Sample records for density photo-electric factor

  1. Improving the performance of photo-electrically controlled lighting systems

    SciTech Connect (OSTI)

    Rubinstein, F.; Ward, G.; Verderber, R.

    1988-08-01T23:59:59.000Z

    The ability of a photo-electrically controlled lighting system to maintain a constant total light level on a task surface by responding to changing daylight levels is affected by the control algorithm used to relate the photosensor signal to the supplied electric light level and by the placement and geometry of the photosensor. We describe the major components of a typical control system, discuss the operation of three different control algorithms, and derive expressions for each algorithm that express the total illuminance at the task as a function of the control photosensor signal. Using a specially-designed scale model, we measured the relationship between the signal generated by various ceiling-mounted control photosensors and workplane illuminance for two room geometries under real sky conditions. The measured data were used to determine the performance of systems obeying the three control algorithms under varying daylight conditions. Control systems employing the commonly-used integral reset algorithm supplied less electric light than required, failing to satisfy the control objective regardless of the control photosensor used. Systems employing an alternative, closed-loop proportional control algorithm achieved the control objective under virtually all tested conditions when operated by a ceiling-mounted photosensor shielded from direct window light.

  2. Noisy Independent Factor Analysis Model for Density Estimation and Classification

    E-Print Network [OSTI]

    Amato, U.

    2009-06-09T23:59:59.000Z

    We consider the problem of multivariate density estimation when the unknown density is assumed to follow a particular form of dimensionality reduction, a noisy independent factor analysis (IFA) model. In this model the ...

  3. Density matrix renormalization group and wave function factorization for nuclei

    E-Print Network [OSTI]

    T. Papenbrock; D. J. Dean

    2005-07-15T23:59:59.000Z

    We employ the density matrix renormalization group (DMRG) and the wave function factorization method for the numerical solution of large scale nuclear structure problems. The DMRG exhibits an improved convergence for problems with realistic interactions due to the implementation of the finite algorithm. The wave function factorization of fpg-shell nuclei yields rapidly converging approximations that are at the present frontier for large-scale shell model calculations.

  4. Nesting success of the great-tailed grackle (Cassidix mexicanus prosopidicola) in relation to certain density dependent and density independent factors 

    E-Print Network [OSTI]

    Gotie, Robert Francis

    1972-01-01T23:59:59.000Z

    NESTING SUCCESS OF THE GREAT-TAILED GRACKLE (CASSIDIX MEXICANUS PROSOPIDICOLA) IN RELATION TO CERTAIN DENSITY DEPENDENT AND DENSITY INDEPENDENT FACTORS A Thesis by ROBERT FRANCIS GOTIE Submitted to the Graduate College of Texas A&M University... AND DENSITY INDEPENDENT FACTORS A Thesis by ROBERT FRANCIS GOTIE Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Member) December 1972 ABSTRACT Nesting Success of the Great-tailed Grackle (Cassidix...

  5. Nesting success of the great-tailed grackle (Cassidix mexicanus prosopidicola) in relation to certain density dependent and density independent factors

    E-Print Network [OSTI]

    Gotie, Robert Francis

    1972-01-01T23:59:59.000Z

    NESTING SUCCESS OF THE GREAT-TAILED GRACKLE (CASSIDIX MEXICANUS PROSOPIDICOLA) IN RELATION TO CERTAIN DENSITY DEPENDENT AND DENSITY INDEPENDENT FACTORS A Thesis by ROBERT FRANCIS GOTIE Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1972 Major Subject: Wildlife Science NESTING SUCCESS OF THE GREAT-TAILED GRACKLE (CASSIDIX MEXICANUS PROSOPIDICOLA) IN RELATION TO CERTAIN DENSITY DEPENDENT...

  6. Development and evaluation of probability density functions for a set of human exposure factors

    SciTech Connect (OSTI)

    Maddalena, R.L.; McKone, T.E.; Bodnar, A.; Jacobson, J.

    1999-06-01T23:59:59.000Z

    The purpose of this report is to describe efforts carried out during 1998 and 1999 at the Lawrence Berkeley National Laboratory to assist the U.S. EPA in developing and ranking the robustness of a set of default probability distributions for exposure assessment factors. Among the current needs of the exposure-assessment community is the need to provide data for linking exposure, dose, and health information in ways that improve environmental surveillance, improve predictive models, and enhance risk assessment and risk management (NAS, 1994). The U.S. Environmental Protection Agency (EPA) Office of Emergency and Remedial Response (OERR) plays a lead role in developing national guidance and planning future activities that support the EPA Superfund Program. OERR is in the process of updating its 1989 Risk Assessment Guidance for Superfund (RAGS) as part of the EPA Superfund reform activities. Volume III of RAGS, when completed in 1999 will provide guidance for conducting probabilistic risk assessments. This revised document will contain technical information including probability density functions (PDFs) and methods used to develop and evaluate these PDFs. The PDFs provided in this EPA document are limited to those relating to exposure factors.

  7. An investigation of factors affecting intersection control by volume density actuated equipment

    E-Print Network [OSTI]

    Radke, Milton L

    1966-01-01T23:59:59.000Z

    Officer, for having been afforded the opportunity to investigate the capabilities of the volume density signal controllers to perform their designed functions. The author is indebted to Mr. Warren Farrell and the Traffic Engineering Department... controllers (Figure I) into the signal industry, a new concept of intersection control was initiated. The volume density controller is a form of analog computer with its operational features designed to produce maximum efficiency in the movement of traffic...

  8. Measuring Ambient Densities and Lorentz Factors of Gamma-Ray Bursts from GeV and Optical Observations

    E-Print Network [OSTI]

    Hascoët, Romain; Beloborodov, Andrei M

    2015-01-01T23:59:59.000Z

    Fermi satellite discovered that cosmological gamma-ray bursts (GRBs) are accompanied by long GeV flashes. In two GRBs, an optical counterpart of the GeV flash has been detected. Recent work suggests that the GeV+optical flash is emitted by the external blast wave from the explosion in a medium loaded with copious $e^\\pm$ pairs. The full light curve of the flash is predicted by a first-principle radiative transfer simulation and can be tested against observations. Here we examine a sample of 7 bursts with best GeV+optical data and test the model. We find that the observed light curves are in agreement with the theoretical predictions and allow us to measure three parameters for each burst: the Lorentz factor of the explosion, its isotropic kinetic energy, and the external density. With one possible exception of GRB 090510 (which is the only short burst in the sample) the ambient medium is consistent with a wind from a Wolf-Rayet progenitor. The wind density parameter $A=\\rho r^2$ varies in the sample around $1...

  9. Ningbo Qixin Photo electricity Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria: Energy ResourcesNilandOhio:Qixin

  10. Alpha track density using a semiconductor detector

    E-Print Network [OSTI]

    Hamilton, Ian Scott

    1993-01-01T23:59:59.000Z

    of factors including variation in the initial dielectric thickness, and other undefined parameters. In addition, the resultant radon concentration reading is dependent upon the calibration factor used to interpret the track density reading. Obtaining...

  11. Energy in density gradient

    E-Print Network [OSTI]

    Vranjes, J

    2015-01-01T23:59:59.000Z

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindric configuration. This is of practical importance for drift wave instability in various plasmas, and in particular in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit ...

  12. Maximum-likelihood density modification

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2000-08-01T23:59:59.000Z

    A likelihood-based density modification approach is developed that can incorporate expected electron-density information from a wide variety of sources. A likelihood-based approach to density modification is developed that can be applied to a wide variety of cases where some information about the electron density at various points in the unit cell is available. The key to the approach consists of developing likelihood functions that represent the probability that a particular value of electron density is consistent with prior expectations for the electron density at that point in the unit cell. These likelihood functions are then combined with likelihood functions based on experimental observations and with others containing any prior knowledge about structure factors to form a combined likelihood function for each structure factor. A simple and general approach to maximizing the combined likelihood function is developed. It is found that this likelihood-based approach yields greater phase improvement in model and real test cases than either conventional solvent flattening and histogram matching or a recent reciprocal-space solvent-flattening procedure [Terwilliger (1999 ?), Acta Cryst. D55, 1863–1871].

  13. An investigation of the applicability of the photo-electric cell to the determination of solubility

    E-Print Network [OSTI]

    Nordsieck, Herbert Henry

    1936-01-01T23:59:59.000Z

    , sad silver chromato solutioas on ths intensity of light. Those 4sts sre represented bp ourvos in Charts II XVc VIy VIXI ~ YARIATIOE OF INTENSITY OF LIGHT WITS TIME FOR VARIOUS CONCl9lTRATIOMS OF SILVER CRLORmE 1. 00 x 10 aols A801 yor Kiter lo80... of RasGrOa mole 9or liter iisf lost isa soalo sivisisas Coassatrat ioa of Na, Cr0, mole psr liter Dsf loot ioa seals divisioas 0. 5 x 10"6 Qed X 10 O Oe9 x 10 0, 8 x10 Oe9x106 leOz105 l. lx106 12xlQ 1. 8 x 10-6 le4 x 10 led z 10 led x...

  14. The determination of vapor composition curves by means of the photo-electric cell

    E-Print Network [OSTI]

    Chaney, Preston Earl

    1938-01-01T23:59:59.000Z

    . Calibratiea Cares for CHCllg - CC14 Usiag Riyal& Phase kbsosptiea at gg * ~ a ~ ~ ~ t ~ a ~ ~ ~ ~ ~ FIGURES I, Wltfng JNageua of the Asylifier . ~ ~ ~ ~ ~ 4 XX* Ayyasebas Use4 ha Abets bg Vayex Abssxytiaa IXX. Ayyaeabas Use4 ka Asslike by XAqs14..., sable to the ~eoIsriaetrie& ~ nalpeis ef alxtares ef vayers Or 1iqaLSs obese absorytioa saaRe is yartiallg er eaapiotolJ oataL4e tho visible rosieay as is the ease sith aasy erSani? aixtaros obtaiaablo by 4istillatioai (1) A4aae, "Tbe See of tho Phet...

  15. The use of the photo-electric cell in the determination of ammonia

    E-Print Network [OSTI]

    Adams, Leon Milton

    1934-01-01T23:59:59.000Z

    , especially in the form of' ammonia or ammonium compounds, is, . enerclly 1ndicative of tho degree of polut1on. Of tho various prooodurcs that have been dovolopod for tho determination of the amount sf nitro;. , on pro:;ant as srmonla, the nethod usia...

  16. Updated Axion CDM energy density

    E-Print Network [OSTI]

    Ji-Haeng Huh

    2008-10-08T23:59:59.000Z

    We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale Lambda_{QCD}, the current quark masses m_q's and the Peccei-Quinn scale F_a, including firstly introduced 1.85 factor which is from the initial overshoot.

  17. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric...

  18. Pair densities in density functional theory

    E-Print Network [OSTI]

    Chen, Huajie

    2015-01-01T23:59:59.000Z

    The exact interaction energy of a many-electron system is determined by the electron pair density, which is not well-approximated in standard Kohn-Sham density functional models. Here we study the (complicated but well-defined) exact universal map from density to pair density. We show that many common functionals, including the most basic version of the LDA (Dirac exchange with no correlation contribution), arise from particular approximations of this map. We develop an algorithm to compute the map numerically, and apply it to one-parameter families {a*rho(a*x)} of one-dimensional homogeneous and inhomogeneous single-particle densities. We observe that the pair density develops remarkable multiscale patterns which strongly depend on both the particle number and the "width" 1/a of the single-particle density. The simulation results are confirmed by rigorous asymptotic results in the limiting regimes a>>1 and a<<1. For one-dimensional homogeneous systems, we show that the whole spectrum of patterns is rep...

  19. Equation for liquid density

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C.; Hopper, J.R.; Cawley, W.A. (Lamar Univ., Beaumont, TX (US))

    1991-01-01T23:59:59.000Z

    Saturated liquid densities for organic chemicals are given as functions of temperature using a modified Rackett equation.

  20. Neutral depletion and the helicon density limit

    SciTech Connect (OSTI)

    Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E. [West Virginia University, Morgantown, West Virginia 26506 (United States)] [West Virginia University, Morgantown, West Virginia 26506 (United States)

    2013-12-15T23:59:59.000Z

    It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

  1. Density-dependent covariant energy density functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A. [Physics Department, Aristotle University of Thessaloniki, GR-54124 (Greece)

    2012-10-20T23:59:59.000Z

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  2. High density matter

    E-Print Network [OSTI]

    J. R. Stone

    2013-02-11T23:59:59.000Z

    The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this review the latest developments in construction of the Equation of State (EoS) of high-density matter at zero and finite temperature assuming different composition of the matter are surveyed. Critical comparison of model EoS with available observational data on neutron stars, including gravitational masses, radii and cooling patterns is presented. The effect of changing rotational frequency on the composition of neutron stars during their lifetime is demonstrated. Compatibility of EoS of high-density, low temperature compact objects and low density, high temperature matter created in heavy-ion collisions is discussed.

  3. Density Matrix Topological Insulators

    E-Print Network [OSTI]

    A. Rivas; O. Viyuela; M. A. Martin-Delgado

    2013-10-31T23:59:59.000Z

    Thermal noise can destroy topological insulators (TI). However we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices.

  4. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  5. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06T23:59:59.000Z

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  6. Update of axion CDM energy density

    SciTech Connect (OSTI)

    Huh, Ji-Haeng [Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2008-11-23T23:59:59.000Z

    We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale {lambda}{sub QCD}, the current quark masses m{sub q}'s and the Peccei-Quinn scale F{sub a}, including firstly introduced 1.85 factor which is from the initial overshoot.

  7. Optimally focused cold atom systems obtained using density-density correlations

    SciTech Connect (OSTI)

    Putra, Andika; Campbell, Daniel L.; Price, Ryan M.; Spielman, I. B. [Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, Maryland 20742 (United States)] [Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, Maryland 20742 (United States); De, Subhadeep [Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, Maryland 20742 (United States) [Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, Maryland 20742 (United States); CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2014-01-15T23:59:59.000Z

    Resonant absorption imaging is a common technique for detecting the two-dimensional column density of ultracold atom systems. In many cases, the system's thickness along the imaging direction greatly exceeds the imaging system's depth of field, making the identification of the optimally focused configuration difficult. Here we describe a systematic technique for bringing Bose-Einstein condensates (BEC) and other cold-atom systems into an optimal focus even when the ratio of the thickness to the depth of field is large: a factor of 8 in this demonstration with a BEC. This technique relies on defocus-induced artifacts in the Fourier-transformed density-density correlation function (the power spectral density, PSD). The spatial frequency at which these artifacts first appear in the PSD is maximized on focus; the focusing process therefore both identifies and maximizes the range of spatial frequencies over which the PSD is uncontaminated by finite-thickness effects.

  8. High Energy Density Capacitors

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  9. Gluon density in nuclei

    SciTech Connect (OSTI)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01T23:59:59.000Z

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  10. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA)

    1991-01-01T23:59:59.000Z

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  11. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA)

    1992-01-01T23:59:59.000Z

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  12. Density constrained TDHF

    E-Print Network [OSTI]

    Oberacker, V E

    2015-01-01T23:59:59.000Z

    In this manuscript we provide an outline of the numerical methods used in implementing the density constrained time-dependent Hartree-Fock (DC-TDHF) method and provide a few examples of its application to nuclear fusion. In this approach, dynamic microscopic calculations are carried out on a three-dimensional lattice and there are no adjustable parameters, the only input is the Skyrme effective NN interaction. After a review of the DC-TDHF theory and the numerical methods, we present results for heavy-ion potentials $V(R)$, coordinate-dependent mass parameters $M(R)$, and precompound excitation energies $E^{*}(R)$ for a variety of heavy-ion reactions. Using fusion barrier penetrabilities, we calculate total fusion cross sections $\\sigma(E_\\mathrm{c.m.})$ for reactions between both stable and neutron-rich nuclei. We also determine capture cross sections for hot fusion reactions leading to the formation of superheavy elements.

  13. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, J.D.

    1991-11-19T23:59:59.000Z

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  14. Nuclear Energy Density Optimization

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild

    2010-05-27T23:59:59.000Z

    We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.

  15. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, James H. (Albuquerque, NM); Clough, Roger L. (Albuquerque, NM); Curro, John G. (Placitas, NM); Quintana, Carlos A. (Albuquerque, NM); Russick, Edward M. (Albuquerque, NM); Shaw, Montgomery T. (Mansfield Center, CT)

    1987-01-01T23:59:59.000Z

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  16. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02T23:59:59.000Z

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  17. SUPPRESSION OF DIELECTRONIC RECOMBINATION DUE TO FINITE DENSITY EFFECTS

    SciTech Connect (OSTI)

    Nikolic, D.; Gorczyca, T. W.; Korista, K. T. [Western Michigan University, Kalamazoo, MI (United States); Ferland, G. J. [University of Kentucky, Lexington, KY (United States); Badnell, N. R. [University of Strathclyde, Glasgow (United Kingdom)

    2013-05-01T23:59:59.000Z

    We have developed a general model for determining density-dependent effective dielectronic recombination (DR) rate coefficients in order to explore finite-density effects on the ionization balance of plasmas. Our model consists of multiplying by a suppression factor those highly-accurate total zero-density DR rate coefficients which have been produced from state-of-the-art theoretical calculations and which have been benchmarked by experiment. The suppression factor is based upon earlier detailed collision-radiative calculations which were made for a wide range of ions at various densities and temperatures, but used a simplified treatment of DR. A general suppression formula is then developed as a function of isoelectronic sequence, charge, density, and temperature. These density-dependent effective DR rate coefficients are then used in the plasma simulation code Cloudy to compute ionization balance curves for both collisionally ionized and photoionized plasmas at very low (n{sub e} = 1 cm{sup -3}) and finite (n{sub e} = 10{sup 10} cm{sup -3}) densities. We find that the denser case is significantly more ionized due to suppression of DR, warranting further studies of density effects on DR by detailed collisional-radiative calculations which utilize state-of-the-art partial DR rate coefficients. This is expected to impact the predictions of the ionization balance in denser cosmic gases such as those found in nova and supernova shells, accretion disks, and the broad emission line regions in active galactic nuclei.

  18. Generation of Gaussian Density Fields

    E-Print Network [OSTI]

    Hugo Martel

    2005-07-15T23:59:59.000Z

    This document describes analytical and numerical techniques for the generation of Gaussian density fields, which represent cosmological density perturbations. The mathematical techniques involved in the generation of density harmonics in k-space, the filtering of the density fields, and the normalization of the power spectrum to the measured temperature fluctuations of the Cosmic Microwave Background, are presented in details. These techniques are well-known amongst experts, but the current literature lacks a formal description. I hope that this technical report will prove useful to new researchers moving into this field, sparing them the task of reinventing the wheel.

  19. Minimization of Fractional Power Densities

    E-Print Network [OSTI]

    Minimization of Fractional Power Densities. Robert Hardt, Rice University. Abstract: A k dimensional rectifiable current is given by an oriented k dimensional

  20. Canonical density matrix perturbation theory

    E-Print Network [OSTI]

    Niklasson, Anders M N; Rubensson, Emanuel H; Rudberg, Elias

    2015-01-01T23:59:59.000Z

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free energy ensembles in tight-binding, Hartree-Fock or Kohn-Sham density functional theory. The canonical density matrix perturbation theory can be used to calculate temperature dependent response properties from the coupled perturbed self-consistent field equations as in density functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large non-metallic materials and metals at high temperatures.

  1. Detecting Density Variations and Nanovoids

    SciTech Connect (OSTI)

    Miller, Michael K [ORNL; Longstreth-Spoor, L. [Washington University, St. Louis; Kelton, K. F. [Washington University, St. Louis

    2011-01-01T23:59:59.000Z

    A combination of simulated and experimental data has been used to investigate the size range of nanovoids that can be detected in atom probe tomography data. Simulated atom probe tomography data have revealed that nanovoids as small as 1 nm in diameter can be detected in atom probe tomography data with the use of iso-density surfaces. Iso-density surfaces may be used to quantify the size, morphology and number density of nanovoids and other variations in density in atom probe tomography data. Experimental data from an aluminum-yttrium-iron metallic glass ribbon have revealed the effectiveness of this approach. Combining iso-density surfaces with atom maps also permits the segregation of solute to the nanovoids to be investigated. Field ion microscopy and thin section atom maps have also been used to detect pores and larger voids.

  2. Optimal Seismic Network Density for Earthquake Early Warning: A Case

    E-Print Network [OSTI]

    Allen, Richard M.

    . Serdar Kuyuk and Richard M. Allen INTRODUCTION Earthquake Early Warning Systems (EEWS) rapidly detect and the public actively use early warning information is a crucial factor in early warning system design (AktasOptimal Seismic Network Density for Earthquake Early Warning: A Case Study from California by H

  3. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.; Kartzikos, S. [Physics Department, Aristotle University of Thessaloniki (Greece); Niksic, T.; Paar, N.; Vretenar, D. [Physics Department, University of Zagreb (Croatia); Ring, P. [Physics Department, TU Muenchen, Garching (Germany)

    2009-08-26T23:59:59.000Z

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  4. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L. (Oakland, CA); Barry, Patrick E. (Pleasant Hill, CA)

    1991-01-01T23:59:59.000Z

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  5. Effect of Lithium PFC Coatings on NSTX Density Control

    SciTech Connect (OSTI)

    Kugel, H W; Bell, M G; Bush, C; Gates, D; Gray, T; Kaita, R; Leblanc, B; Maingi, R; Majeski, R; Mansfield, D; Mueller, D; Raman, R; Roquemore, A L; Sabbagh, S; Skinner, C H; Soukhanovskii, V; Stevenson, T; Zakharov, L

    2006-08-21T23:59:59.000Z

    Lithium coatings on the graphite plasma facing components (PFCs) in NSTX are being investigated as a tool for density profile control and reducing the recycling of hydrogen isotopes. Repeated lithium pellet injection into Center Stack Limited and Lower Single Null Ohmic Helium Discharges were used to coat graphite surfaces that had been pre-conditioned with Ohmic Helium Discharges of the same shape to reduce their contribution to hydrogen isotope recycling. The following deuterium NBI reference discharges exhibited a reduction in density by a factor of about 3 for limited and 2 for diverted plasmas respectively, and peaked density profiles. Recently, a lithium evaporator has been used to apply thin coatings on conditioned and unconditioned PFCs. Effects on the plasma density and the impurities were obtained by pre-conditioning the PFCs with ohmic helium discharges, and performing the first deuterium NBI discharge as soon as possible after applying the lithium coating.

  6. Pion transverse charge density and the edge of hadrons

    SciTech Connect (OSTI)

    Carmignotto, Marco [Catholic University of America; Horn, Tanja [Catholic University of America; Miller, Gerald A. [University of Washington

    2014-08-01T23:59:59.000Z

    We use the world data on the pion form factor for space-like kinematics and a technique used to extract the proton transverse densities, to extract the transverse pion charge density and its uncertainty due to experimental uncertainties and incomplete knowledge of the pion form factor at large values of Q2. The pion charge density at small values of b<0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton charge densities shows that the pion is denser than the proton for values of b<0.2 fm. The pion and proton distributions seem to be the same for values of b=0.2-0.6 fm. Future data from Jlab 12 GeV and the EIC will increase the dynamic extent of the data to higher values of Q2 and thus reduce the uncertainties in the extracted pion charge density.

  7. Intercrystalline density on nanocrystalline nickel

    SciTech Connect (OSTI)

    Haasz, T.R.; Aust, K.T. [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science] [Univ. of Toronto, Ontario (Canada). Dept. of Metallurgy and Materials Science; Palumbo, G. [Ontario Hydro Research Div., Toronto, Ontario (Canada)] [Ontario Hydro Research Div., Toronto, Ontario (Canada); El-Sherik, A.M.; Erb, U. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering] [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

    1995-02-01T23:59:59.000Z

    Most methods currently available for the synthesis of nanostructured materials result in considerable residual porosity. Studies concerned with the novel structures and properties of these materials are thus compromised by the intrinsically high levels of porosity. As recently shown by Kristic et al., porosity can have a significant effect on fundamental materials properties such as Young`s modulus. One of the most promising techniques for the production of fully dense nanocrystalline materials is electrodeposition. In the present work, the residual porosity and density of nanostructured nickel produced by the electrodeposition method is assessed and discussed in light of the intrinsic intercrystalline density of nickel.

  8. Statistical density modification using local pattern matching

    SciTech Connect (OSTI)

    Terwilliger, Thomas C.

    2007-01-23T23:59:59.000Z

    A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.

  9. Power Factor Compensation (PFC) Power Factor Compensation

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

  10. Likelihood-based modification of experimental crystal structure electron density maps

    SciTech Connect (OSTI)

    Terwilliger, Thomas C. (Sante Fe, NM)

    2005-04-16T23:59:59.000Z

    A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.

  11. A current density distribution tool

    E-Print Network [OSTI]

    Jagush, Frederic A.

    1989-01-01T23:59:59.000Z

    . I. INTRODUCTION Current density distribution is an important consideration for those involved in electrochemical systems and electroplating in particular. In the printed wiring board (PWB) business, great emphasis is placed on the study of current... exist. Numerical techniques on the other hand, are usually easy to implement and are easily applicable to microcomputers. Their disadvantage as with any approximation technique is that the exactness of the results with This document follows the style...

  12. Transverse charge and magnetization densities in the nucleon's chiral periphery

    SciTech Connect (OSTI)

    Granados, Carlos G. [JLAB Newport News, VA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01T23:59:59.000Z

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  13. Probability distribution of the vacuum energy density

    SciTech Connect (OSTI)

    Duplancic, Goran; Stefancic, Hrvoje [Theoretical Physics Division, Rudjer Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Glavan, Drazen [Department of Physics, Faculty of Science, University of Zagreb, P.O. Box 331, HR-10002 Zagreb (Croatia)

    2010-12-15T23:59:59.000Z

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  14. Affine maps of density matrices

    E-Print Network [OSTI]

    Thomas F. Jordan

    2004-11-21T23:59:59.000Z

    For quantum systems described by finite matrices, linear and affine maps of matrices are shown to provide equivalent descriptions of evolution of density matrices for a subsystem caused by unitary Hamiltonian evolution in a larger system; an affine map can be replaced by a linear map, and a linear map can be replaced by an affine map. There may be significant advantage in using an affine map. The linear map is generally not completely positive, but the linear part of an equivalent affine map can be chosen to be completely positive and related in the simplest possible way to the unitary Hamiltonian evolution in the larger system.

  15. Rock Density | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to: navigation, searchRobbinsDensity At

  16. High density behaviour of nuclear symmetry energy

    E-Print Network [OSTI]

    D. N. Basu; Tapan Mukhopadhyay

    2006-12-27T23:59:59.000Z

    Role of the isospin asymmetry in nuclei and neutron stars, with an emphasis on the density dependence of the nuclear symmetry energy, is discussed. The symmetry energy is obtained using the isoscalar as well as isovector components of the density dependent M3Y effective interaction. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. Implications for the density dependence of the symmetry energy in case of a neutron star are discussed, and also possible constraints on the density dependence obtained from finite nuclei are compared.

  17. Operator pencils on the algebra of densities

    E-Print Network [OSTI]

    A. Biggs; H. M. Khudaverdian

    2014-10-15T23:59:59.000Z

    In this paper we continue to study equivariant pencil liftings and differential operators on the algebra of densities. We emphasize the role that the geometry of the extended manifold plays. Firstly we consider basic examples. We give a projective line of diff($M$)-equivariant pencil liftings for first order operators, and the canonical second order self-adjoint lifting. Secondly we study pencil liftings equivariant with respect to volume preserving transformations. This helps to understand the role of self-adjointness for the canonical pencils. Then we introduce the Duval-Lecomte-Ovsienko (DLO)-pencil lifting which is derived from the full symbol calculus of projective quantisation. We use the DLO-pencil lifting to describe all regular proj-equivariant pencil liftings. In particular the comparison of these pencils with the canonical pencil for second order operators leads to objects related to the Schwarzian. Within this paper the question of whether the pencil lifting factors through a full symbol map naturally arises.

  18. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10T23:59:59.000Z

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  19. Neutral H density at the termination shock: a consolidation of recent results

    E-Print Network [OSTI]

    M. Bzowski; E. Moebius; S. Tarnopolski; V. Izmodenov; G. Gloeckler

    2008-12-04T23:59:59.000Z

    We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determination of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 \\pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 \\pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 \\pm 0.04 cm-3.

  20. Quantum critical benchmark for density functional theory

    E-Print Network [OSTI]

    Paul E. Grabowski; Kieron Burke

    2014-08-09T23:59:59.000Z

    Two electrons at the threshold of ionization represent a severe test case for electronic structure theory. A pseudospectral method yields a very accurate density of the two-electron ion with nuclear charge close to the critical value. Highly accurate energy components and potentials of Kohn-Sham density functional theory are given, as well as a useful parametrization of the critical density. The challenges for density functional approximations and the strength of correlation are also discussed.

  1. Lipoprotein subclass analysis by immunospecific density

    E-Print Network [OSTI]

    Lester, Sandy Marie

    2009-05-15T23:59:59.000Z

    to obtain a lipoprotein density profile in the absence and presence of apo C-1. Density Lipoprotein Profiling (DLP) gives relevant information of lipoproteins, such as density and subclass characterization, and is a novel approach to purify apo C-1-enriched...

  2. Ultimate Energy Densities for Electromagnetic Pulses

    E-Print Network [OSTI]

    Mankei Tsang

    2008-03-06T23:59:59.000Z

    The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.

  3. Jacek Dobaczewski Density functional theory and energy

    E-Print Network [OSTI]

    Dobaczewski, Jacek

    in Poland per voivodship Energy density functional 245 647 Price voivodship functional 654 763 295 580Jacek Dobaczewski Density functional theory and energy density functionals in nuclear physics Jacek://www.fuw.edu.pl/~dobaczew/Stellenbosch/dobaczewski_lecture.pdf Home page: http://www.fuw.edu.pl/~dobaczew/ #12;Jacek Dobaczewski Nuclear Structure Energy scales

  4. The Critical Density and the Effective Excitation Density of Commonly Observed Molecular Dense Gas Tracers

    E-Print Network [OSTI]

    Shirley, Yancy L

    2015-01-01T23:59:59.000Z

    The optically thin critical densities and the effective excitation densities to produce a 1 K km/s (or 0.818 Jy km/s $(\\frac{\

  5. Chapter 4: High-Density Regimes in the FTU

    SciTech Connect (OSTI)

    Frigione, D.; Pieroni, L.; Buratti, P.; Giovannozzi, E.; Romanelli, M.; Esposito, B.; Leigheb, M.; Gabellieri, L. [Associazione EURATOM-ENEA sulla fusione (Italy)

    2004-05-15T23:59:59.000Z

    High-density plasmas (n{sub o} {approx} 8 x 10{sup 20} m{sup -3}) achieving steady improved core-confinement have been obtained in the Frascati Tokamak Upgrade (FTU) up to the maximum nominal toroidal field (8 T) by deep multiple pellet injection. These plasmas exhibit also high purity, efficient electron-ion coupling, and peaked density profiles sustained for several energy confinement times. Neutron yields in excess of 1 x 10{sup 13} n/s are measured, consistent with the reduction of the ion transport to neoclassical levels. Improved performance is associated with sawtooth stabilization that occurs when the pellet penetrates close to the q = 1 surface. In this regime, impurity accumulation can be prevented if a slow sawtooth activity is maintained. Experiments aimed at obtaining radiation-improved modes at high field have also been carried out using neon injection. The observed increase of the average density, with respect to the reference discharge, is significantly larger than the contribution of Ne. The neutron yield increases also by a factor of 3 to 6, and the energy confinement time increases by a factor up to 1.4.

  6. Power Factor Improvement

    E-Print Network [OSTI]

    Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

  7. The volume densities of GMCs in M81

    E-Print Network [OSTI]

    Jonathan S. Heiner; Ronald J. Allen; Bjorn H. C. Emonts; Pieter C. van der Kruit

    2007-10-05T23:59:59.000Z

    HI features near young star clusters in M81 are identified as the photodissociated surfaces of Giant Molecular Clouds (GMCs) from which the young stars have recently formed. The HI column densities of these features show a weak trend, from undetectable values inside R = 3.7 kpc and increasing rapidly to values around 3 x 10^21 cm^-2 near R ~ 7.5 kpc. This trend is similar to that of the radially-averaged HI distribution in this galaxy, and implies a constant area covering factor of ~ 0.21 for GMCs throughout M81. The incident UV fluxes G0 of our sample of candidate PDRs decrease radially. A simple equilibrium model of the photodissociation-reformation process connects the observed values of the incident UV flux, the HI column density, and the relative dust content, permitting an independent estimate to be made of the total gas density in the GMC. Within the GMC this gas will be predominantly molecular hydrogen. Volume densities of 1 < n < 200 cm^-3 are derived, with a geometric mean of 17 cm^-3. These values are similar to the densities of GMCs in the Galaxy, but somewhat lower than those found earlier for M101 with similar methods. Low values of molecular density in the GMCs of M81 will result in low levels of collisional excitation of the CO(1-0) transition, and are consistent with the very low surface brightness of CO(1-0) emission observed in the disk of M81.

  8. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24T23:59:59.000Z

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  9. Statistical density modification using local pattern matching

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2003-10-01T23:59:59.000Z

    Statistical density modification can make use of local patterns of density found in protein structures to improve crystallographic phases. A method for improving crystallographic phases is presented that is based on the preferential occurrence of certain local patterns of electron density in macromolecular electron-density maps. The method focuses on the relationship between the value of electron density at a point in the map and the pattern of density surrounding this point. Patterns of density that can be superimposed by rotation about the central point are considered equivalent. Standard templates are created from experimental or model electron-density maps by clustering and averaging local patterns of electron density. The clustering is based on correlation coefficients after rotation to maximize the correlation. Experimental or model maps are also used to create histograms relating the value of electron density at the central point to the correlation coefficient of the density surrounding this point with each member of the set of standard patterns. These histograms are then used to estimate the electron density at each point in a new experimental electron-density map using the pattern of electron density at points surrounding that point and the correlation coefficient of this density to each of the set of standard templates, again after rotation to maximize the correlation. The method is strengthened by excluding any information from the point in question from both the templates and the local pattern of density in the calculation. A function based on the origin of the Patterson function is used to remove information about the electron density at the point in question from nearby electron density. This allows an estimation of the electron density at each point in a map, using only information from other points in the process. The resulting estimates of electron density are shown to have errors that are nearly independent of the errors in the original map using model data and templates calculated at a resolution of 2.6 Å. Owing to this independence of errors, information from the new map can be combined in a simple fashion with information from the original map to create an improved map. An iterative phase-improvement process using this approach and other applications of the image-reconstruction method are described and applied to experimental data at resolutions ranging from 2.4 to 2.8 Å.

  10. Effect of low density H-mode operation on edge and divertor plasma parameters

    SciTech Connect (OSTI)

    Maingi, R. [Oak Ridge Associated Universities, Inc., TN (United States); Mioduszewski, P.K. [Oak Ridge National Lab., TN (United States); Cuthbertson, J.W. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1994-07-01T23:59:59.000Z

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation.

  11. Genetic variation of packing density within a selected population of Loblolly Pine (Pinus taeda L.

    E-Print Network [OSTI]

    Boyd, Lamar

    1967-01-01T23:59:59.000Z

    . Specific gravity of cell wall material Factors affecting the specific gravity of cell wall material Importance of the specific gravity of cell wall material Recent investigations concerning packing density 12 Chapter IV. Experimental des ign 13... Discussion of materials 13 Sample size 14 Chapter V. Method used for determining packing density in small wood samples 15 Definition and calculation 15 Measurement of specific gravity Measurement of cell wall material 15 17 Summary of overall...

  12. Solid angle and surface density as criticality parameters

    SciTech Connect (OSTI)

    Thomas, J.T.

    1980-10-01T23:59:59.000Z

    Two methods often used to establish nuclear criticality safety limits for operations with fissile materials are the surface density and solid angle techniques. The two methods are used as parameters to express experimental and validated calculations of critical configurations. It is demonstrated that each method can represent critical arrangements of subcritical units and that there can be established a one-to-one correspondence between them. The analyses further show that the effect on an array neutron multiplication factor of perturbations to the array can be reliably estimated and that each form of fissile material and unit shape has a specific representation.

  13. Quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

    1998-01-01T23:59:59.000Z

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  14. Method of synthesizing a low density material

    DOE Patents [OSTI]

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27T23:59:59.000Z

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  15. Some recent efforts toward high density implosions

    SciTech Connect (OSTI)

    McClellan, G.E.

    1980-12-04T23:59:59.000Z

    Some recent Livermore efforts towards achieving high-density implosions are presented. The implosion dynamics necessary to compress DT fuel to 10 to 100 times liquid density are discussed. Methods of diagnosing the maximum DT density for a specific design are presented along with results to date. The dynamics of the double-shelled target with an exploding outer shell are described, and some preliminary experimental results are presented.

  16. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Zénó Farkas

    2011-03-11T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  17. Considering Air Density in Wind Power Production

    E-Print Network [OSTI]

    Farkas, Zénó

    2011-01-01T23:59:59.000Z

    In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.

  18. The effects of low environmental cadmium exposure on bone density

    SciTech Connect (OSTI)

    Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Jakubowski, M. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland)] [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Szymczak, W. [Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz (Poland) [Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz (Poland); Insitute of Psychology, University of Lodz (Poland); Janasik, B.; Brodzka, R. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland)] [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland)

    2010-04-15T23:59:59.000Z

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9; 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone density.

  19. On the Extensive Air Shower density spectrum

    E-Print Network [OSTI]

    Aleksander Zawadzki; Tadeusz Wibig; Jerzy Gawin

    1998-07-29T23:59:59.000Z

    In search for new methods of determining the primary energy spectrum of Cosmic Rays, the attention was paid to the density spectrum measurement. New methods available at present warrant an accurateness of conclusions derived from the density spectrum measurements. The general statement about the change of the spectral index of the charged particle density spectrum is confirmed very clearly. Results concerning the shower size and primary energy spectra are also presented and discussed. Interesting future prospects for applications of the density spectrum method are proposed.

  20. Lipoprotein subclass analysis by immunospecific density 

    E-Print Network [OSTI]

    Lester, Sandy Marie

    2009-05-15T23:59:59.000Z

    ] 6 Table 1: Composition of Human Serum Lipoproteins Component Chylomicrons VLDL IDL LDL HDL Phospholipids (Weight %) 6-9 16-20 20-24 24-30 24-30 Free Cholesterol (Weight %) 1-3 4-8 8-9 9-12 2-5 Cholesteryl Esters (Weight %) 3-6 9... lipase; IDL, intermediate-density lipoprotein; LCAT, lecithin-cholesterol acyltransferase; LDL, low-density lipoprotein; LDL-R, low-density lipoprotein receptor; LDL-RRP, low-density lipoprotein receptor-related protein; Lyso PC...

  1. 3-D capacitance density imaging system

    DOE Patents [OSTI]

    Fasching, G.E.

    1988-03-18T23:59:59.000Z

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  2. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Song Chi; Ahmed Elasser; Maja Harfman-Todorovic; Yan Jiang; Frank Mueller; Fengfeng Tao

    2012-06-01T23:59:59.000Z

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  3. Light-front representation of chiral dynamics in peripheral transverse densities

    E-Print Network [OSTI]

    Granados, C

    2015-01-01T23:59:59.000Z

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances $b = O(M_\\pi^{-1})$ the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantiz...

  4. aerial density profiles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    present an analytic approach to predict gas density and temperature profiles in dark matter haloes. We assume that the gas density profile traces the dark matter density profile...

  5. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  6. High density laser-driven target

    DOE Patents [OSTI]

    Lindl, John D. (San Ramon, CA)

    1981-01-01T23:59:59.000Z

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  7. Dynamics of disentanglement, density matrix, and coherence in neutrino oscillations

    SciTech Connect (OSTI)

    Wu Jun; Boyanovsky, Daniel [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Hutasoit, Jimmy A.; Holman, Richard [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2010-07-01T23:59:59.000Z

    In charged current weak interaction processes, neutrinos are produced in an entangled state with the charged lepton. This correlated state is disentangled by the measurement of the charged lepton in a detector at the production site. We study the dynamical aspects of disentanglement, propagation, and detection, in particular, the conditions under which the disentangled state is a coherent superposition of mass eigenstates. The appearance and disappearance far-detection processes are described from the time evolution of this disentangled 'collapsed' state. The familiar quantum mechanical interpretation and factorization of the detection rate emerges when the quantum state is disentangled on time scales much shorter than the inverse oscillation frequency, in which case the final detection rate factorizes in terms of the usual quantum mechanical transition probability provided the final density of states is insensitive to the neutrino energy difference. We suggest possible corrections for short-baseline experiments. If the charged lepton is unobserved, neutrino oscillations and coherence are described in terms of a reduced density matrix obtained by tracing out an unobserved charged lepton. The diagonal elements in the mass basis describe the production of mass eigenstates whereas the off-diagonal ones provide a measure of coherence. It is shown that coherences are of the same order of the diagonal terms on time scales up to the inverse oscillation frequency, beyond which the coherences oscillate as a result of the interference between mass eigenstates.

  8. Density functional theory for carbon dioxide crystal

    SciTech Connect (OSTI)

    Chang, Yiwen; Mi, Jianguo, E-mail: mijg@mail.buct.edu.cn; Zhong, Chongli [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-05-28T23:59:59.000Z

    We present a density functional approach to describe the solid?liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.

  9. Density Prediction of Uranium-6 Niobium Ingots

    SciTech Connect (OSTI)

    D.F.Teter; P.K. Tubesing; D.J.Thoma; E.J.Peterson

    2003-04-15T23:59:59.000Z

    The densities of uranium-6 niobium (U-Nb) alloys have been compiled from a variety of literature sources such as Y-12 and Rocky Flats datasheets. We also took advantage of the 42 well-pedigreed, homogeneous baseline U-Nb alloys produced under the Enhanced Surveillance Program for density measurements. Even though U-Nb alloys undergo two-phase transitions as the Nb content varies from 0 wt. % to 8 wt %, the theoretical and measured densities vary linearly with Nb content. Therefore, the effect of Nb content on the density was modeled with a linear regression. From this linear regression, a homogeneous ingot of U-6 wt.% Nb would have a density of 17.382 {+-} 0.040 g/cc (95% CI). However, ingots produced at Y-12 are not homogeneous with respect to the Nb content. Therefore, using the 95% confidence intervals, the density of a Y-12 produced ingot would vary from 17.310 {+-} 0.043 g/cc at the center to 17.432 {+-} 0.039 g/cc at the edge. Ingots with larger Nb inhomogeneities will also have larger variances in the density.

  10. Periodic subsystem density-functional theory

    SciTech Connect (OSTI)

    Genova, Alessandro; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Ceresoli, Davide [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); CNR-ISTM, Institute of Molecular Sciences and Technologies, Milano (Italy)

    2014-11-07T23:59:59.000Z

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  11. Collective enhancement of nuclear state densities by the shell model Monte Carlo approach

    E-Print Network [OSTI]

    C. Özen; Y. Alhassid; H. Nakada

    2015-01-22T23:59:59.000Z

    The shell model Monte Carlo (SMMC) approach allows for the microscopic calculation of statistical and collective properties of heavy nuclei using the framework of the configuration-interaction shell model in very large model spaces. We present recent applications of the SMMC method to the calculation of state densities and their collective enhancement factors in rare-earth nuclei.

  12. A Framework to Determine the Probability Density Function for the Output Power of Wind Farms

    E-Print Network [OSTI]

    Liberzon, Daniel

    A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

  13. Estimated number of women likely to benefit from bone mineral density measurement in France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ; Menopause Introduction The prevalence of osteoporosis is rising, most notably in postmenopausal women years of age with risk factors for osteoporosis likely to lead to bone mineral density measurement, an investigation reimbursed by the French national health insurance system in patients at risk for osteoporosis

  14. Instabilities in the Nuclear Energy Density Functional

    E-Print Network [OSTI]

    M. Kortelainen; T. Lesinski

    2010-02-05T23:59:59.000Z

    In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.

  15. The temperature dependence of equilibrium plasma density

    E-Print Network [OSTI]

    B. V. Vasiliev

    2002-03-17T23:59:59.000Z

    Temperature dependence of an electron-nuclear plasma equilibrium density is considered basing on known approaches, which are given in (1)(2). It is shown that at a very high temperature, which is characteristic for a star interior, the equilibrium plasma density is almost constant and equals approximately to $10^{25}$ particles per $cm^3$. At a relatively low temperature, which is characteristic for star surface, the equilibrium plasma density is in several orders lower and depends on temperature as $T^{3/2}$.

  16. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, R.W.

    1988-05-26T23:59:59.000Z

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  17. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, R.W.

    1989-10-10T23:59:59.000Z

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  18. Low density, resorcinol-formaldehyde aerogels

    SciTech Connect (OSTI)

    Pekala, Richard W. (Pleasant Hill, CA)

    1989-01-01T23:59:59.000Z

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  19. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, Richard W. (Pleasant Hill, CA)

    1991-01-01T23:59:59.000Z

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  20. Microstructural factors important for the development of high critical current density Nb3Sn strand

    E-Print Network [OSTI]

    ) to fields below $11 T. The huge potential of the round wire multifilament HTS superconduc- tor Bi-2212

  1. Research on Factors Relating to Density and Climate Change | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making the Path for(Colorado) |theGrowth

  2. FGF growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)

    2012-07-24T23:59:59.000Z

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  3. Electromagetic proton form factors

    E-Print Network [OSTI]

    M Y Hussein

    2006-10-31T23:59:59.000Z

    The electromagnetic form factors are crucial to our understanding of the proton internal structure, and thus provide a strong constraint of the distributions of the charge and magnetization current within the proton. We adopted the quark-parton model for calculating and understanding the charge structure of the proton interms of the electromagnetic form factors. A remarkable agreement with the available experimental evidence is found.

  4. Breast Density and Cancer | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breast Cancer Awareness Series: Understanding Breast Density Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  5. Magnetic fields and density functional theory

    SciTech Connect (OSTI)

    Salsbury Jr., Freddie

    1999-02-01T23:59:59.000Z

    A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.

  6. Density controlled carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng F. (Newton, MA); Tu, Yi (Belmont, MA)

    2008-12-16T23:59:59.000Z

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  7. Inverse diffusion from knowledge of power densities

    E-Print Network [OSTI]

    Bal, Guillaume; Monard, Francois; Triki, Faouzi

    2011-01-01T23:59:59.000Z

    This paper concerns the reconstruction of a diffusion coefficient in an elliptic equation from knowledge of several power densities. The power density is the product of the diffusion coefficient with the square of the modulus of the gradient of the elliptic solution. The derivation of such internal functionals comes from perturbing the medium of interest by acoustic (plane) waves, which results in small changes in the diffusion coefficient. After appropriate asymptotic expansions and (Fourier) transformation, this allow us to construct the power density of the equation point-wise inside the domain. Such a setting finds applications in ultrasound modulated electrical impedance tomography and ultrasound modulated optical tomography. We show that the diffusion coefficient can be uniquely and stably reconstructed from knowledge of a sufficient large number of power densities. Explicit expressions for the reconstruction of the diffusion coefficient are also provided. Such results hold for a large class of boundary...

  8. High density load bearing insulation peg

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29T23:59:59.000Z

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  9. Tweedie Family Densities: Methods of Evaluation

    E-Print Network [OSTI]

    Smyth, Gordon K.

    of Queensland, St Lucia, Q 4072, Australia. 2 University of Southern Queensland, Toowoomba, Q 4350, Australia. Tweedie family densities are characterised by power variance functions of the form V[µ] = µp , where p

  10. Shock compression of low-density foams

    SciTech Connect (OSTI)

    Holmes, N.C.

    1993-07-01T23:59:59.000Z

    Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

  11. QCD Level Density from Maximum Entropy Method

    E-Print Network [OSTI]

    Shinji Ejiri; Tetsuo Hatsuda

    2005-09-24T23:59:59.000Z

    We propose a method to calculate the QCD level density directly from the thermodynamic quantities obtained by lattice QCD simulations with the use of the maximum entropy method (MEM). Understanding QCD thermodynamics from QCD spectral properties has its own importance. Also it has a close connection to phenomenological analyses of the lattice data as well as experimental data on the basis of hadronic resonances. Our feasibility study shows that the MEM can provide a useful tool to study QCD level density.

  12. Ligand identification using electron-density mapcorrelations

    SciTech Connect (OSTI)

    Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn,Judith D.

    2006-12-01T23:59:59.000Z

    A procedure for the identification of ligands bound incrystal structuresof macromolecules is described. Two characteristics ofthe density corresponding to a ligand are used in the identificationprocedure. One is the correlation of the ligand density with each of aset of test ligands after optimization of the fit of that ligand to thedensity. The other is the correlation of a fingerprint of the densitywith the fingerprint of model density for each possible ligand. Thefingerprints consist of an ordered list of correlations of each the testligands with the density. The two characteristics are scored using aZ-score approach in which the correlations are normalized to the mean andstandard deviation of correlations found for a variety of mismatchedligand-density pairs, so that the Z scores are related to the probabilityof observing a particular value of the correlation by chance. Theprocedure was tested with a set of 200 of the most commonly found ligandsin the Protein Data Bank, collectively representing 57 percent of allligands in the Protein Data Bank. Using a combination of these twocharacteristics of ligand density, ranked lists of ligand identificationswere made for representative (F-o-F-c) exp(i phi(c)) difference densityfrom entries in the Protein Data Bank. In 48 percent of the 200 cases,the correct ligand was at the top of the ranked list of ligands. Thisapproach may be useful in identification of unknown ligands in newmacromolecular structures as well as in the identification of whichligands in a mixture have bound to a macromolecule.

  13. Bell-Plesset effects for an accelerating interface with contiguous density gradients

    SciTech Connect (OSTI)

    Amendt, P

    2005-12-20T23:59:59.000Z

    A Plesset-type treatment [J. Appl. Phys. 25, 96 (1954)] is used to assess the effects of contiguous density gradients at an accelerating spherical classical interface on Rayleigh-Taylor and Bell-Plesset perturbation growth. Analytic expressions are obtained that describe enhanced Rayleigh-Taylor instability growth from contiguous density gradients aligned with the acceleration and which increase the effective Atwood number of the perturbed interface. A new pathway for geometric amplification of surface perturbations on an accelerating interface with contiguous density gradients is identified. A resonance condition between the density-gradient scalelength and the radius of the interface is also predicted based on a linearized analysis of Bernoulli's equation, potentially leading to enhanced perturbation growth. Comparison of the analytic treatment with detailed two-dimensional single-mode growth-factor simulations shows good agreement for low-mode numbers where the effects of spherical geometry are most manifested.

  14. Radial evolution of intermittency of density fluctuations in the fast solar wind

    E-Print Network [OSTI]

    Bruno, R; Primavera, L; Pietropaolo, E; D'Amicis, R; Sorriso-Valvo, L; Carbone, V; Malara, F; Veltri, P

    2014-01-01T23:59:59.000Z

    We study the radial evolution of intermittency of density fluctuations in the fast solar wind. The study is performed analyzing the plasma density measurements provided by Helios 2 in the inner heliosphere between $0.3$ and $0.9$ AU. The analysis is carried out by means of a complete set of diagnostic tools, including the flatness factor at different time scales to estimate intermittency, the Kolmogorov-Smirnov test to estimate the degree of intermittency, and the Fourier transform to estimate the power spectral densities of these fluctuations. Density fluctuations within fast wind are rather intermittent and their level of intermittency, together with the amplitude of intermittent events, decreases with distance from the Sun, at odds with intermittency of both magnetic field and all the other plasma parameters. Furthermore, the intermittent events are strongly correlated, exhibiting temporal clustering. This indicates that the mechanism underlying their generation departs from a time-varying Poisson process....

  15. On-line method of determining utilization factor in Hg-196 photochemical separation process

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Moskowitz, Philip E. (Peabody, MA)

    1992-01-01T23:59:59.000Z

    The present invention is directed to a method for determining the utilization factor [U] in a photochemical mercury enrichment process (.sup.196 Hg) by measuring relative .sup.196 Hg densities using absorption spectroscopy.

  16. Nuclear energy density optimization: Shell structure

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-04-28T23:59:59.000Z

    Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose constraints on all the parameters of the functional, selected data on single-particle splittings in spherical doubly-magic nuclei have been included into the experimental dataset. The agreement with both bulk and spectroscopic nuclear properties achieved by the resulting UNEDF2 parameterization is comparable with UNEDF1. While there is a small improvement on single-particle spectra and binding energies of closed shell nuclei, the reproduction of fission barriers and fission isomer excitation energies has degraded. As compared to previous UNEDF parameterizations, the parameter confidence interval for UNEDF2 is narrower. In particular, our results overlap well with those obtained in previous systematic studies of the spin-orbit and tensor terms. UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well for both global nuclear properties and shell structure. However, after adding new data aiming to better constrain the nuclear functional, its quality has improved only marginally. These results suggest that the standard Skyrme energy density has reached its limits and significant changes to the form of the functional are needed.

  17. Multi-factor authentication

    DOE Patents [OSTI]

    Hamlet, Jason R; Pierson, Lyndon G

    2014-10-21T23:59:59.000Z

    Detection and deterrence of spoofing of user authentication may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a user of the hardware device. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a PUF value. Combining logic is coupled to receive the PUF value, combines the PUF value with one or more other authentication factors to generate a multi-factor authentication value. A key generator is coupled to generate a private key and a public key based on the multi-factor authentication value while a decryptor is coupled to receive an authentication challenge posed to the hardware device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.

  18. Tracing spiral density waves in M81

    E-Print Network [OSTI]

    S. Kendall; R. C. Kennicutt; C. Clarke; M. D. Thornley

    2008-04-15T23:59:59.000Z

    We use SPITZER IRAC 3.6 and 4.5micron near infrared data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), optical B, V and I and 2MASS Ks band data to produce mass surface density maps of M81. The IRAC 3.6 and 4.5micron data, whilst dominated by emission from old stellar populations, is corrected for small-scale contamination by young stars and PAH emission. The I band data are used to produce a mass surface density map by a B-V colour-correction, following the method of Bell and de Jong. We fit a bulge and exponential disc to each mass map, and subtract these components to reveal the non-axisymmetric mass surface density. From the residual mass maps we are able to extract the amplitude and phase of the density wave, using azimuthal profiles. The response of the gas is observed via dust emission in the 8micron IRAC band, allowing a comparison between the phase of the stellar density wave and gas shock. The relationship between this angular offset and radius suggests that the spiral structure is reasonably long lived and allows the position of corotation to be determined.

  19. High power density solid oxide fuel cells

    SciTech Connect (OSTI)

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12T23:59:59.000Z

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  20. Statistical approach to nuclear level density

    SciTech Connect (OSTI)

    Sen'kov, R. A.; Horoi, M. [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Zelevinsky, V. G. [Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2014-10-15T23:59:59.000Z

    We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.

  1. Fabrication of low density ceramic material

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.; Sheinberg, H.

    1985-01-01T23:59:59.000Z

    A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.

  2. Factors Affecting Photosynthesis!

    E-Print Network [OSTI]

    Kudela, Raphael M.

    Factors Affecting Photosynthesis! Temperature Eppley (1972) Light Sverdrup's Critical Depth-493, but the general concept is still valid! ! #12;PB opt & Temperature! #12;Photosynthesis & Temperature! Remember: in the laboratory, we can measure photosynthesis versus irradiance (PvsE) and calculate Ek, Pmax, and alpha

  3. Public Health FAT FACTORS

    E-Print Network [OSTI]

    Qian, Ning

    : THE UNITED STATES SPENDS MORE ON HEALTH CARE THAN ANY OTHER COUNTRY. YET WE CONTINUE TO FALL FAR BEHIND States spends an astonishing percent of our gross domestic product on health care--significantly moreColumbia Public Health HOT TOPIC Climate Change FAT FACTORS Obesity Prevention BOOK SMART

  4. Precise and Accurate Density Determination of Explosives Using Hydrostatic Weighing

    SciTech Connect (OSTI)

    B. Olinger

    2005-07-01T23:59:59.000Z

    Precise and accurate density determination requires weight measurements in air and water using sufficiently precise analytical balances, knowledge of the densities of air and water, knowledge of thermal expansions, availability of a density standard, and a method to estimate the time to achieve thermal equilibrium with water. Density distributions in pressed explosives are inferred from the densities of elements from a central slice.

  5. Density matrix of black hole radiation

    E-Print Network [OSTI]

    Lasma Alberte; Ram Brustein; Andrei Khmelnitsky; A. J. M. Medved

    2015-02-09T23:59:59.000Z

    Hawking's model of black hole evaporation is not unitary and leads to a mixed density matrix for the emitted radiation, while the Page model describes a unitary evaporation process in which the density matrix evolves from an almost thermal state to a pure state. We compare a recently proposed model of semiclassical black hole evaporation to the two established models. In particular, we study the density matrix of the outgoing radiation and determine how the magnitude of the off-diagonal corrections differs for the three frameworks. For Hawking's model, we find power-law corrections to the two-point functions that induce exponentially suppressed corrections to the off-diagonal elements of the full density matrix. This verifies that the Hawking result is correct to all orders in perturbation theory and also allows one to express the full density matrix in terms of the single-particle density matrix. We then consider the semiclassical theory for which the corrections, being non-perturbative from an effective field-theory perspective, are much less suppressed and grow monotonically in time. In this case, the R\\'enyi entropy for the outgoing radiation is shown to grow linearly at early times; but this growth slows down and the entropy eventually starts to decrease at the Page time. In addition to comparing models, we emphasize the distinction between the state of the radiation emitted from a black hole, which is highly quantum, and that of the radiation emitted from a typical classical black body at the same temperature.

  6. Maximum likelihood density modification by pattern recognition of structural motifs

    SciTech Connect (OSTI)

    Terwilliger, Thomas C.

    2004-04-13T23:59:59.000Z

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  7. Error Analysis in Nuclear Density Functional Theory

    E-Print Network [OSTI]

    Nicolas Schunck; Jordan D. McDonnell; Jason Sarich; Stefan M. Wild; Dave Higdon

    2014-07-11T23:59:59.000Z

    Nuclear density functional theory (DFT) is the only microscopic, global approach to the structure of atomic nuclei. It is used in numerous applications, from determining the limits of stability to gaining a deep understanding of the formation of elements in the universe or the mechanisms that power stars and reactors. The predictive power of the theory depends on the amount of physics embedded in the energy density functional as well as on efficient ways to determine a small number of free parameters and solve the DFT equations. In this article, we discuss the various sources of uncertainties and errors encountered in DFT and possible methods to quantify these uncertainties in a rigorous manner.

  8. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, A.T.

    1982-03-03T23:59:59.000Z

    A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  9. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, Ainslie T. (Los Alamos, NM); Marsters, Robert G. (Jemez Springs, NM); Moreno, Dawn K. (Espanola, NM)

    1984-01-01T23:59:59.000Z

    A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  10. Configuration Interactions Constrained by Energy Density Functionals

    E-Print Network [OSTI]

    B. Alex Brown; Angelo Signoracci; Morten Hjorth-Jensen

    2010-09-24T23:59:59.000Z

    A new method for constructing a Hamiltonian for configuration interaction calculations with constraints to energies of spherical configurations obtained with energy-density-functional (EDF) methods is presented. This results in a unified model that reproduced the EDF binding-energy in the limit of single-Slater determinants, but can also be used for obtaining energy spectra and correlation energies with renormalized nucleon-nucleon interactions. The three-body and/or density-dependent terms that are necessary for good nuclear saturation properties are contained in the EDF. Applications to binding energies and spectra of nuclei in the region above 208Pb are given.

  11. Level densities of transitional Sm nuclei

    SciTech Connect (OSTI)

    Capote, R.; Ventura, A.; Cannata, F.; Quesada, J.M. [Nuclear Data Section, International Atomic Energy Agency, Vienna (Austria); Ente Nuove Tecnologie, Energia e Ambiente, and Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Dipartimento di Fisica dell Universita and Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla (Spain)

    2005-06-01T23:59:59.000Z

    Experimentally determined level densities of the transitional isotopes {sup 148,149,150,152}Sm at excitation energies below and around the neutron binding energy are compared with microcanonical calculations based on a Monte Carlo approach to noncollective level densities, folded with a collective enhancement estimated in the frame of the interacting boson model (IBM). The IBM parameters are adjusted so as to reproduce the low-lying discrete levels of both parities, with the exception of the odd-mass nucleus, {sup 149}Sm, where complete decoupling of the unpaired neutron from the core is assumed.

  12. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012Energy ReliabilityNews FlashesRedbirdPetroleum, One

  13. Power spectrum of electron number density perturbations at cosmological recombination epoch

    E-Print Network [OSTI]

    B. Venhlovska; B. Novosyadlyj

    2009-02-19T23:59:59.000Z

    The power spectrum of number density perturbations of free electrons is obtained for the epoch of cosmological recombination of hydrogen. It is shown that amplitude of the electron perturbations power spectrum of scales larger than acoustic horizon exceeds by factor of 17 the amplitude of baryon matter density ones (atoms and ions of hydrogen and helium). In the range of the first and second acoustic peaks such relation is 18, in the range of the third one 16. The dependence of such relations on cosmological parameters is analysed too.

  14. Maps of current density using density-functional methods A. Soncini,1,a

    E-Print Network [OSTI]

    Helgaker, Trygve

    , University of Durham, South Road, Durham DH1 3LE, United Kingdom Received 22 May 2008; accepted 17 July 2008 are compared and integration of the current densities to yield shielding constants is performed. In general of induced current density in molecules. © 2008 American Institute of Physics. DOI: 10.1063/1.2969104 I

  15. On the Determination of the Mean Cosmic Matter Density and the Amplitude of Density Fluctuations

    E-Print Network [OSTI]

    Thomas H. Reiprich

    2002-07-02T23:59:59.000Z

    The cosmological implications from a new estimate of the local X-ray galaxy cluster abundance are summarized. The results are then compared to independent observations. It is suggested that `low' values for the mean cosmic matter density and the amplitude of mass density fluctuations currently do not appear unreasonable observationally.

  16. Nanodosimetry-based quality factors for radiation protection Reinhard W. Schulte1,2,, Andrew J. Wroe2

    E-Print Network [OSTI]

    Nanodosimetry-based quality factors for radiation protection in space Reinhard W. Schulte1,2,Ã with radiation of low ionization density. Currently, quality factors of radiation both on the ground and in space. This approach makes the determination of the average quality factor of a given radiation field a rather complex

  17. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01T23:59:59.000Z

    4484/16/4/003 High power density supercapacitors usingproduced very high speci?c power density of about 30 kW kg ?manufacturing of high power density supercapacitors and

  18. High-power-density spot cooling using bulk thermoelectrics

    E-Print Network [OSTI]

    Zhang, Y; Shakouri, A; Zeng, G H

    2004-01-01T23:59:59.000Z

    model, the cooling power densities of the devices can alsothe cooling power densities 2–24 times. Experimentally, the14 4 OCTOBER 2004 High-power-density spot cooling using bulk

  19. Mechanical constraints enhance electrical energy densities of soft dielectrics

    E-Print Network [OSTI]

    Ferrari, Silvia

    Mechanical constraints enhance electrical energy densities of soft dielectrics Lin Zhang, Qiming, the dielectric will breakdown electrically. The breakdown limits the electrical energy density of the dielectric electric fields and thus increase their electrical energy densities. The mechanical constraints suppress

  20. Density waves in the Calogero model - revisited

    SciTech Connect (OSTI)

    Bardek, V. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: bardek@irb.hr; Feinberg, J. [Department of Physics, University of Haifa at Oranim, Tivon 36006 (Israel); Department of Physics, Technion-Israel Inst. of Technology, Haifa 32000 (Israel); KITP, University of California, Santa Barbara, CA 93106-4030 (United States)], E-mail: joshua@physics.technion.ac.il; Meljanac, S. [Rudjer Boskovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)], E-mail: meljanac@irb.hr

    2010-03-15T23:59:59.000Z

    The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

  1. Density-Functional Theory for Complex Fluids

    E-Print Network [OSTI]

    Wu, Jianzhong

    . This generic methodology is built upon a mathematical theorem that states, for an equilibrium system at a given modeling of the microscopic struc- tures and phase behavior of soft-condensed matter. The methodol- ogy to the one-body density profile Grand potential: the free energy of an open system at fixed volume

  2. Photovoltaic retinal prosthesis with high pixel density

    E-Print Network [OSTI]

    Palanker, Daniel

    Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high

  3. Methods to enhance blanket power density

    SciTech Connect (OSTI)

    Hsu, P.Y.; Miller, L.G.; Bohn, T.S.; Deis, G.A.; Longhurst, G.R.; Masson, L.S.; Wessol, D.E.; Abdou, M.A.

    1982-06-01T23:59:59.000Z

    The overall objective of this task is to investigate the extent to which the power density in the FED/INTOR breeder blanket test modules can be enhanced by artificial means. Assuming a viable approach can be developed, it will allow advanced reactor blanket modules to be tested on FED/INTOR under representative conditions.

  4. Durable high-density data storage

    SciTech Connect (OSTI)

    Stutz, R.A.; Lamartine, B.C.

    1996-09-01T23:59:59.000Z

    This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.

  5. Density Functional Theory Models for Radiation Damage

    E-Print Network [OSTI]

    Density Functional Theory Models for Radiation Damage S.L. Dudarev EURATOM/CCFE Fusion Association and informative as the most advanced experimental techniques developed for the observation of radiation damage investigation and assessment of radiation damage effects, offering new insight into the origin of temperature

  6. High power density thermophotovoltaic energy conversion

    SciTech Connect (OSTI)

    Noreen, D.L. [R& D Technologies, Inc., Hoboken, New Jersey 07030 (United States); Du, H. [Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)

    1995-01-05T23:59:59.000Z

    R&D Technologies is developing thermophotovoltaic (TPV) technology based on the use of porous/fibrous ceramic broadband-type emitter designs that utilize recuperative or regenerative techniques to improve thermal efficiency and power density. This paper describes preliminary estimates of what will be required to accomplish sufficient power density to develop a practical, commercially-viable TPV generator. It addresses the needs for improved, thermal shock-resistant, long-life porous/fibrous ceramic emitters and provides information on the photocell technology required to achieve acceptable power density in broadband-type (with selective filter) TPV systems. TPV combustors/systems operating at a temperature of 1500 {degree}C with a broadband-type emitter is proposed as a viable starting point for cost-effective TPV conversion. Based on current projections for photocell cost, system power densities of 7.5--10 watts per square centimeter of emitter area will be required for TPV to become a commercially viable technology. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Estimating density of Florida Key deer

    E-Print Network [OSTI]

    Roberts, Clay Walton

    2006-08-16T23:59:59.000Z

    for this species since 1968; however, a need to evaluate the precision of existing and alternative survey methods (i.e., road counts, mark-recapture, infrared-triggered cameras [ITC]) was desired by USFWS. I evaluated density estimates from unbaited ITCs and road...

  8. Population density of San Joaquin kit fox

    SciTech Connect (OSTI)

    McCue, P.; O'Farrell, T.P.; Kato, T.; Evans, B.G.

    1982-01-01T23:59:59.000Z

    Populations of the endangered San Joaquin kit fox, vulpes macrotis mutica, are known to occur on the Elk Hills Naval Petroleum Reserve No. 1. This study assess the impact of intensified petroleum exploration and production and associated human activities on kit fox population density. (ACR)

  9. Effective Field Theory and Finite Density Systems

    E-Print Network [OSTI]

    R. J. Furnstahl; G. Rupak; T. Schaefer

    2008-01-04T23:59:59.000Z

    This review gives an overview of effective field theory (EFT) as applied at finite density, with a focus on nuclear many-body systems. Uniform systems with short-range interactions illustrate the ingredients and virtues of many-body EFT and then the varied frontiers of EFT for finite nuclei and nuclear matter are surveyed.

  10. Dynamic Evolution for Risk-Neutral Densities

    E-Print Network [OSTI]

    2008-10-27T23:59:59.000Z

    specifications of the data are as follows: the spot asset price is 590, the risk- free interest rate is ... than 10) the recovered risk-neutral densities exhibit less smoothness than in the cases .... Technical report, Purdue University, 1995. [31] A. M. ...

  11. Journal Information Journal Impact Factor

    E-Print Network [OSTI]

    Krejcí, Pavel

    Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index Journal Cited Half-Life 2012 JCR Science Edition Journal: CZECHOSLOVAK MATHEMATICAL JOURNAL Mark Journal Title ISSN Total Cites Impact Factor 5-Year Impact Factor Immediacy Index Citable Items

  12. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect (OSTI)

    KRISHNAN, Mahadevan

    2012-12-10T23:59:59.000Z

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  13. Theoretical Electron Density Distributions for Fe- and Cu-Sulfide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Density Distributions for Fe- and Cu-Sulfide Earth Materials: A Connection between Bond Length, Bond Theoretical Electron Density Distributions for Fe- and Cu-Sulfide...

  14. A Density Functional Theory Study of Formaldehyde Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density Functional Theory Study of Formaldehyde Adsorption on Ceria. A Density Functional Theory Study of Formaldehyde Adsorption on Ceria. Abstract: Molecular adsorption of...

  15. Effects of van der Waals Density Functional Corrections on Trends...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    van der Waals Density Functional Corrections on Trends in Furfural Adsorption and Hydrogenation on Close-Packed Effects of van der Waals Density Functional Corrections on Trends in...

  16. Pauling bond strength, bond length and electron density distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pauling bond strength, bond length and electron density distribution. Pauling bond strength, bond length and electron density distribution. Abstract: A power law regression...

  17. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. Abstract: We will...

  18. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics...

  19. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...

  20. High power density supercapacitors using locally aligned carbon nanotube electrodes

    E-Print Network [OSTI]

    Du, C S; Yeh, J; Pan, Ning

    2005-01-01T23:59:59.000Z

    High power density supercapacitors using locally alignedof high power density supercapacitors and other similarcells [6], and for supercapacitors [7–18]. As unique energy

  1. Effects of Ambient Density and Temperature on Soot Formation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density and Temperature on Soot Formation under High-EGR Conditions Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions Presentation given at...

  2. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012...

  3. Density Functional Theory Study of Oxygen Reduction Activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum...

  4. Enhancement models of momentum densities of annihilating electron-positron pairs: the many-body picture of natural geminals

    E-Print Network [OSTI]

    Ilja Makkonen; Mikko M. Ervasti; Topi Siro; Ari Harju

    2013-12-19T23:59:59.000Z

    The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique and compact expression for the momentum density. The natural geminals can be used to define and determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of results of positron annihilation experiments.

  5. Lower crustal density estimation using the density-slowness relationship: a preliminary study

    E-Print Network [OSTI]

    Jones, Gary Wayne

    1996-01-01T23:59:59.000Z

    , and seismic velocity models were used to estimate the densities of th lower crustal rocks frcm the Wind River Mountains, the Ivrea Zone in Italy, and the average 1~ continental crustal model developed b/ ~istensen and Mconey [1995] . The. densities... by Carlson and Raskin [1984) yields a precision of about 1 percent. 'Ihe objective of this study is to evaluate this approach to estimate the density of the more complex continental crust, which is more variable in composition and affected hy a wider range...

  6. Experimental investigation of density behaviors in front of the lower hybrid launcher in experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Zhang, L.; Ding, B. J.; Li, M. H.; Kong, E. H.; Wei, W.; Liu, F. K.; Shan, J. F.; Wu, Z. G.; Zhu, L.; Ma, W. D.; Tong, Y. Y.; Li, Y. C.; Wang, M.; Zhao, L. M.; Hu, H. C.; Liu, L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Collaboration: EAST Team

    2013-06-15T23:59:59.000Z

    A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup ?2} to 10.3 MWm{sup ?2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup ?3} for 2.45 GHz lower hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.

  7. Current density fluctuations and ambipolarity of transport

    SciTech Connect (OSTI)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01T23:59:59.000Z

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  8. Current density fluctuations and ambipolarity of transport

    SciTech Connect (OSTI)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01T23:59:59.000Z

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center_dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  9. Oblique interactions of dust density waves

    SciTech Connect (OSTI)

    Wang, Zhelchui [Los Alamos National Laboratory; Li, Yang - Fang [MAX-PLANCK INSTITUTE; Hou, Lujing [MAX-PLANCK INSTITUTE; Jiang, Ke [MAX-PLANCK INSTITUTE; Wu, De - Jin [CHINA; Thomas, Hubertus M [MAX-PLANCK INSTITUTE; Morfill, Gregor E [MAX-PLANCK INSTITUTE

    2010-01-01T23:59:59.000Z

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  10. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2014-06-15T23:59:59.000Z

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  11. Ultra-high density diffraction grating

    DOE Patents [OSTI]

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11T23:59:59.000Z

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  12. Development of Silica Aerogel with Any Density

    E-Print Network [OSTI]

    M. Tabata; I. Adachi; T. Fukushima; H. Kawai; H. Kishimoto; A. Kuratani; H. Nakayama; S. Nishida; T. Noguchi; K. Okudaira; Y. Tajima; H. Yano; H. Yokogawa; H. Yoshida

    Abstract–New production methods of silica aerogel with high and low refractive indices have been developed. A very slow shrinkage of alcogel at room temperature has made possible producing aerogel with high refractive indices of up to 1.265 without cracks. Even higher refractive indices than 1.08, the transmission length of the aerogel obtained from this technique has been measured to be about 10 to 20 mm at 400 nm wave length. A mold made of alcogel which endures shrinkage in the supercritical drying process has provided aerogel with the extremely low density of 0.009g/cm 3, which corresponds to the refractive index of 1.002. We have succeeded producing aerogel with a wide range of densities. I.

  13. Density equalizing map projections: A new algorithm

    SciTech Connect (OSTI)

    Merrill, D.W.; Selvin, S.; Mohr, M.S.

    1992-02-01T23:59:59.000Z

    In the study of geographic disease clusters, an alternative to traditional methods based on rates is to analyze case locations on a transformed map in which population density is everywhere equal. Although the analyst`s task is thereby simplified, the specification of the density equalizing map projection (DEMP) itself is not simple and continues to be the subject of considerable research. Here a new DEMP algorithm is described, which avoids some of the difficulties of earlier approaches. The new algorithm (a) avoids illegal overlapping of transformed polygons; (b) finds the unique solution that minimizes map distortion; (c) provides constant magnification over each map polygon; (d) defines a continuous transformation over the entire map domain; (e) defines an inverse transformation; (f) can accept optional constraints such as fixed boundaries; and (g) can use commercially supported minimization software. Work is continuing to improve computing efficiency and improve the algorithm.

  14. Density equalizing map projections: A new algorithm

    SciTech Connect (OSTI)

    Merrill, D.W.; Selvin, S.; Mohr, M.S.

    1992-02-01T23:59:59.000Z

    In the study of geographic disease clusters, an alternative to traditional methods based on rates is to analyze case locations on a transformed map in which population density is everywhere equal. Although the analyst's task is thereby simplified, the specification of the density equalizing map projection (DEMP) itself is not simple and continues to be the subject of considerable research. Here a new DEMP algorithm is described, which avoids some of the difficulties of earlier approaches. The new algorithm (a) avoids illegal overlapping of transformed polygons; (b) finds the unique solution that minimizes map distortion; (c) provides constant magnification over each map polygon; (d) defines a continuous transformation over the entire map domain; (e) defines an inverse transformation; (f) can accept optional constraints such as fixed boundaries; and (g) can use commercially supported minimization software. Work is continuing to improve computing efficiency and improve the algorithm.

  15. Nuclear fission in covariant density functional theory

    E-Print Network [OSTI]

    A. V. Afanasjev; H. Abusara; P. Ring

    2013-09-12T23:59:59.000Z

    The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.

  16. Energy-momentum Density of Gravitational Waves

    E-Print Network [OSTI]

    Amir M. Abbassi; Saeed Mirshekari

    2014-11-29T23:59:59.000Z

    In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.

  17. Mapping densities in a noisy state space

    E-Print Network [OSTI]

    Domenico Lippolis

    2013-03-05T23:59:59.000Z

    Weak noise smooths out fractals in a chaotic state space and introduces a maximum attainable resolution to its structure. The balance of noise and deterministic stretching/contraction in each neighborhood introduces local invariants of the dynamics that can be used to partition the state space. We study the local discrete-time evolution of a density in a two-dimensional hyperbolic state space, and use the asymptotic eigenfunctions for the noisy dynamics to formulate a new state space partition algorithm.

  18. Fiber felts as low density structural materials

    SciTech Connect (OSTI)

    Milewski, J.V.; Newfield, S.E.

    1981-01-01T23:59:59.000Z

    Short fiber felts structures can be made which provide improvements in properties over foams. In applications where resistance to compression set or stress relaxation are important, bonded fiber felts excel due to the flexing of individual fibers within their elastic limit. Felts of stainless steel and polyester fibers were prepared by deposition from liquid slurries. Compressive properties were determined as a function of felt parent material, extent of bonding, felt density, and length-to-diameter (L/D) ratio of starting fibers.

  19. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    E-Print Network [OSTI]

    Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J; Sioutas, C.

    2008-01-01T23:59:59.000Z

    Response of the Photo-Electric Aerosol Sensor (PAS) to2008 Abstract. A photo-electric aerosol sensor, a diffusionthe measured photo-electric aerosol sensor signal (fA) was

  20. Energy trapping from Hagedorn densities of states

    E-Print Network [OSTI]

    Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk

    2013-04-26T23:59:59.000Z

    In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.

  1. Thermodynamics and Structural Properties of the High Density Gaussian Core Model

    E-Print Network [OSTI]

    Atsushi Ikeda; Kunimasa Miyazaki

    2011-07-20T23:59:59.000Z

    We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, $\\log T_f$, $\\log T_m \\propto -\\rho^{2/3}$, where $\\rho$ is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.

  2. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    SciTech Connect (OSTI)

    Eriksson, J., E-mail: jacob.eriksson@physics.uu.se; Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C. [EURATOM-VR, Department of Physics and Astronomy, Uppsala University (Sweden); Giacomelli, L. [Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy); EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2014-11-15T23:59:59.000Z

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 ± 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  3. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    SciTech Connect (OSTI)

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29T23:59:59.000Z

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  4. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Moriarty, Nigel W.; Zwart, Peter H. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Read, Randy J. [Department of Haematology, University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D., E-mail: terwilliger@lanl.gov [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)

    2008-01-01T23:59:59.000Z

    The highly automated PHENIX AutoBuild wizard is described. The procedure can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods. The PHENIX AutoBuild wizard is a highly automated tool for iterative model building, structure refinement and density modification using RESOLVE model building, RESOLVE statistical density modification and phenix.refine structure refinement. Recent advances in the AutoBuild wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model-completion algorithms and automated solvent-molecule picking. Model-completion algorithms in the AutoBuild wizard include loop building, crossovers between chains in different models of a structure and side-chain optimization. The AutoBuild wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 to 3.2 Å, resulting in a mean R factor of 0.24 and a mean free R factor of 0.29. The R factor of the final model is dependent on the quality of the starting electron density and is relatively independent of resolution.

  5. Nucleon Electromagnetic Form Factors

    SciTech Connect (OSTI)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01T23:59:59.000Z

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  6. Symmetry energy in nuclear density functional theory

    E-Print Network [OSTI]

    W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

    2013-07-22T23:59:59.000Z

    The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

  7. Method of high-density foil fabrication

    DOE Patents [OSTI]

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16T23:59:59.000Z

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  8. Generalized Holographic Quantum Criticality at Finite Density

    E-Print Network [OSTI]

    B. Goutéraux; E. Kiritsis

    2013-01-23T23:59:59.000Z

    We show that the near-extremal solutions of Einstein-Maxwell-Dilaton theories, studied in ArXiv:1005.4690, provide IR quantum critical geometries, by embedding classes of them in higher-dimensional AdS and Lifshitz solutions. This explains the scaling of their thermodynamic functions and their IR transport coefficients, the nature of their spectra, the Gubser bound, and regulates their singularities. We propose that these are the most general quantum critical IR asymptotics at finite density of EMD theories.

  9. Particle transport inferences from density sawteeth

    SciTech Connect (OSTI)

    Chen, J.; Li, Q.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Liao, K.; Gentle, K. W., E-mail: k.gentle@mail.utexas.edu [Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States)

    2014-05-15T23:59:59.000Z

    Sawtooth oscillations in tokamaks are defined by their effect on electron temperature: a rapid flattening of the core profile followed by an outward heat pulse and a slow core recovery caused by central heating. Recent high-resolution, multi-chord interferometer measurements on JTEXT extend these studies to particle transport. Sawteeth only partially flatten the core density profile, but enhanced particle diffusion on the time scale of the thermal crash occurs over much of the profile, relevant for impurities. Recovery between crashes implies an inward pinch velocity extending to the center.

  10. Low density inorganic foams fabricated using microwaves

    SciTech Connect (OSTI)

    Meek, T.T.; Blake, R.D.; Gregory, T.G.

    1985-01-01T23:59:59.000Z

    The objective of our work was to determine if high temperature foams could be made using microwave heating; and if so, to investigate some of their properties. Several foams were made and their compressive strengths, tensile strengths and densities were determined. Foams were made of glass, metal-glass, glass-fiber, metal-glass-fiber, and fly ash. The microwave source used was a Litton model 1521 microwave oven which operated at 2.45 GHz and had an output of 700 watts.

  11. Nuclear Energy Density Optimization: UNEDF2

    E-Print Network [OSTI]

    M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore

    2014-10-30T23:59:59.000Z

    The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

  12. Wigner density of a rigid rotator

    SciTech Connect (OSTI)

    Malta, C.P. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil)] [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil); Marshall, T.S. [Department of Mathematics, University of Manchester, Manchester M139PL (United Kingdom)] [Department of Mathematics, University of Manchester, Manchester M139PL (United Kingdom); Santos, E. [Departamento de Fisica Moderna, Universidad de Cantabria, 39005, Santander (Spain)] [Departamento de Fisica Moderna, Universidad de Cantabria, 39005, Santander (Spain)

    1997-03-01T23:59:59.000Z

    We show that the Wigner density of the rigid rotator, in an appropriate, i.e., four-dimensional, phase space, is positive. This result holds in the ground state (S state), and also in the thermal mixture state at all finite temperatures. We discuss the implications of our result for the description of angular momentum in quantum mechanics; in particular, we reexamine, in the light of this new evidence, the suggestion made by Einstein and Stern [Ann. Phys. {bold 40}, 551 (1913)] that there is a nontrivial distribution of angular momentum in the S state. {copyright} {ital 1997} {ital The American Physical Society}

  13. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low -1 DOE

  14. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low -1 DOE0 DOE

  15. High Energy Density Ultracapacitors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHigh Efficiency Low -1 DOE0 DOE09

  16. Factors Impacting EGR Cooler Fouling - Main Effects and Interactions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergy Factors Affecting PMU Installation

  17. Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Read, Randy J. [University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Brunger, Axel T. [Stanford University, 318 Campus Drive West, Stanford, CA 94305-5432 (United States); Afonine, Pavel V.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-07-01T23:59:59.000Z

    A density-based procedure is described for improving a homology model that is locally accurate but differs globally. The model is deformed to match the map and refined, yielding an improved starting point for density modification and further model-building. An approach is presented for addressing the challenge of model rebuilding after molecular replacement in cases where the placed template is very different from the structure to be determined. The approach takes advantage of the observation that a template and target structure may have local structures that can be superimposed much more closely than can their complete structures. A density-guided procedure for deformation of a properly placed template is introduced. A shift in the coordinates of each residue in the structure is calculated based on optimizing the match of model density within a 6 Å radius of the center of that residue with a prime-and-switch electron-density map. The shifts are smoothed and applied to the atoms in each residue, leading to local deformation of the template that improves the match of map and model. The model is then refined to improve the geometry and the fit of model to the structure-factor data. A new map is then calculated and the process is repeated until convergence. The procedure can extend the routine applicability of automated molecular replacement, model building and refinement to search models with over 2 Å r.m.s.d. representing 65–100% of the structure.

  18. The density of states approach for the simulation of finite density quantum field theories

    E-Print Network [OSTI]

    K. Langfeld; B. Lucini; A. Rago; R. Pellegrini; L. Bongiovanni

    2015-03-02T23:59:59.000Z

    Finite density quantum field theories have evaded first principle Monte-Carlo simulations due to the notorious sign-problem. The partition function of such theories appears as the Fourier transform of the generalised density-of-states, which is the probability distribution of the imaginary part of the action. With the advent of Wang-Landau type simulation techniques and recent advances, the density-of-states can be calculated over many hundreds of orders of magnitude. Current research addresses the question whether the achieved precision is high enough to reliably extract the finite density partition function, which is exponentially suppressed with the volume. In my talk, I review the state-of-play for the high precision calculations of the density-of-states as well as the recent progress for obtaining reliable results from highly oscillating integrals. I will review recent progress for the $Z_3$ quantum field theory for which results can be obtained from the simulation of the dual theory, which appears to free of a sign problem.

  19. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    the photo-electric effect for direct conversion of light tothe photo-electric effect for direct conversion of light to

  20. Longitudinal density monitor for the LHC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeff, A.; Andersen, M.; Boccardi, A.; Bozyigit, S.; Bravin, E.; Lefevre, T.; Rabiller, A.; Roncarolo, F.; Welsch, C. P.; Fisher, A. S.

    2012-03-01T23:59:59.000Z

    The longitudinal density monitor (LDM) is primarily intended for the measurement of the particle population in nominally empty rf buckets. These so-called satellite or ghost bunches can cause problems for machine protection as well as influencing the luminosity calibration of the LHC. The high dynamic range of the system allows measurement of ghost bunches with as little as 0.01% of the main bunch population at the same time as characterization of the main bunches. The LDM is a single-photon counting system using visible synchrotron light. The photon detector is a silicon avalanche photodiode operated in Geiger mode, which allows the longitudinal distribution of the LHC beams to be measured with a resolution of 90 ps. Results from the LDM are presented, including a proposed method for constructing a 3-dimensional beam density map by scanning the LDM sensor in the transverse plane. In addition, we present a scheme to improve the sensitivity of the system by using an optical switching technique.

  1. Chemical factors that control lignin polymerization

    SciTech Connect (OSTI)

    Sangha, Amandeep K [ORNL] [ORNL; Davison, Brian H [ORNL] [ORNL; Standaert, Robert F [ORNL] [ORNL; Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Smith, Jeremy C [ORNL] [ORNL; Parks, Jerry M [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Lignin is a complex, branched polymer that reinforces plant tissue. Understanding the factors that govern lignin structure is of central importance to the development of technologies for converting lignocellulosic biomass into fuels because lignin imparts resistance to chemical, enzymatic and mechanical deconstruction. Lignin is formed by enzymatic oxidation of phenolic monomers (monolignols) of three main types, guaiacyl (G), syringyl (S) and p- hydroxyphenyl (H). It is known that increasing the relative abundance of H subunits results in lower molecular-weight lignin polymers, and hence more easily deconstructed biomass, but it is not known why. Here, we report an analysis of frontier molecular orbitals in mono-, di- and trilignols, calculated using density functional theory, which points to a requirement of strong p- electron density on the reacting phenolic oxygen atom of the neutral precursor for enzymatic oxidation to occur. This model is consistent with a proton-coupled electron transfer (PCET) mechanism and for the first time explains why H subunits in certain linkages ( - or -5) react poorly and tend to cap the polymer. In general, -5 linkages with either a G or H terminus are predicted to inhibit elongation. More broadly, the model correctly accounts for the reactivity of the phenolic groups in a diverse set of dilignols comprising H and G subunits. Thus, we provide a coherent framework for understanding the propensity toward growth or termination of different terminal subunits in lignin.

  2. Measuring the entanglement of analogue Hawking radiation by the density-density correlation function

    E-Print Network [OSTI]

    Steinhauer, Jeff

    2015-01-01T23:59:59.000Z

    We theoretically study the entanglement of Hawking radiation emitted by an analogue black hole. We find that this entanglement can be measured by the experimentally accessible density-density correlation function, which only requires standard imaging techniques. It is seen that the high energy tail of the distribution of Hawking radiation should be entangled, whereas the low energy part is not. This confirms a previous numerical study. The full Peres-Horodecki criterion is considered, but a significant simplification is found in the stationary, homogeneous case. Our method applies to systems which are sufficiently cold that the thermal phonons can be neglected.

  3. Magnetohydrodynamically stable plasma with supercritical current density at the axis

    SciTech Connect (OSTI)

    Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Postupaev, V. V., E-mail: V.V.Postupaev@inp.nsk.su; Sudnikov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2014-05-15T23:59:59.000Z

    In this work, an analysis of magnetic perturbations in the GOL-3 experiment is given. In GOL-3, plasma is collectively heated in a multiple-mirror trap by a high-power electron beam. During the beam injection, the beam-plasma interaction maintains a high-level microturbulence. This provides an unusual radial profile of the net current (that consists of the beam current, current of the preliminary discharge, and the return current). The plasma core carries supercritical current density with the safety factor well below unity, but as a whole, the plasma is stable with q(a)???4. The net plasma current is counter-directed to the beam current; helicities of the magnetic field in the core and at the edge are of different signs. This forms a system with a strong magnetic shear that stabilizes the plasma core in good confinement regimes. We have found that the most pronounced magnetic perturbation is the well-known n?=?1, m?=?1 mode for both stable and disruptive regimes.

  4. Marking Streets to Improve Parking Density

    E-Print Network [OSTI]

    Xu, Chao

    2015-01-01T23:59:59.000Z

    Street parking spots for automobiles are a scarce commodity in most urban environments. The heterogeneity of car sizes makes it inefficient to rigidly define fixed-sized spots. Instead, unmarked streets in cities like New York leave placement decisions to individual drivers, who have no direct incentive to maximize street utilization. In this paper, we explore the effectiveness of two different behavioral interventions designed to encourage better parking, namely (1) educational campaigns to encourage parkers to "kiss the bumper" and reduce the distance between themselves and their neighbors, or (2) painting appropriately-spaced markings on the street and urging drivers to "hit the line". Through analysis and simulation, we establish that the greatest densities are achieved when lines are painted to create spots roughly twice the length of average-sized cars. Kiss-the-bumper campaigns are in principle more effective than hit-the-line for equal degrees of compliance, although we believe that the visual cues of...

  5. Ternary liquid mixture viscosities and densities

    SciTech Connect (OSTI)

    Wei, I.C.; Rowley, R.L.

    1984-01-01T23:59:59.000Z

    Liquid mixture viscosities and densities have been measured at 298.15 K and ambient pressure for 20 ternary systems. Twelve ternary compositions, encompassing the entire composition range, have been chosen for each system in an effort to test a newly proposed predictive equation based on local compositions. Viscosities calculated by using the local composition model agreed with the experimental data within an average absolute deviation of 6.4%. No adjustable parameters were used and only binary interactions in the form of NRTL constants were input. The results of these studies indicate that the local composition model predictions are generally as good for multicomponent systems as they are for the corresponding binaries. 24 references, 3 tables.

  6. Competition between superconductivity and spin density wave

    E-Print Network [OSTI]

    Tian De Cao

    2012-08-25T23:59:59.000Z

    The Hubbard model has been investigated widely by many authors, while this work may be new in two aspects. One, we focus on the possible effects of the positions of the gaps associated with the pairing and the spin density wave. Two, we suggest that the models with different parameters are appropriate for different materials (or a material in different doped regions). This will lead to some new insights into the high temperature superconductors. It is shown that the SDW can appear at some temperature region when the on-site Coulomb interaction is larger, while the SC requires a decreased U at a lower temperature. This can qualitatively explain the relationship between superconducting and pseudogap states of Cu-based superconductors in underdoped and optimally doped regions. The superinsulator is also discussed.

  7. Band terminations in density functional theory

    E-Print Network [OSTI]

    A. V. Afanasjev

    2009-02-01T23:59:59.000Z

    The analysis of the terminating bands has been performed in the relativistic mean field framework. It was shown that nuclear magnetism provides an additional binding to the energies of the specific configuration and this additional binding increases with spin and has its {\\it maximum} exactly at the terminating state. This suggests that the terminating states can be an interesting probe of the time-odd mean fields {\\it provided that other effects can be reliably isolated.} Unfortunately, a reliable isolation of these effects is not that simple: many terms of the density functional theories contribute into the energies of the terminating states and the deficiencies in the description of those terms affect the result. The recent suggestion \\cite{ZSW.05} that the relative energies of the terminating states in the $N \

  8. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13T23:59:59.000Z

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  9. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    SciTech Connect (OSTI)

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R. [Department of Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada)

    2014-10-28T23:59:59.000Z

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy was modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.

  10. Experimental bond critical point and local energy density properties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mn-O, Fe-O and Co-O bonded interactions for Abstract: Bond critical point, bcp, and local energy density properties for the electron density, ED, distributions, calculated with...

  11. Constrained Density-Functional Theory--Configuration Interaction

    E-Print Network [OSTI]

    Kaduk, Benjamin James

    2012-01-01T23:59:59.000Z

    In this thesis, I implemented a method for performing electronic structure calculations, "Constrained Density Functional Theory-- Configuration Interaction" (CDFT-CI), which builds upon the computational strengths of Density ...

  12. Nonparametric Comparison of Densities Based on Statistical Bootstrap

    E-Print Network [OSTI]

    Nonparametric Comparison of Densities Based on Statistical Bootstrap De Brabanter, K.1 , Sahhaf, S. Keywords: Statistical Bootstrap, Variance Stabilization, Least Squares Support Vector Machines, Hypothesis on statistical bootstrap with variance stabilization and a nonparametric kernel density estimator, assisting

  13. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  14. Design of annular fuel for high power density BWRs

    E-Print Network [OSTI]

    Morra, Paolo

    2005-01-01T23:59:59.000Z

    Enabling high power density in the core of Boiling Water Reactors (BWRs) is economically profitable for existing or new reactors. In this work, we examine the potential for increasing the power density in BWR plants by ...

  15. Building a completely positive factorization

    E-Print Network [OSTI]

    2010-03-14T23:59:59.000Z

    Aug 19, 2009 ... Abstract. Using a bordering approach, and building upon an already known factorization of a principal block, we establish sufficient conditions.

  16. Density regulation in annual plant communities under variable resource levels

    E-Print Network [OSTI]

    Novoplansky, Ariel

    Density regulation in annual plant communities under variable resource levels Hagit Shilo. E. and Turkington, R. 2005. Density regulation in annual plant communities under variable resource levels. Á/ Oikos 108: 241Á/252. Density regulation is assumed to be common, but is very rarely tested

  17. Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities

    DOE Patents [OSTI]

    Harrison; Neil (Santa Fe, NM), Singleton; John (Los Alamos, NM), Migliori; Albert (Santa Fe, NM)

    2008-08-05T23:59:59.000Z

    A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

  18. PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES

    E-Print Network [OSTI]

    PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES Beatrix Schunke JET Mercer St., New York NY 10012-1185 The temperature and density profiles of the Joint European Torus to determine which terms in the log-linear model to include. The density and temperature profiles

  19. PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES

    E-Print Network [OSTI]

    PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES Beatrix Schunke JET Mercer St., New York NY 10012­1185 Abstract The temperature and density profiles of the Joint European are used to determine which terms in the log­linear model to include. The density and temperature profiles

  20. Inverse diffusion from knowledge of power densities Guillaume Bal

    E-Print Network [OSTI]

    Bal, Guillaume

    asymptotic expansions and (Fourier) transformation, this allow us to construct the power density) provides access to the power density H(x) = (x)|u|2 (x) for all x inside the domain of interestInverse diffusion from knowledge of power densities Guillaume Bal , Eric Bonnetier , Fran

  1. Different methods for particle diameter determination of low density and high density lipoproteins-Comparison and evaluation 

    E-Print Network [OSTI]

    Vaidyanathan, Vidya

    2009-05-15T23:59:59.000Z

    Predominance of small dense Low Density Lipoprotein (LDL) is associated with a two to threefold increase in risk for Coronary Heart Disease (CVD). Small, dense HDL (High Density Lipoprotein) particles protect small dense LDL from oxidative stress...

  2. Statistical density modification with non-crystallographic symmetry

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2002-12-01T23:59:59.000Z

    Statistical density modification can make use of NCS in a crystal and can include estimates of the deviations from perfect NCS. Statistical density modification is a technique for phase improvement through a calculation of the posterior probability of the phases, given experimental phase information and expectations about features of the electron-density map. The technique can take advantage of both estimates of electron density in the map and uncertainties or probability distributions for those estimates. For crystals with non-crystallographic symmetry (NCS), this allows the use of the expected similarity of electron density at NCS-related points without requiring an implicit assumption that these regions are identical.

  3. Gluon condensation and deconfinement critical density in nuclear matter

    E-Print Network [OSTI]

    M. Baldo; P. Castorina; D. Zappala'

    2004-10-07T23:59:59.000Z

    An upper limit to the critical density for the transition to the deconfined phase, at zero temperature, has been evaluated by analyzing the behavior of the gluon condensate in nuclear matter. Due to the non linear baryon density effects, the upper limit to the critical density, \\rho_c turns out about nine times the saturation density, rho_0 for the value of the gluon condensate in vacuum =0.012 GeV^4. For neutron matter \\rho_c \\simeq 8.5 \\rho_0. The dependence of the critical density on the value of the gluon condensate in vacuum is studied.

  4. Journal Information Journal Impact Factor

    E-Print Network [OSTI]

    Krejcí, Pavel

    Journal Information Journal Impact Factor 5-Year Journal Impact Factor Journal Self Cites Journal Immediacy Index 2012 JCR Science Edition Journal: Applications of Mathematics Mark Journal Title ISSN Total- life APPL MATH-CZECH 0862-7940 240 0.222 0.549 0.054 37 7.3 >10.0 Cited Journal Citing Journal Source

  5. High energy density redox flow device

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13T23:59:59.000Z

    Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

  6. Balanced homodyne detectors and Casimir energy densities

    E-Print Network [OSTI]

    P. Marecki

    2008-03-22T23:59:59.000Z

    We recall and generalize the analysis of the output of the so-called balanced homodyne detectors. The most important feature of these detectors is their ability to quantify the vacuum fluctuations of the electric field, that is expectation values of products of (quantum-) electric-field operators. More precisely, the output of BHDs provides information on the one- and two-point functions of arbitrary states of quantum fields. We generalize the analysis of the response of BHDs to the case of quantum fields under influence of static external conditions such as cavities or polarizable media. By recalling the expressions for two-point functions of quantum fields in Casimir geometries we show, that a rich, position- and frequency-dependent pattern of BHD responses is predicted for ground states. This points to a potentially new characterization of quantum fields in Casimir setups which would not only complement the current global methods (Casimir forces), but also improve understanding of sub-vacuum energy densities present in some regions in these geometries.

  7. Building a Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

    2012-12-30T23:59:59.000Z

    During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

  8. Diagnosing ions and neutrals via n=2 excited hydrogen atoms in plasmas with high electron density and low electron temperature

    SciTech Connect (OSTI)

    Shumack, A. E.; Schram, D. C.; Biesheuvel, J.; Goedheer, W. J.; Rooij, G. J. van [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein (Netherlands)

    2011-03-15T23:59:59.000Z

    Ion and neutral parameters are determined in the high electron density, magnetized, hydrogen plasma beam of an ITER divertor relevant plasma via measurements of the n=2 excited neutrals. Ion rotation velocity (up to 7 km/s) and temperature (2-3 eV{approx}T{sub e}) are obtained from analysis of H{alpha} spectra measured close to the plasma source. The methodology for neutral density determination is explained whereby measurements in the linear plasma beam of Pilot-PSI are compared to modeling. Ground-state atomic densities are obtained via the production rate of n=2 and the optical thickness of the Lyman-{alpha} transition (escape factor {approx}0.6) and yield an ionization degree >85% and dissociation degree in the residual gas of {approx}4%. A 30% proportion of molecules with a rovibrational excitation of more than 2 eV is deduced from the production rate of n=2 atoms. This proportion increases by more than a factor of 4 for a doubling of the electron density in the transition to ITER divertor relevant electron densities, probably because of a large increase in the production and confinement of ground-state neutrals. Measurements are made using laser-induced fluorescence (LIF) and absorption, the suitability of which are evaluated as diagnostics for this plasma regime. Absorption is found to have a much better sensitivity than LIF, mainly owing to competition with background emission.

  9. Factors influencing quantitative liquid (scanning) transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing quantitative liquid (scanning) transmission electron microscopy. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Abstract:...

  10. Energy Aware Self-Organizing Density Management in Wireless Sensor Networks

    E-Print Network [OSTI]

    Merrer, Erwan Le; Kermarrec, Anne-Marie; Viana, Aline; Bertier, Marin

    2008-01-01T23:59:59.000Z

    Energy consumption is the most important factor that determines sensor node lifetime. The optimization of wireless sensor network lifetime targets not only the reduction of energy consumption of a single sensor node but also the extension of the entire network lifetime. We propose a simple and adaptive energy-conserving topology management scheme, called SAND (Self-Organizing Active Node Density). SAND is fully decentralized and relies on a distributed probing approach and on the redundancy resolution of sensors for energy optimizations, while preserving the data forwarding and sensing capabilities of the network. We present the SAND's algorithm, its analysis of convergence, and simulation results. Simulation results show that, though slightly increasing path lengths from sensor to sink nodes, the proposed scheme improves significantly the network lifetime for different neighborhood densities degrees, while preserving both sensing and routing fidelity.

  11. Risk factors for equine laminitis

    E-Print Network [OSTI]

    Polzer, John Patrick

    1995-01-01T23:59:59.000Z

    logistic regression to assess age, breed, sex, and seasonality as risk factors for equine laminitis. There were 70 acute cases, 183 chronic cases, and 779 controls. No statistical association was found between age, breed, sex, or seasonality...

  12. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for ...

  13. Factors Affecting Option Premium Values

    E-Print Network [OSTI]

    Johnson, Jason; Smith, Jackie; Dhuyvetter, Kevin C.; Waller, Mark L.

    1999-06-23T23:59:59.000Z

    Factors Affecting Option Premium Values Jason Johnson, Jackie Smith, Kevin Dhuyvetter and Mark Waller* Put Options Hedging in the futures market with options is much like buying an insurance policy to protect commodity sellers against declining...

  14. Electrical and Production Load Factors

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  15. Integer factorization is in P

    E-Print Network [OSTI]

    owner

    2014-04-07T23:59:59.000Z

    can be solved by a deterministic Turing machine in polynomial time(see e.g.. Cormen et al. (2009)). Theorem 5. Integer factorization is in FP. Algorithm 2 can be ...

  16. Automatic Test Factoring for Java

    E-Print Network [OSTI]

    Saff, David

    2005-06-08T23:59:59.000Z

    Test factoring creates fast, focused unit tests from slow system-widetests; each new unit test exercises only a subset of the functionalityexercised by the system test. Augmenting a test suite with factoredunit tests ...

  17. Human Factors of Reporting Systems

    E-Print Network [OSTI]

    Johnson, C.W.

    Johnson,C.W. P. Carayon (ed.), A Handbook of Human Factors and Ergonomics in Healthcare and Patient Safety, Lawrence Erlbaum, London, UK. pp 715-750 Lawrence Erlbaum Associates

  18. Textured-surface quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

    1998-08-25T23:59:59.000Z

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  19. Electron density and carriers of the diffuse interstellar bands

    E-Print Network [OSTI]

    P. Gnacinski; J. K. Sikorski; G. A. Galazutdinov

    2007-02-07T23:59:59.000Z

    We have used the ionisation equilibrium equation to derive the electron density in interstellar clouds in the direction to 13 stars. A linear relation was found, that allows the determination of the electron density from the Mg I and Mg II column densities in diffuse clouds. The comparison of normalised equivalent width of 12 DIBs with the electron density shows that the DIBs equivalent width do not change with electron density varying in the range ne=0.01-2.5 cm^-3. Therefore the DIBs carriers (1) can be observed only in one ionisation stage, or (2) the DIBs are arising in cloud regions (eg. cores or cloud coronas) for which we can not determine the electron density.

  20. Radiant-interchange configuration factors

    E-Print Network [OSTI]

    Reddin, Thomas Edward

    1965-01-01T23:59:59.000Z

    an important role in any situation involving radiant interchange. The engineer desiring to compute the radiant heat transfer in a system is usually discouraged from performing more than a superficial estimation because of the excessive amount of time... Monitor System using the Fortran IV Compiler and the Macro Assembly Program. Listings of the programs appear in the appendices. CHAPTER II THE GEOMETRY OF THE BLACK BODY CONFIGURATION FACTOR 2. 1 Derivation of the Configuration Factor To evaluate...

  1. Nuclear symmetry energy at subnormal densities from measured nuclear masses

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Fengshou Zhang

    2010-11-17T23:59:59.000Z

    The symmetry energy coefficients for nuclei with mass number A=20~250 are extracted from more than 2000 measured nuclear masses. With the semi-empirical connection between the symmetry energy coefficients of finite nuclei and the nuclear symmetry energy at reference densities, we investigate the density dependence of symmetry energy of nuclear matter at subnormal densities. The obtained results are compared with those extracted from other methods.

  2. High-Precision Thermodynamics and Hagedorn Density of States

    E-Print Network [OSTI]

    Harvey B. Meyer

    2009-05-26T23:59:59.000Z

    We compute the entropy density of the confined phase of QCD without quarks on the lattice to very high accuracy. The results are compared to the entropy density of free glueballs, where we include all the known glueball states below the two-particle threshold. We find that an excellent, parameter-free description of the entropy density between 0.7Tc and Tc is obtained by extending the spectrum with the exponential spectrum of the closed bosonic string.

  3. Method for measuring the density of lightweight materials

    DOE Patents [OSTI]

    Snow, Samuel G. (Oak Ridge, TN); Giacomelli, Edward J. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    This invention relates to a nondestructive method for measuring the density of articles composed of elements having a low atomic number such as plastic and carbon composites. The measurement is accomplished by striking the article with a collimated beam of X radiation, simultaneously monitoring the radiation scattered and the radiation transmitted by the article, then relating the ratio of the radiation scattered to the radiation transmitted with the density of the article. The above method is insensitive to all variables except density.

  4. Density Log At Valles Caldera - Redondo Geothermal Area (Rowley...

    Open Energy Info (EERE)

    Rowley, Et Al., 1987) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Density Log Activity Date 1984 - 1984 Usefulness not...

  5. Density-dependent acoustic properties of PBX 9502

    SciTech Connect (OSTI)

    Brown, Geoffrey W [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Hartline, Ernest L [Los Alamos National Laboratory; Hagelberg, Stephanie I [Los Alamos National Laboratory

    2009-07-31T23:59:59.000Z

    We have measured the longitudinal and shear acoustic velocities of PBX 9502 as a function of density for die-pressed samples over the range 1.795 g/cc to 1.888 g/cc. The density dependence of the velocities is linear. Thermal cycling of PBX 9502 is known to induce irreversible volume growth. We have measured this volume growth dependence on density for a subset of the pressed parts and find that the most growth occurs for the samples with lowest initial density. The acoustic velocity changes due to the volume growth are significant and reflect damage in the samples.

  6. COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS

    E-Print Network [OSTI]

    Howard, John

    COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS J. HOWARD, M. PERSSON* Plasma Research Laboratory, Research School of Physical Sciences, Australian National University, Canberra

  7. Polymer Electrolytes for High Energy Density Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes for High Energy Density Lithium Batteries Ashoutosh Panday Scott Mullin Nitash Balsara Proposed Battery anode (Li metal) Li Li + + e - e - Li salt in a hard solid...

  8. activity mammographic density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Circuits Engineering Websites Summary: Transition Density, A New Measure of Activity in Digital Circuits Farid N. Najm Semiconductor Process & Design Center Texas Instruments...

  9. A Comprehensive Study Of Fracture Patterns And Densities In The...

    Open Energy Info (EERE)

    Patterns And Densities In The Geysers Geothermal Reservoir Using Microearthquake Shear-Wave Splitting Tomography Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Inexpensive Production of High Density Thin Ceramic Films on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inexpensive Production of High Density Thin Ceramic Films on Rigid or Porous Substrates Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing...

  11. SciTech Connect: Chiral dynamics and peripheral transverse densities

    Office of Scientific and Technical Information (OSTI)

    in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as...

  12. Developing a Lower Cost and Higher Energy Density Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protected Lithium Electrodes for Advanced Batteries ADVANCED MANUFACTURING OFFICE Developing a Lower Cost and Higher Energy Density Alternative to Lithium-Ion Batteries...

  13. Density Functional Study of the Structure, Stability and Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity...

  14. ATMOSPHERIC DENSITY ESTIMATION USING SATELLITE PRECISION ORBIT EPHEMERIDES

    E-Print Network [OSTI]

    Arudra, Anoop Kumar

    2011-04-22T23:59:59.000Z

    ..................................................................................... 92 4.5.2 Density and Ballistic Coefficient Correlated Half-life Variation. ............................. 92 5 SUMMARY, CONCLUSIONS AND FUTURE WORK .............................. 93 5.1 Summary...

  15. Density Functional Theory Studies of the Electronic Structure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory Studies of the Electronic Structure of Solid State Actinide Oxides. Density Functional Theory Studies of the Electronic Structure of Solid State Actinide Oxides. Abstract:...

  16. Distributions of Fourier modes of cosmological density fields

    SciTech Connect (OSTI)

    Fan, Z.; Bardeen, J.M. [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)

    1995-06-15T23:59:59.000Z

    We discuss the probability distributions of Fourier modes of cosmological density fields using the central limit theorem is it applies to weighted integrals of random fields. It is shown that if the cosmological principle holds in a certain sense, i.e., the Universe approaches homogeneity and isotropy sufficiently rapidly on very large scales, the one-point distribution of each Fourier mode of the density field is Gaussian whether or not the density field itself is Gaussian. Therefore, one-point distributions of the power spectrum obtained from observational data or from simulations are not a good test of whether the density field is Gaussian.

  17. Power-law tails in probability density functions of molecular cloud column density

    E-Print Network [OSTI]

    Brunt, Chris

    2015-01-01T23:59:59.000Z

    Power-law tails are often seen in probability density functions (PDFs) of molecular cloud column densities, and have been attributed to the effect of gravity. We show that extinction PDFs of a sample of five molecular clouds obtained at a few tenths of a parsec resolution, probing extinctions up to A$_{{\\mathrm{V}}}$ $\\sim$ 10 magnitudes, are very well described by lognormal functions provided that the field selection is tightly constrained to the cold, molecular zone and that noise and foreground contamination are appropriately accounted for. In general, field selections that incorporate warm, diffuse material in addition to the cold, molecular material will display apparent core+tail PDFs. The apparent tail, however, is best understood as the high extinction part of a lognormal PDF arising from the cold, molecular part of the cloud. We also describe the effects of noise and foreground/background contamination on the PDF structure, and show that these can, if not appropriately accounted for, induce spurious ...

  18. The ESO Nearby Abell Cluster Survey IX. The morphology-radius and morphology-density relations in rich galaxy clusters

    E-Print Network [OSTI]

    T. Thomas; P. Katgert

    2005-10-10T23:59:59.000Z

    We study the morphology-radius (MR-) and morphology-density (MD-) relations for a sample of about 850 galaxies (with M = -22), the S0 galaxies and the early spirals have different Sigma1-distributions. The reason for this is that Sigma1 is much less correlated with R than is Sigma10, and thus has much less cross-talk from the (MR-) relation. On average, the 'normal' ellipticals populate environments with higher projected density than do the S0 galaxies while the early spirals populate even less dense environments. The segregation of the brightest ellipticals and the late spirals is driven mostly by global factors, while the segregation between 'normal' ellipticals, S0 galaxies and early spirals is driven primarily by local factors.

  19. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect (OSTI)

    Palacio Mizrahi, J. H. [Physics Department, Technion, Haifa 32000 (Israel)

    2014-06-15T23:59:59.000Z

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  20. Symmetry energy systematics and its high density behavior

    E-Print Network [OSTI]

    Lie-Wen Chen

    2015-06-30T23:59:59.000Z

    We explore the systematics of the density dependence of nuclear matter symmetry energy in the ambit of microscopic calculations with various energy density functionals, and find that the symmetry energy from subsaturation density to supra-saturation density can be well determined by three characteristic parameters of the symmetry energy at saturation density $\\rho_0 $, i.e., the magnitude $E_{\\text{sym}}({\\rho_0 })$, the density slope $L$ and the density curvature $K_{\\text{sym}}$. This finding opens a new window to constrain the supra-saturation density behavior of the symmetry energy from its (sub-)saturation density behavior. In particular, we obtain $L=46.7 \\pm 12.8$ MeV and $K_{\\text{sym}}=-166.9 \\pm 168.3$ MeV as well as $E_{\\text{sym}}({2\\rho _{0}}) \\approx 40.2 \\pm 12.8$ MeV and $L({2\\rho _{0}}) \\approx 8.9 \\pm 108.7$ MeV based on the present knowledge of $E_{\\text{sym}}({\\rho_{0}}) = 32.5 \\pm 0.5$ MeV, $E_{\\text{sym}}({\\rho_c}) = 26.65 \\pm 0.2$ MeV and $L({\\rho_c}) = 46.0 \\pm 4.5$ MeV at $\\rho_{\\rm{c}}= 0.11$ fm$^{-3}$ extracted from nuclear mass and the neutron skin thickness of Sn isotopes. Our results indicate that the symmetry energy cannot be stiffer than a linear density dependence.In addition, we also discuss the quark matter symmetry energy since the deconfined quarks could be the right degree of freedom in dense matter at high baryon densities.

  1. Ligand identification using electron-density map correlations

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Adams, Paul D.; Moriarty, Nigel W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Cohn, Judith D. [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)

    2007-01-01T23:59:59.000Z

    An automated ligand-fitting procedure is applied to (F{sub o} ? F{sub c})exp(i?{sub c}) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F{sub o} ? F{sub c})exp(i?{sub c}) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule.

  2. Bone mineral density and fractures in older men with chronic obstructive pulmonary disease or asthma

    E-Print Network [OSTI]

    Dam, T.-T.; Harrison, S.; Fink, H. A.; Ramsdell, J.; Barrett-Connor, E.

    2010-01-01T23:59:59.000Z

    x ORIGINAL ARTICLE Bone mineral density and fractures inwas associated with lower bone mineral density (BMD) at theKeywords Bone loss . Bone mineral density . Elderly .

  3. Quark number density at imaginary chemical potential and its extrapolation to large real chemical potential by the effective model

    E-Print Network [OSTI]

    Junichi Takahashi; Junpei Sugano; Masahiro Ishii; Hiroaki Kouno; Masanobu Yahiro

    2014-10-30T23:59:59.000Z

    We evaluate quark number densities at imaginary chemical potential by lattice QCD with clover-improved two-flavor Wilson fermion. The quark number densities are extrapolated to the small real chemical potential region by assuming some function forms. The extrapolated quark number densities are consistent with those calculated at real chemical potential with the Taylor expansion method for the reweighting factors. In order to study the large real chemical potential region, we use the two-phase model consisting of the quantum hadrodynamics model for the hadron phase and the entanglement-PNJL model for the quark phase. The quantum hadrodynamics model is constructed to reproduce nuclear saturation properties, while the entanglement-PNJL model reproduces well lattice QCD data for the order parameters such as the Polyakov loop, the thermodynamic quantities and the screening masses. Then, we calculate the mass-radius relation of neutron stars and explore the hadron-quark phase transition with the two-phase model.

  4. Factoring species, non-species values and threats into biodiversity prioritisation across the ecoregions

    E-Print Network [OSTI]

    Vermont, University of

    population density, and the extinction risk of species. This threat index is positively correlated with allFactoring species, non-species values and threats into biodiversity prioritisation across Biodiversity Species Non-species biological values Threat A B S T R A C T Biodiversity in Africa, Madagascar

  5. Regulation of Xylella fastidiosa virulence factors by c-di-GMP phosphodiesterases 

    E-Print Network [OSTI]

    Ancona-Contreras, Veronica

    2012-10-19T23:59:59.000Z

    polysaccharides and the formation of a biofilm. These traits are mediated in a cell-density manner by a cell-to-cell signaling system that transduces a diffusible signaling factor (DSF). This dissertation demonstrates that PD1994, PD1617 and RpfG regulate...

  6. On models of polydisperse sedimentation with particle-size-specific hindered-settling factors

    E-Print Network [OSTI]

    Bürger, Raimund

    On models of polydisperse sedimentation with particle-size-specific hindered-settling factors David in size or density that are dispersed in a viscous fluid. During sedimentation, the different particle Numerous engineering applications involve the sedimentation of small solid particles dispersed in a viscous

  7. ccsd00002198, Asymmetric Silver to Oxide Adhesion in

    E-Print Network [OSTI]

    on glass are widely used for at optical, photo- electric and electrochromic devices. Typical applications

  8. Factors Affecting PMU Installation Costs (October 2014) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartmentEnergy Factors Affecting PMU Installation Costs

  9. Full title: Reduced bone mineral density in HIV-infected patients: prevalence and associated factors, ANRS CO3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    et Tropicales, Hôpital Pellegrin, Centre Hospitalier Universitaire (CHU), Bordeaux, France, b INSERM. Pharmacovigilance: G. Miremont-Salamé. Data collection and Data management: E. Balestre, MJ. Blaizeau, M. Decoin, S

  10. ORIGINAL PAPER BambooFiber Filled High Density Polyethylene Composites

    E-Print Network [OSTI]

    ORIGINAL PAPER Bamboo­Fiber Filled High Density Polyethylene Composites: Effect of Coupling Springer Science+Business Media, LLC 2008 Abstract High density polyethylene (HDPE)/bamboo composites of the composites were studied. The equilibrium torque during compounding decreased with use of clay master- batch

  11. Statistical inference for density dependent Markovian forestry models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Statistical inference for density dependent Markovian forestry models Abstract A stochastic forestry model with a density-dependence structure is studied. The population evolves in discrete roughly speaking, becomes large. From the perspective of the analysis of forestry data and predict

  12. Kernel Density Based Linear Regression Estimate and Zhibiao Zhao

    E-Print Network [OSTI]

    Zhao, Zhibiao

    Kernel Density Based Linear Regression Estimate Weixin Yao and Zhibiao Zhao Abstract For linear regression models with non-normally distributed errors, the least squares estimate (LSE) will lose some words: EM algorithm, Kernel density estimate, Least squares estimate, Linear regression, Maximum

  13. Distributional Energy-Momentum Densities of Schwarzschild Space-Time

    E-Print Network [OSTI]

    Toshiharu Kawai; Eisaku Sakane

    1997-07-14T23:59:59.000Z

    For Schwarzschild space-time, distributional expressions of energy-momentum densities and of scalar concomitants of the curvature tensors are examined for a class of coordinate systems which includes those of the Schwarzschild and of Kerr-Schild types as special cases. The energy-momentum density $\\tilde T_\\mu^{\

  14. Coded modulation with Low Density Parity Check codes

    E-Print Network [OSTI]

    Narayanaswami, Ravi

    2001-01-01T23:59:59.000Z

    This thesis proposes the design of Low Density Parity Check (LDPC) codes for cases where coded modulation is used. We design these codes by extending the idea of Density Evolution (DE) that has been introduced as a powerful tool to analyze LDPC...

  15. CONCRETE OPTIMISATION WITH REGARD TO PACKING DENSITY AND RHEOLOGY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CONCRETE OPTIMISATION WITH REGARD TO PACKING DENSITY AND RHEOLOGY François de Larrard LCPC Centre/organizers): .............. Keywords: packing density, rheology, grading curve, optimisation, self-compacting concrete, roller-compacted concrete. Author contacts Authors E-Mail Fax Postal address LCPC Centre de Nantes François de Larrard

  16. Transition Density, A Stochastic Measure of Activity in Digital Circuits

    E-Print Network [OSTI]

    Najm, Farid N.

    Transition Density, A Stochastic Measure of Activity in Digital Circuits Farid N. Najm.e., the rate at which its nodes are switching. We propose a new measure of activity, called the transition model of logic signals, we rigorously define the transition density and present an algorithm

  17. Transition Density, A Stochastic Measure of Activity in Digital Circuits

    E-Print Network [OSTI]

    Najm, Farid N.

    Transition Density, A Stochastic Measure of Activity in Digital Circuits Farid N. Najm.e., the rate at which its nodes are switching. We propose a new measure of activity, called the transition of logic signals, we rigorously de ne the transition density and present an algorithm to propagate it from

  18. THERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND

    E-Print Network [OSTI]

    envelope and on the performance of systems. This behaviour is related to hygric and thermal propertiesTHERMAL CONDUCTIVITY OF HEMP CONCRETES: VARIATION WITH FORMULATION, DENSITY AND WATER CONTENT of formulation, density and water content on the thermal conductivity of hemp concretes. The investigations

  19. Evolution of particle density in high-energy pp collisions

    E-Print Network [OSTI]

    I. Bautista; C. Pajares; J. Dias de Deus

    2012-03-09T23:59:59.000Z

    We study the evolution of the particle density, dn/d\\eta at fixed \\eta with the beam rapidity Y in the framework of string percolation model. Our main results are: (i) The width of the "plateau" increases proportionally to Y, (ii) limiting fragmentation is violated, and (iii) the particle density, reduces to a step function.

  20. Low Density Nuclear Matter in Heavy Ion Collisions 

    E-Print Network [OSTI]

    Qin, Lijun

    2010-01-14T23:59:59.000Z

    The symmetry energy is the energy difference between symmetric nuclear matter and pure neutron matter at a given density. Around normal nuclear density, i.e. p/p0 =1, and temperature, i.e. T = 0, the symmetry energy is approximately 23.5 Me...

  1. Simulation of salt migrations in density dependent groundwater flow

    E-Print Network [OSTI]

    Vuik, Kees

    Simulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis for the salt migration in the groundwater underneath the polders near the coast. The problem description of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater

  2. Locating a Recycling Center: The General Density Case Jannett Highfill

    E-Print Network [OSTI]

    Mou, Libin

    Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

  3. Density-Enthalpy Phase Diagram 0D Boiler Simulation

    E-Print Network [OSTI]

    Vuik, Kees

    Diagram 0D Boiler Simulation Finite Element Method Further Research Mass and Heat balances V d dt = i - eDensity-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research

  4. Observation of the density minimum in deeply supercooled confined water

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    of SANS data allows us to determine the absolute value of the density of D2O as a function of temperature remarkable physical properties of liquid water (1), the density maximum is probably the most well known is considered to be the most accurate model for reproducing experimental data when used with a simple spherical

  5. Density Power Spectrum of Compressible Hydrodynamic Turbulent Flows

    E-Print Network [OSTI]

    Jongsoo Kim; Dongsu Ryu

    2005-07-26T23:59:59.000Z

    Turbulent flows are ubiquitous in astrophysical environments, and understanding density structures and their statistics in turbulent media is of great importance in astrophysics. In this paper, we study the density power spectra, $P_{\\rho}$, of transonic and supersonic turbulent flows through one and three-dimensional simulations of driven, isothermal hydrodynamic turbulence with root-mean-square Mach number in the range of $1 \\la M_{\\rm rms} \\la 10$. From one-dimensional experiments we find that the slope of the density power spectra becomes gradually shallower as the rms Mach number increases. It is because the density distribution transforms from the profile with {\\it discontinuities} having $P_{\\rho} \\propto k^{-2}$ for $M_{\\rm rms} \\sim 1$ to the profile with {\\it peaks} having $P_{\\rho} \\propto k^0$ for $M_{\\rm rms} \\gg 1$. We also find that the same trend is carried to three-dimension; that is, the density power spectrum flattens as the Mach number increases. But the density power spectrum of the flow with $M_{\\rm rms} \\sim 1$ has the Kolmogorov slope. The flattening is the consequence of the dominant density structures of {\\it filaments} and {\\it sheets}. Observations have claimed different slopes of density power spectra for electron density and cold H I gas in the interstellar medium. We argue that while the Kolmogorov spectrum for electron density reflects the {\\it transonic} turbulence of $M_{\\rm rms} \\sim 1$ in the warm ionized medium, the shallower spectrum of cold H I gas reflects the {\\it supersonic} turbulence of $M_{\\rm rms} \\sim$ a few in the cold neutral medium.

  6. Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors

    SciTech Connect (OSTI)

    Shin, Ilgyou [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States)] [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States); Carter, Emily A., E-mail: eac@princeton.edu [Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263 (United States)

    2014-05-14T23:59:59.000Z

    We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsäcker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.

  7. Factors Limiting Complete Tumor Ablation by Radiofrequency Ablation

    SciTech Connect (OSTI)

    Paulet, Erwan, E-mail: erwanpaulet@yahoo.fr; Aube, Christophe [University Hospital Angers, Department of Radiology (France); Pessaux, Patrick [University Hospital Angers, Department of Visceral Surgery (France); Lebigot, Jerome [University Hospital Angers, Department of Radiology (France); Lhermitte, Emilie [University Hospital Angers, Department of Visceral Surgery (France); Oberti, Frederic [University Hospital Angers, Department of Hepato-Gastroenterology (France); Ponthieux, Anne [University Hospital Angers, Clinical Research Center (France); Cales, Paul [University Hospital Angers, Department of Hepato-Gastroenterology (France); Ridereau-Zins, Catherine [University Hospital Angers, Department of Radiology (France); Pereira, Philippe L. [Eberhard-Karls University, Department of Diagnostic Radiology (Germany)

    2008-01-15T23:59:59.000Z

    The purpose of this study was to determine radiological or physical factors to predict the risk of residual mass or local recurrence of primary and secondary hepatic tumors treated by radiofrequency ablation (RFA). Eighty-two patients, with 146 lesions (80 hepatocellular carcinomas, 66 metastases), were treated by RFA. Morphological parameters of the lesions included size, location, number, ultrasound echogenicity, computed tomography density, and magnetic resonance signal intensity were obtained before and after treatment. Parameters of the generator were recorded during radiofrequency application. The recurrence-free group was statistically compared to the recurrence and residual mass groups on all these parameters. Twenty residual masses were detected. Twenty-nine lesions recurred after a mean follow-up of 18 months. Size was a predictive parameter. Patients' sex and age and the echogenicity and density of lesions were significantly different for the recurrence and residual mass groups compared to the recurrence-free group (p < 0.05). The presence of an enhanced ring on the magnetic resonance control was more frequent in the recurrence and residual mass groups. In the group of patients with residual lesions, analysis of physical parameters showed a significant increase (p < 0.05) in the time necessary for the temperature to rise. In conclusion, this study confirms risk factors of recurrence such as the size of the tumor and emphasizes other factors such as a posttreatment enhanced ring and an increase in the time necessary for the rise in temperature. These factors should be taken into consideration when performing RFA and during follow-up.

  8. Running heading: Bulk density of a clayey subsoil Increase in the bulk density of a Grey Clay subsoil by

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Running heading: Bulk density of a clayey subsoil Increase in the bulk density of a Grey Clay of the prisms were coated by material similar in composition to the topsoil and separated from as the profile dries over summer leading to widening of cracks between prismatic peds, (2) infilling of cracks

  9. Density Measurement Worksheet. Use this sheet to determine if your formula is consistent with the known densities of

    E-Print Network [OSTI]

    Meagher, Mary

    Density Measurement Worksheet. Use this sheet to determine if your formula is consistent with the known densities of various compounds. Formula : Formula weight : _______________ (FW) Unit Cell Volume :______________ (V) Probable Z value for your Laue symmetry (based on the unit cell: table 1) : ______ (Z) Formula V

  10. A Review of Electrochromic Window Performance Factors

    E-Print Network [OSTI]

    Selkowitz Ed, S.E.

    2010-01-01T23:59:59.000Z

    controls and a lighting power density of 16.1 W/m2 (1.5controls and a lighting power density of 16.1 W/m2 (1.5ft) office spaces. Lighting power density was 16.1 W/m2 (1.5

  11. Optimization Online - Integer Factorization is in P

    E-Print Network [OSTI]

    Yuly Shipilevsky

    2012-08-31T23:59:59.000Z

    Aug 31, 2012 ... Integer Factorization is in P. Yuly Shipilevsky (yulysh2000 ***at*** yahoo.ca). Abstract: A polynomial-time algorithm for integer factorization, ...

  12. Transcription factor-based biosensor

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  13. How are mortality rates affected by population density?

    E-Print Network [OSTI]

    Wang, Lei; Di, Zengru; Roehner, Bertrand M

    2013-01-01T23:59:59.000Z

    Biologists have found that the death rate of cells in culture depends upon their spatial density. Permanent "Stay alive" signals from their neighbours seem to prevent them from dying. In a previous paper (Wang et al. 2013) we gave evidence for a density effect for ants. In this paper we examine whether there is a similar effect in human demography. We find that although there is no observable relationship between population density and overall death rates, there is a clear relationship between density and the death rates of young age-groups. Basically their death rates decrease with increasing density. However, this relationship breaks down around 300 inhabitants per square kilometre. Above this threshold the death rates remains fairly constant. The same density effect is observed in Canada, France, Japan and the United States. We also observe a striking parallel between the density effect and the so-called marital status effect in the sense that they both lead to higher suicide rates and are both enhanced fo...

  14. Measuring the stellar luminosity function and spatial density profile of the inner 0.5 pc of the Milky Way nuclear star cluster

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    density profile of the inner 0.5 pc of the Milky Way nuclearold) stars in the central 0.5 pc of the Milky Way nucleara factor of 3 radially out to 0.5 pc from Sgr A* along the

  15. Symmetry energy at subnuclear densities deduced from nuclear masses

    E-Print Network [OSTI]

    Kazuhiro Oyamatsu; Kei Iida

    2010-04-19T23:59:59.000Z

    We examine how nuclear masses are related to the density dependence of the symmetry energy. Using a macroscopic nuclear model we calculate nuclear masses in a way dependent on the equation of state of asymmetric nuclear matter. We find by comparison with empirical two-proton separation energies that a smaller symmetry energy at subnuclear densities, corresponding to a larger density symmetry coefficient L, is favored. This tendency, which is clearly seen for nuclei that are neutron-rich, nondeformed, and light, can be understood from the property of the surface symmetry energy in a compressible liquid-drop picture.

  16. Nuclear Energy Density Functionals Constrained by Low-Energy QCD

    E-Print Network [OSTI]

    Dario Vretenar

    2008-02-06T23:59:59.000Z

    A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.

  17. Precision Cosmology and the Density of Baryons in the Universe

    E-Print Network [OSTI]

    M. Kaplinghat; M. S. Turner

    2000-11-14T23:59:59.000Z

    Big-bang Nucleosynthesis (BBN) and Cosmic Microwave Background (CMB) anisotropy measurements give independent, accurate measurements of the baryon density and can test the framework of the standard cosmology. Early CMB data are consistent with the longstanding conclusion from BBN that baryons constitute a small fraction of matter in the Universe, but may indicate a slightly higher value for the baryon density. We clarify precisely what the two methods determine, and point out that differing values for the baryon density can indicate either an inconsistency or physics beyond the standard models of cosmology and particle physics. We discuss other signatures of the new physics in CMB anisotropy.

  18. The value of density measurements in stellar coronae

    E-Print Network [OSTI]

    Jan-Uwe Ness; Carole Jordan

    2005-04-06T23:59:59.000Z

    The grating instruments on board Chandra and XMM-Newton now allow measurements of electron densities. These rely on the ratios of fluxes in emission lines, where one line depends on both collisional and radiative decay rates. The electron density is required to constrain the physical extent of the emitting region, and large samples of measurements are of interest in the context of trends in coronal activity. Here we discuss the important He {\\sc i}-like ions and the differences in densities that result when different current data bases are used.

  19. Constraining the nuclear symmetry-energy at super-density

    E-Print Network [OSTI]

    Yong, Gao-Chan

    2015-01-01T23:59:59.000Z

    The nuclear symmetry-energy has broad implications in both nuclear physics and astrophysics. Due to hard work of many people, the nuclear symmetry-energy around saturation density has been roughly constrained. However, the nuclear symmetry-energy at super-density is still in chaos. By considering both the effects of the nucleon-nucleon short-rang correlations and the isospin-dependent in-medium inelastic baryon-baryon scattering cross sections in the transport model, two unrelated experimental measurements are simultaneously analyzed. A soft symmetry-energy at super-density is first consistently obtained by the double comparison of the symmetry-energy sensitive observables.

  20. Measurements of electron density profiles using an angular filter refractometer

    SciTech Connect (OSTI)

    Haberberger, D., E-mail: dhab@lle.rochester.edu; Ivancic, S.; Hu, S. X.; Boni, R.; Barczys, M.; Craxton, R. S.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14636 (United States)

    2014-05-15T23:59:59.000Z

    A novel diagnostic technique, angular filter refractometry (AFR), has been developed to characterize high-density, long-scale-length plasmas relevant to high-energy-density physics experiments. AFR measures plasma densities up to 10{sup 21}?cm{sup ?3} with a 263-nm probe laser and is used to study the plasma expansion from CH foil and spherical targets that are irradiated with ?9?kJ of ultraviolet (351-nm) laser energy in a 2-ns pulse. The data elucidate the temporal evolution of the plasma profile for the CH planar targets and the dependence of the plasma profile on target radius for CH spheres.

  1. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Taylor, Paul Allen [ORNL; Lee, Denise L [ORNL

    2009-05-01T23:59:59.000Z

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperature range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a temperature of 5{sup o}C, and overestimates the gadolinium concentration at all higher temperatures. This guarantees that the calculation is conservative, in that the actual concentration will be at least as high as that calculated. If an additional safety factor is desired, it is recommended that an administrative control limit be set that is higher than the required minimum amount of gadolinium.

  2. Evaluation of macromolecular electron-density map quality using the correlation of local r.m.s. density

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Berendzen, Joel [Biophysics Group, Mail Stop D454, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    1999-11-01T23:59:59.000Z

    The correlation of local r.m.s. density is shown to be a good measure of the presence of distinct solvent and macromolecule regions in macromolecular electron-density maps. It has recently been shown that the standard deviation of local r.m.s. electron density is a good indicator of the presence of distinct regions of solvent and protein in macromolecular electron-density maps [Terwilliger & Berendzen (1999 ?). Acta Cryst. D55, 501–505]. Here, it is demonstrated that a complementary measure, the correlation of local r.m.s. density in adjacent regions on the unit cell, is also a good measure of the presence of distinct solvent and protein regions. The correlation of local r.m.s. density is essentially a measure of how contiguous the solvent (and protein) regions are in the electron-density map. This statistic can be calculated in real space or in reciprocal space and has potential uses in evaluation of heavy-atom solutions in the MIR and MAD methods as well as for evaluation of trial phase sets in ab initio phasing procedures.

  3. High energy-density water: density functional theory calculations of structure and electrical conductivity.

    SciTech Connect (OSTI)

    Desjarlais, Michael Paul; Mattsson, Thomas Kjell Rene

    2006-03-01T23:59:59.000Z

    Knowledge of the properties of water is essential for correctly describing the physics of shock waves in water as well as the behavior of giant planets. By using finite temperature density functional theory (DFT), we have investigated the structure and electronic conductivity of water across three phase transitions (molecular liquid/ ionic liquid/super-ionic/electronic liquid). There is a rapid transition to ionic conduction at 2000 K and 2 g/cm{sup 3} while electronic conduction dominates at temperatures above 6000 K. We predict that the fluid bordering the super-ionic phase is conducting above 4000 K and 100 GPa. Earlier work instead has the super-ionic phase bordering an insulating fluid, with a transition to metallic fluid not until 7000 K and 250 GPa. The tools and expertise developed during the project can be applied to other molecular systems, for example, methane, ammonia, and CH foam. We are now well positioned to treat also complex molecular systems in the HEDP regime of phase-space.

  4. Measurements of neutral helium density in helicon plasmas

    SciTech Connect (OSTI)

    Houshmandyar, Saeid; Sears, Stephanie H.; Thakur, Saikat Chakraborty; Carr, Jerry Jr.; Galante, Matthew E.; Scime, Earl E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2010-10-15T23:59:59.000Z

    Laser-induced-fluorescence (LIF) is used to measure the density of helium atoms in a helicon plasma source. For a pump wavelength of 587.725 nm (vacuum) and laser injection along the magnetic field, the LIF signal exhibits a signal decrease at the Doppler shifted central wavelength. The drop in signal results from the finite optical depth of the plasma and the magnitude of the decrease is proportional to the density of excited state neutral atoms. Using Langmuir probe measurements of plasma density and electron temperature and a collisional-radiative model, the absolute ground state neutral density is calculated from the optical depth measurements. Optimal plasma performance, i.e., the largest neutral depletion on the axis of the system, is observed for antenna frequencies of 13.0 and 13.5 MHz and magnetic field strengths of 550-600 G.

  5. Surface modification of low density silica and bridged polysilsesquioxane aerogels

    SciTech Connect (OSTI)

    DeFriend, K. A. (Kimberly A.); Loy, D. A. (Douglas A.); Salazar, K. V. (Kenneth V.); Wilson, K. V. (Kennard V.)

    2004-01-01T23:59:59.000Z

    Silica and bridged polysilsesquioxane aerogels are low density materials that are attractive for applications such as, thermal insulation, porous separation media or catalyst supports, adsorbents. However, aerogels are notoriously weak and brittle making it difficult to handle and machine monoliths into desired forms. This prevents the development of many applications that would otherwise benefit from the use of the low density materials. We will describe our efforts to chemically modify and mechanically enhance silica-based aerogels using chemical vapor techniques without sacrificing their characteristic low densities. Monolithic silica and organically bridged polysilsesquioxane aerogels were prepared by sol-gel polymerization of the respective methoxysilane monomers followed by supercritical carbon dioxide drying of the gels. Reactive modification of the gels with volatile silylating compounds during and after the drying process and these effects on the mechanical properties and density of the aerogels will be described.

  6. Diffusion driven object propulsion in density stratified fluids

    E-Print Network [OSTI]

    Lenahan, Conor (Conor P.)

    2009-01-01T23:59:59.000Z

    An experimental study was conducted in order to verify the appropriateness of a two dimensional model of the flow creating diffusion driven object propulsion in density stratified fluids. Initial flow field experiments ...

  7. Direct Experimental Determination of Spectral Densities of Molecular Complexes

    E-Print Network [OSTI]

    Leonardo A. Pachon; Paul Brumer

    2014-10-15T23:59:59.000Z

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  8. Direct experimental determination of spectral densities of molecular complexes

    SciTech Connect (OSTI)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2014-11-07T23:59:59.000Z

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  9. areal density measurement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Rochester, Rochester, New York 14623 Received 14 light. The high-energy protons from these implosions were used to infer fuel areal density (6.8 0.5 mg . In...

  10. atheroprotective high-density lipoprotein: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mean-field energy functional. By studying the latter we derive global properties of high-density ground state configurations in bounded domains and in infinite space. Our main...

  11. Low density lipoprotein fraction assay for cardiac disease risk

    DOE Patents [OSTI]

    Krauss, Ronald M. (Berkeley, CA); Blanche, Patricia J. (Berkeley, CA); Orr, Joseph (San Pablo, CA)

    1999-01-01T23:59:59.000Z

    A variable rate density gradient electrophoric gel is described which separate LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described.

  12. Nuclear Energy Density Functionals: What do we really know?

    E-Print Network [OSTI]

    Bulgac, Aurel; Jin, Shi

    2015-01-01T23:59:59.000Z

    We present the simplest nuclear energy density functional (NEDF) to date, determined by only 4 significant phenomenological parameters, yet capable of fitting measured nuclear masses with better accuracy than the Bethe-Weizs\\"acker mass formula, while also describing density structures (charge radii, neutron skins etc.) and time-dependent phenomena (induced fission, giant resonances, low energy nuclear collisions, etc.). The 4 significant parameters are necessary to describe bulk nuclear properties (binding energies and charge radii); an additional 2 to 3 parameters have little influence on the bulk nuclear properties, but allow independent control of the density dependence of the symmetry energy and isovector excitations, in particular the Thomas-Reiche-Kuhn sum rule. This Hohenberg-Kohn-style of density functional theory successfully realizes Weizs\\"acker's ideas and provides a computationally tractable model for a variety of static nuclear properties and dynamics, from finite nuclei to neutron stars, where...

  13. Recovering Risk-Neutral Probability Density Functions from Options ...

    E-Print Network [OSTI]

    density function (pdf) of the future prices of an underlying asset from the prices of ...... options prices: An application to crude oil during theI² ulfcw risis. © o£ rd¨.

  14. Magnetic Fields in High-Density Stellar Matter

    E-Print Network [OSTI]

    German Lugones

    2005-04-20T23:59:59.000Z

    I briefly review some aspects of the effect of magnetic fields in the high density regime relevant to neutron stars, focusing mainly on compact star structure and composition, superconductivity, combustion processes, and gamma ray bursts.

  15. Urban characteristics attributable to density-driven tie formation

    E-Print Network [OSTI]

    Pan, Wei

    Motivated by empirical evidence on the interplay between geography, population density and societal interaction, we propose a generative process for the evolution of social structure in cities. Our analytical and simulation ...

  16. Kernel density estimation of a multidimensional efficiency profile

    E-Print Network [OSTI]

    Anton Poluektov

    2014-11-20T23:59:59.000Z

    Kernel density estimation is a convenient way to estimate the probability density of a distribution given the sample of data points. However, it has certain drawbacks: proper description of the density using narrow kernels needs large data samples, whereas if the kernel width is large, boundaries and narrow structures tend to be smeared. Here, an approach to correct for such effects, is proposed that uses an approximate density to describe narrow structures and boundaries. The approach is shown to be well suited for the description of the efficiency shape over a multidimensional phase space in a typical particle physics analysis. An example is given for the five-dimensional phase space of the $\\Lambda_b^0\\to D^0p\\pi$ decay.

  17. Negative vacuum energy densities and the causal diamond measure

    SciTech Connect (OSTI)

    Salem, Michael P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

    2009-07-15T23:59:59.000Z

    Arguably a major success of the landscape picture is the prediction of a small, nonzero vacuum energy density. The details of this prediction depend in part on how the diverging spacetime volume of the multiverse is regulated, a question that remains unresolved. One proposal, the causal diamond measure, has demonstrated many phenomenological successes, including predicting a distribution of positive vacuum energy densities in good agreement with observation. In the string landscape, however, the vacuum energy density is expected to take positive and negative values. We find the causal diamond measure gives a poor fit to observation in such a landscape - in particular, 99.6% of observers in galaxies seemingly just like ours measure a vacuum energy density smaller than we do, most of them measuring it to be negative.

  18. Observation of the Density Minimum in Deeply Supercooled Confined Water

    E-Print Network [OSTI]

    Dazhi Liu; Yang Zhang; Chia-Cheng Chen; Chung-Yuan Mou; Peter H Poole; Sow-Hsin Chen

    2007-04-17T23:59:59.000Z

    Small angle neutron scattering (SANS) is used to measure the density of heavy water contained in 1-D cylindrical pores of mesoporous silica material MCM-41-S-15, with pores of diameter of 15+-1 A. In these pores the homogenous nucleation process of bulk water at 235 K does not occur and the liquid can be supercooled down to at least 160 K. The analysis of SANS data allows us to determine the absolute value of the density of D2O as a function of temperature. We observe a density minimum at 210+-5 K with a value of 1.041+-0.003 g/cm3. We show that the results are consistent with the predictions of molecular dynamics simulations of supercooled bulk water. This is the first experimental report of the existence of the density minimum in supercooled water.

  19. Paper area density measurement from forward transmitted scattered light

    DOE Patents [OSTI]

    Koo, Jackson C. (San Ramon, CA)

    2001-01-01T23:59:59.000Z

    A method whereby the average paper fiber area density (weight per unit area) can be directly calculated from the intensity of transmitted, scattered light at two different wavelengths, one being a non-absorpted wavelength. Also, the method makes it possible to derive the water percentage per fiber area density from a two-wavelength measurement. In the optical measuring technique optical transmitted intensity, for example, at 2.1 microns cellulose absorption line is measured and compared with another scattered, optical transmitted intensity reference in the nearby spectrum region, such as 1.68 microns, where there is no absorption. From the ratio of these two intensities, one can calculate the scattering absorption coefficient at 2.1 microns. This absorption coefficient at this wavelength is, then, experimentally correlated to the paper fiber area density. The water percentage per fiber area density can be derived from this two-wavelength measurement approach.

  20. The design of high power density annular fuel for LWRs

    E-Print Network [OSTI]

    Yuan, Yi, 1975-

    2004-01-01T23:59:59.000Z

    Fuel performance models have been developed to assess the performance of internally and externally cooled LWR annular fuel. Such fuel may be operated at 30-50% higher core power density than the current operating LWRs, and ...

  1. Real time density functional simulations of quantum scale conductance

    E-Print Network [OSTI]

    Evans, Jeremy Scott

    2009-01-01T23:59:59.000Z

    We study electronic conductance through single molecules by subjecting a molecular junction to a time dependent potential and propagating the electronic state in real time using time-dependent density functional theory ...

  2. Magnetic moments of octet baryons at finite density and temperature

    E-Print Network [OSTI]

    C. Y. Ryu; C. H. Hyun; M. -K. Cheoun

    2010-08-12T23:59:59.000Z

    We investigate the change of magnetic moments of octet baryons in nuclear matter at a finite density and temperature. Quark-meson coupling models are employed in describing properties of octet baryons and their interactions. Magnetic moments of octet baryons are found to increase non-negligibly as density and temperature increase, and we find that temperature dependence can be strongly correlated with the quark-hadron phase transition. Model dependence is also examined by comparing the results from the quark-meson coupling (QMC) model to those by the modified QMC (MQMC) model where the bag constant is assumed to depend on density. Both models predict sizable dependence on density and temperature, but the MQMC model shows a more drastic change of magnetic moments. Feasible changes of the nucleon mass by strong magnetic fields are also reported in the given models.

  3. Computing the Density of States of Boolean Formulas

    E-Print Network [OSTI]

    Keinan, Alon

    Computing the Density of States of Boolean Formulas Stefano Ermon, Carla P. Gomes, and Bart Selman of configurations that violate exactly E clauses, for all values of E. We propose a novel Markov Chain Monte Carlo

  4. Does Cosmological Vacuum Energy Density have an Electric Reason ?

    E-Print Network [OSTI]

    Claus W. Turtur

    2004-03-11T23:59:59.000Z

    Rather uncomplicated calculations by hand display a surprising connection between the energy density of the vacuum and the diameter and age of the universe. Among other things, the result explains the observation of the accelerated expansion of the universe.

  5. Direct Experimental Determination of Spectral Densities of Molecular Complexes

    E-Print Network [OSTI]

    Pachon, Leonardo A

    2014-01-01T23:59:59.000Z

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  6. A microwave interferometer for small and tenuous plasma density measurements

    SciTech Connect (OSTI)

    Tudisco, O.; Falcetta, C.; De Angelis, R.; Florean, M.; Neri, C.; Mazzotta, C.; Pollastrone, F.; Rocchi, G.; Tuccillo, A. A. [ENEA CR Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Lucca Fabris, A.; Manente, M.; Ferri, F.; Tasinato, L.; Trezzolani, F. [CISAS 'G.Colombo,' Universita degli studi di Padova, Via Venezia 15, 35131 Padova (Italy); Accatino, L. [ACC Antenna and MW tech, Via Trieste 16/B, 10098 Rivoli (Italy); Pavarin, D. [Dip. di Ingegneria Industriale (DII), Universita degli Studi di Padova, Via Venezia 1, 35131 Padova (Italy); Selmo, A. [RESIA, Studio Progettazione e Realizzazione di Apparati Elettronici, via Roma 17, 37041 Albaredo d'Adige (Italy)

    2013-03-15T23:59:59.000Z

    The non-intrusive density measurement of the thin plasma produced by a mini-helicon space thruster (HPH.com project) is a challenge, due to the broad density range (between 10{sup 16} m{sup -3} and 10{sup 19} m{sup -3}) and the small size of the plasma source (2 cm of diameter). A microwave interferometer has been developed for this purpose. Due to the small size of plasma, the probing beam wavelength must be small ({lambda}= 4 mm), thus a very high sensitivity interferometer is required in order to observe the lower density values. A low noise digital phase detector with a phase noise of 0.02 Degree-Sign has been used, corresponding to a density of 0.5 Multiplication-Sign 10{sup 16} m{sup -3}.

  7. Low density lipoprotein fraction assay for cardiac disease risk

    DOE Patents [OSTI]

    Krauss, R.M.; Blanche, P.J.; Orr, J.

    1999-07-20T23:59:59.000Z

    A variable rate density gradient electrophoric gel is described which separates LDL subfractions with the precision of ultracentrifugation techniques. Also, an innovative bottom inlet mixing chamber particularly useful for producing these gels is described. 8 figs.

  8. atomic oxygen density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clusters (e.g. Na3 and Na5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and ... Rytkonen, K; Manninen, M...

  9. atomic oxygen densities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clusters (e.g. Na3 and Na5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and ... Rytkonen, K; Manninen, M...

  10. actinide level density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Uhrenholt; S. berg; P. Mller; T. Ichikawa 2009-07-26 9 QCD Level Density from Maximum Entropy Method HEP - Lattice (arXiv) Summary: We propose a method to calculate the...

  11. An evolutionary fuel assembly design for high power density BWRs

    E-Print Network [OSTI]

    Karahan, Aydin

    2007-01-01T23:59:59.000Z

    An evolutionary BWR fuel assembly design was studied as a means to increase the power density of current and future BWR cores. The new assembly concept is based on replacing four traditional assemblies and large water gap ...

  12. A novel density of state method for complex action systems

    E-Print Network [OSTI]

    Biagio Lucini; Kurt Langfeld

    2014-11-01T23:59:59.000Z

    Recently, a new and efficient algorithm (the LLR method) has been proposed for computing densities of states in statistical systems and gauge theories. In this talk, we explore whether this novel density of states method can be applied to numerical computations of observables in systems for which the action is complex. To this purpose, we introduce a generalised density of states, in terms of which integrals of oscillating observables can be determined semi-analytically, and we define a strategy to compute it with the LLR method. As a case study, we apply these ideas to the Z(3) spin model at finite density, finding a remarkable agreement of our results for the phase twist with those obtained with the worm algorithm for all explored chemical potentials, including values for which there are cancellations over sixteen orders of magnitude. These findings open new perspectives for dealing with the sign problem on physically more relevant systems.

  13. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)] [Electric Power Research Institute, 3420 Hillview Ave., Palo Alto, California (United States)

    2013-07-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  14. Density Functional Theory with Dissipation: Transport through Single Molecules

    SciTech Connect (OSTI)

    Kieron Burke

    2012-04-30T23:59:59.000Z

    A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

  15. Simulations of liquid ribidium expanded to the critical density

    SciTech Connect (OSTI)

    Ross, M; Yang, L H; Pilgrim, W

    2006-05-16T23:59:59.000Z

    Quantum molecular dynamic simulations were used to examine the change in atomic and electronic structure in liquid rubidium along its liquid-vapor coexistence curve. Starting from the liquid at the triple point, with increasing expansion we observe a continuous increase in the electron localization leading to ion clustering near the metal-nonmetal transition at about twice the critical density, in agreement with electrical measurements, and to the presence of dimers near and below the critical density.

  16. From massive gravity to dark matter density II

    E-Print Network [OSTI]

    G. Scharf

    2009-02-18T23:59:59.000Z

    As previously observed the massless limit of massive gravity leads to a modification of general relativity. Here we study spherically symmetric solutions of the modified field equations which contain normal matter together with a dark energy density. If the dark density profile is assumed to be known, the whole problem is reduced to a linear first order differential equation which can be solved by quadratures.

  17. Density dependence of symmetry free energy of hot nuclei

    E-Print Network [OSTI]

    S. K. Samaddar; J. N. De; X. Vinas; M. Centelles

    2008-09-04T23:59:59.000Z

    The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework taking into account thermal and expansion effects. A finite-range momentum and density dependent two-body effective interaction is employed for this purpose. The role of mass, isospin and equation of state (EoS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.

  18. Density Functional Theory Studies of Magnetically Confined Fermi Gas

    E-Print Network [OSTI]

    Chen, Y J; Chen, Yu-Jun

    2001-01-01T23:59:59.000Z

    A theory is developed for magnetically confined Fermi gas at low temperature based on the density functional theory. The theory is illustrated by numerical calculation of density distributions of Fermi atoms $^{40}$K with parameters according to DeMarco and Jin's experiment[Science, 285(1999)1703]. Our results are in good agreement with the experiment. To check the theory, we also performed calculations using our theory at high temperature and compared very well to the result of classical limit.

  19. Non-invasive fluid density and viscosity measurement

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2012-05-01T23:59:59.000Z

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  20. Preface: Special Topic on Advances in Density Functional Theory

    SciTech Connect (OSTI)

    Yang, Weitao [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)] [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-14T23:59:59.000Z

    This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.

  1. Further Developments in Orbit Ephemeris Derived Neutral Density

    E-Print Network [OSTI]

    Locke, Travis Cole

    2012-12-31T23:59:59.000Z

    /04/2002. ................................... 91 Figure 4.4 – Atmospheric Density Comparison for CHAMP on 04/17/2002. ................................... 92 Figure 4.5 – Atmospheric Density Comparison for GRACE on 08/04/2006. .................................... 93 Figure 4.6 – Atmospheric... sigma values. .... 88 Table 4.2 – Average CC values for CHAMP binned by solar activity level. ..................................... 96 Table 4.3 – Average RMS values (10-12 kg/m3) for CHAMP binned by solar activity level.............. 96 Table 4...

  2. Observation of low magnetic field density peaks in helicon plasma

    SciTech Connect (OSTI)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2013-04-15T23:59:59.000Z

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

  3. Density Functional Resonance Theory of Unbound Electronic Systems

    E-Print Network [OSTI]

    Daniel L. Whitenack; Adam Wasserman

    2011-06-20T23:59:59.000Z

    Density Functional Resonance Theory (DFRT) is a complex-scaled version of ground-state Density Functional Theory (DFT) that allows one to calculate the resonance energies and lifetimes of metastable anions. In this formalism, the exact energy and lifetime of the lowest-energy resonance of unbound systems is encoded into a complex "density" that can be obtained via complex-coordinate scaling. This complex density is used as the primary variable in a DFRT calculation just as the ground-state density would be used as the primary variable in DFT. As in DFT, there exists a mapping of the N-electron interacting system to a Kohn-Sham system of N non-interacting particles in DFRT. This mapping facilitates self consistent calculations with an initial guess for the complex density, as illustrated with an exactly-solvable model system. Whereas DFRT yields in principle the exact resonance energy and lifetime of the interacting system, we find that neglecting the complex-correlation contribution leads to errors of similar magnitude to those of standard scattering close-coupling calculations under the bound-state approximation.

  4. Densities and energies of nuclei in dilute matter

    E-Print Network [OSTI]

    P. Papakonstantinou; J. Margueron; F. Gulminelli; Ad. R. Raduta

    2013-05-01T23:59:59.000Z

    We explore the ground-state properties of nuclear clusters embedded in a gas of nucleons with the help of Skyrme-Hartree-Fock microscopic calculations. Two alternative representations of clusters are introduced, namely coordinate-space and energy-space clusters. We parameterize their density profiles in spherical symmetry in terms of basic properties of the energy density functionals used and propose an analytical, Woods-Saxon density profile whose parameters depend, not only on the composition of the cluster, but also of the nucleon gas. We study the clusters' energies with the help of the local-density approximation, validated through our microscopic results. We find that the volume energies of coordinate-space clusters are determined by the saturation properties of matter, while the surface energies are strongly affected by the presence of the gas. We conclude that both the density profiles and the cluster energies are strongly affected by the gas and discuss implications for the nuclear EoS and related perspectives. Our study provides a simple, but microscopically motivated modeling of the energetics of clusterized matter at subsaturation densities, for direct use in consequential applications of astrophysical interest.

  5. Testing gravity with halo density profiles observed through gravitational lensing

    SciTech Connect (OSTI)

    Narikawa, Tatsuya; Yamamoto, Kazuhiro, E-mail: narikawa@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp [Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan)

    2012-05-01T23:59:59.000Z

    We present a new test of the modified gravity endowed with the Vainshtein mechanism with the density profile of a galaxy cluster halo observed through gravitational lensing. A scalar degree of freedom in the galileon modified gravity is screened by the Vainshtein mechanism to recover Newtonian gravity in high-density regions, however it might not be completely hidden on the outer side of a cluster of galaxies. Then the modified gravity might yield an observational signature in a surface mass density of a cluster of galaxies measured through gravitational lensing, since the scalar field could contribute to the lensing potential. We investigate how the transition in the Vainshtein mechanism affects the surface mass density observed through gravitational lensing, assuming that the density profile of a cluster of galaxies follows the original Navarro-Frenk-White (NFW) profile, the generalized NFW profile and the Einasto profile. We compare the theoretical predictions with observational results of the surface mass density reported recently by other researchers. We obtain constraints on the amplitude and the typical scale of the transition in the Vainshtein mechanism in a subclass of the generalized galileon model.

  6. Large-scale tidal fields on primordial density perturbations ?

    E-Print Network [OSTI]

    Alejandro Gonzalez

    1997-02-17T23:59:59.000Z

    We calculate the strength of the tidal field produced by the large-scale density field acting on primordial density perturbations in power law models. By analysing changes in the orientation of the deformation tensor, resulted from smoothing the density field on different mass scales, we show that the large-scale tidal field can strongly affect the morphology and orientation of density peaks. The measure of the strength of the tidal field is performed as a function of the distance to the peak and of the spectral index. We detected evidence that two populations of perturbations seems to coexist; one, with a misalignment between the main axes of their inertia and deformation tensors. This would lead to the angular momentum acquisition and morphological changes. For the second population, the perturbations are found nearly aligned in the direction of the tidal field, which would imprint them low angular momentum and which would allow an alignment of structures as those reported between clusters of galaxies in filaments, and between galaxies in clusters. Evidence is presented that the correlation between the orientation of perturbations and the large-scale density field could be a common property of Gaussian density fields with spectral indexes $n < 0$. We argue that alignment of structures can be used to probe the flatness of the spectrum on large scales but it cannot determine the exact value of the spectral index.

  7. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect (OSTI)

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01T23:59:59.000Z

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a much larger flow area and a much shorter distance for air to move into the core than earlier scenarios that attribute all air ingress from the reactor cavity into the core to diffusion only. Hence, consideration of the density-gradient-driven stratified flow phenomena will likely lead to more rapid air ingress into the core and also the presence of more air for core graphite oxidation than the widely-used air ingress attributed solely to diffusion. This paper discusses the density-gradient-driven stratified flow phenomena and the implications of considering this behavior on the progression of the air ingress event. Preliminary calculations are used to underline the importance of considering the density-gradient driven stratified flow phenomena in subsequent validation experiments and software development for analyzing VHTR scenarios.

  8. Epidemiologic methodology for investigating the contribution of herd management factors to Brucella abortus infection in beef cattle herds in Texas

    E-Print Network [OSTI]

    Adams, Bruce Stephen

    1988-01-01T23:59:59.000Z

    21 22 23 23 24 25 27 28 28 31 32 34 34 1. Factors Associated With Purchasing Practices 2. Adjacent Herd History . B. Post Exposure Factors I. Strain 19 Vaccination Level of Herd 2. Herd Size 3. Cattle Density 4. Calving Season C... VIII. DATA MANAGEMENT A. BIS Number B. Calving Season C. Cattle Density D. Proportion of Herd Strain 19 Vaccinated E. Segregation of Breeding Stock F. Adjacent to Infected Herd G. Class of Cattle Purchased H. Overall Frequency of Purchase I...

  9. An analysis of factors contributing to train-involved crashes

    E-Print Network [OSTI]

    Cooner, Scott Allen

    1995-01-01T23:59:59.000Z

    analyzed for the contributing factors. The contributing factors were classified into four categories: railroad factors, environmental factors, roadway factors, and driver/passenger factors. The accident data was analyzed using one and two-way classification...

  10. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Rother, Gernot [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin

    2012-01-01T23:59:59.000Z

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

  11. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    SciTech Connect (OSTI)

    Solovyeva, Alisa [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany); Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany)

    2012-05-21T23:59:59.000Z

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations. In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.

  12. Improving experimental phases for strong reflections prior to density modification

    SciTech Connect (OSTI)

    Uervirojnangkoorn, Monarin [University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany); University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany); Hilgenfeld, Rolf, E-mail: hilgenfeld@biochem.uni-luebeck.de [University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany); Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People’s Republic of (China); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Read, Randy J. [University of Cambridge, Cambridge CB2 0XY (United Kingdom); University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany)

    2013-10-01T23:59:59.000Z

    A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ?), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.

  13. Rethinking the N(H2)/I(CO) Conversion Factor

    E-Print Network [OSTI]

    W. F. Wall

    2007-03-01T23:59:59.000Z

    An improved formulation for the X-factor is proposed. The statement that the velocity-integrated radiation temperature of the $\\COone$ line, $I(\\CO)$, ``counts'' optically thick clumps is quantified using the formalism of \\citet{Martin84} for line emission in a clumpy cloud. Adopting the simplifying assumptions of thermalized $\\COone$ line emission and isothermal gas, an effective optical depth, $\\tef$, is defined as the product of the clump filling factor within each velocity interval and the clump effective optical depth as a function of the optical depth on the clump's central sightline, $\\tau_0$. The clump effective optical depth is well approximated as a power law in $\\tau_0$ with power-law index, $\\epsilon$, referred to here as the clump ``fluffiness,'' and has values between zero and unity. While the $\\COone$ line is optically thick within each clump (i.e., high $\\tau_0$), it is optically thin ``to the clumps'' (i.e., low $\\tef$). Thus the dependence of $I(CO)$ on $\\tef$ is linear, resulting in an X-factor that depends only on clump properties and {\\it not} directly on the entire cloud. Assuming virialization of the clumps yields an expression for the X-factor whose dependence on physical parameters like density and temperature is ``softened'' by power-law indices of less than unity that depend on the fluffiness parameter, $\\epsilon$. The X-factor provides estimates of gas column density because each sightline within the beam has optically thin gas within certain narrow velocity ranges. Determining column density from the optically thin gas is straightforward and parameters like $\\epsilon$ then allow extrapolation of the column density of the optically thin gas to that of all the gas.

  14. Nonlinear relationships between individual IEQ factors and overall workspace satisfaction

    E-Print Network [OSTI]

    Kim, Jungsoo; de Dear, Richard

    2011-01-01T23:59:59.000Z

    in dissatisfaction. So for Bonus Factors, the absolute valuemarketing literature), (2) Bonus Factors (synonyms include “for occupants’ satisfaction. Bonus Factors: Bonus Factors go

  15. Relativistic Nuclear Energy Density Functionals: adjusting parameters to binding energies

    E-Print Network [OSTI]

    T. Niksic; D. Vretenar; P. Ring

    2008-09-08T23:59:59.000Z

    We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum) correlations, as well as intermediate and long-range dynamics, are encoded in the medium (nucleon density) dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface and symmetry energies, and the corresponding predictions for nuclear masses is analyzed in detail. The resulting best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation parameters, neutron skin thickness, and excitation energies of giant multipole resonances.

  16. The Kummer tensor density in electrodynamics and in gravity

    E-Print Network [OSTI]

    Peter Baekler; Alberto Favaro; Yakov Itin; Friedrich W. Hehl

    2014-09-28T23:59:59.000Z

    Guided by results in the premetric electrodynamics of local and linear media, we introduce on 4-dimensional spacetime the new abstract notion of a Kummer tensor density of rank four, ${\\cal K}^{ijkl}$. This tensor density is, by definition, a cubic algebraic functional of a tensor density of rank four ${\\cal T}^{ijkl}$, which is antisymmetric in its first two and its last two indices: ${\\cal T}^{ijkl} = - {\\cal T}^{jikl} = - {\\cal T}^{ijlk}$. Thus, ${\\cal K}\\sim {\\cal T}^3$, see Eq.(46). (i) If $\\cal T$ is identified with the electromagnetic response tensor of local and linear media, the Kummer tensor density encompasses the generalized {\\it Fresnel wave surfaces} for propagating light. In the reversible case, the wave surfaces turn out to be {\\it Kummer surfaces} as defined in algebraic geometry (Bateman 1910). (ii) If $\\cal T$ is identified with the {\\it curvature} tensor $R^{ijkl}$ of a Riemann-Cartan spacetime, then ${\\cal K}\\sim R^3$ and, in the special case of general relativity, ${\\cal K}$ reduces to the Kummer tensor of Zund (1969). This $\\cal K$ is related to the {\\it principal null directions} of the curvature. We discuss the properties of the general Kummer tensor density. In particular, we decompose $\\cal K$ irreducibly under the 4-dimensional linear group $GL(4,R)$ and, subsequently, under the Lorentz group $SO(1,3)$.

  17. Gas Density and the Volume Schmidt Law for Spiral Galaxies

    E-Print Network [OSTI]

    O. V. Abramova; A. V. Zasov

    2007-10-01T23:59:59.000Z

    The thickness of the equilibrium isothermal gaseous layers and their volume densities \\rho_{gas}(R) in the disc midplane are calculated for 7 spiral galaxies (including our Galaxy) in the frame of self-consistent axisymmetric model. Local velocity dispersions of stellar discs were assumed to be close to marginal values necessary for the discs to be in a stable equilibrium state. Under this condition the stellar discs of at least 5 of 7 galaxies reveal a flaring. Their volume densities decrease with R faster than \\rho_{gas}, and, as a result, the gas dominates by the density at the disc periphery. Comparison of the azimuthally averaged star formation rate SFR with the gas density shows that there is no universal Schmidt law SFR \\rho_{gas}^n, common to all galaxies. Nevertheless, SFR in different galaxies reveals better correlation with the volume gas density than with the column one. Parameter n in the Schmidt law SFR \\rho_{gas}^n, formally calculated by the least square method, lies within 0.8-2.4 range and it's mean value is close to 1.5. Values of n calculated for molecular gas only are characterized by large dispersion, but their mean value is close to 1. Hence the smaller \\rho_{gas} the less is a fraction of gas actively taking part in the process of star formation.

  18. Cosmic density and velocity fields in Lagrangian perturbation theory

    E-Print Network [OSTI]

    Mikel Susperregi; Thomas Buchert

    1997-08-04T23:59:59.000Z

    A first- and second-order relation between cosmic density and peculiar-velocity fields is presented. The calculation is purely Lagrangian and it is derived using the second-order solutions of the Lagrange-Newton system obtained by Buchert & Ehlers. The procedure is applied to two particular solutions given generic initial conditions. In this approach, the continuity equation yields a relation between the over-density and peculiar-velocity fields that automatically satisfies Euler's equation because the orbits are derived from the Lagrange-Newton system. This scheme generalizes some results obtained by Nusser et al. (1991) in the context of the Zel'dovich approximation. As opposed to several other reconstruction schemes, in this approach it is not necessary to truncate the expansion of the Jacobian given by the continuity equation in order to calculate a first- or second-order expression for the density field. In these previous schemes, the density contrast given by (a) the continuity equation and (b) Euler's equation are mutually incompatible. This inconsistency arises as a consequence of an improper handling of Lagrangian and Eulerian coordinates in the analysis. Here, we take into account the fact that an exact calculation of the density is feasible in the Lagrangian picture and therefore an accurate and consistent description is obtained.

  19. Rapid model building of ?-sheets in electron-density maps

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-01T23:59:59.000Z

    A method for rapid model building of ?-sheets at moderate resolution is presented. A method for rapidly building ?-sheets into electron-density maps is presented. ?-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C{sup ?} atoms along the strand averaged over all repeats present in the strand. The ?-strands obtained are then assembled into a single atomic model of the ?-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 Å. The ?-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 Å resolution in which a third of the residues in ?-sheets were built and a structure at 3.8 Å in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 Å.

  20. Proton radioactivity described by covariant density functional theory with Similarity Renormalization Group method

    E-Print Network [OSTI]

    Qiang Zhao; Jian Min Dong; Jun Ling Song; Wen Hui Long

    2014-07-23T23:59:59.000Z

    Half-life of proton radioactivity of spherical proton emitters is studied within the scheme of covariant density functional (CDF) theory, and for the first time the potential barrier that prevents the emitted proton is extracted with the similarity renormalization group (SRG) method, in which the spin-orbit potential along with the others that turn out to be non-negligible can be derived automatically. The spectroscopic factor that is significant is also extracted from the CDF calculations. The estimated half-lives are found in good agreement with the experimental values, which not only confirms the validity of the CDF theory in describing the proton-rich nuclei, but also indicates the prediction power of present approach to calculate the half-lives and in turn to extract the structural information of proton emitters.

  1. Predicting Whole Forest Structure, Primary Productivity, and Biomass Density From Maximum Tree Size and Resource Limitations

    E-Print Network [OSTI]

    Kempes, Christopher P; Dooris, William; West, Geoffrey B

    2015-01-01T23:59:59.000Z

    In the face of uncertain biological response to climate change and the many critiques concerning model complexity it is increasingly important to develop predictive mechanistic frameworks that capture the dominant features of ecological communities and their dependencies on environmental factors. This is particularly important for critical global processes such as biomass changes, carbon export, and biogenic climate feedback. Past efforts have successfully understood a broad spectrum of plant and community traits across a range of biological diversity and body size, including tree size distributions and maximum tree height, from mechanical, hydrodynamic, and resource constraints. Recently it was shown that global scaling relationships for net primary productivity are correlated with local meteorology and the overall biomass density within a forest. Along with previous efforts, this highlights the connection between widely observed allometric relationships and predictive ecology. An emerging goal of ecological...

  2. Dissecting Soft Radiation with Factorization

    E-Print Network [OSTI]

    Iain W. Stewart; Frank J. Tackmann; Wouter J. Waalewijn

    2015-02-10T23:59:59.000Z

    An essential part of high-energy hadronic collisions is the soft hadronic activity that underlies the primary hard interaction. It includes soft radiation from the primary hard partons, secondary multiple parton interactions (MPI), and factorization-violating effects. The invariant mass spectrum of the leading jet in $Z$+jet and $H$+jet events is directly sensitive to these effects, and we use a QCD factorization theorem to predict its dependence on the jet radius $R$, jet $p_T$, jet rapidity, and partonic process for both the perturbative and nonperturbative components of primary soft radiation. We prove that the nonperturbative contributions involve only odd powers of $R$, and the linear $R$ term is universal for quark and gluon jets. The hadronization model in PYTHIA8 agrees well with these properties. The perturbative soft initial state radiation (ISR) has a contribution that depends on the jet area in the same way as the underlying event, but this degeneracy is broken by dependence on the jet $p_T$. The size of this soft ISR contribution is proportional to the color state of the initial partons, yielding the same positive contribution for $gg\\to Hg$ and $gq\\to Zq$, but a negative interference contribution for $q\\bar q\\to Z g$. Hence, measuring these dependencies allows one to separate hadronization, soft ISR, and MPI contributions in the data.

  3. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect (OSTI)

    Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Institute for Physical and Theoretical Chemistry, Technische Universitaet Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig (Germany)

    2011-12-21T23:59:59.000Z

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  4. Ducted kinetic Alfven waves in plasma with steep density gradients

    SciTech Connect (OSTI)

    Houshmandyar, Saeid [Solar Observatory Department, Prairie View A and M University, Prairie View, Texas 77446 (United States); Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Scime, Earl E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2011-11-15T23:59:59.000Z

    Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.

  5. Exploration of Plasma Jets Approach to High Energy Density Physics

    SciTech Connect (OSTI)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-08-26T23:59:59.000Z

    High-energy-density laboratory plasma (HEDLP) physics is an emerging, important area of research in plasma physics, nuclear physics, astrophysics, and particle acceleration. While the HEDLP regime occurs at extreme conditions which are often found naturally in space but not on the earth, it may be accessible by colliding high intensity plasmas such as high-energy-density plasma jets, plasmoids or compact toroids from plasma guns. The physics of plasma jets is investigated in the context of high energy density laboratory plasma research. This report summarizes results of theoretical and computational investigation of a plasma jet undergoing adiabatic compression and adiabatic expansion. A root-mean-squared (rms) envelope theory of plasma jets is developed. Comparison between theory and experiment is made. Good agreement between theory and experiment is found.

  6. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    SciTech Connect (OSTI)

    Aslanyan, V.; Tallents, G. J. [York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

    2014-06-15T23:59:59.000Z

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.

  7. Relativistic density functional theory for finite nuclei and neutron stars

    E-Print Network [OSTI]

    J. Piekarewicz

    2015-02-05T23:59:59.000Z

    The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.

  8. Addressing spectroscopic quality of covariant density functional theory

    E-Print Network [OSTI]

    A. V. Afanasjev

    2014-09-17T23:59:59.000Z

    The spectroscopic quality of covariant density functional theory has been accessed by analyzing the accuracy and theoretical uncertainties in the description of spectroscopic observables. Such analysis is first presented for the energies of the single-particle states in spherical and deformed nuclei. It is also shown that the inclusion of particle-vibration coupling improves the description of the energies of predominantly single-particle states in medium and heavy-mass spherical nuclei. However, the remaining differences between theory and experiment clearly indicate missing physics and missing terms in covariant energy density functionals. The uncertainties in the predictions of the position of two-neutron drip line sensitively depend on the uncertainties in the prediction of the energies of the single-particle states. On the other hand, many spectroscopic observables in well deformed nuclei at ground state and finite spin only weakly depend on the choice of covariant energy density functional.

  9. The dependence of natural graphite anode performance on electrode density

    SciTech Connect (OSTI)

    Shim, Joongpyo; Striebel, Kathryn A.

    2003-11-01T23:59:59.000Z

    The effect of electrode density for lithium intercalation and irreversible capacity loss on the natural graphite anode in lithium ion batteries was studied by electrochemical methods. Both the first-cycle reversible and irreversible capacities of the natural graphite anode decreased with an increase in the anode density though compression. The reduction in reversible capacity was attributed to a reduction in the chemical diffusion coefficient for lithium though partially agglomerated particles with a larger stress. For the natural graphite in this study the potentials for Li (de)insertion shifted between the first and second formation cycles and the extent of this shift was dependent on electrode density. The relation between this peak shift and the irreversible capacity loss are probably both due to the decrease in graphite surface area with compression.

  10. Stable laser–plasma accelerators at low densities

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Mirzaie, Mohammad; Ge, Xulei; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-07-28T23:59:59.000Z

    We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4?mm-long helium gas jet. The initial laser spot size was relatively large (28??m) and the plasma densities were 0.48–2.0?×?10{sup 19?}cm{sup ?3}. High-quality 100–MeV electron beams were generated at the plasma density of 7.5?×?10{sup 18?}cm{sup ?3}, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications.

  11. Density waves in the shearing sheet III. Disc heating

    E-Print Network [OSTI]

    B. Fuchs

    2001-04-25T23:59:59.000Z

    The problem of dynamical heating of galactic discs by spiral density waves is discussed using the shearing sheet model. The secular evolution of the disc is described quantitatively by a diffusion equation for the distribution function of stars in the space spanned by integrals of motion of the stars, in particular the radial action integral and an integral related to the angular momentum. Specifically, disc heating by a succession of transient, `swing amplified' density waves is studied. It is shown that such density waves lead predominantly to diffusion of stars in radial action space. The stochastical changes of angular momenta of the stars and the corresponding stochastic changes of the guiding centre radii of the stellar orbits induced by this process are much smaller.

  12. Vibrational Lifetimes and Spectral Shifts in Supercritical Fluids as a Function of Density: Experiments and Theory

    E-Print Network [OSTI]

    Fayer, Michael D.

    (CO2) as a function of density from low density (well below the critical density) to high density ethane, carbon dioxide, and fluoroform as a function of density at two temperatures are presented of input information on the SCF properties obtained from the fluids' equations of state and other tabulated

  13. Energy density functional for nuclei and neutron stars

    E-Print Network [OSTI]

    J. Erler; C. J. Horowitz; W. Nazarewicz; M. Rafalski; P. -G. Reinhard

    2012-11-27T23:59:59.000Z

    We aim to develop a nuclear energy density functional that can be simultaneously applied to finite nuclei and neutron stars. We use the self-consistent nuclear density functional theory (DFT) with Skyrme energy density functionals and covariance analysis to assess correlations between observables for finite nuclei and neutron stars. In a first step two energy functionals -- a high density energy functional giving reasonable neutron properties, and a low density functional fitted to nuclear properties -- are matched. In a second step, we optimize a new functional using exactly the same protocol as in earlier studies pertaining to nuclei but now including neutron star data. This allows direct comparisons of performance of the new functional relative to the standard one. The new functional TOV-min yields results for nuclear bulk properties (energy, r.m.s. radius, diffraction radius, surface thickness) that are of the same quality as those obtained with the established Skyrme functionals, including SV-min. When comparing SV-min and TOV-min, isoscalar nuclear matter indicators vary slightly while isovector properties are changed considerably. We discuss neutron skins, dipole polarizability, separation energies of the heaviest elements, and proton and neutron drip lines. We confirm a correlation between the neutron skin of $^{208}$Pb and the neutron star radius. We demonstrate that standard energy density functionals optimized to nuclear data do not carry information on the expected maximum neutron star mass, and that predictions can only be made within an extremely broad uncertainty band. For atomic nuclei, the new functional TOV-min performs at least as well as the standard nuclear functionals, but it also reproduces expected neutron star data within assumed error bands.

  14. Monte Carlo tests of Orbital-Free Density Functional Theory

    E-Print Network [OSTI]

    D. I. Palade

    2014-12-12T23:59:59.000Z

    The relationship between the exact kinetic energy density in a quantum system in the frame of Density Functional Theory and the semiclassical functional expression for the same quantity is investigated. The analysis is performed with Monte Carlo simulations of the Kohn-Sham potentials. We find that the semiclassical form represents the statistical expectation value of the quantum nature. Based on the numerical results, we propose an empirical correction to the existing functional and an associated method to improve the Orbital-Free results.

  15. Metal-insulator Transition by Holographic Charge Density Waves

    E-Print Network [OSTI]

    Yi Ling; Chao Niu; Jianpin Wu; Zhuoyu Xian; Hongbao Zhang

    2014-08-06T23:59:59.000Z

    We construct a gravity dual for charge density waves (CDW) in which the translational symmetry along one spatial direction is spontaneously broken. Our linear perturbation calculation on the gravity side produces the frequency dependence of the optical conductivity, which exhibits the two familiar features of charge density waves, namely the pinned collective mode and gapped single-particle excitation. These two features indicate that our gravity dual also provides a new mechanism to implement the metal to insulator phase transition by CDW, which is further supported by the fact that d.c. conductivity decreases with the decreased temperature below the critical temperature.

  16. Secondary dust density waves excited by nonlinear dust acoustic waves

    SciTech Connect (OSTI)

    Heinrich, J. R.; Kim, S.-H.; Meyer, J. K.; Merlino, R. L. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California, San Diego, California 92093 (United States)

    2012-08-15T23:59:59.000Z

    Secondary dust density waves were observed in conjunction with high amplitude (n{sub d}/n{sub d0}>2) dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, {Gamma}{approx}1, state. The high amplitude dust acoustic waves produced large dust particle oscillations, displacements, and trapping. Secondary dust density waves were excited in the wave troughs of the high amplitude DAWs. The waveforms, amplitudes, wavelengths, and wave speeds of the primary DAWs and the secondary waves were measured. A dust-dust streaming instability is discussed as a possible mechanism for the production of the secondary waves.

  17. Holographic energy density in the Brans-Dicke teory

    E-Print Network [OSTI]

    Hungsoo Kim; H. W. Lee; Y. S. Myung

    2005-01-15T23:59:59.000Z

    We study cosmological applications of the holographic energy density. Considering the holographic energy density as a dynamical cosmological constant, we need the Brans-Dicke theory as a dynamical framework instead of general relativity. In this case we use the Bianchi identity as a consistency relation to obtain physical solutions. It is shown that the future event horizon as the IR cutoff provides the dark energy in the Brans-Dicke theory. Furthermore the role of the Brans-Dicke scalar is clarified in the dark energy-dominated universe by calculating its equation of state.

  18. Energy Density of Vortices in the Schroedinger Picture

    E-Print Network [OSTI]

    J. D. Laenge; M. Engelhardt; H. Reinhardt

    2003-01-31T23:59:59.000Z

    The one-loop energy density of an infinitely thin static magnetic vortex in SU(2) Yang-Mills theory is evaluated using the Schroedinger picture. Both the gluonic fluctuations as well as the quarks in the vortex background are included. The energy density of the magnetic vortex is discussed as a function of the magnetic flux. The center vortices correspond to local minima in the effective potential. These minima are degenerated with the perturbative vacuum if the fermions are ignored. Inclusion of fermions lifts this degeneracy, raising the vortex energy above the energy of the perturbative vacuum.

  19. Enhanced residual entropy in high-density nanoconfined bilayer ice

    E-Print Network [OSTI]

    Fabiano Corsetti; Jon Zubeltzu; Emilio Artacho

    2015-06-15T23:59:59.000Z

    A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular dynamics and density-functional theory simulations. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with AA stacking. Uniquely amongst the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a residual entropy twice that of bulk ice.

  20. Low density microcellular carbon foams and method of preparation

    DOE Patents [OSTI]

    Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  1. Temperature Power Law of Equilibrium Heavy Particle Density

    E-Print Network [OSTI]

    Sh. Matsumoto; M. Yoshimura

    1999-10-19T23:59:59.000Z

    A standard calculation of the energy density of heavy stable particles that may pair-annihilate into light particles making up thermal medium is performed to second order of coupling, using the technique of thermal field theory. At very low temperatures a power law of temperature is derived for the energy density of the heavy particle. This is in sharp contrast to the exponentially suppressed contribution estimated from the ideal gas distribution function. The result supports a previous dynamical calculation based on the Hartree approximation, and implies that the relic abundance of dark matter particles is enhanced compared to that based on the Boltzmann equation.

  2. Optical Emission Spectroscopic Techniques for Low Electron Density Diagnostics

    SciTech Connect (OSTI)

    Ivkovic, M. [Institute of Physics, 11081 Belgrade, P.O.Box 68 (Serbia and Montenegro)

    2006-12-01T23:59:59.000Z

    This paper comprises an analysis of optical emission spectroscopy (OES) techniques and results of their application for diagnostics of middle and low electron densities in low temperature plasmas. The following OES diagnostic techniques based on: 1) line merging along spectral line series, 2) use of line shapes and Stark halfwidths of hydrogen Balmer lines, 3) line shape of helium lines with forbidden components and 4) use of molecular nitrogen bandhead intensities are studied, discussed, tested and applied and in some cases ugraded for electron density measurements. The overall comparative analysis is performed also.

  3. Systematics of nucleon density distributions and neutron skin of nuclei

    E-Print Network [OSTI]

    Seif, W M

    2015-01-01T23:59:59.000Z

    Proton and neutron density profiles of 760 nuclei in the mass region of A=16-304are analyzed using the Skyrme energy density for the parameter set SLy4. Simple formulae are obtained to fit the resulting radii and diffuseness data. These formulae may be useful to estimate the values of the unmeasured radii, and especially in extrapolating charge radius values for nuclei which are far from the valley of stability or to perform analytic calculations for bound and/or scattering problems. The obtained neutron and proton root-mean-square radii and the neutron skin thicknesses are in agreement with the available experimental data.

  4. High density electronic circuit and process for making

    DOE Patents [OSTI]

    Morgan, William P. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  5. High density electronic circuit and process for making

    DOE Patents [OSTI]

    Morgan, W.P.

    1999-06-29T23:59:59.000Z

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  6. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  7. Guidelines for Power Factor Improvement Projects

    E-Print Network [OSTI]

    Massey, G. W.

    Power factor is an indication of electrical system efficiency. Low power factor, or low system efficiency, may be due to one or more causes, including lightly loaded transformers, oversized electric motors, and harmonic-generating non-linear loads...

  8. Cone Penetrometer N Factor Determination Testing Results

    SciTech Connect (OSTI)

    Follett, Jordan R.

    2014-03-05T23:59:59.000Z

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  9. Factors for Bioenergy Market Development

    SciTech Connect (OSTI)

    Roos, A.; Hektor, B.; Graham, R.L.; Rakos, C.

    1998-10-04T23:59:59.000Z

    Focusing on the development of the whole bioenergy market rather than isolated projects, this paper contributes to the identification of barriers and drivers behind bioenergy technology implementation. It presents a framework for the assessment of the potentials for bioenergy market growth to be used by decision makers in administration and industry. The conclusions are based on case studies of operating bioenergy markets in Austria, US and Sweden. Six important factors for bioenergy market growth have been identified: (1) Integration with other business, e.g. for biomass procurement, (2) Scale effects of bioenergy market, (3) Competition on bioenergy market, (4) Competition with other business, (5) National policy, (6) Local policy and local opinion. Different applications of the framework are discussed.

  10. Infrared Scales and Factorization in QCD

    E-Print Network [OSTI]

    Aneesh V. Manohar

    2005-12-14T23:59:59.000Z

    Effective field theory methods are used to study factorization of the deep inelastic scattering cross-section. The cross-section is shown to factor in QCD, even though it does not factor in perturbation theory for some choices of the infrared regulator. Messenger modes are not required in soft-collinear effective theory for deep inelastic scattering as x -> 1.

  11. Prime Factorization in the Duality Computer

    E-Print Network [OSTI]

    Wan-Ying Wang; Bin Shang; Chuan Wang; Gui Lu Long

    2006-07-04T23:59:59.000Z

    We give algorithms to factorize large integers in the duality computer. We provide three duality algorithms for factorization based on a naive factorization method, the Shor algorithm in quantum computing, and the Fermat's method in classical computing. All these algorithms are polynomial in the input size.

  12. Journal influence factors6 Massimo Franceschet

    E-Print Network [OSTI]

    Franceschet, Massimo

    Journal influence factors6 Massimo Franceschet Department of Mathematics and Computer Science of journal influence, namely 2- year impact factor, 5-year impact factor, eigenfactor and article influence. These indicators have been recently added by Thomson Reuters to the Journal Citation Reports, in both science

  13. The X-factor in Galaxies: I. Dependence on Environment and Scale

    SciTech Connect (OSTI)

    Feldmann, Robert; /Fermilab /Chicago U., EFI; Gnedin, Nickolay Y.; /Fermilab /Chicago U., EFI /Chicago U.; Kravtsov, Andrey V.; /Chicago U., EFI /Chicago U.

    2011-12-01T23:59:59.000Z

    Characterizing the conversion factor between CO emission and column density of molecular hydrogen, X{sub CO}, is crucial in studying the gaseous content of galaxies, its evolution, and relation to star formation. In most cases the conversion factor is assumed to be close to that of giant molecular clouds (GMCs) in the Milky Way, except possibly for mergers and star-bursting galaxies. However, there are physical grounds to expect that it should also depend on the gas metallicity, surface density, and strength of the interstellar radiation field. The X{sub CO} factor may also depend on the scale on which CO emission is averaged due to effects of limited resolution. We study the dependence of X{sub CO} on gas properties and averaging scale using a model that is based on a combination of results of sub-pc scale magneto-hydrodynamic simulations and on the gas distribution from self-consistent cosmological simulations of galaxy formation. Our model predicts X{sub CO} {approx} 2 - 4 x 10{sup 20} K{sup -1} cm{sup -2} km{sup -1} s, consistent with the Galactic value, for interstellar medium conditions typical for the Milky Way. For such conditions the predicted X{sub CO} varies by only a factor of two for gas surfaced densities in the range {Sigma}{sub H{sub 2}} {approx} 50-500 M{sub {circle_dot}} pc{sup -2}. However, the model also predicts that more generally on the scale of GMCs, X{sub CO} is a strong function of metallicity, and depends on the column density and the interstellar UV flux. We show explicitly that neglecting these dependencies in observational estimates can strongly bias the inferred distribution of H2 column densities of molecular clouds to have a narrower and offset range compared to the true distribution. We find that when averaged on {approx} kpc scales the X-factor depends only weakly on radiation field and column density, but is still a strong function of metallicity. The predicted metallicity dependence can be approximated as X{sub CO} {proportional_to} Z{sup -{gamma}} with {gamma} {approx} 0.5 - 0.8.

  14. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01T23:59:59.000Z

    the development of high-power density semiconductor devices.Management of High-Power Density Electronics A DissertationManagement of High-Power Density Electronics by Zhong Yan

  15. One-dimensional ordering of ultra-low density ion beams in a storage ring

    E-Print Network [OSTI]

    Okamoto, H.; Okabe, K.; Yuri, Y.; Mohl, D.; Sessler, A.M.

    2004-01-01T23:59:59.000Z

    One-dimensional ordering of ultra-low density ion beams in ais applicable to an ultra-low density beam where collectiveabout 10 cm. In such an ultra-low density regime, no collec-

  16. Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process

    E-Print Network [OSTI]

    Wood-Fiber/High-Density-Polyethylene Composites: Compounding Process J. Z. Lu,1 Q. Wu,1 I. I strength and flexural modulus of the resultant composites. With 50 wt % wood fiber, the optimum compounding of the modified blends and the dynamic mechanical properties of the resultant composites. The melt torque

  17. Density Functional Theory-Based Database Development and CALPHAD Automation

    E-Print Network [OSTI]

    Chen, Long-Qing

    Density Functional Theory-Based Database Development and CALPHAD Automation YI WANG,1,2 SHUNLI, the integration of first-principles calculations, CALPHAD modeling, and the automation of phase diagram, and the automated calculation of a phase diagram for the Al- Mg system. INTRODUCTION In thermodynamics, a phase

  18. Network signatures of nuclear and cytoplasmic density alterations in a

    E-Print Network [OSTI]

    Staum, Jeremy

    Network signatures of nuclear and cytoplasmic density alterations in a model of pre://biomedicaloptics.spiedigitallibrary.org/ on 06/24/2014 Terms of Use: http://spiedl.org/terms #12;Network signatures of nuclear and cytoplasmic cytoplasmic and nuclear structural altera- tions that accompany their aberrant genetic, epigenetic

  19. Original article Stem basic density and bark proportion

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -scale operation at Burkina Faso for the supply of fuel-wood to the capital Ougadougou [5]. In fact, large forest coppice forests in Burkina Faso Robert Nygård* and Björn Elfving SLU, Department of Silviculture, 901 83 sampled, the stem basic density varied between 301­854 kg m-3. Bark proportion of stem biomass varied

  20. Density inhomogeneity driven electrostatic shock waves in planetary rings

    SciTech Connect (OSTI)

    Masood, W.; Siddiq, M. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); National Center for Physics (NCP), Islamabad 44000 (Pakistan); Rizvi, H.; Haque, Q. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P. O. Nilore, Islamabad 44000 (Pakistan); Hasnain, H. [NILOP, P. O. Nilore, Islamabad 44000 (Pakistan); PIEAS, P. O. Nilore, Islamabad 44000 (Pakistan)

    2011-05-15T23:59:59.000Z

    Dust inertia and background density driven dust drift shock waves are theoretically studied in a rotating planetary environment and are subsequently applied to the planetary rings where the collisional effects are pronounced. It has been found that the system under consideration admits significant shock formation if the collision frequency is of the order of or less than the rotational frequency of the Saturn's rings.

  1. Author's Accepted Manuscript ORBIT-CENTERED ATMOSPHERIC DENSITY

    E-Print Network [OSTI]

    Wohlberg, Brendt

    density measurements or estimates on a given orbit and a set of proxies for solar and geomagnetic solar and geomagnetic activities and different prediction windows. Compar- ison with previously (LEO) contain the majority of artificial sa- tellites currently in operation. At LEO below 700 km

  2. Calibrating Speed-Density Functions for ff SMesoscopic Traffic Simulation

    E-Print Network [OSTI]

    Bertini, Robert L.

    . (1999), Tavana & Mahmassani (2000), Wang & Papageorgiou (2005), Antoniou et al. (2007) #12;Case Studies) supply #12;Case Studies (contd.) · DynaMIT speed-density function form · Performance measures ( )= - S i pointsdataofnumber speed)(count,simulated : : S iy #12;Case Studies (contd.) · Methodology ­ Large

  3. Densities and Compressibilities of Chiral Molecules in the Liquid State

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    polarized light into circularly polarized light. #12;Objective · Measure the speed of sound in Limonene 1360 15 20 25 30 35 40 45 50 55 Speed of Sound (m/s) Temperature ( °C) Speed of Sound in LimoneneDensities and Compressibilities of Chiral Molecules in the Liquid State Imelda Hot and Dr. Amer S

  4. Hydrogen Bonding Increases Packing Density in the Protein Interior

    E-Print Network [OSTI]

    Hydrogen Bonding Increases Packing Density in the Protein Interior David Schell,1,2 Jerry Tsai,1 J System Health Science Center, College Station, Texas 77843-1114 ABSTRACT The contribution of hydrogen to the stability, but experimental studies show that bury- ing polar groups, especially those that are hydrogen

  5. Model Predictive Control of Variable Density Multiphase Flows Governed by

    E-Print Network [OSTI]

    Hinze, Michael

    of model predictive control (MPC) consists in steering or keeping the state of a dynamical systemModel Predictive Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models appearing in the model predictive control strategy. The resulting control concept is known as instantaneous

  6. Gravimeter yields rock density for cavern during operations

    SciTech Connect (OSTI)

    Folle, S.; Rolfs, O. [Kavernen Bau- and Betriebs-GmbH, Hannover (Germany)

    1996-01-22T23:59:59.000Z

    Designing underground cavities and especially planning for caverns in salt formations for storage require investigations of several questions that are posed in this paper. A downhole gravimeter can determine rock density in a natural gas storage cavern while it is in operation or still being solution mined. Operating conditions or solution mining in progress precludes use of a standard density tool during conventional well-logging procedures. Rock density is one of the principal input parameters for rock mechanical investigations in specifying optimum pressure levels in storage caverns. The advantages and disadvantages of the system, as well as of the technical logging procedures, follow. The gravimeter tool: measures rock densities up to approximately 20 m into the formation; logs through casing (independent of a drilling rig); is unaffected by drilling mud; is unaffected by size and variation of caliber. But it also: does not measure continuously; makes logging time-consuming and requires a certain mobilization time; delivers data whose accuracy depends o the homogeneity of the formation or level of information available on the structure in question.

  7. Constraints on power spectrum of density fluctuations from PBH evaporations

    E-Print Network [OSTI]

    Edgar Bugaev; Peter Klimai

    2006-12-21T23:59:59.000Z

    We calculate neutrino and photon energy spectra in extragalactic space from evaporation of primordial black holes, assuming that the power spectrum of primordial density fluctuations has a strong bump in the region of small scales. The constraints on the parameters of this bump based on neutrino and photon cosmic background data are obtained.

  8. Spectral density of generalized Wishart matrices and free multiplicative convolution

    E-Print Network [OSTI]

    Wojciech Mlotkowski; Maciej A. Nowak; Karol A. Penson; Karol Zyczkowski

    2015-02-28T23:59:59.000Z

    We investigate level density for several ensembles of positive random matrices of a Wishart--like structure, $W=XX^{\\dagger}$, where $X$ stands for a nonhermitian random matrix. In particular, making use of the Cauchy transform we study free multiplicative powers of the Marchenko-Pastur (MP) distribution, ${\\rm MP}^{\\boxtimes s}$, which for an integer $s$ yield Fuss-Catalan distributions corresponding to a product of $s$ independent square random matrices, $X=X_1\\cdots X_s$. Known formulae for the level densities are rederived in the case $s=2$ and $s=1/2$ and explicit distributions are obtained for $s=3$ and $s=1/3$. Moreover, the level density generated by a product of two rectangular random matrices $X=X_1 X_2$ is obtained and the generalized Bures distribution given by the free convolution of arcsine and MP distributions is derived. The technique proposed here allows us to obtain level densities for several related cases.

  9. Wavelet Based Density Estimators for Modeling Multidimensional Data Sets

    E-Print Network [OSTI]

    Shahabi, Cyrus

    the distribution of this random variable. We exhibit an estimator for the wavelet coeÃ?cients of this density and ionospheric data. After three levels of o#11;-line pre-processing, observations of temperature, water vapor agreement nr. F30602-99-1-0524, and unrestricted cash/equipment gifts from NCR, IBM, Intel and SUN. #12; 1

  10. A new acoustic three dimensional intensity and energy density probe

    E-Print Network [OSTI]

    Boyer, Edmond

    A new acoustic three dimensional intensity and energy density probe F. Aymea , C. Carioub , M is a great advantage. In this frame, a new intensity acoustic probe has been developed to compute acoustic quantities which can be input data for energetic identification methods. 1 Introduction Noise matters

  11. Terrace housing : providing quality in higher-density housing

    E-Print Network [OSTI]

    Atthakor, Songpol

    1992-01-01T23:59:59.000Z

    The higher demand of higher-density housing in Bangkok due to the rapid growth of the economy and the use of high-performance materials and modern construction methods has changed the forms of housing from low-rise buildings ...

  12. Method to reduce dislocation density in silicon using stress

    DOE Patents [OSTI]

    Buonassisi, Anthony; Bertoni, Mariana; Argon, Ali; Castellanos, Sergio; Fecych, Alexandria; Powell, Douglas; Vogl, Michelle

    2013-03-05T23:59:59.000Z

    A crystalline material structure with reduced dislocation density and method of producing same is provided. The crystalline material structure is annealed at temperatures above the brittle-to-ductile transition temperature of the crystalline material structure. One or more stress elements are formed on the crystalline material structure so as to annihilate dislocations or to move them into less harmful locations.

  13. Film cooling on a flat plate: investigating density

    E-Print Network [OSTI]

    Grizzle, Joshua Peter Fletcher

    2009-05-15T23:59:59.000Z

    This study is an investigation of two specific effects on turbine blade film cooling. The effect of coolant to mainstream density ratio and upstream steps was studied. The studies were conducted on two flat plates with 4mm cylindrical film cooling...

  14. High energy density lithium-oxygen secondary battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1989-02-07T23:59:59.000Z

    A high energy density lithium-oxygen secondary cell is described comprising a lithium-containing negative electrode; a lithium ion conducting molten salt electrolyte contacting the negative electrode; an oxygen ion conducting solid electrolyte contacting and containing the molten salt electrolyte; and an oxygen redox positive electrode contacting the oxygen ion conducting solid electrolyte.

  15. Analysis with Kernel Density Estimation University of Michigan / HERMES Collaboration

    E-Print Network [OSTI]

    Analysis with Kernel Density Estimation S. Gliske University of Michigan / HERMES Collaboration Transverse Parton Structure of the Hadron Yerevan, Armenia 25 June, 2009 Gliske (HERMES / Michigan) Analysis/Smearing Effects SIDIS cos(n) Conclusion Gliske (HERMES / Michigan) Analysis with KDEs TPSH `09 2 / 24 #12

  16. Quark number susceptibility of high temperature and finite density QCD

    E-Print Network [OSTI]

    Ari Hietanen; Kari Rummukainen

    2007-10-26T23:59:59.000Z

    We utilize lattice simulations of the dimensionally reduced effective field theory (EQCD) to determine the quark number susceptibility of QCD at high temperature ($T>2T_c$). We also use analytic continuation to obtain results at finite density. The results extrapolate well from known perturbative expansion (accurate in extremely high temperatures) to 4d lower temperature lattice data

  17. Evaluation of Tweedie exponential dispersion model densities by Fourier inversion

    E-Print Network [OSTI]

    Smyth, Gordon K.

    and Computing University of Southern Queensland Toowoomba Queensland 4350 Australia Gordon K. Smyth Bioinformatics Division Walter and Eliza Hall Institute of Medical Research Melbourne, Vic 3050, Australia August with power variance functions V (µ) = µp for p (0, 1). These distri- butions do not generally have density

  18. Thin liquid lithium targets for high power density

    E-Print Network [OSTI]

    McDonald, Kirk

    High charge state High velocity flow ~60 m/s High heat capacity of Li Absorbs power depositedThin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability

  19. FLAME SURFACE DENSITIES IN PREMIXED COMBUSTION AT MEDIUM TO HIGH

    E-Print Network [OSTI]

    Gülder, �mer L.

    premixed combustion diagrams. Small-scale transport of heat and species may be more important and chemistryFLAME SURFACE DENSITIES IN PREMIXED COMBUSTION AT MEDIUM TO HIGH TURBULENCE INTENSITIES O¨ MER L in turbulent premixed propane= air flames were determined experimentally. The instantaneous flame fronts were

  20. Classical density functional theory to tackle solvation in molecular liquids

    E-Print Network [OSTI]

    Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-01-01T23:59:59.000Z

    We present a brief review of the classical density functional theory of atomic and molecular fluids. We focus on the application of the theory to the determination of the solvation properties of arbitrary molecular solutes in arbitrary molecular solvent. This includes the prediction of the solvation free energies, as well as the characterization of the microscopic, three-dimensional solvent structure.

  1. The Thermal Conductivity of Low Density Concretes Containing Perlite

    E-Print Network [OSTI]

    Yarbrough, D. W.

    concretes made from Portland cement and perlite has been measured near room temperature using an unguarded linear heat flow apparatus. Perlite based concretes having densities from 44.3 1b/ft 3 to 66.6 1b/ft 3 were found to have thermal conductivities...

  2. atomic hydrogen density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic hydrogen density First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 THE HYDROGEN ATOM REVISITED...

  3. Visualization of Density Variation in Lung Aristofanes C. Silva

    E-Print Network [OSTI]

    Endler, Markus

    Visualization of Density Variation in Lung Nodules Arist´ofanes C. Silva e-mail: ari-Rio Inf.MCC09/02 June, 2002 Abstract We propose a method for visualize lung nodule, in order to emphasize, limiar. #12;1 Introduction Lung cancer is known to be the form of cancer with the smallest survival rate

  4. Meson phase space density in heavy ion collisions from interferometry

    SciTech Connect (OSTI)

    Bertsch, G.F. (Department of Physics and Institute for Nuclear Theory, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-04-11T23:59:59.000Z

    The interferometric analysis of meson correlations provides a measure of the average phase space density of the mesons in the final state. This quantity is a useful indicator of the statistical properties of the system, and it can be extracted with a minimum of model assumptions. Values obtained from recent measurements are consistent with the thermal value, but do not rule out superradiance effects.

  5. Computing spectral densities in finite temperature field theory

    SciTech Connect (OSTI)

    Jeon, S. (Physics Department FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1993-05-15T23:59:59.000Z

    Convenient Cutkosky-like diagrammatic rules for computing the spectral densities of arbitrary two-point correlation functions in finite temperature field theory are derived. The approach is based on an explicit analytic continuation of imaginary-time Feynman diagrams. The application of this method to the perturbative evaluation of transport coefficients is briefly discussed.

  6. Off-shell helicity amplitudes in high-energy factorization

    E-Print Network [OSTI]

    Piotr Kotko

    2013-09-20T23:59:59.000Z

    In the Catani-Ciafaloni-Hautmann high-energy factorization approach a cross section is expressed as a convolution of unintegrated gluon densities and a gauge-invariant hard process, in which two incoming gluons are off-shell with momenta satisfying certain high-energy kinematics. We present two methods of evaluating the tree-level hard process with multiple final states. The first one assumes that only one of the gluons is off-shell and relies on the Slavnov-Taylor identities. Such asymmetric configuration of incoming gluons is phenomenologically important in small x probing by forward processes. The second method deals also with two off-shell gluons and is based on the analytic continuation of the off-shell gluons momenta to the complex space. The methods were implemented into Monte Carlo computer programs and used in phenomenological applications. The results of both methods are straightforwardly related to Lipatov's effective vertices in quasi-multi-regge kinematics.

  7. On spectroscopic factors of magic and semimagic nuclei

    SciTech Connect (OSTI)

    Saperstein, E. E. [Kurchatov Institute, 123182 Moscow (Russian Federation); Gnezdilov, N. V. [Kurchatov Institute, 123182 Moscow, Russia and National Research Nuclear University MEPhI, 115409 Moscow (Russian Federation); Tolokonnikov, S. V. [Kurchatov Institute, 123182 Moscow, Russia and Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation)

    2014-10-15T23:59:59.000Z

    Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator ? is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic {sup 208}Pb nucleus and semimagic lead isotopes are presented.

  8. Parity Violating Measurements of Neutron Densities: Implications for Neutron Stars

    E-Print Network [OSTI]

    C. J. Horowitz; J. Piekarewicz

    2002-01-08T23:59:59.000Z

    Parity violating electron scattering can measure the neutron density of a heavy nucleus accurately and model independently. This is because the weak charge of the neutron is much larger then that of the proton. The Parity Radius Experiment (PREX) at Jefferson Laboratory aims to measure the root mean square neutron radius of $^{208}$Pb with an absolute accuracy of 1% ($\\pm 0.05$ Fm). This is more accurate then past measurements with hadronic probes, which all suffer from controversial strong interaction uncertainties. PREX should clearly resolve the neutron-rich skin. Furthermore, this benchmark value for $^{208}$Pb will provide a calibration for hadronic probes, such as proton scattering, which can then be used to measure neutron densities of many exotic nuclei. The PREX result will also have many implications for neutron stars. The neutron radius of Pb depends on the pressure of neutron-rich matter: the greater the pressure, the larger the radius as neutrons are pushed out against surface tension. The same pressure supports a neutron star against gravity. The Pb radius is sensitive to the equation of state at normal densities while the radius of a 1.4 solar mass neutron star also depends on the equation of state at higher densities. Measurements of the radii of a number of isolated neutron stars such as Geminga and RX J185635-3754 should soon improve significantly. By comparing the equation of state information from the radii of both Pb and neutron stars one can search for a softening of the high density equation of state from a phase transition to an exotic state. Possibilities include kaon condensates, strange quark matter or color superconductors.

  9. Laboratory testing of high energy density capacitors for electric vehicles

    SciTech Connect (OSTI)

    Burke, A.F.

    1991-10-01T23:59:59.000Z

    Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

  10. Synthetic Nano-Low Density Lipoprotein as Targeted Drug Delivery Vehicle for Glioblastoma Multiforme

    E-Print Network [OSTI]

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu, Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-01-01T23:59:59.000Z

    Synthetic Nano-Low Density Lipoprotein as Targeted Drugmicroemulsion; peptide; nano-low density lipoproteintherapeutic agents. A synthetic nano-LDL (nLDL) particle was

  11. The impact of residential density on vehicle usage and fuel consumption

    E-Print Network [OSTI]

    Kim, Jinwon; Brownstone, David

    2010-01-01T23:59:59.000Z

    characteristics on household residential choice and auto2009. The impact of residential density on vehicle usage and2010-05) The impact of residential density on vehicle usage

  12. E-Print Network 3.0 - alpha-u charge density Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Florida Collection: Physics 31 Conducting Polymer Nanotubes toward Supercapacitor Ran Liu and Sang Bok Lee* Summary: density, power density values of the...

  13. Method for determining formation quality factor from well log data and its application to seismic reservoir characterization

    DOE Patents [OSTI]

    Walls, Joel; Taner, M. Turhan; Dvorkin, Jack

    2006-08-08T23:59:59.000Z

    A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.

  14. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect (OSTI)

    David, Aurelien

    2012-10-15T23:59:59.000Z

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop values are in line with the program’s milestones. They demonstrate that bulk non-polar GaN substrates represent a disruptive technology for LED performance. Application of this technology to real-world products is feasible, provided that the cost of GaN substrates is compatible with the market’s requirement.

  15. Impact Strength of High Relative Density Solid State CO, Blown CPET Microcellular Foams Impact Strength of High Relative Density

    E-Print Network [OSTI]

    Kumar, Vipin

    is an increased glass transition temperature (T,), thus requiring higher foaming temperatures. Baldwin and SuhImpact Strength of High Relative Density Solid State CO, Blown CPET Microcellular Foams ImpactTerephthalate) Microcellular Foams Vipin KurnaW, Richard P Juntunena, and Chris Barlowb University of Washington, Seattle

  16. Factor Analysis for Skewed Data and Skew-Normal Maximum Likelihood Factor Analysis

    E-Print Network [OSTI]

    Gaucher, Beverly Jane

    2013-04-04T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7.1 The Factor Analysis Model . . . . . . . . . . . . . . . . . 28 v 2.8 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.8.1 The Akaike Information Criterion . . . . . . . . . . . . . . 30 2.8.2 The Bayesian... Information Criterion . . . . . . . . . . . . . 31 2.9 Factor Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.10 Non-uniqueness of Factor Loadings . . . . . . . . . . . . . . . . . . 32 2.10.1 The Rotation of Factor Loadings...

  17. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect (OSTI)

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario San Cecilio, E-18012 Granada (Spain)] [Servicio de Radiofísica y Protección Radiológica, Hospital Universitario San Cecilio, E-18012 Granada (Spain); Perez-Calatayud, Jose [Servicio de Radioterapia, Unidad de Radiofísica, Hospital Universitario y Politécnico La Fe, E-46026 Valencia (Spain)] [Servicio de Radioterapia, Unidad de Radiofísica, Hospital Universitario y Politécnico La Fe, E-46026 Valencia (Spain); Simancas, Fernando; Lallena, Antonio M. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)] [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Gazdic-Santic, Maja [Department of Medical Physics and Radiation Safety, Clinical Centre of Sarajevo University, 71000 Sarajevo (Bosnia and Herzegovina)] [Department of Medical Physics and Radiation Safety, Clinical Centre of Sarajevo University, 71000 Sarajevo (Bosnia and Herzegovina)

    2013-12-15T23:59:59.000Z

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.

  18. Role of density dependent symmetry energy in nuclear stopping

    E-Print Network [OSTI]

    Karan Singh Vinayak; Suneel Kumar

    2011-07-27T23:59:59.000Z

    Information about the nuclear matter under the extreme conditions of temperature and density and the role of symmetry energy under these conditions is still a topic of crucial importance in the present day nuclear physics research. The multifragmentation, collective flow and the nuclear stopping is among the various rare phenomenon which can be observed in heavy-ion collisions at intermediate energies. The nuclear stopping, which is sensitive towards the symmetry energy has gained a lot of interest because it provides the possibility to examine the degree of thermalization or equilibration in the matter. Aim of the present study is to pin down the nuclear stopping for the different forms of density dependent symmetry energy

  19. Excitations and benchmark ensemble density functional theory for two electrons

    SciTech Connect (OSTI)

    Pribram-Jones, Aurora; Burke, Kieron [Department of Chemistry, University of California-Irvine, Irvine, California 92697 (United States)] [Department of Chemistry, University of California-Irvine, Irvine, California 92697 (United States); Yang, Zeng-hui; Ullrich, Carsten A. [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States)] [Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211 (United States); Trail, John R.; Needs, Richard J. [Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)] [Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2014-05-14T23:59:59.000Z

    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.

  20. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01T23:59:59.000Z

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  1. Probability distribution functions in the finite density lattice QCD

    E-Print Network [OSTI]

    S. Ejiri; Y. Nakagawa; S. Aoki; K. Kanaya; H. Saito; T. Hatsuda; H. Ohno; T. Umeda

    2012-12-04T23:59:59.000Z

    We study the phase structure of QCD at high temperature and density by lattice QCD simulations adopting a histogram method. We try to solve the problems which arise in the numerical study of the finite density QCD, focusing on the probability distribution function (histogram). As a first step, we investigate the quark mass dependence and the chemical potential dependence of the probability distribution function as a function of the Polyakov loop when all quark masses are sufficiently large, and study the properties of the distribution function. The effect from the complex phase of the quark determinant is estimated explicitly. The shape of the distribution function changes with the quark mass and the chemical potential. Through the shape of the distribution, the critical surface which separates the first order transition and crossover regions in the heavy quark region is determined for the 2+1-flavor case.

  2. Extreme hydrogen plasma densities achieved in a linear plasma generator

    SciTech Connect (OSTI)

    Rooij, G. J. van; Veremiyenko, V. P.; Goedheer, W. J.; de Groot, B.; Kleyn, A. W.; Smeets, P. H. M.; Versloot, T. W.; Whyte, D. G.; Engeln, R.; Schram, D. C.; Cardozo, N. J. Lopes [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein, Uthrecht 3430BE (Netherlands); Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, Nieuwegein, Uthrecht 3430BE (NL) and Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

    2007-03-19T23:59:59.000Z

    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5x10{sup 20} m{sup -3} electron density, {approx}2 eV electron and ion temperatures, and 3.5 km/s axial plasma velocity. This gives a 2.6x10{sup 24} H{sup +} m{sup -2} s{sup -1} peak ion flux density, which is unprecedented in linear plasma generators. The high efficiency of the source is obtained by the combined action of the magnetic field and an optimized nozzle geometry. This is interpreted as a cross-field return current that leads to power dissipation in the beam just outside the source.

  3. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    SciTech Connect (OSTI)

    Ponath, Patrick [University of Texas at Austin; Fredrickson, Kurt [University of Texas at Austin; Posadas, Agham B. [University of Texas at Austin; Ren, Yuan [University of Texas at Austin; Vasudevan, Rama K [ORNL; Okatan, Mahmut Baris [ORNL; Jesse, Stephen [ORNL; Aoki, Toshihiro [Arizona State University; McCartney, Martha [Arizona State University; Smith, David J [Arizona State University; Kalinin, Sergei V [ORNL; Lai, Keji [University of Texas at Austin; Demkov, Alexander A. [University of Texas at Austin

    2015-01-01T23:59:59.000Z

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.

  4. Ultra-low density microcellular polymer foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1996-03-19T23:59:59.000Z

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  5. Ultra-low density microcellular polymer foam and method

    DOE Patents [OSTI]

    Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN)

    1996-01-01T23:59:59.000Z

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  6. Influence of the Target - Density Effects on Electron - Capture Processes

    SciTech Connect (OSTI)

    Tolstikhina, I.Yu.; Shevelko, V.P. [P.N.Lebedev Physical Institute, 119991, Moscow (Russian Federation)

    2004-12-01T23:59:59.000Z

    The influence of the target density on the electron-capture (EC) processes in collisions of fast ions with atoms and molecules is considered. The partial EC cross sections {sigma}n on the principal quantum number n of the scattered projectile, as well as the total {sigma}tot values are calculated for highly charged ions interacting with gaseous and solid targets in the energy range of E = 100 keV/amu to 10 MeV/amu. It is shown that with the target density increasing, the population of the excited states of the scattered projectiles, formed via the EC channel, is suppressed due to projectile ionization by the target particles and, as a result, the effective EC cross sections drastically decrease.

  7. A Tale of Two Electrons: Correlation at High Density

    E-Print Network [OSTI]

    Loos, Pierre-François

    2010-01-01T23:59:59.000Z

    We review our recent progress in the determination of the high-density correlation energy $\\Ec$ in two-electron systems. Several two-electron systems are considered, such as the well known helium-like ions (helium), and the Hooke's law atom (hookium). We also present results regarding two electrons on the surface of a sphere (spherium), and two electrons trapped in a spherical box (ballium). We also show that, in the large-dimension limit, the high-density correlation energy of two opposite-spin electrons interacting {\\em via} a Coulomb potential is given by $\\Ec \\sim -1/(8D^2)$ for any radial external potential $V(r)$, where $D$ is the dimensionality of the space. This result explains the similarity of $\\Ec$ in the previous two-electron systems for $D=3$.

  8. Laboratory Tests of Low Density Astrophysical Equations of State

    E-Print Network [OSTI]

    L. Qin; K. Hagel; R. Wada; J. B. Natowitz; S. Shlomo; A. Bonasera; G. Roepke; S. Typel; Z. Chen; M. Huang; J. Wang; H. Zheng; S. Kowalski; M. Barbui; M. R. D. Rodrigues; K. Schmidt; D. Fabris; M. Lunardon; S. Moretto; G. Nebbia; S. Pesente; V. Rizzi; G. Viesti; M. Cinausero; G. Prete; T. Keutgen; Y. El Masri; Z. Majka

    2012-03-20T23:59:59.000Z

    Clustering in low density nuclear matter has been investigated using the NIMROD multi-detector at Texas A&M University. Thermal coalescence modes were employed to extract densities, $\\rho$, and temperatures, $T$, for evolving systems formed in collisions of 47 $A$ MeV $^{40}$Ar + $^{112}$Sn,$^{124}$Sn and $^{64}$Zn + $^{112}$Sn, $^{124}$Sn. The yields of $d$, $t$, $^{3}$He, and $^{4}$He have been determined at $\\rho$ = 0.002 to 0.032 nucleons/fm$^{3}$ and $T$= 5 to 10 MeV. The experimentally derived equilibrium constants for $\\alpha$ particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.

  9. Critical fermion density for restoring spontaneously broken symmetry

    E-Print Network [OSTI]

    Hagen Kleinert; She-Sheng Xue

    2014-05-12T23:59:59.000Z

    We show how the phenomenon of spontaneous symmetry breakdown is affected by the presence of a sea of fermions in the system. When its density exceeds a critical value, the broken symmetry can be restored. We calculate the critical value and discuss the consequences for three different physical systems: First, for the standard model of particle physics, where the spontaneous symmetry breakdown leads nonzero masses of intermediate gauge bosons and fermions. The symmetry restoration will greatly enhance various processes with dramatic consequences for the early universe. Second, for the Gell-Mann--L\\`evy $\\sigma$-model of nuclear physics, where the symmetry breakdown gives rise to the nucleon and meson masses. The symmetry restoration may have important consequences for formation or collapse of stellar cores. Third, for the superconductive phase of condensed-matter, where the BCS condensate at low-temperature may be destroyed by a too large electron density.

  10. QCD Viscosity to Entropy Density Ratio in the Hadronic Phase

    E-Print Network [OSTI]

    Jiunn-Wei Chen; Yen-Han Li; Yen-Fu Liu; Eiji Nakano

    2007-04-20T23:59:59.000Z

    Shear viscosity (eta) of QCD in the hadronic phase is computed by the coupled Boltzmann equations of pions and nucleons in low temperatures and low baryon number densities. The eta to entropy density ratio eta/s maps out the nuclear gas-liquid phase transition by forming a valley tracing the phase transition line in the temperature-chemical potential plane. When the phase transition turns into a crossover, the eta/s valley gradually disappears. We suspect the general feature for a first-order phase transition is that eta/s has a discontinuity in the bottom of the eta/s valley. The discontinuity coincides with the phase transition line and ends at the critical point. Beyond the critical point, a smooth eta/s valley is seen. However, the valley could disappear further away from the critical point. The eta/s measurements might provide an alternative to identify the critical points.

  11. Method of measuring reactive acoustic power density in a fluid

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1985-09-03T23:59:59.000Z

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas. 5 figs.

  12. Method of measuring reactive acoustic power density in a fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1985-01-01T23:59:59.000Z

    A method for determining reactive acoustic power density level and its direction in a fluid using a single sensor is disclosed. In the preferred embodiment, an apparatus for conducting the method, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  13. Subsystem real-time Time Dependent Density Functional Theory

    E-Print Network [OSTI]

    Krishtal, Alisa; Pavanello, Michele

    2015-01-01T23:59:59.000Z

    We present the extension of Frozen Density Embedding (FDE) theory to real-time Time Dependent Density Functional Theory (rt-TDDFT). FDE a is DFT-in-DFT embedding method that allows to partition a larger Kohn-Sham system into a set of smaller, coupled Kohn-Sham systems. Additional to the computational advantage, FDE provides physical insight into the properties of embedded systems and the coupling interactions between them. The extension to rt-TDDFT is done straightforwardly by evolving the Kohn-Sham subsystems in time simultaneously, while updating the embedding potential between the systems at every time step. Two main applications are presented: the explicit excitation energy transfer in real time between subsystems is demonstrated for the case of the Na$_4$ cluster and the effect of the embedding on optical spectra of coupled chromophores. In particular, the importance of including the full dynamic response in the embedding potential is demonstrated.

  14. Effects of system densities on distillation column performance

    SciTech Connect (OSTI)

    Fasesan, S.O.; Sanni, S.A.; Taiwo, E.A. [Obafemi Awolowo Univ., Ile-Ife (Nigeria). Dept. of Chemical Engineering

    1998-06-01T23:59:59.000Z

    Distillation experiments were carried out on three binary systems (ethanol-butanol, ethanol-propan-2-ol, and propan-2-ol-butanol) in a 0.1-m internal diameter glass column packed with 8 mm diameter Raschig rings. The experiments were performed under total reflux conditions and at atmospheric pressure. The data collected on column performance showed that performance declined with increasing average bulk liquid density. The results also lend credence to earlier reports on the behavior of column performance with respect to component concentration in the feed mixtures. The system densities of the three binary systems were measured at four different temperatures, 30, 40, 50, and 60 C. The data were compared with the predicted data of Yen-Woods and Multifluid models. The accuracy of the predictions of the Yen-Woods model was rather poor while that of the Multifluid model was very encouraging.

  15. Symmetry Projected Density Functional Theory and Neutron Halo’s

    E-Print Network [OSTI]

    unknown authors

    The appearance of halo phenomena near the drip line nuclei has challenged our traditional understanding of the nuclei as an incompressible charged liquid drop and extended nuclear physics to low density and inhomogeneous system, where the coupling to the continuum has to be treated in a consistent way. Recently Relativistic Hartree Bogoliubov (RHB) theory in the continuum has been applied successfully to the description of halo phenomena in light and medium heavy nuclei [1, 2, 3]. This theory provides a self-consistent treatment of pairing correlation in the presence of the continuum and allows a microscopic description of halo phenomena in the framework of density functional theory. Essential conditions for the formation of a neutron halo have been found: (a) the Fermi surface of the neutrons has to

  16. Density waves in the shearing sheet I. Swing amplification

    E-Print Network [OSTI]

    B. Fuchs

    2001-03-02T23:59:59.000Z

    The shearing sheet model of a galactic disk is studied anew. The theoretical description of its dynamics is based on three building blocks: Stellar orbits, which are described here in epicyclic approximation, the collisionless Boltzmann equation determining the distribution function of stars in phase space, and the Poisson equation in order to take account of the self-gravity of the disk. Using these tools I develop a new formalism to describe perturbations of the shearing sheet. Applying this to the unbounded shearing sheet model I demonstrate again how the disturbances of the disk evolve always into `swing amplified' density waves, i.e. spiral-arm like, shearing density enhancements, which grow and decay while the wave crests swing by from leading to trailing orientation. Several examples are given how such `swing amplification' events are incited in the shearing sheet.

  17. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect (OSTI)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15T23:59:59.000Z

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  18. Relativistic Coulomb excitation within Time Dependent Superfluid Local Density Approximation

    E-Print Network [OSTI]

    I. Stetcu; C. Bertulani; A. Bulgac; P. Magierski; K. J. Roche

    2015-01-13T23:59:59.000Z

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus $^{238}$U. The approach is based on Superfluid Local Density Approximation (SLDA) formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We have computed the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance and giant quadrupole modes were excited during the process. The one body dissipation of collective dipole modes is shown to lead a damping width $\\Gamma_\\downarrow \\approx 0.4$ MeV and the number of pre-equilibrium neutrons emitted has been quantified.

  19. Classical Phase Space Density for the Relativistic Hydrogen Atom

    E-Print Network [OSTI]

    Th. M. Nieuwenhuizen

    2005-11-15T23:59:59.000Z

    Quantum mechanics is considered to arise from an underlying classical structure (``hidden variable theory'', ``sub-quantum mechanics''), where quantum fluctuations follow from a physical noise mechanism. The stability of the hydrogen ground state can then arise from a balance between Lorentz damping and energy absorption from the noise. Since the damping is weak, the ground state phase space density should predominantly be a function of the conserved quantities, energy and angular momentum. A candidate for this phase space density is constructed for ground state of the relativistic hydrogen problem of a spinless particle. The first excited states and their spherical harmonics are also considered in this framework. The analytic expression of the ground state energy can be reproduced, provided averages of certain products are replaced by products of averages. This analysis puts forward that quantum mechanics may arise from an underlying classical level as a slow variable theory, where each new quantum operator relates to a new, well separated time interval.

  20. Designing Nonlinear Turbo Codes with a Target Ones Density

    E-Print Network [OSTI]

    Wang, Jiadong; Chen, Tsung-Yi; Xie, Bike; Wesel, Richard

    2011-01-01T23:59:59.000Z

    Certain binary asymmetric channels, such as Z-channels in which one of the two crossover probabilities is zero, demand optimal ones densities different from 50%. Some broadcast channels, such as broadcast binary symmetric channels (BBSC) where each component channel is a binary symmetric channel, also require a non-uniform input distribution due to the superposition coding scheme, which is known to achieve the boundary of capacity region. This paper presents a systematic technique for designing nonlinear turbo codes that are able to support ones densities different from 50%. To demonstrate the effectiveness of our design technique, we design and simulate nonlinear turbo codes for the Z-channel and the BBSC. The best nonlinear turbo code is less than 0.02 bits from capacity.

  1. Universal iso-density polarizable continuum model for molecular solvents

    E-Print Network [OSTI]

    Gunceler, Deniz

    2014-01-01T23:59:59.000Z

    Implicit electron-density solvation models based on joint density-functional theory offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents an alternate approach which allows development of new solvation models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. We find that this model is accurate to nearly 1.7 kcal/mol even for solvents outside our development set.

  2. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

    E-Print Network [OSTI]

    ALICE collaboration; K. Aamodt; B. Abelev; A. Abrahantes Quintana; D. Adamová; A. M. Adare; M. M. Aggarwal; G. Aglieri Rinella; A. G. Agocs; S. Aguilar Salazar; Z. Ahammed; A. Ahmad Masoodi; N. Ahmad; S. U. Ahn; A. Akindinov; D. Aleksandrov; B. Alessandro; R. Alfaro Molina; A. Alici; A. Alkin; E. Almaráz Aviña; T. Alt; V. Altini; S. Altinpinar; I. Altsybeev; C. Andrei; A. Andronic; V. Anguelov; C. Anson; T. Anti\\vci?; F. Antinori; P. Antonioli; L. Aphecetche; H. Appelshäuser; N. Arbor; S. Arcelli; A. Arend; N. Armesto; R. Arnaldi; T. Aronsson; I. C. Arsene; A. Asryan; A. Augustinus; R. Averbeck; T. C. Awes; J. Äystö; M. D. Azmi; M. Bach; A. Badalà; Y. W. Baek; S. Bagnasco; R. Bailhache; R. Bala; R. Baldini Ferroli; A. Baldisseri; A. Baldit; F. Baltasar Dos Santos Pedrosa; J. Bán; R. Barbera; F. Barile; G. G. Barnaföldi; L. S. Barnby; V. Barret; J. Bartke; M. Basile; N. Bastid; B. Bathen; G. Batigne; B. Batyunya; C. Baumann; I. G. Bearden; H. Beck; I. Belikov; F. Bellini; R. Bellwied; E. Belmont-Moreno; S. Beole; I. Berceanu; A. Bercuci; E. Berdermann; Y. Berdnikov; C. Bergmann; L. Betev; A. Bhasin; A. K. Bhati; L. Bianchi; N. Bianchi; C. Bianchin; J. Biel\\vcík; J. Biel\\vc\\'\\iková; A. Bilandzic; E. Biolcati; A. Blanc; F. Blanco; F. Blanco; D. Blau; C. Blume; M. Boccioli; N. Bock; A. Bogdanov; H. B\\oggild; M. Bogolyubsky; L. Boldizsár; M. Bombara; C. Bombonati; J. Book; H. Borel; A. Borissov; C. Bortolin; S. Bose; F. Bossú; M. Botje; S. Böttger; B. Boyer; P. Braun-Munzinger; L. Bravina; M. Bregant; T. Breitner; M. Broz; R. Brun; E. Bruna; G. E. Bruno; D. Budnikov; H. Buesching; K. Bugaiev; O. Busch; Z. Buthelezi; D. Caffarri; X. Cai; H. Caines; E. Calvo Villar; P. Camerini; V. Canoa Roman; G. Cara Romeo; F. Carena; W. Carena; F. Carminati; A. Casanova D\\'\\iaz; M. Caselle; J. Castillo Castellanos; V. Catanescu; C. Cavicchioli; J. Cepila; P. Cerello; B. Chang; S. Chapeland; J. L. Charvet; S. Chattopadhyay; S. Chattopadhyay; M. Cherney; C. Cheshkov; B. Cheynis; E. Chiavassa; V. Chibante Barroso; D. D. Chinellato; P. Chochula; M. Chojnacki; P. Christakoglou; C. H. Christensen; P. Christiansen; T. Chujo; C. Cicalo; L. Cifarelli; F. Cindolo; J. Cleymans; F. Coccetti; J. -P. Coffin; S. Coli; G. Conesa Balbastre; Z. Conesa del Valle; P. Constantin; G. Contin; J. G. Contreras; T. M. Cormier; Y. Corrales Morales; I. Cortés Maldonado; P. Cortese; M. R. Cosentino; F. Costa; M. E. Cotallo; E. Crescio; P. Crochet; E. Cuautle; L. Cunqueiro; G. D Erasmo; A. Dainese; H. H. Dalsgaard; A. Danu; D. Das; I. Das; K. Das; A. Dash; S. Dash; S. De; A. De Azevedo Moregula; G. O. V. de Barros; A. De Caro; G. de Cataldo; J. de Cuveland; A. De Falco; D. De Gruttola; N. De Marco; S. De Pasquale; R. De Remigis; R. de Rooij; P. R. Debski; E. Del Castillo Sanchez; H. Delagrange; Y. Delgado Mercado; G. Dellacasa; A. Deloff; V. Demanov; E. Dénes; A. Deppman; D. Di Bari; C. Di Giglio; S. Di Liberto; A. Di Mauro; P. Di Nezza; T. Dietel; R. Divià; Ø. Djuvsland; A. Dobrin; T. Dobrowolski; I. Dom\\'\\inguez; B. Dönigus; O. Dordic; O. Driga; A. K. Dubey; J. Dubuisson; L. Ducroux; P. Dupieux; A. K. Dutta Majumdar; M. R. Dutta Majumdar; D. Elia; D. Emschermann; H. Engel; H. A. Erdal; B. Espagnon; M. Estienne; S. Esumi; D. Evans; S. Evrard; G. Eyyubova; C. W. Fabjan; D. Fabris; J. Faivre; D. Falchieri; A. Fantoni; M. Fasel; R. Fearick; A. Fedunov; D. Fehlker; V. Fekete; D. Felea; G. Feofilov; A. Fernández Téllez; A. Ferretti; R. Ferretti; J. Figiel; M. A. S. Figueredo; S. Filchagin; R. Fini; D. Finogeev; F. M. Fionda; E. M. Fiore; M. Floris; S. Foertsch; P. Foka; S. Fokin; E. Fragiacomo; M. Fragkiadakis; U. Frankenfeld; U. Fuchs; F. Furano; C. Furget; M. Fusco Girard; J. J. Gaardh\\oje; S. Gadrat; M. Gagliardi; A. Gago; M. Gallio; D. R. Gangadharan; P. Ganoti; M. S. Ganti; C. Garabatos; E. Garcia-Solis; I. Garishvili; R. Gemme; J. Gerhard; M. Germain; C. Geuna; A. Gheata; M. Gheata; B. Ghidini; P. Ghosh; P. Gianotti; M. R. Girard; G. Giraudo; P. Giubellino; E. Gladysz-Dziadus; P. Glässel; R. Gomez; E. G. Ferreiro; H. González Santos; L. H. González-Trueba; P. González-Zamora; S. Gorbunov; S. Gotovac; V. Grabski; R. Grajcarek; A. Grelli; A. Grigoras; C. Grigoras; V. Grigoriev; A. Grigoryan; S. Grigoryan; B. Grinyov; N. Grion; P. Gros; J. F. Grosse-Oetringhaus; J. -Y. Grossiord; R. Grosso; F. Guber; R. Guernane; C. Guerra Gutierrez; B. Guerzoni; K. Gulbrandsen; T. Gunji; A. Gupta; R. Gupta; H. Gutbrod; Ø. Haaland; C. Hadjidakis; M. Haiduc; H. Hamagaki; G. Hamar; J. W. Harris; M. Hartig; D. Hasch; D. Hasegan; D. Hatzifotiadou; A. Hayrapetyan; M. Heide; M. Heinz; H. Helstrup; A. Herghelegiu; C. Hernández; G. Herrera Corral; N. Herrmann; K. F. Hetland; B. Hicks; P. T. Hille; B. Hippolyte; T. Horaguchi; Y. Hori; P. Hristov; I. H\\vrivná\\vcová

    2011-02-04T23:59:59.000Z

    The first measurement of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at a centre-of-mass energy per nucleon pair sqrt(sNN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section the pseudo-rapidity density of primary charged particles at mid-rapidity is 1584 +- 4 (stat) +- 76 (sys.), which corresponds to 8.3 +- 0.4 (sys.) per participating nucleon pair. This represents an increase of about a factor 1.9 relative to pp collisions at similar collision energies, and about a factor 2.2 to central Au-Au collisions at sqrt(sNN) = 0.2 TeV. This measurement provides the first experimental constraint for models of nucleus-nucleus collisions at LHC energies.

  3. Transverse momentum dependent quark densities from Lattice QCD

    SciTech Connect (OSTI)

    Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer

    2011-02-01T23:59:59.000Z

    We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simpli?ed operator geometry show visible dipole de- formations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an ex- tension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.

  4. Finite-size instabilities in nuclear energy density functionals

    SciTech Connect (OSTI)

    Hellemans, V.; Heenen, P.-H.; Bender, M. [Universite Libre de Bruxelles, PNTPM, CP229, 1050 Bruxelles (Belgium); Univ. Bordeaux, CENBG, UMR5797, F-33170 Gradignan (France) and CNRS/IN2P3, CENBG, UMR5797, F-33170 Gradignan (France)

    2012-10-20T23:59:59.000Z

    The systematic lack of convergence of self-consistent mean-field calculations with certain parameterizations of the Skyrme energy density functional has been attributed to the appearance of finite-size instabilities. In this contribution, we investigate what happens at the instability associated with the C{sub 0}{sup {Delta}s}s{sub 0} Dot-Operator {Delta}s{sub 0} term in a high-spin state of the superdeformed band in {sup 194}Hg.

  5. Binding Energies in Benzene Dimers: Nonlocal Density Functional Calculations

    E-Print Network [OSTI]

    Aaron Puzder; Maxime Dion; David C. Langreth

    2005-09-15T23:59:59.000Z

    The interaction energy and minimum energy structure for different geometries of the benzene dimer has been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations can elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces, and van der Waals crystals.

  6. Method and apparatus for measuring lung density by Compton backscattering

    DOE Patents [OSTI]

    Loo, Billy W. (Oakland, CA); Goulding, Frederick S. (Lafayette, CA)

    1991-01-01T23:59:59.000Z

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons Compton backscattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to monimize systematic errors due to the presence of the chestwall and multiple scattering.

  7. Measuring the Density Fluctuation From the Cluster Gas Mass Function

    E-Print Network [OSTI]

    Kazuhiro Shimasaku

    1997-01-27T23:59:59.000Z

    We investigate the gas mass function of clusters of galaxies to measure the density fluctuation spectrum on cluster scales. The baryon abundance confined in rich clusters is computed from the gas mass function and compared with the mean baryon density in the universe which is predicted by the Big Bang Nucleosynthesis. This baryon fraction and the slope of the gas mass function put constraints on $\\sigma_8$, the rms linear fluctuation on scales of $8h^{-1}\\Mpc$, and the slope of the fluctuation spectrum, where $h$ is the Hubble constant in units of 100 $\\kms \\oMpc$. We find $\\sigma_8 = 0.80 \\pm 0.15$ and $n \\sim -1.5$ for $0.5 \\le h \\le 0.8$, where we assume that the density spectrum is approximated by a power law on cluster scales: $\\sigma(r) \\propto r^{-{3+n\\over{2}}}$. Our value of $\\sigma_8$ is independent of the density parameter, $\\Omega_0$, and thus we can estimate $\\Omega_0$ by combining $\\sigma_8$ obtained in this study with those from $\\Omega_0$-dependent analyses to date. We find that $\\sigma_8(\\Omega_0)$ derived from the cluster abundance such as the temperature function gives $\\Omega_0 \\sim 0.5$ while $\\sigma_8(\\Omega_0)$ measured from the peculiar velocity field of galaxies gives $\\Omega_0 \\sim 0.2-1$, depending on the technique used to analyze peculiar velocity data. Constraints are also derived for open, spatially flat, and tilted Cold Dark Matter models and for Cold + Hot Dark Matter models.

  8. The Nuclear Equation of State at high densities

    E-Print Network [OSTI]

    Christian Fuchs

    2006-10-10T23:59:59.000Z

    Ab inito calculations for the nuclear many-body problem make predictions for the density and isospin dependence of the nuclear equation-of-state (EOS) far away from the saturation point of nuclear matter. I compare predictions from microscopic and phenomenological approaches. Constraints on the EOS derived from heavy ion reactions, in particular from subthreshold kaon production, as well as constraints from neutron stars are discussed.

  9. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26T23:59:59.000Z

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  10. Prediction of crystal densities of organic explosives by group additivity

    SciTech Connect (OSTI)

    Stine, J R

    1981-08-01T23:59:59.000Z

    The molar volume of crystalline organic compound is assumed to be a linear combination of its constituent volumes. Compounds consisting only of the elements hydrogen, carbon, nitrogen, oxygen, and fluorine are considered. The constituent volumes are taken to be the volumes of atoms in particular bonding environments and are evaluated from a large set of crystallographic data. The predicted density has an expected error of about 3%. These results are applied to a large number of explosives compounds.

  11. Method and apparatus for measuring lung density by Compton backscattering

    DOE Patents [OSTI]

    Loo, B.W.; Goulding, F.S.

    1988-03-11T23:59:59.000Z

    The density of the lung of a patient suffering from pulmonary edema is monitored by irradiating the lung by a single collimated beam of monochromatic photons and measuring the energies of photons compton back-scattered from the lung by a single high-resolution, high-purity germanium detector. A compact system geometry and a unique data extraction scheme are utilized to minimize systematic errors due to the presence of the chestwall and multiple scattering. 11 figs., 1 tab.

  12. Mining the local Universe: the QSO space density

    E-Print Network [OSTI]

    S. Cristiani; A. Grazian; A. Omizzolo; C. Corbally

    2000-10-27T23:59:59.000Z

    We present progress results of a new survey for bright QSOs (V30. The surface density of QSOs brighter than B_J=14.8 turns out to be 2.9 +- 0.8 10^{-3} deg^{-2}. The optical Luminosity Function at 0.04 < z < 0.3 shows significant departures from the standard pure luminosity evolution, providing new insights in the modelling of the QSO phenomenon.

  13. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20T23:59:59.000Z

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  14. Conductivity Recovery from One Component of the Current Density

    E-Print Network [OSTI]

    Carlos Montalto

    2014-08-02T23:59:59.000Z

    We prove global injectivity and H\\"older stability in the reconstruction of an isotopic conductivity in the electrostatic approximation of Maxwell's equations, from the information of one voltage at the boundary and one (well chosen) component of the current density. We study the full and partial data problem. We work under the assumption that the voltage potential has no critical points inside the domain.

  15. Line Density Indice as an alternative to MK process

    E-Print Network [OSTI]

    M. Kuassivi

    2009-12-31T23:59:59.000Z

    73 broadband optical spectra of dwarf stars later than F0 have been obtained from the Nearby Stars Project website. The number of absorption lines is computed for each spectrum between 6000 and 6200 Angstrom. A correlation is found between the density of lines K$\\lambda$ and the spectral type. This method is independent of calibration process, does not require high resolution or high signal to noise data and does not make use of a large library of standard spectra.

  16. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    SciTech Connect (OSTI)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20T23:59:59.000Z

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  17. Densities and viscosities of ternary ammonia/water fluids

    SciTech Connect (OSTI)

    Reiner, R.H.; Zaltash, A.

    1993-03-01T23:59:59.000Z

    The densities, viscosities, and boiling points (at barometric pressure) of solutions formed by inorganic salts dissolved in an ammonia/water (NH{sub 3}/H{sub 2}O) solvent have been measured. These ternary solutions of ammonia/water/dissolved salt are being investigated to reduce rectification requirements and to expand the temperature range of ammonia/water in advanced absorption cycles. Densities and viscosities of these fluids were measured over the temperature range of 283.15 to 343.15 K (10.0 to 70.0{degrees}C). Observed densities and viscosities were expressed as empirical functions of temperature by means of the least-squares method. The dynamic viscosities of ternary fluids were found to be three to seven times greater than those of the binary system of NH{sub 3}/H{sub 2}O, which implies that a substantial decrease in the film heat and mass transfer coefficient is possible. However, because this quantitative linkage is not well understood, direct measurements of heat and mass transfer rates in a minisorber are recommended and planned.

  18. Complex saddle points in QCD at finite temperature and density

    E-Print Network [OSTI]

    Hiromichi Nishimura; Michael C. Ogilvie; Kamal Pangeni

    2014-08-12T23:59:59.000Z

    The sign problem in QCD at finite temperature and density leads naturally to the consideration of complex saddle points of the action or effective action. The global symmetry $\\mathcal{CK}$ of the finite-density action, where $\\mathcal{C}$ is charge conjugation and $\\mathcal{K}$ is complex conjugation, constrains the eigenvalues of the Polyakov loop operator $P$ at a saddle point in such a way that the action is real at a saddle point, and net color charge is zero. The values of $Tr_{F}P$ and $Tr_{F}P^{\\dagger}$ at the saddle point, are real but not identical, indicating the different free energy cost associated with inserting a heavy quark versus an antiquark into the system. At such complex saddle points, the mass matrix associated with Polyakov loops may have complex eigenvalues, reflecting oscillatory behavior in color-charge densities. We illustrate these properties with a simple model which includes the one-loop contribution of gluons and massless quarks moving in a constant Polyakov loop background. Confinement-deconfinement effects are modeled phenomenologically via an added potential term depending on the Polyakov loop eigenvalues. For sufficiently large $T$ and $\\mu$, the results obtained reduce to those of perturbation theory at the complex saddle point. These results may be experimentally relevant for the CBM experiment at FAIR.

  19. EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT

    SciTech Connect (OSTI)

    Flach, G.

    2012-02-27T23:59:59.000Z

    The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose of this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.

  20. Silylation of low-density silica and bridged polysilsesquioxane aerogels

    SciTech Connect (OSTI)

    DeFriend, K. A. (Kimberly A.); Loy, D. A. (Douglas A.); Salazar, K. V. (Kenneth V.); Wilson, K. V. (Kennard V.)

    2004-01-01T23:59:59.000Z

    Silica and bridged polysilsesquioxane aerogels are low-density materials that are attractive for applications such as thermal insulation, porous separation media or catalyst supports, adsorbents, and cometary dust capture agents. However, aerogels are notoriously weak and brittle making it difficult to handle and machine monoliths into desired forms. This complication prevents the development of many applications that would otherwise benefit from the use of the low-density materials. Here, we will describe our efforts to chemically modify and mechanically enhance silica-based aerogels using chemical vapor techniques without sacrificing their characteristic low densities. Monolithic silica and organic-bridged polysilsesquioxane aerogels were prepared by sol-gel polymerization of the respective methoxysilane monomers followed by supercritical carbon dioxide drying of the gels. Then the gels were reactively modified with silylating agents to demonstrate the viability of CVD modification of aerogels, and to determine the effects of silylation of surface silanols on the morphology, surface area, and mechanical properties of the resulting aerogels.

  1. Terrestrial Planet Formation in Disks with Varying Surface Density Profiles

    E-Print Network [OSTI]

    Sean N. Raymond; Thomas Quinn; Jonathan I. Lunine

    2005-06-30T23:59:59.000Z

    The ``minimum-mass solar nebula'' (MMSN) model estimates the surface density distribution of the protoplanetary disk by assuming the planets to have formed in situ. However, significant radial migration of the giant planets likely occurred in the Solar system, implying a distortion in the values derived by the MMSN method. The true density profiles of protoplanetary disks is therefore uncertain. Here we present results of simulations of late-stage terrestrial accretion, each starting from a disk of planetary embryos. We assume a power-law surface density profile that varies with heliocentric distance r as r^-alpha, and vary alpha between 1/2 and 5/2 (alpha = 3/2 for the MMSN model). We find that for steeper profiles (higher values of alpha), the terrestrial planets (i) are more numerous, (ii) form more quickly, (iii) form closer to the star, (iv) are more massive, (v) have higher iron contents, and (vi) have lower water contents. However, the possibility of forming potentially habitable planets does not appear to vary strongly with alpha.

  2. Penetration and scattering of lower hybrid waves by density fluctuations

    SciTech Connect (OSTI)

    Horton, W. [Institute for Fusion Studies, University of Texas at Austin (United States); Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France)

    2014-02-12T23:59:59.000Z

    Lower Hybrid [LH] ray propagation in toroidal plasma is controlled by a combination of the azimuthal spectrum launched from the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the density fluctuations. The width of the poloidal and radial RF wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the turbulence. The electron temperature gradient [ETG] spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and parallel phase velocities. ETG turbulence is also driven by the radial gradient of the electron current density giving rise to an anomalous viscosity spreading the LH-driven plasma currents. The scattered LH spectrum is derived from a Fokker-Planck equation for the distribution of the ray trajectories with a diffusivity proportional to the fluctuations. The LH ray diffusivity is large giving transport in the poloidal and radial wavenumber spectrum in one - or a few passes - of the rays through the core plasma.

  3. Protostellar fragmentation in a power-law density distribution

    E-Print Network [OSTI]

    A. Burkert; M. Bate; P. Bodenheimer

    1997-06-10T23:59:59.000Z

    Hydrodynamical calculations in three space dimensions of the collapse of an isothermal, rotating 1 M\\sol protostellar cloud are presented. The initial density stratification is a power law with density $\\rho \\propto r^{-p}$, with $p=1$. The case of the singular isothermal sphere ($p=2$) is not considered; however $p=1$ has been shown observationally to be a good representation of the density distribution in molecular cloud cores just before the beginning of collapse. The collapse is studied with two independent numerical methods, an SPH code with 200,000 particles, and a finite-difference code with nested grids which give high spatial resolution in the inner regions. Although previous numerical studies have indicated that such a power-law distribution would not result in fragmentation into a binary system, both codes show, in contrast, that multiple fragmentation does occur in the central regions of the protostar. Thus the process of binary formation by fragmentation is shown to be consistent with the fact that a large fraction of young stars are observed to be in binary or multiple systems.

  4. A Wigner Monte Carlo approach to density functional theory

    SciTech Connect (OSTI)

    Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.

    2014-08-01T23:59:59.000Z

    In order to simulate quantum N-body systems, stationary and time-dependent density functional theories rely on the capacity of calculating the single-electron wave-functions of a system from which one obtains the total electron density (Kohn–Sham systems). In this paper, we introduce the use of the Wigner Monte Carlo method in ab-initio calculations. This approach allows time-dependent simulations of chemical systems in the presence of reflective and absorbing boundary conditions. It also enables an intuitive comprehension of chemical systems in terms of the Wigner formalism based on the concept of phase-space. Finally, being based on a Monte Carlo method, it scales very well on parallel machines paving the way towards the time-dependent simulation of very complex molecules. A validation is performed by studying the electron distribution of three different systems, a Lithium atom, a Boron atom and a hydrogenic molecule. For the sake of simplicity, we start from initial conditions not too far from equilibrium and show that the systems reach a stationary regime, as expected (despite no restriction is imposed in the choice of the initial conditions). We also show a good agreement with the standard density functional theory for the hydrogenic molecule. These results demonstrate that the combination of the Wigner Monte Carlo method and Kohn–Sham systems provides a reliable computational tool which could, eventually, be applied to more sophisticated problems.

  5. Rapid model building of ?-helices in electron-density maps

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-03-01T23:59:59.000Z

    A method for rapid model building of ?-helices at moderate resolution is presented. A method for the identification of ?-helices in electron-density maps at low resolution followed by interpretation at moderate to high resolution is presented. Rapid identification is achieved at low resolution, where ?-helices appear as tubes of density. The positioning and direction of the ?-helices is obtained at moderate to high resolution, where the positions of side chains can be seen. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 Å. An average of 63% of the ?-helical residues in these proteins were built and an average of 76% of the residues built matched helical residues in the refined models of the proteins. The overall average r.m.s.d. between main-chain atoms in the modeled ?-helices and the nearest atom with the same name in the refined models of the proteins was 1.3 Å.

  6. Muon density enhancement with a tapered capillary method

    SciTech Connect (OSTI)

    Tomono, D.; Ishida, K.; Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kojima, T. M.; Ikeda, T.; Iwai, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Tokuda, M. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Kanazawa, Y. [Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan); Matsuda, Y. [Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Iwasaki, M. [Advanced Meson Science Laboratory, RIKEN Nishina Center for Accelerator Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan); Yamazaki, Y. [Atomic Physics Laboratory, RIKEN Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0193 (Japan); Department of Physics, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554 (Japan)

    2011-10-06T23:59:59.000Z

    The focusing effect of a muon beam with a tapered capillary method has been investigated in a range from 4.2 MeV to 9.2 MeV (i.e. from 30 MeV/c to 45 MeV/c in momentum). We injected the muon beam into a pair of narrowing (tapered) plates and tubes made of glass, copper and gold-coated copper, and measured the energy distribution of the muon leaving from the outlet. The plates were tilted from an inlet of 40 mm to an outlet of 20 mm. The density enhancement was more prominent with the plates made of heavier elements. The largest beam density enhancement at 10 mm downstream of the outlet was 1.3 with the gold-coated copper narrowing plates. The enhancement was composed of muons scattered with a small angle. Their energy was slightly less than that of the initial beam. This effect did not depend on the surface roughness. The result strongly suggests a simple and effective way to increase the muon beam density for a small target.

  7. Constraints on the density perturbation spectrum from primordial black holes

    E-Print Network [OSTI]

    Anne M Green; Andrew R Liddle

    1997-04-25T23:59:59.000Z

    We re-examine the constraints on the density perturbation spectrum, including its spectral index $n$, from the production of primordial black holes. The standard cosmology, where the Universe is radiation dominated from the end of inflation up until the recent past, was studied by Carr, Gilbert and Lidsey; we correct two errors in their derivation and find a significantly stronger constraint than they did, $n \\lesssim 1.25$ rather than their 1.5. We then consider an alternative cosmology in which a second period of inflation, known as thermal inflation and designed to solve additional relic over-density problems, occurs at a lower energy scale than the main inflationary period. In that case, the constraint weakens to $n \\lesssim 1.3$, and thermal inflation also leads to a `missing mass' range, $10^{18} g \\lesssim M \\lesssim 10^{26} g$, in which primordial black holes cannot form. Finally, we discuss the effect of allowing for the expected non-gaussianity in the density perturbations predicted by Bullock and Primack, which can weaken the constraints further by up to 0.05.

  8. Single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/ik2 density for ultrahigh density quantum magnetic storage

    E-Print Network [OSTI]

    density quantum magnetic storage Stephen Y Chou, Mark S. Wei, Peter R. Krauss, and Paul 6. FischerSingle-domain magnetic pillar array of 35 nm diameter and 65 Gbits/ik2 density for ultrahigh is 65 Gbits/in.2-over two orders of magnitude greater than the state-of-the-art magnetic storage density

  9. Synthetic heparin-binding growth factor analogs

    DOE Patents [OSTI]

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23T23:59:59.000Z

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  10. Predicting the cosmological constant with the scale-factor cutoff measure

    SciTech Connect (OSTI)

    De Simone, Andrea; Guth, Alan H. [Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salem, Michael P.; Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

    2008-09-15T23:59:59.000Z

    It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant {lambda} gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of {lambda} depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes' (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of {lambda}, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of {lambda} that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter {omega}, indicating that with this measure there is a possibility of detectable negative curvature.

  11. Persistent Density Perturbations at Rational q Surfaces Following Pellet Injection in the Joint European Torus

    E-Print Network [OSTI]

    Persistent Density Perturbations at Rational q Surfaces Following Pellet Injection in the Joint European Torus

  12. Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    index that corresponds to increased vascu- lar density [32]. DOSI scanning is performed without compression

  13. Estimating low-density snowshoe hare populations using fecal pellet counts

    E-Print Network [OSTI]

    Estimating low-density snowshoe hare populations using fecal pellet counts Dennis L. Murray, James americanus) populations found at high densities can be estimated using fecal pellet densities on rectangular of fecal pellet plots for estimating hare populations by correlating pellet densities with estimated hare

  14. Human factors methods in DOE nuclear facilities

    SciTech Connect (OSTI)

    Bennett, C.T.; Banks, W.W. (Lawrence Livermore National Lab., CA (United States)); Waters, R.J. (Department of Energy, Washington, DC (United States))

    1993-01-01T23:59:59.000Z

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle.

  15. Factorization for hadronic heavy quarkonium production

    E-Print Network [OSTI]

    Jian-Wei Qiu

    2006-10-31T23:59:59.000Z

    We briefly review several models of heavy quarkonium production in hadronic collisions, and discuss the status of QCD factorization for these production models.

  16. Vitiligo: A good prognostic factor in melanoma?

    E-Print Network [OSTI]

    Cunha, Daniela; Pacheco, Fernando Assis; Cardoso, Jorge

    2009-01-01T23:59:59.000Z

    with intermediate to thick melanomas (>1 mm) with the use ofgood prognostic factor in melanoma? Daniela Cunha, Fernandoimmunologic therapy for melanoma is generally regarded as a

  17. Optimization Online - Building a completely positive factorization

    E-Print Network [OSTI]

    Immanuel Bomze

    2009-08-21T23:59:59.000Z

    Aug 21, 2009 ... Abstract: Using a bordering approach, and building upon an already known factorization of a principal block, we establish sufficient conditions ...

  18. Computation of Dancoff Factors for Fuel Elements Incorporating Randomly Packed TRISO Particles

    SciTech Connect (OSTI)

    J. L. Kloosterman; Abderrafi M. Ougouag

    2005-01-01T23:59:59.000Z

    A new method for estimating the Dancoff factors in pebble beds has been developed and implemented within two computer codes. The first of these codes, INTRAPEB, is used to compute Dancoff factors for individual pebbles taking into account the random packing of TRISO particles within the fuel zone of the pebble and explicitly accounting for the finite geometry of the fuel kernels. The second code, PEBDAN, is used to compute the pebble-to-pebble contribution to the overall Dancoff factor. The latter code also accounts for the finite size of the reactor vessel and for the proximity of reflectors, as well as for fluctuations in the pebble packing density that naturally arises in pebble beds.

  19. Chapter 7: High-Density H-Mode Operation in ASDEX Upgrade

    SciTech Connect (OSTI)

    Stober, Joerg Karl; Lang, Peter Thomas; Mertens, Vitus [Max-Planck-Institut fuer Plasmaphysik (Germany)

    2003-11-15T23:59:59.000Z

    Recent results are reported on the maximum achievable H-mode density and the behavior of pedestal density and central density peaking as this limit is approached. The maximum achievable H-mode density roughly scales as the Greenwald density, though a dependence on B{sub t} is clearly observed. In contrast to the stiff temperature profiles, the density profiles seem to allow more shape variation and especially with high-field-side pellet-injection, strongly peaked profiles with good confinement have been achieved. Also, spontaneous density peaking at high densities is observed in ASDEX Upgrade, which is related to the generally observed large time constants for the density profile equilibration. The equilibrated density profile shapes depend strongly on the heat-flux profile in the sense that central heating leads to significantly flatter profiles.

  20. Determination of the respective density distributions of low-and high-density lipoprotein particles in bovine plasma

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .006-1.210 g/ml were separated by density gradient ultracentrifugation into 25 fractions. Their respective apo-I and apo B. Gradient distributions of apo A-I (d 1.046-1.180 g/ml; max at d 1.080 g/ml) and apo B (d 1: Intestinal Lipid and Lipoprotein Metabolism (Windler E, Greten H, eds), W Zuckschwerdt Verlag, Munchen, 50