity Es- timates using Passiveto-end asymmetric link capacity estimation Ling-Jyh Chen,

Chen, Ling-Jyh; Sun, Tony; Yang, Guang; Sanadidi, Medy Y; Gerla, Mario

2005-01-01T23:59:59.000Z

340

Analysis of an interwell tracer test in a depleted heavy oilreservoir  

SciTech Connect

This paper presents field data and analyses of an interwell tracer test conducted in the Niitsu oil field which is a fully depleted heavy oil reservoir of unconsolidated sand formation. The purpose of the tracer test is to diagnose reservoir heterogeneity at a location where a micellar/ polymer field test is planned. Water containing a chemical tracer was injected at a constant rate into an injector surrounded by three production wells. Effluent analyses showed very early breakthrough of injected water at two of the producing wells, no tracer, however, was detected at the third producer thoughout the test period. In addition, tracer production profiles at two wells after breakthrough differed much from each other. These test results suggest a strong areal heterogeneity of the tested formation. An appropriate analytical model was used to obtain a preliminary interpretation of the results. A modified three-dimensional black oil model developed to simulate polymer flood process was then utilized for analyzing the data in more detail. The model treats tracer solution as a fourth component, and can also account for adsorption of tracer.

Ohno, K.; Horne, R.N.; Nanba, T.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EEI/DOE Transmission Capacity Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

342

Quantum capacity of channel with thermal noise  

E-Print Network (OSTI)

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

343

North Dakota Refining Capacity Study  

Science Conference Proceedings (OSTI)

According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

2011-01-05T23:59:59.000Z

344

Quantum Capacities of Channels with small Environment  

E-Print Network (OSTI)

We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

Michael M. Wolf; David Perez-Garcia

2006-07-11T23:59:59.000Z

345

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

346

Natural gas, renewables dominate electric capacity additions ...  

U.S. Energy Information Administration (EIA)

These appear in a separate EIA survey collecting data on net metering and distributed generation. More capacity was added in the first half of 2012 than was retired.

347

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA)

Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell ...

348

When does noise increase the quantum capacity?  

E-Print Network (OSTI)

Superactivation is the property that two channels with zero quantum capacity can be used together to yield positive capacity. Here we demonstrate that this effect exists for a wide class of inequivalent channels, none of which can simulate each other. We also consider the case where one of two zero capacity channels are applied, but the sender is ignorant of which one is applied. We find examples where the greater the entropy of mixing of the channels, the greater the lower bound for the capacity. Finally, we show that the effect of superactivation is rather generic by providing example of superactivation using the depolarizing channel.

Fernando G. S. L. Brandão; Jonathan Oppenheim; Sergii Strelchuk

2011-07-21T23:59:59.000Z

349

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

350

An FPTAS for Capacity Constrained Assortment Optimization  

E-Print Network (OSTI)

May 13, 2013 ... In this paper, we consider the capacity constrained version of the assortment optimization problem where each item $i$ has weight $w_i$, and ...

351

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

352

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

353

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

354

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

355

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

356

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

357

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

358

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

359

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

360

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

362

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

363

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

364

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

365

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

366

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

367

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

368

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

369

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

370

Quantum Communication With Zero-Capacity Channels  

E-Print Network (OSTI)

Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We show theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not uniquely specify a channel's ability for transmitting quantum information.

Graeme Smith; Jon Yard

2008-07-30T23:59:59.000Z

371

,"Natural Gas Salt Caverns Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas...

372

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

373

Optimization of Storage vs. Compression Capacity  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100...

374

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

375

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

376

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

377

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

378

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

379

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

380

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

382

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

383

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

384

PAD District 4 Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 575: 577: 562: 542: 578: 587: 1985-2013: Operable Capacity (Calendar Day) 625: 625: 630: 630: 630: 630: 1985 ...

385

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

386

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

387

Capacity of Byzantine Consensus with Capacity-Limited Point-to-Point Links  

E-Print Network (OSTI)

We consider the problem of maximizing the throughput of Byzantine consensus, when communication links have finite capacity. Byzantine consensus is a classical problem in distributed computing. In existing literature, the communication links are implicitly assumed to have infinite capacity. The problem changes significantly when the capacity of links is finite. We define the throughput and capacity of consensus, and identify upper bound of achievable consensus throughput. We propose an algorithm that achieves consensus capacity in complete four-node networks with at most 1 failure with arbitrary distribution of link capacities.

Liang, Guanfeng

2011-01-01T23:59:59.000Z

388

Repository Applications: Potential Benefits of Using Depleted Uranium (DU)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository Applications Repository Applications Repository Applications: Potential Benefits of Using Depleted Uranium (DU) in a Geological Repository The United States is investigating the Yucca Mountain (YM) site in Nevada for the disposal of radioactive spent nuclear fuel (SNF)—the primary waste from nuclear power plants. The SNF would be packaged and then emplaced 200 to 300 m underground in parallel disposal tunnels. The repository isolates the SNF from the biosphere until the radionuclides decay to safe levels. DU may improve the performance of geological repositories for disposal of SNF via three mechanisms: Radiation shielding for waste packages to protect workers Lowering the potential for long-term nuclear criticality in the repository Reducing the potential for releases of radionuclides from the SNF

389

Military use of depleted uranium assessment of prolonged population exposure  

E-Print Network (OSTI)

This work is an exposure assessment for a population living in an area contaminated by use of depleted uranium (DU) weapons. RESRAD 5.91 code is used to evaluate the average effective dose delivered from 1, 10, 20 cm depths of contaminated soil, in a residential farmer scenario. Critical pathway and group are identified in soil inhalation or ingestion and children playing with the soil, respectively. From available information on DU released on targeted sites, both critical and average exposure can leave to toxicological hazards; annual dose limit for population can be exceeded on short-term period (years) for soil inhalation. As a consequence, in targeted sites cleaning up must be planned on the basis of measured concentration, when available, while special cautions have to be adopted altogether to reduce unaware exposures, taking into account the amount of the avertable dose.

Giannardi, C

2001-01-01T23:59:59.000Z

390

Video: The Inside Story (of a Depleted Uranium Hexafluoride Cylinder)  

NLE Websites -- All DOE Office Websites (Extended Search)

Inside Story Inside Story The Inside Story The Inside Story (of a Depleted Uranium Hexafluoride Cylinder) Probes are used to look at the inside of a Uranium Hexafluoride cylinder. The distribution and structure of the contents are discussed. View this Video in Real Player format Download free RealPlayer SP Highlights of the Video: Video 00:42 10 ton 48Xcylinder of UF6 Video 01:19 Liquid UF6 filling 95% of cylinder volume Video 02:15 Liquid UF6 Video 02:23 Beginning of UF6 phase change from liquid to solid Video 02:32 Solid UF6 Video 03:00 Probe and instrument to investigate inside cylinder Video 04:09 Workers preparing to insert TV camera probe into 48X cylinder containing 10 tons of solid UF6 Video 04:28 Inner surface of head of cylinder showing no corrosion

391

Investigation of breached depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

392

Investigation of breached depleted UF sub 6 cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton steel cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. Both holes, concealed by UF{sub 4} reaction products identical in color to the cylinder coating, were similarly located near the front stiffening ring. The UF{sub 4} appeared to have self-sealed the holes, thus containing nearly all of the uranium contents. Martin Marietta Energy Systems, Inc., Vice President K.W. Sommerfeld immediately formed an investigation team to: (1) identify the most likely cause of failure for the two breached cylinders, (2) determine the impact of these incidents on the three-site inventory, and (3) provide recommendations and preventive measures. This document discusses the results of this investigation.

Barber, E.J.; Butler, T.R.; DeVan, J.H.; Googin, J.M.; Taylor, M.S.; Dyer, R.H.; Russell, J.R.

1991-09-01T23:59:59.000Z

393

Dynamic Capacity Investment with Two Competing Technologies  

Science Conference Proceedings (OSTI)

With the recent focus on sustainability, firms making adjustments to their production or distribution capacity levels often have the option of investing in newer technologies with lower carbon footprints and/or energy consumption. These more sustainable ... Keywords: dynamic capacity investment, sustainable operations, technology choice

Wenbin Wang, Mark E. Ferguson, Shanshan Hu, Gilvan C. Souza

2013-10-01T23:59:59.000Z

394

Challenging Times for Making Refinery Capacity Decisions  

Reports and Publications (EIA)

This presentation was given at the National Petrochemical and Refiners Association's annual meeting in March 2004. The presentation covers a wide range of refining issues from near term to long term, and focuses on refining capacity and factors affecting decisions to alter that capacity.

Information Center

2004-03-01T23:59:59.000Z

395

Constrained capacity of MIMO Rayleigh fading channels  

E-Print Network (OSTI)

In this thesis channel capacity of a special type of multiple-input multiple-output (MIMO) Rayleigh fading channels is studied, where the transmitters are subject to a finite phase-shift keying (PSK) input alphabet. The constraint on the input alphabet makes an analytical solution for the capacity beyond reach. However we are able to simplify the final expression, which requires a single expectation and thus can be evaluated easily through simulation. To facilitate simulations, analytical expressions are derived for the eigenvalues and eigenvectors of a covariance matrix involved in the simplified capacity expression. The simplified expression is used to provide some good approximations to the capacity at low signal-to-noise ratios (SNRs). Involved in derivation of the capacity is the capacity-achieving input distribution. It is proved that a uniform prior distribution is capacity achieving. We also show that it is the only capacity-achieving distribution for our channel model. On top of that we generalize the uniqueness case for an input distribution to a broader range of channels.

He, Wenyan

2011-05-01T23:59:59.000Z

396

On Quantum Capacity and its Bound  

E-Print Network (OSTI)

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

397

Capacity Bounded Grammars and Petri Nets  

E-Print Network (OSTI)

A capacity bounded grammar is a grammar whose derivations are restricted by assigning a bound to the number of every nonterminal symbol in the sentential forms. In the paper the generative power and closure properties of capacity bounded grammars and their Petri net controlled counterparts are investigated.

Stiebe, Ralf; 10.4204/EPTCS.3.18

2009-01-01T23:59:59.000Z

398

Table 6. Operable Crude Oil and Downstream Charge Capacity of ...  

U.S. Energy Information Administration (EIA)

Downstream Charge Capacity Table 6. ... (EIA), Form EIA-820, "Annual Refinery Report." Energy Information Administration, Refinery Capacity 2011 46. Title:

399

Draft Supplement Analysis for Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE'S Inventory of Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED DRAFT SUPPLEMENT ANALYSIS FOR LOCATION(S) TO DISPOSE OF DEPLETED URANIUM OXIDE CONVERSION PRODUCT GENERATED FROM DOE'S INVENTORY OF DEPLETED URANIUM HEXAFLUORIDE (DOE/EIS-0359-SA1 AND DOE/EIS-0360-SA1) March 2007 March 2007 i CONTENTS NOTATION........................................................................................................................... iv 1 INTRODUCTION AND BACKGROUND ................................................................. 1 1.1 Why DOE Has Prepared This Draft Supplement Analysis .............................. 1 1.2 Background ....................................................................................................... 3 1.3 Proposed Actions Considered in this Draft Supplement Analysis.................... 4

400

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

402

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

403

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

404

Analysis of an interwell tracer test in a depleted heavy-oil reservoir  

SciTech Connect

This paper presents field data and analyses of an interwell tracer test conducted in the Niitsu oil field, which is a fully depleted heavy-oil reservoir of unconsolidated sand formation. Water containing a chemical tracer was injected at a constant rate into an injector surrounded by three production wells. Effluent analyses showed very early breakthrough of injected water at two of the producing wells. The test results suggest a strong areal heterogeneity of the tested formation. An appropriate analytic model was used to obtain a preliminary interpretation of the results. A modified three-dimensional (3D) black-oil model developed to simulate th polymer flood process was then used for analyzing the data in more detail. The model treats tracer solution as a fourth component and can also account for adsorption of tracer. Simulation efforts were concentrated on matching the breakthrough times and tracer profiles after breakthrough. Through both the analytic and the simulation work, the reservoir is characterized by a highly heterogeneous distribution of horizontal permeability, a thin layer of high permeability, and a natural waterdrive that cause a preferential flow trend in a direction toward one producer. The authors conclude that the interwell tracer test is an effective tool for evaluating reservoir heterogeneities and a quantitative analysis of test data is done with the polymer option of a black-oil simulator.

Ohno, K.; Nanba, T.; Horne, R.N.

1987-12-01T23:59:59.000Z

405

ON THE LOAD CAPACITY OF THE HYDRO-MAGNETICALLY LUBRICATED SLIDER BEARING  

SciTech Connect

The load capacity of liquid metal lubricated slider bearings subject to an applied magnetic field transverse to the film is investigated. The optimum profile is determined and found to be the Rayleigh step form with the riser location and step height ratio dependent on the strength of the magnetic field. Load capacity is favored by large magnetic fields, small film thicknesses, and electrically insulating bearing surfaces. Only modest load increases can be obtained from conventional magnets of reasonable size. Substantial load increases could be accomplished by the recently developed superconducting electromagnets. (auth)

Osterle, J.F.; Young, F.J.

1962-05-01T23:59:59.000Z

406

Photovoltaics effective capacity: Interim final report 2  

DOE Green Energy (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

407

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

408

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

409

Information Capacity of Energy Harvesting Sensor Nodes  

E-Print Network (OSTI)

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting 'green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policy is the same as the throughput optimal policy. We also obtain the capacity for the system with energy inefficiencies in storage and an achievable rate when energy conserving sleep-wake modes are supported.

Rajesh, R

2010-01-01T23:59:59.000Z

410

On channels with finite Holevo capacity  

E-Print Network (OSTI)

We consider a nontrivial class of infinite dimensional quantum channels characterized by finiteness of the Holevo capacity. Some general properties of channels of this class are described. In particular, a special sufficient condition of existence of an optimal measure is obtained and examples of channels with no optimal measure are constructed. It is shown that each channel with finite Holevo capacity has a natural extension to the set of all positive normalized functionals on the algebra of all bounded operators. General properties of such an extension are described. The class of infinite dimensional channels, for which the Holevo capacity can be explicitly determined, is considered.

M. E. Shirokov

2006-02-07T23:59:59.000Z

411

Depleted-Uranium Weapons the Whys and Wherefores  

E-Print Network (OSTI)

The only military application in which present-day depleted-uranium (DU) alloys out-perform tungsten alloys is long-rod penetration into a main battle-tank's armor. However, this advantage is only on the order of 10% and disappearing when the comparison is made in terms of actual lethality of complete anti-tank systems instead of laboratory-type steel penetration capability. Therefore, new micro- and nano-engineered tungsten alloys may soon out-perform existing DU alloys, enabling the production of tungsten munition which will be better than uranium munition, and whose overall life-cycle cost will be less due to the absence of the problems related to the radioactivity of uranium. The reasons why DU weapons have been introduced and used are analysed from the perspective that their radioactivity must have played an important role in the decision making process. It is found that DU weapons belong to the diffuse category of low-radiological-impact nuclear weapons to which emerging types of low-yield, i.e., fourth...

Gsponer, A

2003-01-01T23:59:59.000Z

412

Kr Ion Irradiation Study of the Depleted-Uranium Alloys  

SciTech Connect

Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200ºC to ion doses up to 2.5 × 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 × 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

2010-12-01T23:59:59.000Z

413

Transpassive electrodissolution of depleted uranium in alkaline electrolytes  

SciTech Connect

To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

1998-03-01T23:59:59.000Z

414

Kr ion irradiation study of the depleted-uranium alloys.  

Science Conference Proceedings (OSTI)

Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si){sub 3}, (U, Mo)(Al, Si){sub 3}, UMo{sub 2}Al{sub 20}, U{sub 6}Mo{sub 4}Al{sub 43} and UAl{sub 4}. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 C to ion doses up to 2.5 x 10{sup 19} ions/m{sup 2} ({approx}10 dpa) with an Kr ion flux of 10{sup 16} ions/m{sup 2}/s ({approx}4.0 x 10{sup -3} dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M. (Materials Science Division); (INL); (Univ. of Wisconsin)

2010-12-01T23:59:59.000Z

415

Investigation of breached depleted UF sub 6 cylinders  

Science Conference Proceedings (OSTI)

In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team's principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation. 4 refs., 2 figs.

DeVan, J.H.

1991-01-01T23:59:59.000Z

416

Design and Implementation of a C02 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in a Shallow Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the fourth quarter falls within the demonstration project.

J. Scott Bles; Kimberly B. Dollens.

1998-04-28T23:59:59.000Z

417

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the fourth quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

418

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion  

SciTech Connect

The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the second quarter falls within the demonstration project.

Czirr, Kirk

1999-10-28T23:59:59.000Z

419

Design and Implementation of a CO(2) Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in Shallow Shelf Carbonate Approaching Waterflood Depletion  

Science Conference Proceedings (OSTI)

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within the demonstration project.

Harpole, K.J.; Dollens, K.B.; Durrett, E.G.; Bles, J.S

1997-10-31T23:59:59.000Z

420

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion  

SciTech Connect

The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing, waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. This report includes work on the reservoir characterization and project design objective and the demonstration project objective.

NONE

1996-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History Total Storage Capacity 984,768 980,691...

422

Heat Capacity as A Witness of Entanglement  

E-Print Network (OSTI)

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

423

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

424

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,450 15,027 14,659 15,177 15,289 15,362 1985-2012 Operable Capacity (Calendar...

425

Definition: Capacity factor | Open Energy Information  

Open Energy Info (EERE)

power)12 View on Wikipedia Wikipedia Definition The net capacity factor of a power plant is the ratio of its actual output over a period of time, to its potential output if...

426

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

427

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

428

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Note: 1) 'Demonstrated Peak Working Gas Capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period as...

429

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

430

Optimal capacity adjustment for supply chain control  

E-Print Network (OSTI)

This research attempts to answer the questions involving the time and size of capacity adjustments for better supply chain management. The objective of this research is to analytically determine simple structures to adjust ...

Budiman, Benny S., 1969-

2004-01-01T23:59:59.000Z

431

Feedback Capacity of the Compound Channel  

E-Print Network (OSTI)

In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

Shrader, Brooke E.

432

Capacity-Speed Relationships in Prefrontal Cortex  

E-Print Network (OSTI)

Working memory (WM) capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to ...

Prabhakaran, Vivek

433

Minimal capacity points and the Lowest eigenfunctions  

E-Print Network (OSTI)

We introduce the concept of the point of minimal capacity of the domain, and observe a connection between this point and the lowest eigenfunction of a Laplacian on this domain, in one special case.

Mark Levi; Jia Pan

2011-04-04T23:59:59.000Z

434

Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius  

DOE Green Energy (OSTI)

A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

Huang Iu; John Smart

2009-04-01T23:59:59.000Z

435

INVESTIGATION OF THE HEAT CAPACITIES OF PROTEINS BY STATISTICAL MECHANICAL METHODS  

E-Print Network (OSTI)

In this study, the additional heat capacity which appear during the water dissociation of the proteins that are one of the soft materials, have been considered by the statistical mechanical methods. For this purpose, taking the electric field E and total dipole moment M as the thermodynamical variables and starting with the first law of thermodynamics an equation which reveals the thermodynamical relation between the additional heat capacity in effective electric field ?CE and the additional heat capacity at the constant total dipole moment ?CM, has been obtained. It is found that, the difference between the heat capacities depends linearly on the temperature. To bring up the hydration effect during the folding and unfolding of the proteins the physical properties of the apolar dissociation have been used. In the model used for this purpose; the folding and unfolding of the proteins in the formed electric field medium have been established on this basis. In this study with the purpose of revealing the additional effect to the heat capacity, the partition functions for the proteins which have been calculated in single protein molecule approach by A. Bakk, J.S. Hoye and A. Hansen; Physica A, 304, (2002), 355-361 have been taken in order to obtain the free energy. In this way, the additional free energy has been related to the heat capacities. By calculating the heat capacity in the effective electric field ?CE theoretically and taking the heat capacity at constant total dipole moment ?CM from the experimental data, the outcomes of the performed calculations have been investigated for Myoglobin and other proteins.

G. Oylumluoglu; Fevzi Büyükk?l?ç; Dogan Demirhan

2004-01-01T23:59:59.000Z

436

Lattice Heat Capacity of Mesoscopic Nanostructures  

E-Print Network (OSTI)

We present a rigorous full quantum mechanical model for the lattice heat capacity of mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The limiting case of infinitely sized multi-dimensional materials are also found, which are in agreement with well-known results. As examples, we obtain the heat capacity of fullerenes.

Gharekhanlou, B; Vafai, A

2010-01-01T23:59:59.000Z

437

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

438

Technical Assessment Guide -- Generation Capacity Addition Topics  

Science Conference Proceedings (OSTI)

This report discusses the challenges facing the power industry with regard to capacity addition. These challenges include technological and regulatory risks, life cycle management, and material and labor escalation forecast. The report also examines the market trends for CT and CTCC, as this technology has become a reliable technology for capacity addition, and provides the cost data for various switchyard configurations. These topics have been addressed in past TAG reports and the content in this ...

2013-03-06T23:59:59.000Z

439

Heat capacity in weakly correlated liquids  

Science Conference Proceedings (OSTI)

Previously unavailable numerical data related to the heat capacity in two- and three-dimensional liquid Yukawa systems are obtained by means of fluctuation theory. The relations between thermal conductivity and diffusion constants are numerically studied and discussed. New approximation for heat capacity dependence on non-ideality parameter for weakly correlated systems of particles is proposed. Comparison of the obtained results to the existing theoretical and numerical data is discussed.

Khrustalyov, Yu. V.; Vaulina, O. S. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation); Moscow Institute of Physics and Technology, 117303, Kerchenskaya St., 1A bld.1, Moscow (Russian Federation); Koss, X. G. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation)

2012-12-15T23:59:59.000Z

440

EPRI Increased Transmission Capacity Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report documents the proceedings of EPRI's Increased Overhead Transmission Capacity Workshop. The workshop was held on September 20, 2011 at the offices of the American Transmission Company in Waukesha, Wisconsin. Participants included members of the EPRI Increased Overhead Transmission Capacity Task Force. The workshop was a joint effort of two EPRI research projects: (1) Increased Power Flow Guidebook and Ratings for Overhead Lines, and (2) Impact of High Temperature Operation on Conductor Systems...

2011-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Capacity Value of Wind Power - Summary  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system aequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given.

O'Malley, M.; Milligan, M.; Holttinen, H.; Dent, C.; Keane, A.

2010-01-01T23:59:59.000Z

442

A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons  

E-Print Network (OSTI)

It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

2002-01-01T23:59:59.000Z

443

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

444

Benefits of the delta K of depletion benchmarks for burnup credit validation  

SciTech Connect

Pressurized Water Reactor (PWR) burnup credit validation is demonstrated using the benchmarks for quantifying fuel reactivity decrements, published as 'Benchmarks for Quantifying Fuel Reactivity Depletion Uncertainty,' EPRI Report 1022909 (August 2011). This demonstration uses the depletion module TRITON available in the SCALE 6.1 code system followed by criticality calculations using KENO-Va. The difference between the predicted depletion reactivity and the benchmark's depletion reactivity is a bias for the criticality calculations. The uncertainty in the benchmarks is the depletion reactivity uncertainty. This depletion bias and uncertainty is used with the bias and uncertainty from fresh UO{sub 2} critical experiments to determine the criticality safety limits on the neutron multiplication factor, k{sub eff}. The analysis shows that SCALE 6.1 with the ENDF/B-VII 238-group cross section library supports the use of a depletion bias of only 0.0015 in delta k if cooling is ignored and 0.0025 if cooling is credited. The uncertainty in the depletion bias is 0.0064. Reliance on the ENDF/B V cross section library produces much larger disagreement with the benchmarks. The analysis covers numerous combinations of depletion and criticality options. In all cases, the historical uncertainty of 5% of the delta k of depletion ('Kopp memo') was shown to be conservative for fuel with more than 30 GWD/MTU burnup. Since this historically assumed burnup uncertainty is not a function of burnup, the Kopp memo's recommended bias and uncertainty may be exceeded at low burnups, but its absolute magnitude is small. (authors)

Lancaster, D. [NuclearConsultants.com, 187 Faith Circle, Boalsburg, PA 16827 (United States); Machiels, A. [Electric Power Research Inst., Inc., 3420 Hillview Avenue, Palo Alto, CA 94304 (United States)

2012-07-01T23:59:59.000Z

445

Integrated Real-Time Capacity and Inventory Allocation for Reparable Service Parts in a Two-Echelon Supply System  

Science Conference Proceedings (OSTI)

Two critical decisions must be made daily when managing multiechelon repair and distribution systems for service parts: (1) allocating available repair capacity among different items and (2) allocating available inventories to field stocking locations ... Keywords: emergency shipment, inventory, limited capacity, multiechelon system, periodic review, priority dispatch rule, real-time allocation, reparable service parts

Kathryn E. Caggiano; John A. Muckstadt; James A. Rappold

2006-01-01T23:59:59.000Z

446

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

1] Andrews, S. and Udall, R. Oil Prophets: Lookingat World Oil Studies Over Time. In Campbell, C.International Workshop on Oil Depletion 2003, Paris, France,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

447

Radiological Risk Assessment of Capstone Depleted Uranium Aerosols  

SciTech Connect

Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-yr doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. The methodologies of the ICRP International Steering Committee on Radiation Standards (ISCORS) were used for determining the whole body cancer risk. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.

Hahn, Fletcher; Roszell, Laurie E.; Daxon, Eric G.; Guilmette, Ray A.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

448

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

449

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres  

E-Print Network (OSTI)

Nuclear fuel comes in many forms; oxide fuel is the most commonly used in current reactor systems while metal fuel is a promising fuel type for future reactors due to neutronic performance and increased thermal conductivity. As a key heat transfer parameter, thermal conductivity describes the heat transport properties of a material based upon the density, specific heat, and thermal diffusivity. A material’s ability to transport thermal energy through its structure is a measurable property known as thermal diffusivity; the units for thermal diffusivity are given in area per unit time (e.g., m2/s). Current measurement methods for thermal diffusivity include LASER (or light) Flash Analysis and the hot-wire method. This study examines an approach that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA), and it induces a radial transient across a packed sample of microspheres then monitors the temperature profile using an array of thermocouples located at different distances from the source of the thermal transient. From the thermocouple data and an accurate time log, the thermal diffusivity of the sample may be calculated. Results indicate that DU microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer. At 500°C, the thermal conductivity of the DU microspheres was 0.431 ± 13% W/m-K compared to approximately 32 W/m-K for solid uranium metal. Characterization of the developed apparatus revealed a method that may be useful for measuring the thermal diffusivity of powders and liquids.

Humrickhouse, Carissa Joy

2012-05-01T23:59:59.000Z

450

Heat capacity and compactness of denatured proteins  

E-Print Network (OSTI)

One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model. # 1999 Elsevier Science B.V. All rights reserved.

Themis Lazaridis; Martin Karplus

1999-01-01T23:59:59.000Z

451

Can Bounded Rationality Explain Excess Capacity? ?  

E-Print Network (OSTI)

Excess capacity is observed in many markets especially those where a substantial initial investment is required. The theoretical literature often explains this feature by strategic attempts to deter entry or to limit new entrants ’ market shares but the empirical evidence for such a rationale is mixed. Moreover, excess capacity has also been observed in experimental studies on capacityconstrained games where there is no entry (and therefore no entry-deterrence motive). This paper explores experimentally another rationale for excess capacity: rather than (in addition to) being a threat to (potential) entrants, excess capacity held by incumbents may constitute a valuable option to reap extra gains from competition with an inexperienced entrant, if he turns out to makes a mistake. In our experimental design we used the level of experience (the number of periods played) as a proxy for the level of rationality and matched subjects with different levels of experience. We find evidence of excess capacity decreasing with opponent’s experience. ? This paper is a sustantially revised version of a chapter of Le Coq and Sturluson’s 2003 Stockholm School of Economics Ph.D. thesis. It was before circulated as "Does Opponent’s experience matter?". The authors would like to thank Tore Ellingsen for his insightful comments in the project’s infancy, Urs Fischbacher for allowig us tousethez-TreesoftwareandHans-TheoNorman for technical help. We thank also seminar participants at the IIOC 2004 (Chicago), EARIE 2003 (Lausanne), SAET 2003 (Rhodos) for helpful comments. We gratefully acknowledge financial

Chloélecoq Jon; Thor Sturluson

2006-01-01T23:59:59.000Z

452

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District: Number of Plants: 2013 Nameplate Capacity: 2012 Nameplate Capacity

453

On the capacity of network coding for random networks  

E-Print Network (OSTI)

d ) , the network NC coding capacity C s;t ; ;t > (1 0 )8, AUGUST 2005 On the Capacity of Network Coding for Randomthat the network coding capacity concentrates around the

Ramamoorthy, A; Shi, J; Wesel, R D

2005-01-01T23:59:59.000Z

454

Zero-error capacity of a quantum channel  

E-Print Network (OSTI)

We define the quantum zero-error capacity, a new kind of classical capacity of a noisy quantum channel. Moreover, the necessary requirement for which a quantum channel has zero-error capacity greater than zero is also given.

Rex A. C. Medeiros; Francisco M. de Assis

2004-03-26T23:59:59.000Z

455

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

456

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

457

Heat capacity at the glass transition  

E-Print Network (OSTI)

A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature $T_g$ without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if $T_g$ is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at $T_g$ follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of $T_g$ with the quench rate and the correlation of heat capacity jump with liquid fragility.

Kostya Trachenko; Vadim Brazhkin

2010-02-10T23:59:59.000Z

458

Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs  

E-Print Network (OSTI)

he feasibility of sequestering supercritical CO2 in depleted gas reservoirs. The experimental runs involved the following steps. First, the 1 ft long by 1 in. diameter carbonate core is inserted into a viton Hassler sleeve and placed inside an aluminum coreholder that is then evacuated. Second, with or without connate water, the carbonate core is saturated with methane. Third, supercritical CO2 is injected into the core with 300 psi overburden pressure. From the volume and composition of the produced gas measured by a wet test meter and a gas chromatograph, the recovery of methane at CO2 breakthrough is determined. The core is scanned three times during an experimental run to determine core porosity and fluid saturation profile: at start of the run, at CO2 breakthrough, and at the end of the run. Runs were made with various temperatures, 20°C (68°F) to 80°C (176°F), while the cell pressure is varied, from 500 psig (3.55 MPa) to 3000 psig (20.79 MPa) for each temperature. An analytical study of the experimental results has been also conducted to determine the dispersion coefficient of CO2 using the convection-dispersion equation. The dispersion coefficient of CO2 in methane is found to be relatively low, 0.01-0.3 cm2/min.. Based on experimental and analytical results, a 3D simulation model of one eighth of a 5-spot pattern was constructed to evaluate injection of supercritical CO2 under typical field conditions. The depleted gas reservoir is repressurized by CO2 injection from 500 psi to its initial pressure 3,045 psi. Simulation results for 400 bbl/d CO2 injection may be summarized as follows. First, a large amount of CO2 is sequestered: (i) about 1.2 million tons in 29 years (0 % initial water saturation) to 0.78 million tons in 19 years (35 % initial water saturation) for 40-acre pattern, (ii) about 4.8 million tons in 112 years (0 % initial water saturation) to 3.1 million tons in 73 years (35 % initial water saturation) for 80-acre pattern. Second, a significant amount of natural gas is also produced: (i) about 1.2 BSCF or 74 % remaining GIP (0 % initial water saturation) to 0.78 BSCF or 66 % remaining GIP (35 % initial water saturation) for 40-acre pattern, (ii) about 4.5 BSCF or 64 % remaining GIP (0 % initial water saturation) to 2.97 BSCF or 62 % remaining GIP (35 % initial water saturation) for 80-acre pattern. This produced gas revenue could help defray the cost of CO2 sequestration. In short, CO2 sequestration in depleted gas reservoirs appears to be a win-win technology.

Seo, Jeong Gyu

2003-05-01T23:59:59.000Z

459

Dupoly process for treatment of depleted uranium and production of beneficial end products  

DOE Patents (OSTI)

The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

2000-02-29T23:59:59.000Z

460

Correlation between thermal expansion and heat capacity  

E-Print Network (OSTI)

Theoretically predicted linear correlation between the volume coefficient of thermal expansion and the thermal heat capacity was investigated for highly symmetrical atomic arrangements. Normalizing the data of these thermodynamic parameters to the Debye temperature gives practically identical curves from zero Kelvin to the Debye temperature. This result is consistent with the predicted linear correlation. At temperatures higher than the Debye temperature the normalized values of the thermal expansion are always higher than the normalized value of the heat capacity. The detected correlation has significant computational advantage since it allows calculating the volume coefficient of thermal expansion from one experimental data by using the Debye function.

Jozsef Garai

2004-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

462

Modeling the Capacity and Emissions Impacts of Reduced Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Title Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Publication Type Report...

463

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Asia Demand growth, product mix, trade Price Signals for Capacity Changes Capacity ... 150 AZ Clean Fuels FCC/RCC Coking ...

464

Indonesia-ECN Capacity building for energy policy formulation...  

Open Energy Info (EERE)

ECN Capacity building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and...

465

GIZ-Developing Climate Policy Capacity within the South African...  

Open Energy Info (EERE)

Policy Capacity within the South African Department of Environmental Affairs (DEA) Jump to: navigation, search Name South Africa - Developing Climate Policy Capacity within DEA...

466

Changing World Product Markets and Potential Refining Capacity Increases  

Reports and Publications (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price incentives, and capacity expansion announcements.

Information Center

2006-03-20T23:59:59.000Z

467

Assessing the Control Systems Capacity for Demand Response in...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type...

468

EIA - Reference Case Projections for Electricity Capacity and...  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel (2003-2030) International Energy Outlook 2006 Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables...

469

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

extra-heavy oil and shale have zero Resource- Cost), whileof the Oil Transition: Modeling Capacity, Costs, andof the oil transition: modeling capacity, costs, and

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

470

Texas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Natural Gas Underground Storage Capacity (Million...

471

Indonesia-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Indonesia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Indonesia-Enhancing Capacity for Low Emission Development Strategies...

472

Indonesia-Strengthening Planning Capacity for Low Carbon Growth...  

Open Energy Info (EERE)

Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth...

473

Working crude oil storage capacity at Cushing, Oklahoma rises ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, ... as reported in EIA's recently released report on Working and Net Available Shell Storage Capacity. Utilization of working storage capacity ...

474

India-Vulnerability Assessment and Enhancing Adaptive Capacities...  

Open Energy Info (EERE)

Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

475

Solar Energy and Capacity Value (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy and Capacity Value e Solar Energy Can Provide Valuable Capacity to Utilities and Power System Operators Solar photovoltaic (PV) systems and concentrating solar power...

476

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

477

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

478

Gulf Coast (PADD 3) Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 4,376: 3,520: 3,565-----1982-2013: ... Notes: Shell storage capacity is the design capacity of the tank. See Definitions, Sources, ...

479

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

480

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

Note: This page contains sample records for the topic "depleted fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

Mar 24, 2009 ... Abstract: This paper studies stochastic programs with first-stage binary variables and capacity constraints, using simple penalties for capacities ...

482

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

483

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

484

Louisiana Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Louisiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

485

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

486

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

487

On the complexity of maximizing the minimum Shannon capacity in ...  

E-Print Network (OSTI)

capacity in wireless networks by joint channel assignment and power allocation ... tal Shannon capacity of any mobile user in the system. The corresponding.

488

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

489

Washington Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Washington Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

490

Iowa Natural Gas Underground Storage Acquifers Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

491

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

492

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

493

Y-12 builds capacity to meet nuclear testing schedule - Or: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

builds capacity to meet nuclear testing schedule - Or: Increasing capacity to meet nuclear testing schedule (title as it appeared in The Oak Ridger) The continuing high volume...

494

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

495

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

496

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

497

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

498

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

499

Tennessee Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Tennessee Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

500

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...