Sample records for density low-cost electrochemical

  1. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

    1997-01-01T23:59:59.000Z

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  2. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11T23:59:59.000Z

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  3. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

  4. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21T23:59:59.000Z

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  5. Low Cost, Durable Seal

    SciTech Connect (OSTI)

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17T23:59:59.000Z

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  6. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    and Processing (IT) Lignin-Based Low-Cost Carbon Fiber Precursors * Structural Materials for Vehicles (VT) * Graphite Electrodes for Arc Furnaces (IT) * Nanoporous CF for...

  7. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    None

    2009-12-21T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  8. Low Cost Hydrogen Production Platform

    SciTech Connect (OSTI)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16T23:59:59.000Z

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

  9. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20T23:59:59.000Z

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  10. A low cost high flux solar simulator

    E-Print Network [OSTI]

    Codd, Daniel S.

    A low cost, high flux, large area solar simulator has been designed, built and characterized for the purpose of studying optical melting and light absorption behavior of molten salts. Seven 1500 W metal halide outdoor ...

  11. Low Cost PM Technology for Particle Reinforced Titanium Automotive...

    Broader source: Energy.gov (indexed) [DOE]

    10 - Low Cost PM Technology for Particle Reinforced Titanium Automotive Components edm2@chrysler.com February 28, 2008 Low Cost PM Technology for Particle Reinforced Titanium...

  12. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  13. Materials and Modules for Low Cost, High Performance Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules for Low Cost, High Performance Fuel Cell Humidifiers Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Presented at the Department of Energy Fuel...

  14. Development of a Low Cost Ultra Specular Advanced Polymer Film...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector Development of a Low Cost Ultra Specular Advanced Polymer Film Solar Reflector This presentation was...

  15. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by...

  16. Development of an Advanced, Low-Cost parabolic Trough Collector...

    Office of Environmental Management (EM)

    Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation Development of an Advanced, Low-Cost parabolic Trough Collector for Baseload Operation This...

  17. Innovative High-Performance Deposition Technology for Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED...

  18. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary Report This report outlines the final...

  19. Low Cost High Concentration PV Systems for Utility Power Generation...

    Energy Savers [EERE]

    Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief...

  20. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive...

  1. Modular Process Equipment for Low Cost Manufacturing of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic...

  2. Low-cost inertial measurement unit.

    SciTech Connect (OSTI)

    Deyle, Travis Jay

    2005-03-01T23:59:59.000Z

    Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

  3. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2013-07-01T23:59:59.000Z

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  4. Low-cost laser diode array

    DOE Patents [OSTI]

    Freitas, B.L.; Skidmore, J.A.

    1999-06-01T23:59:59.000Z

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost. 19 figs.

  5. Low-cost laser diode array

    DOE Patents [OSTI]

    Freitas, Barry L. (Livermore, CA); Skidmore, Jay A. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    A substrate is used to fabricate a low-cost laser diode array. A substrate is machined from an electrically insulative material that is thermally conductive, or two substrates can be bonded together in which the top substrate is electrically as well as thermally conductive. The substrate thickness is slightly longer than the cavity length, and the width of the groove is wide enough to contain a bar and spring (which secures the laser bar firmly along one face of the groove). The spring also provides electrical continuity from the backside of the bar to the adjacent metalization layer on the laser bar substrate. Arrays containing one or more bars can be formed by creating many grooves at various spacings. Along the groove, many bars can be adjoined at the edges to provide parallel electrical conduction. This architecture allows precise and predictable registration of an array of laser bars to a self-aligned microlens array at low cost.

  6. Low-Cost Spectral Sensor Development Description.

    SciTech Connect (OSTI)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01T23:59:59.000Z

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  7. Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About UsDurable, Low Cost, Improved Fuel

  8. Low-Cost Manufacturable Microchannel Systems for Passive PEM Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of EnergyLow-CostManagement

  9. Low-Cost Titanium Powder for Feedstock | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCummins PowerLow-Cost Titanium

  10. Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors (ultracapacitors) offer high power density when compared to battery

    E-Print Network [OSTI]

    Popov, Branko N.

    Performance Optimization of Battery-Super Capacitor Hybrid System Electrochemical capacitors a decreased value of power and energy densities for the hybrid system. Figure 1shows the fractional capacity (ultracapacitors) offer high power density when compared to battery systems and also have a relatively large energy

  11. Low cost subpixel method for vibration measurement

    SciTech Connect (OSTI)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)

    2014-05-27T23:59:59.000Z

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  12. Development and Commercialization of a Novel Low-Cost Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of a Novel Low-Cost Carbon Fiber Development and Commercialization of a Novel Low-Cost Carbon Fiber 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. The potential for low-cost airlines in Asia

    E-Print Network [OSTI]

    Dietlin, Philipp, 1979-

    2004-01-01T23:59:59.000Z

    The purpose of this thesis is to assess the potential for low-cost airlines in Asia. Low-cost airlines have been very successful in North America and Europe and have significantly impacted the airline industry and its ...

  14. Development of Low-Cost, High Strength Commercial Textile Precursor...

    Broader source: Energy.gov (indexed) [DOE]

    provide an overview of and accomplishments for a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber (CF) with at least 650...

  15. ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel...

  16. Project Profile: High-Concentration, Low-Cost Parabolic Trough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Profile: High-Concentration, Low-Cost Parabolic Trough System for Baseload CSP SkyFuel logo SkyFuel, under the Baseload CSP FOA, is developing an advanced, low-cost CSP collector...

  17. The era of plentiful, low-cost petroleum is

    E-Print Network [OSTI]

    Laughlin, Robert B.

    The era of plentiful, low-cost petroleum is approaching an end. Without massive mitigation of plentiful, low-cost petroleum is approaching an end. The good news is that commercially viable mitigation

  18. Low-Cost High-Pressure Hydrogen Generator

    SciTech Connect (OSTI)

    Cropley, Cecelia C.; Norman, Timothy J.

    2008-04-02T23:59:59.000Z

    Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic analysis indicates that hydrogen could be produced for $3.79 per gge at an electricity cost of $0.05/kWh by the lower-cost PEM electrolyzer developed in this project, assuming high-volume production of large-scale electrolyzer systems.

  19. Process for Low Cost Domestic Production of LIB Cathode Materials

    Broader source: Energy.gov (indexed) [DOE]

    information" 4 Approach BASF has a low cost production process for Li ion battery cathode materials. In this project, the cathode materials developed in the laboratory will be...

  20. High Performance, Low Cost Hydrogen Generation from Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Incorporating an Advanced Low Cost Membrane Roadmap on Manufacturing R&D for the Hydrogen Economy Fuel Cell Technologies Office Multi-Year Research, Development, and...

  1. PEM Electrolyzer Incorporating an Advanced Low Cost Membrane...

    Office of Environmental Management (EM)

    PEM Electrolyzer Incorporating an Advanced Low Cost Membrane 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  2. Low Cost Exploration, Testing, And Development Of The Chena Geothermal...

    Open Energy Info (EERE)

    instruments under static, flowing, and injecting conditions with hand cranked reels. Low cost well monitoring hardware consisting of used capillary tubing systems and programmable...

  3. Low Cost Exploration, Testing, and Development of the Chena Geothermal...

    Open Energy Info (EERE)

    instruments understatic, flowing, and injecting conditions with hand crankedreels. Low cost well monitoring hardware consisting of usedcapillary tubing systems and programmable...

  4. An integrated approach towards efficient, scalable, and low cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery An integrated approach towards efficient, scalable, and low cost...

  5. An integrated approach towards efficient, scalable, and low cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient,...

  6. An integrated approach towards efficient, scalable, and low cost...

    Energy Savers [EERE]

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low...

  7. Low Cost PM Technology for Particle Reinforced Titanium Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Technology for Particle Reinforced Titanium Automotive Components: Manufacturing Process Feasibility StudyAMD 310 Low Cost PM Technology for Particle Reinforced Titanium...

  8. Low Cost Reversible fuel cell systems

    SciTech Connect (OSTI)

    Technology Management Inc.

    2003-12-30T23:59:59.000Z

    This final report summarizes a 3-phase program performed from March 2000 through September 2003 with a particular focus on Phase III. The overall program studied TMI's reversible solid oxide stack, system concepts, and potential applications. The TMI reversible (fuel cell-electrolyzer) system employs a stack of high temperature solid-oxide electrochemical cells to produce either electricity (from a fuel and air or oxygen) or hydrogen (from water and supplied electricity). An atmospheric pressure fuel cell system operates on natural gas (or other carbon-containing fuel) and air. A high-pressure reversible electrolyzer system is used to make high-pressure hydrogen and oxygen from water and when desired, operates in reverse to generate electricity from these gases.

  9. Low-Cost Illumination-Grade LEDs

    SciTech Connect (OSTI)

    Epler, John

    2013-08-31T23:59:59.000Z

    Solid State Lighting is a cost-effective, energy-conserving technology serving a rapidly expand- ing multi-billion dollar market. This program was designed to accelerate this lighting revolution by reducing the manufacturing cost of Illumination-Grade LEDs. The technical strategy was to investigate growth substrate alternatives to standard planar sapphire, select the most effective and compatible option, and demonstrate a significant increase in Lumen/$ with a marketable LED. The most obvious alternate substrate, silicon, was extensively studied in the first two years of the program. The superior thermal and mechanical properties of Si were expected to improve wavelength uniformity and hence color yield in the manufacture of high-power illumination- grade LEDs. However, improvements in efficiency and epitaxy uniformity on standard c-plane sapphire diminished the advantages of switching to Si. Furthermore, the cost of sapphire decreased significantly and the cost of processing Si devices using our thin film process was higher than expected. We concluded that GaN on Si was a viable technology but not a practical option for Philips Lumileds. Therefore in 2012 and 2013, we sought and received amendments which broadened the scope to include other substrates and extended the time of execution. Proprietary engineered substrates, off-axis (non-c-plane) sapphire, and c-plane patterned sapphire substrates (PSS) were all investigated in the final 18 months of this program. Excellent epitaxy quality was achieved on all three candidates; however we eliminated engineered substrates and non-c-plane sapphire because of their higher combined cost of substrate, device fabrication and packaging. Ultimately, by fabricating a flip-chip (FC) LED based upon c-plane PSS we attained a 42% reduction in LED manufacturing cost relative to our LUXEON Rebel product (Q1-2012). Combined with a flux gain from 85 to 102 Lm, the LUXEON Q delivered a 210% increase in Lm/$ over this time period. The technology was commercialized in our LUXEON Q product in Sept., 2013. Also, the retention of the sapphire increased the robustness of the device, enabling sales of low-cost submount-free chips to lighting manufacturers. Thus, blue LED die sales were initiated in the form of a PSS-FC in February, 2013.

  10. Manufacturing of Monolithic Electrodes from Low-Cost Renewable Resources

    SciTech Connect (OSTI)

    McNutt, Nichiolas William [University of Tennessee, Knoxville (UTK); Rios, Orlando [ORNL; Johs, Alexander [ORNL; Tenhaeff, Wyatt E [ORNL; Chatterjee, Sabornie [ORNL; Keffer, David [University of Tennessee, Knoxville (UTK)

    2014-01-01T23:59:59.000Z

    Lignin, a low-cost, biomass derived precursor, was selected as an alternative for carbon based free standing anodes in Li-ion batteries. Industrially scalable melt-spinning and melt-blowing synthesis methods were developed at Oak Ridge National Laboratory that are compatible with industrially viable production. Engineering studies predict that LCFs can be manufactured at $3/lb using these technologies, which compares favorably to $12/lb for battery grade graphite. The physical properties of lignin carbon fibers, specifically the tunable electrochemical and thermal transport, are suitable for energy storage applications as both an active material and current collector. The elimination of inactive components in the slurry-coated electrodes was enabled by LCF processing parameters modifications to produce monolithic mats in which the fibers are electrically interconnected. These mats were several hundreds of micrometers thick, and the fibers functioned as both current collector and active material by virtue of their mixed ionic/electronic conductivities. The LCFs were coated onto copper current collectors with PVDF binder and conductive carbon additive through conventional slurry processing. Galvanostatic cycling of the LCFs against Li revealed reversible capacities greater than 300 mAh/g. The coulombic efficiencies were over 99.8%. The mats were galvanostatically cycled in half cells against Li. Specific capacities as high as 250 mAh/g were achieved approximately 17% lower than the capacities of the same fibers in slurries. However, there were no inactive materials reducing the practical specific capacity of the entire electrode construction. Lithiation and delithiation of the LCFs proceeded with coulombic efficiencies greater than 99.9%, and the capacity retention was greater than 99% over 100 cycles at a rate of 15 mA/g. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  11. corresponding author: jean-luc.maurice@polytechnique.edu DEVELOPING LOW-COST GRAPHENE DEVICES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    corresponding author: jean-luc.maurice@polytechnique.edu DEVELOPING LOW-COST GRAPHENE DEVICES C. S In spite of numerous efforts for developing the applications of graphene, it remains difficult to put-area (industrial) graphene includes in its structure and on its surfaces a significant density of defects that make

  12. Security Threat Mitigation Trends in Low-cost RFID Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Security Threat Mitigation Trends in Low-cost RFID Systems Joaquin Garcia-Alfaro1,2 , Michel of security threat mitigation mecha- nisms in RFID systems, specially in low-cost RFID tags, are gaining great. Cryptography is a key tool to address these threats. Nevertheless, strong hardware constraints

  13. Sponsored by Nanotechnology Seminar Program Fulfilling a Dream: Low Cost

    E-Print Network [OSTI]

    Fisher, Frank

    material for low cost, thin film, solar cell absorber layers is the quaternary compound of Cu2ZnSnS4 (CZTS for the development of low cost Cu2ZnSn(Se,S)4 thin film solar cells with even higher efficiency. BIOGRAPHY Lili electronics and in flexible solar panels with applications in electric cars, smarter buildings and data

  14. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  15. Integrating Experiment and Theory in Electrochemical Surface Science: Studies on the Molecular Adsorption on Noble-Metal Electrode Surfaces by Density Functional Theory, Electron Spectroscopy, and Electrochemistry

    E-Print Network [OSTI]

    Javier, Alnald Caintic

    2013-08-05T23:59:59.000Z

    Computational techniques based on density functional theory (DFT) and experimental methods based on electrochemistry (EC), electrochemical scanning tunneling microscopy (EC-STM), and high-resolution electron energy loss spectroscopy (HREELS) were...

  16. Low Cost Durable Seal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia10

  17. Low Cost, Durable Seal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE1 DOE0Cost,

  18. Low-Cost, Lightweight Solar Concentrator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCumminsMaterial |

  19. Low-Cost, Lightweight Solar Concentrators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCumminsMaterial |Cost,

  20. The development of low cost LiFePO4-based high power lithium-ion batteries

    SciTech Connect (OSTI)

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-11-25T23:59:59.000Z

    The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

  1. Low-Cost Ventilation in Production Housing - Building America...

    Broader source: Energy.gov (indexed) [DOE]

    about this Top Innovation. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that demonstrate low-cost...

  2. Low-cost electromagnetic tagging : design and implementation

    E-Print Network [OSTI]

    Fletcher, Richard R. (Richard Ribon)

    2002-01-01T23:59:59.000Z

    Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

  3. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, Arun (Bethesda, MD)

    1999-01-01T23:59:59.000Z

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value.

  4. Low cost private education in India : challenges and way forward

    E-Print Network [OSTI]

    Garg, Nupur, M.B.A. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The Low Cost Private School phenomenon has gained momentum and increased visibility in recent years as researchers have begun to map and record the existence of millions of private schools that cater to the education needs ...

  5. Development of a low-cost underwater manipulator

    E-Print Network [OSTI]

    Cooney, Lauren Alise

    2006-01-01T23:59:59.000Z

    This thesis describes the design, modeling, manufacture, and testing of a low cost, multiple degree-of-freedom underwater manipulator. Current underwater robotic arm technologies are often expensive or limited in functionality. ...

  6. Low Cost, High Efficiency Reversible Fuel Cell Systems

    E-Print Network [OSTI]

    Objectives · Develop Enabling Technology for Low Cost Production of Hydrogen for Vehicles - natural gas - photovoltaic or wind power utilized when available - up to 80 MPa (11,600 psi) - residential or filling station

  7. Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

  8. Development and performance of a miniature, low cost mass spectrometer

    E-Print Network [OSTI]

    Hemond, Brian D. (Brian David Thomson)

    2011-01-01T23:59:59.000Z

    A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

  9. Low-cost exterior insulation process and structure

    DOE Patents [OSTI]

    Vohra, A.

    1999-03-02T23:59:59.000Z

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  10. Low-Cost Precursors to Novel Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Suzanne W. Linehan; Arthur A. Chin; Nathan T. Allen; Robert Butterick; Nathan T. Kendall; I. Leo Klawiter; Francis J. Lipiecki; Dean M. Millar; David C. Molzahn; Samuel J. November; Puja Jain; Sara Nadeau; Scott Mancroni

    2010-12-31T23:59:59.000Z

    From 2005 to 2010, The Dow Chemical Company (formerly Rohm and Haas Company) was a member of the Department of Energy Center of Excellence on Chemical Hydrogen Storage, which conducted research to identify and develop chemical hydrogen storage materials having the potential to achieve DOE performance targets established for on-board vehicular application. In collaboration with Center co-leads Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL), and other Center partners, Dow's efforts were directed towards defining and evaluating novel chemistries for producing chemical hydrides and processes for spent fuel regeneration. In Phase 1 of this project, emphasis was placed on sodium borohydride (NaBH{sub 4}), long considered a strong candidate for hydrogen storage because of its high hydrogen storage capacity, well characterized hydrogen release chemistry, safety, and functionality. Various chemical pathways for regenerating NaBH{sub 4} from spent sodium borate solution were investigated, with the objective of meeting the 2010/2015 DOE targets of $2-3/gal gasoline equivalent at the pump ($2-3/kg H{sub 2}) for on-board hydrogen storage systems and an overall 60% energy efficiency. With the September 2007 No-Go decision for NaBH{sub 4} as an on-board hydrogen storage medium, focus was shifted to ammonia borane (AB) for on-board hydrogen storage and delivery. However, NaBH{sub 4} is a key building block to most boron-based fuels, and the ability to produce NaBH{sub 4} in an energy-efficient, cost-effective, and environmentally sound manner is critical to the viability of AB, as well as many leading materials under consideration by the Metal Hydride Center of Excellence. Therefore, in Phase 2, research continued towards identifying and developing a single low-cost NaBH4 synthetic route for cost-efficient AB first fill, and conducting baseline cost estimates for first fill and regenerated AB using a variety of synthetic routes. This project utilized an engineering-guided R&D approach, which involved the rapid down-selection of a large number of options (chemical pathways to NaBH{sub 4}) to a smaller, more manageable number. The research began by conducting an extensive review of the technical and patent literature to identify all possible options. The down-selection was based on evaluation of the options against a set of metrics, and to a large extent occurred before experimentation was initiated. Given the vast amount of literature and patents that has evolved over the years, this approach helped to focus efforts and resources on the options with the highest technical and commercial probability of success. Additionally, a detailed engineering analysis methodology was developed for conducting the cost and energy-efficiency calculations. The methodology utilized a number of inputs and tools (Aspen PEA{trademark}, FCHTool, and H2A). The down-selection of chemical pathways to NaBH{sub 4} identified three options that were subsequently pursued experimentally. Metal reduction of borate was investigated in Dow's laboratories, research on electrochemical routes to NaBH{sub 4} was conducted at Pennsylvania State University, and Idaho National Laboratory researchers examined various carbothermal routes for producing NaBH{sub 4} from borate. The electrochemical and carbothermal studies did not yield sufficiently positive results. However, NaBH{sub 4} was produced in high yields and purities by an aluminum-based metal reduction pathway. Solid-solid reactive milling, slurry milling, and solution-phase approaches to metal reduction were investigated, and while both reactive milling and solution-phase routes point to fully recyclable processes, the scale-up of reactive milling processes to produce NaBH{sub 4} is expected to be difficult. Alternatively, a low-cost solution-phase approach to NaBH{sub 4} has been identified that is based on conventional process unit operations and should be amenable to scale-up. Numerous advances in AB synthesis have been made in recent years to improve AB yields and purities

  11. The optimal suppression of a low-cost technology by a durable-good monopoly

    E-Print Network [OSTI]

    Karp, Larry; Perloff, Jeffrey M

    1994-01-01T23:59:59.000Z

    SUPPRESSION OF A LOW-COST TECHNOLOGY BY A DURABLE-GOODsuppression of a low-cost technology by a durable-goodSuppression of a Low-Cost Technology by a Durable-Good

  12. Gelatin/graphene systems for low cost energy storage

    SciTech Connect (OSTI)

    Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2014-05-15T23:59:59.000Z

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

  13. Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel...

    Office of Environmental Management (EM)

    Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing...

  14. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost, High Efficiency LED Luminaires More Documents & Publications Low-Cost Light-Emitting Diode Luminaire for General Illumination 2015 Project Portfolio 2014 Solid-State...

  15. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007...

  16. Low-cost and durable catalyst support for fuel cells: graphite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost and durable catalyst support for fuel cells: graphite submicronparticles. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles. Abstract: Low-cost...

  17. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable,...

  18. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

  19. Low-Cost Carbon-Fiber Integration / Users Facility and Commercializati...

    Energy Savers [EERE]

    Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile Precursors Low-Cost Carbon-Fiber Integration Users Facility and Commercialization of Textile...

  20. A TEST OF EARTHQUAKE EARLY WARNING SYSTEM USING LOW COST

    E-Print Network [OSTI]

    Wu, Yih-Min

    A TEST OF EARTHQUAKE EARLY WARNING SYSTEM USING LOW COST ACCELEROMETER IN HUALIEN, TAIWAN Y.-M. Wu early warning system was first motivated by the Hualien offshore earthquake (Mw = 7.8) in November 15 Abstract The earthquake early warning (EEW) research group at the National Taiwan University (NTU) and one

  1. Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!

    E-Print Network [OSTI]

    Das, Suman

    mechanical strength and! solar cell integrity! q Silicon wafering (diamond wire sawing)! q Silicon waferIntroduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon wafer

  2. Data aware, Low cost Error correction for Wireless Sensor Networks

    E-Print Network [OSTI]

    California at San Diego, University of

    Data aware, Low cost Error correction for Wireless Sensor Networks Shoubhik Mukhopadhyay, Debashis challenges in adoption and deployment of wireless networked sensing applications is ensuring reliable sensor of such applications. A wireless sensor network is inherently vulnerable to different sources of unreliability

  3. Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud

    E-Print Network [OSTI]

    Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open. Nodes #12;ViPDAC Costs per Run Charge Amount Used Unit Size Units Cost / Unit Cost EC2 EC2 - Data ­ Consistent data analysis for long term projects ­ SOP across laboratories #12;Advantages of ViPDAC · Cost

  4. Transmitting Digitized Video Using the Low Cost G-Link

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Transmitting Digitized Video Using the Low Cost G-Link Chipset Application Note 1077 h-Link) to distribute multiple uncompressed digitized video signals across a single coaxial or fiber-optic cable. Although the main theme of the paper is video distribution, the techniques discussed apply to any applica

  5. Emerging High-Efficiency Low-Cost Solar Cell Technologies

    E-Print Network [OSTI]

    McGehee, Michael

    Emerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute for Energy Stanford University #12;Source: US DOE report "$1/W Photovoltaic Systems," August 2010. DOE

  6. Handheld and low-cost digital holographic microscopy

    E-Print Network [OSTI]

    Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-01-01T23:59:59.000Z

    This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

  7. PPG Industries Develops a Low-Cost Integrated OLED Substrate

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, PPG Industries, Inc., has developed a low-cost OLED substrate, using inexpensive soda-lime "float" glass that the company manufactures at high volume for the architectural industry. Float glass is thin sheet glass and is much less expensive than the borosilicate or double-side-polished display glass that's currently being used as substrates by OLED device manufacturers.

  8. Rock glacier monitoring with low-cost GPS

    E-Print Network [OSTI]

    moving stations on rock glacier Low-cost L1 GPS receivers (blox) Power source: solar panels Local data Rock glacier GPS antennaGPS antenna Solar panelSolar panel Box incl.Box incl. -GPS receiverData logger Instruments Solar panelSolar panel (24W, 12V, 50x50cm)(24W, 12V, 50x50cm) Costs per station: 2

  9. Low Cost PEM Fuel Cell Metal Bipolar Plates

    E-Print Network [OSTI]

    Low Cost PEM Fuel Cell Metal Bipolar Plates CH Wang TreadStone Technologies, Inc. Fuel Cell Project, stationary and automobile fuel cell systems. $0.00 $0.05 $0.10 $0.15 $0.20 $0.25 $0.30 $0.35 $0.40 $0.45 $0. · The technology has been evaluated by various clients and used in portable fuel cell power systems. Corporate

  10. Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTimTextileLow-Cost Energy

  11. Low-Cost Financing with Clean Renewable Energy Bonds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTimTextileLow-Cost

  12. Low-Cost Light Weigh Thin Film Solar Concentrators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of EnergyLow-Cost Light

  13. Low-Cost Magnesium Sheet Production using the Twin Roll Casting Process and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of EnergyLow-Cost

  14. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCummins PowerLow-Cost

  15. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCummins PowerLow-CostVehicles

  16. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  17. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| Department ofofLow Cost

  18. Hydrogen Leak Detection - Low-Cost Distributed Gas Sensors | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof Energy Leak Detection - Low-Cost

  19. Glass for low-cost photovoltaic solar arrays

    SciTech Connect (OSTI)

    Bouquet, F.L.

    1980-02-01T23:59:59.000Z

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

  20. NEW HIGHER PERFORMANCE LOW COST SELECTIVE SOLAR RADIATION CONTROL COATINGS

    SciTech Connect (OSTI)

    Timothy Ellison; Buddie Dotter; David Tsu

    2003-10-28T23:59:59.000Z

    Energy Conversion Devices, Inc., ECD, has developed a new high-speed low-cost process for depositing high quality dielectric optical coatings--Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD). This process can deposit SiO{sub x} about 10 times faster than the state-of-the-art conventional technology, magnetron sputtering, at about 1/10th the cost. This process is also being optimized for depositing higher refractive index materials such as Si{sub 3}N{sub 4} and TiO{sub 2}. In this program ECD, in collaboration with Southwall Technologies, Inc. (STI), demonstrated that this process can be used to fabricate high performance low cost Selective Solar Radiation Control (SSRC) films for use in the automotive industry. These coatings were produced on thin (2 mil thick) PET substrates in ECD's pilot roll-to-roll pilot MPECVD deposition machine. Such film can be laminated with PVB in a vehicle's windows. This process can also be used to deposit the films directly onto the glass. Such highly selective films, with a visible transmission (T{sub vis}) of > 70% and a shading coefficient of < 60% can significantly reduce the heat entering a car from solar radiation. Consequently, passenger comfort is increased and the energy needed to operate air conditioning (a/c) systems is reduced; consequently smaller a/c systems can be employed resulting in improved vehicle fuel efficiency.

  1. Recent developments in low cost stable structures for space

    SciTech Connect (OSTI)

    Thompson, T.C.; Grastataro, C.; Smith, B.G.

    1994-10-01T23:59:59.000Z

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) is advancing the development of low cost, lightweight, composite technology for use in spacecraft and stable structures. The use of advanced composites is well developed, but the application of an all-composite tracker structure has never been achieved. This paper investigates the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small satellites, using technology directly applicable to central tracking in a high luminosity environment. The satellite program Fast On-Orbit Recording of Transient Events (FORTE) is the second in a series of satellites to be launched into orbit for the US Department of Energy (DOE). This paper will discuss recent developments in the area of low cost composites, used for either spacecraft or ultra stable applications in high energy physics (HEP) detectors. The use of advanced composites is a relatively new development in the area of HEP. The Superconducting Super Collider (SSC) spawned a new generation of Trackers which made extensive use of graphite fiber reinforced plastic (GFRP) composite systems. LANL has designed a structure employing new fabrication technology. This concept will lower the cost of composite structures to a point that they may now compete with conventional materials. This paper will discuss the design, analysis and proposed fabrication of a small satellite structure. Central tracking structures using advanced materials capable of operating in an adverse environment typical of that found in a high luminosity collider could use identical concepts.

  2. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect (OSTI)

    Wang, Conghua [TreadStone Technologies, Inc.

    2013-05-30T23:59:59.000Z

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  3. IQ-Station: A Low Cost Portable Immersive Environment

    SciTech Connect (OSTI)

    Eric Whiting; Patrick O'Leary; William Sherman; Eric Wernert

    2010-11-01T23:59:59.000Z

    The emergence of inexpensive 3D TV’s, affordable input and rendering hardware and open-source software has created a yeasty atmosphere for the development of low-cost immersive environments (IE). A low cost IE system, or IQ-station, fashioned from commercial off the shelf technology (COTS), coupled with a targeted immersive application can be a viable laboratory instrument for enhancing scientific workflow for exploration and analysis. The use of an IQ-station in a laboratory setting also has the potential of quickening the adoption of a more sophisticated immersive environment as a critical enabler in modern scientific and engineering workflows. Prior work in immersive environments generally required either a head mounted display (HMD) system or a large projector-based implementation both of which have limitations in terms of cost, usability, or space requirements. The solution presented here provides an alternative platform providing a reasonable immersive experience that addresses those limitations. Our work brings together the needed hardware and software to create a fully integrated immersive display and interface system that can be readily deployed in laboratories and common workspaces. By doing so, it is now feasible for immersive technologies to be included in researchers’ day-to-day workflows. The IQ-Station sets the stage for much wider adoption of immersive environments outside the small communities of virtual reality centers.

  4. Low-Cost U.S. Manufacturing of Power Electronics for Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles Low-Cost U.S. Manufacturing of Power Electronics for Electric...

  5. Energy Department Announces up to $4 Million to Advance Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces up to 4 Million to Advance Low-Cost Hydrogen Production from Renewable and Low Carbon Sources Energy Department Announces up to 4 Million to Advance Low-Cost Hydrogen...

  6. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program...

  7. Novel technologies and techniques for low-cost phased arrays and scanning antennas

    E-Print Network [OSTI]

    Rodenbeck, Christopher Timothy

    2004-11-15T23:59:59.000Z

    This dissertation introduces new technologies and techniques for low-cost phased arrays and scanning antennas. Special emphasis is placed on new approaches for low-cost millimeter-wave beam control. Several topics are covered. A novel...

  8. Low-cost sensor tape for environmental sensing based on roll-to-roll manufacturing process

    E-Print Network [OSTI]

    Gong, Nan-Wei

    We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing based on roll-to-roll manufacturing processes. We experiment with constructing sensors and electronic connections with low-cost ...

  9. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Energy Savers [EERE]

    Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential August 21, 2013 - 12:00am Addthis Utilizing a 1...

  10. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...

    Office of Environmental Management (EM)

    High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2...

  11. DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Requests for Information on Low-Cost Hydrogen Production and Delivery DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and Delivery October 29, 2014 -...

  12. Harsh-environment, Low-cost Sensor Technology for Engine and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harsh-environment, Low-cost Sensor Technology for Engine and After-treatment Systems Harsh-environment, Low-cost Sensor Technology for Engine and After-treatment Systems Poster...

  13. Develpment of a low Cost Method to Estimate the Seismic Signiture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis Develpment of a low Cost Method to Estimate the Seismic...

  14. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    E-Print Network [OSTI]

    Darling, Robert M.

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission ...

  15. High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist, Senior Fellow - Emerging Technologies

  16. Low-Cost Alternative External Rotation Shoulder Brace and Review of Treatment in Acute Shoulder Dislocations

    E-Print Network [OSTI]

    Lacy, Kyle; Cooke, Chris; Cooke, Pat; Schupbach, Justin; Vaidya, Rahul

    2015-01-01T23:59:59.000Z

    our hospital billing data. The low- cost external rotationcost brace from our hospital’s operative room billing data.

  17. Low-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process

    E-Print Network [OSTI]

    Abstract-- We describe the concept of fabricating low-cost sensor tape for fine-grid environmental sensing connections with low-cost conductive inkjet printed copper traces. Our first attempt is to fabricate humidityLow-cost Sensor Tape for Environmental Sensing Based on Roll-to-roll Manufacturing Process Nan

  18. Low-Cost Solar Water Heating Research and Development Roadmap

    SciTech Connect (OSTI)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01T23:59:59.000Z

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  19. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  20. LOW-COST LED LUMINAIRE FOR GENERAL ILLUMINATION

    SciTech Connect (OSTI)

    Lowes, Ted

    2014-07-31T23:59:59.000Z

    During this two-year Solid-State Lighting (SSL) Manufacturing R&D project Cree developed novel light emitting diode (LED) technologies contributing to a cost-optimized, efficient LED troffer luminaire platform emitting at ~3500K correlated color temperature (CCT) at a color rendering index (CRI) of >90. To successfully achieve program goals, Cree used a comprehensive approach to address cost reduction of the various optical, thermal and electrical subsystems in the luminaire without impacting performance. These developments built on Cree’s high- brightness, low-cost LED platforms to design a novel LED component architecture that will enable low-cost troffer luminaire designs with high total system efficacy. The project scope included cost reductions to nearly all major troffer subsystems as well as assembly costs. For example, no thermal management components were included in the troffer, owing to the optimized distribution of compact low- to mid-power LEDs. It is estimated that a significant manufacturing cost savings will result relative to Cree’s conventional troffers at the start of the project. A chief project accomplishment was the successful development of a new compact, high-efficacy LED component geometry with a broad far-field intensity distribution and even color point vs. emission angle. After further optimization and testing for production, the Cree XQ series of LEDs resulted. XQ LEDs are currently utilized in Cree’s AR series troffers, and they are being considered for use in other platforms. The XQ lens geometry influenced the independent development of Cree’s XB-E and XB-G high-voltage LEDs, which also have a broad intensity distribution at high efficacy, and are finding wide implementation in Cree’s omnidirectional A-lamps.

  1. Low Cost Thin Film Building-Integrated Photovoltaic Systems

    SciTech Connect (OSTI)

    Dr. Subhendu Guha; Dr. Jeff Yang

    2012-05-25T23:59:59.000Z

    The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

  2. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    LowCostGHG ReductionCARB 3/03 1 Low-Cost and Near-Term Greenhouse Gas Emission Reduction Marc Ross for Light Duty Vehicles Critical to the Pavley bill's goal to reduce greenhouse gas (GHG) emissions from trucks (large symbols). The emissions from midsize and smaller cars, emit about half as much. Question

  3. BF[subscript 3]-Promoted Electrochemical Properties of Quinoxaline in Propylene Carbonate

    E-Print Network [OSTI]

    Diesendruck, Charles E.

    Electrochemical and density functional studies demonstrate that coordination of electrolyte constituents to quinoxalines modulates their electrochemical properties. Quinoxalines are shown to be electrochemically inactive ...

  4. Development of a Low-Cost Rotary Steerable Drilling System

    SciTech Connect (OSTI)

    Roney Nazarian

    2012-01-31T23:59:59.000Z

    The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

  5. Recovery Act: Low Cost Integrated Substrate for OLED Lighting Development

    SciTech Connect (OSTI)

    Scott Benton; Abhinav Bhandari

    2012-09-30T23:59:59.000Z

    PPG pursued the development of an integrated substrate, including the anode, external, and internal extraction layers. The objective of PPGâ??s program was to achieve cost reductions by displacing the existing expensive borosilicate or double-side polished float glass substrates and developing alternative electrodes and scalable light extraction layer technologies through focused and short-term applied research. One of the key highlights of the project was proving the feasibility of using PPGâ??s high transmission Solarphire® float glass as a substrate to consistently achieve organic lightemitting diode (OLED) devices with good performance and high yields. Under this program, four low-cost alternatives to the Indium Tin Oxide (ITO) anode were investigated using pilot-scale magnetron sputtered vacuum deposition (MSVD) and chemical vapor deposition (CVD) technologies. The anodes were evaluated by fabricating small and large phosphorescent organic lightemitting diode (PHOLED) devices at Universal Display Corporation (UDC). The device performance and life-times comparable to commercially available ITO anodes were demonstrated. A cost-benefit analysis was performed to down-select two anodes for further low-cost process development. Additionally, PPG developed and evaluated a number of scalable and compatible internal and external extraction layer concepts such as scattering layers on the outside of the glass substrate or between the transparent anode and the glass interface. In one external extraction layer (EEL) approach, sol-gel sprayed pyrolytic coatings were deposited using lab scale equipment by hand or automated spraying of sol-gel solutions on hot glass, followed by optimizing of scattering with minimal absorption. In another EEL approach, PPG tested large-area glass texturing by scratching a glass surface with an abrasive roller and acid etching. Efficacy enhancements of 1.27x were demonstrated using white PHOLED devices for 2.0mm substrates which are at par with the standard diffuser sheets used by OLED manufacturers. For an internal extraction layer (IEL), PPG tested two concepts combining nanoparticles either in a solgel coating inserted between the anode and OLED or anode and glass interface, or incorporated into the internal surface of the glass. Efficacy enhancements of 1.31x were demonstrated using white PHOLED devices for the IEL by itself and factors of 1.73x were attained for an IEL in combination of thick acrylic block as an EEL. Recent offline measurements indicate that, with further optimization, factors over 2.0x could be achieved through an IEL alone.

  6. Process for Low Cost Domestic Production of LIB Cathode Materials

    SciTech Connect (OSTI)

    Thurston, Anthony

    2012-10-31T23:59:59.000Z

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  7. Task 8.8 -- Low cost ceramic materials

    SciTech Connect (OSTI)

    NONE

    1997-06-30T23:59:59.000Z

    This subtask was originally titled ``Reheat Combustor Materials`` and was proposed in anticipation of the addition of a reheat combustor to the ICR gas turbine cycle. When the emphasis of ATS became the optimized recuperated cycle, the goal of the subtask was changed to the evaluation of low cost materials for gas turbine combustor liners. It now supplements similar work being conducted by Solar under DOE Contract No.DE-ACO2-92-CE40960, titled ``Ceramic Stationary Gas Turbine (CSGT) Development.`` The use of a ceramic combustor liner in gas turbines contributes to emissions reductions by freeing cooling air for use as primary combustion air and by allowing higher wall temperatures, which contribute to more complete combustion of hydrocarbons. Information from a literature survey, manufacturer`s data, and Solar`s experience was used to select three materials for testing. In addition to material properties requirements for selection, subscale combustor liner cost was required to be at least half of the high modulus continuous fiber reinforced composite part cost. The three materials initially selected for evaluation are listed in Table 1. Four hour subscale rig tests were planned for eight inch diameter liners made from each material. Upon successful completion of each four hour test, a fifty hour test was planned.

  8. A Low-Cost Natural Gas/Freshwater Aerial Pipeline

    E-Print Network [OSTI]

    Alexander Bolonkin; Richard Cathcart

    2007-01-05T23:59:59.000Z

    Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

  9. Charging-free electrochemical system for harvesting low-grade thermal energy

    E-Print Network [OSTI]

    Yang, Yuan

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the ...

  10. PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane

    SciTech Connect (OSTI)

    Hamdan, Monjid [Giner, Inc.] [Giner, Inc.

    2013-08-29T23:59:59.000Z

    The Department of Energy (DOE) has identified hydrogen production by electrolysis of water at forecourt stations as a critical technology for transition to the hydrogen economy; however, the cost of hydrogen produced by present commercially available electrolysis systems is considerably higher than the DOE 2015 and 2020 cost targets. Analyses of proton-exchange membrane (PEM) electrolyzer systems indicate that reductions in electricity consumption and electrolyzer stack and system capital cost are required to meet the DOE cost targets. The primary objective is to develop and demonstrate a cost-effective energy-based system for electrolytic generation of hydrogen. The goal is to increase PEM electrolyzer efficiency and to reduce electrolyzer stack and system capital cost to meet the DOE cost targets for distributed electrolysis. To accomplish this objective, work was conducted by a team consisting of Giner, Inc. (Giner), Virginia Polytechnic Institute & University (VT), and domnick hunter group, a subsidiary of Parker Hannifin (Parker). The project focused on four (4) key areas: (1) development of a high-efficiency, high-strength membrane; (2) development of a long-life cell-separator; (3) scale-up of cell active area to 290 cm2 (from 160 cm˛); and (4) development of a prototype commercial electrolyzer system. In each of the key stack development areas Giner and our team members conducted focused development in laboratory-scale hardware, with analytical support as necessary, followed by life-testing of the most promising candidate materials. Selected components were then scaled up and incorporated into low-cost scaled-up stack hardware. The project culminated in the fabrication and testing of a highly efficient electrolyzer system for production of 0.5 kg/hr hydrogen and validation of the stack and system in testing at the National Renewable Energy Laboratory (NREL).

  11. The Investigation and Development of Low Cost Hardware Components for Proton-Exchange Membrane Fuel Cells - Final Report

    SciTech Connect (OSTI)

    George A. Marchetti

    1999-12-15T23:59:59.000Z

    Proton exchange membrane (PEM) fuel cell components, which would have a low-cost structure in mass production, were fabricated and tested. A fuel cell electrode structure, comprising a thin layer of graphite (50 microns) and a front-loaded platinum catalyst layer (600 angstroms), was shown to produce significant power densities. In addition, a PEM bipolar plate, comprising flexible graphite, carbon cloth flow-fields and an integrated polymer gasket, was fabricated. Power densities of a two-cell unit using this inexpensive bipolar plate architecture were shown to be comparable to state-of-the-art bipolar plates.

  12. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20T23:59:59.000Z

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  13. alternative low-cost precursors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115 Phase advance modulation of low-cost power electronic converters for SPM wind turbine generators. Open Access Theses and Dissertations Summary: ??This research...

  14. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Electronics and Photovoltaics by Heng Pan A dissertationcost Electronics and Photovoltaics Copyright © 2009 By HengLow-cost Electronics and Photovoltaics by Heng Pan Doctor of

  15. Low-Cost Light-Emitting Diode Luminaire for General Illumination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Light-Emitting Diode Luminaire for General Illumination Low-Cost Light-Emitting Diode Luminaire for General Illumination Presenter: Paul Fini, CREE Santa Barbara Technology...

  16. Project Profile: Low-Cost Self-Cleaning Reflector Coatings for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CSP Collectors Project Profile: Low-Cost Self-Cleaning Reflector Coatings for CSP Collectors Oak Ridge National Laboratory logo The Oak Ridge National Laboratory (ORNL),...

  17. Low Cost Carbon Fiber Research in the LM Materials Program Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LM Materials Program Overview Low Cost Carbon Fiber Research in the LM Materials Program Overview 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and...

  18. Laser Assisted Nanomanufacturing with Solution Processed Nanoparticles for Low-cost Electronics and Photovoltaics

    E-Print Network [OSTI]

    Pan, Heng

    2009-01-01T23:59:59.000Z

    Fig. 1. 1 Flexible electronics and flexible solar cells. Inof metal oxide based electronics on heat sensitive flexibleNanoparticles for Low-cost Electronics and Photovoltaics by

  19. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12T23:59:59.000Z

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  20. Final Technical Report - Recovery Act: Organic Coatings as Encapsulants for Low Cost, High Performance PV Modules

    SciTech Connect (OSTI)

    Stuart Hellring; Jiping Shao; James Poole

    2011-12-05T23:59:59.000Z

    The objective of this project was to evaluate the feasibility of utilizing PPG's commercial organic coatings systems as efficient, modernized encapsulants for low cost, high performance, thin film photovoltaic modules. Our hypothesis was that the combination of an anticorrosive coating with a more traditional barrier topcoat would mitigate many electrochemical processes that are now responsible for the significant portion of photovoltaic (PV) failures, thereby nullifying the extremely high moisture barrier requirements of currently used encapsulation technology. Nine commercially available metal primer coatings and six commercially available top coatings were selected for screening. Twenty-one different primer/top coat combinations were evaluated. The primer coatings were shown to be the major contributor to corrosion inhibition, adhesion, and barrier properties. Two primer coatings and one top coating were downselected for testing on specially-fabricated test modules. The coated test modules passed initial current leakage and insulation testing. Damp Heat testing of control modules showed visible corrosion to the bus bar metal, whereas the coated modules showed none. One of the primer/top coat combinations retained solar power performance after Damp Heat testing despite showing some delamination at the EVA/solar cell interface. Thermal Cycling and Humidity Freeze testing resulted in only one test module retaining its power performance. Failure modes depended on the particular primer/top coating combination used. Overall, this study demonstrated that a relatively thin primer/top coating has the potential to replace the potting film and backsheet in crystalline silicon-based photovoltaic modules. Positive signals were received from commercially available coatings developed for applications having performance requirements different from those required for photovoltaic modules. It is likely that future work to redesign and customize these coatings would result in a coating system meeting the requirements for photovoltaic module encapsulation.

  1. Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas

    E-Print Network [OSTI]

    Shaw, Joseph A.

    Low-cost multispectral vegetation imaging system for detecting leaking CO2 gas Justin A. Hogan,1 sequestration sites for possible leaks of the CO2 gas from underground reservoirs, a low-cost multispectral are then flagged for closer inspection with in-situ CO2 sensors. The system is entirely self

  2. Development of Low-Cost, High Strength Commercial Textile Precursor (PAN-MA)

    Broader source: Energy.gov [DOE]

    These slides, presented at the 2014 DOE Annual Merit Review and Peer Evaluation Meeting, provide an overview of and accomplishments for a project to develop develop a low-cost precursor fiber that can be converted to low-cost carbon fiber.

  3. Low-Cost Advanced Encryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial Approach

    E-Print Network [OSTI]

    Hernandez, Orlando

    Low-Cost Advanced Encryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial Approach proposed both in software and hardware. This paper presents a low cost and low power hardware architecture. A focus on low power and cost allows for scaling of the architecture towards vulnerable portable

  4. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    SciTech Connect (OSTI)

    Ayers, Katherine [Proton OnSite] [Proton OnSite; Dalton, Luke [Proton OnSite] [Proton OnSite; Roemer, Andy [Proton OnSite] [Proton OnSite; Carter, Blake [Proton OnSite] [Proton OnSite; Niedzwiecki, Mike [Proton OnSite] [Proton OnSite; Manco, Judith [Proton OnSite] [Proton OnSite; Anderson, Everett [Proton OnSite] [Proton OnSite; Capuano, Chris [Proton OnSite] [Proton OnSite; Wang, Chao-Yang [Penn State University] [Penn State University; Zhao, Wei [Penn State University] [Penn State University

    2014-02-05T23:59:59.000Z

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  5. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

    2011-03-10T23:59:59.000Z

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  6. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    SciTech Connect (OSTI)

    Anthony Chobot; Debarshi Das; Tyler Mayer; Zach Markey; Tim Martinson; Hayden Reeve; Paul Attridge; Tahany El-Wardany

    2012-09-13T23:59:59.000Z

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of energy by 10.2%. This design was achieved by: (1) performing an extensive optimization study that deter-mined the preliminary cost for all practical chain drive topologies to ensure the most competitive configuration; (2) conducting detailed analysis of chain dynamics, contact stresses, and wear and efficiency characteristics over the chain�������¢����������������s life to ensure accurate physics-based predictions of chain performance; and (3) developing a final product design, including reliability analysis, chain replacement procedures, and bearing and sprocket analysis. Definition of this final product configuration was used to develop refined cost of energy estimates. Finally, key system risks for the chain drive were defined and a comprehensive risk reduction plan was created for execution in Phase 2.

  7. Research and Development of a Low Cost Solar Collector

    SciTech Connect (OSTI)

    Ansari, Asif; Philip, Lee; Thouppuarachchi, Chirath

    2012-08-01T23:59:59.000Z

    This is a Final Technical Report on the Research and Development completed towards the development of a Low Cost Solar Collector conducted under the DOE cost-sharing award EE-0003591. The objective of this project was to develop a new class of solar concentrators with geometries and manufacturability that could significantly reduce the fully installed cost of the solar collector field for concentrated solar thermal power plants. The goal of the project was to achieve an aggressive cost target of $170/m2, a reduction of up to 50% in the total installed cost of a solar collector field as measured against the current industry benchmark of a conventional parabolic trough. The project plan, and the detailed activities conducted under the scope of the DOE Award project addressed all major drivers that affect solar collector costs. In addition to costs, the study also focused on evaluating technical performance of new collector architectures and compared them to the performance of the industry benchmark parabolic trough. The most notable accomplishment of this DOE award was the delivery of a full-scale integrated design, manufacturing and field installation solution for a new class of solar collector architecture which has been classified as the Bi-Planar Fresnel Collector (BPFC) and may be considered as a viable alternative to the conventional parabolic trough, as well as the conventional Fresnel collectors. This was in part accomplished through the design and development, all the way through fabrication and test validation of a new class of Linear Planar Fresnel Collector architecture. This architecture offers a number of key differentiating features which include a planar light-weight frame geometry with small mass-manufacturable elements utilizing flat mirror sections. The designs shows significant promise in reducing the material costs, fabrication costs, shipping costs, and on-site field installation costs compared to the benchmark parabolic trough, as well as the conventional Fresnel collector. The noteworthy design features of the BPFC architecture include the use of relatively cheaper flat mirrors and a design which allows the mirror support beam sections to act as load-bearing structural elements resulting in more than a 36% reduction in the overall structural weight compared to an optimized parabolic trough. Also, it was shown that the utilization of small mass-produced elements significantly lowers mass-production and logistics costs that can more quickly deliver economies of scale, even for smaller installations while also reducing shipping and installation costs. Moreover, unlike the traditional Fresnel trough the BPFC architecture does not require complex articulating drive mechanisms but instead utilizes a standard parabolic trough hydraulic drive mechanism. In addition to the development of the Bi-Planar Fresnel Collector, an optimized conventional space-frame type parabolic trough was also designed, built, analyzed and field-tested during the first phase of this award. The design of the conventional space-frame parabolic collector was refined with extensive FEA and CFD analysis to reduce material costs and re-designed for simpler fabrication and more accurate lower-cost field assembly. This optimized parabolic trough represented an improvement over the state-of-the art of the traditional parabolic trough architecture and also served as a more rigorous and less subjective benchmark that was used for comparison of new candidate design architectures. The results of the expanded 1st phase of the DOE award project showed that both the Optimized Parabolic Trough and the new Bi-Planar Fresnel Collector design concepts failed to meet the primary objectives for the project of achieving a 50% cost reduction from the industry reference total installed cost of $350/m2. Results showed that the BPFC came in at projected total installed cost of $237/m2 representing a 32% savings compared to the industry benchmark conventional parabolic trough. And the cost reduction obtained by the Optimized Parabolic Trough compared to the

  8. Lithography-free sub-100nm nanocone array antireflection layer for low-cost silicon solar cell

    E-Print Network [OSTI]

    Xu, Zhida

    2014-01-01T23:59:59.000Z

    High density and uniformity sub-100nm surface oxidized silicon nanocone forest structure is created and integrated onto the existing texturization microstructures on photovoltaic device surface by a one-step high throughput plasma enhanced texturization method. We suppressed the broadband optical reflection on chemically textured grade-B silicon solar cells for up to 70.25% through this nanomanufacturing method. The performance of the solar cell is improved with the short circuit current increased by 7.1%, fill factor increased by 7.0%, conversion efficiency increased by 14.66%. Our method demonstrates the potential to improve the photovoltaic device performance with low cost high and throughput nanomanufacturing technology.

  9. Electrochemical thermodynamic measurement system

    DOE Patents [OSTI]

    Reynier, Yvan (Meylan, FR); Yazami, Rachid (Los Angeles, CA); Fultz, Brent T. (Pasadena, CA)

    2009-09-29T23:59:59.000Z

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  10. Synchronized Collective Behavior via Low-cost Communication

    E-Print Network [OSTI]

    Hai-Tao Zhang; Michael ZhiQiang Chen; Tao Zhou

    2007-07-23T23:59:59.000Z

    An important natural phenomenon surfaces that satisfactory synchronization of self-driven particles can be achieved via sharply reduced communication cost, especially for high density particle groups with low external noise. Statistical numerical evidence illustrates that a highly efficient manner is to distribute the communication messages as evenly as possible along the whole dynamic process, since it minimizes the communication redundancy. More surprisingly, it is discovered that there exist some abnormal regions where moderately decreasing the communication cost can even improve the synchronization performance. A phase diagram on the noise-density parameter space is given, where the dynamical behaviors can be divided into three qualitatively different phases: normal phase where better synchronization corresponds to higher communication cost, abnormal phase where moderately decreasing communication cost could even improve the synchronization, and the disordered phase where no coherence among individuals is observed.

  11. Durable Low Cost Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E TDrew Bittner About Us

  12. An integrated approach towards efficient, scalable, and low cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance |Should Know tothermoelectric waste

  13. An integrated approach towards efficient, scalable, and low cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance |Should Know tothermoelectric

  14. Innovative High-Performance Deposition Technology for Low-Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact

  15. Low Cost Carbon Fiber Composites for Lightweight Vehicle Parts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia yof

  16. Low Cost Carbon Fiber Composites for Lightweight Vehicle Parts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia yofof

  17. Low Cost Carbon Fiber Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia yofof1 DOE

  18. Low Cost Carbon Fiber Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia yofof1 DOE0

  19. Retro-Commissioning Increases Data Center Efficiency at Low Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuringNinth Single-Shell Achieved

  20. Process for Low Cost Domestic Production of LIB Cathode Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by Consider theDepartmentDepartment

  1. Process for Low Cost Domestic Production of LIB Cathode Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by Consider

  2. Low Cost Carbon Fiber from Renewable Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia10 DOE

  3. Low Cost Carbon Fiber from Renewable Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia10 DOE09 DOE

  4. Low Cost Components: Screening of Advanced Battery Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia10 DOE09of

  5. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia10Inc.

  6. Low Cost Manufacturable Microchannel Systems for Passive PEM Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles

  7. Low Cost Near Infrared Selective Plasmonic Smart Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo Garcia,

  8. Low Cost PM Technology for Particle Reinforced Titanium Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo Garcia,Cost

  9. Low Cost Solar Water Heating R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE

  10. Low Cost Titanium Â… Propulsion Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE1 DOE

  11. Low Cost Titanium Â… Propulsion Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE1 DOE0 DOE

  12. Low Cost Titanium Â… Propulsion Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE1 DOE0 DOElm

  13. Low Cost Titanium Â… Propulsion Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE1 DOE0

  14. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE1

  15. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTim ReinhardtSystem

  16. Low-Cost Gas Heat Pump for Building Space Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTim

  17. Low-Cost Direct Bonded Aluminum (DBA) Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTimTextile Precursors

  18. Low-Cost LED Luminaire for General Illumination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of Energy

  19. Low-Cost Solutions for Dynamic Window Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCummins Power

  20. Low-cost Wireless Sensors for Building Monitoring Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1 DOEEmission Control

  1. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFactEnergyEnergyVOCs in

  2. High-Quality, Low-Cost Bulk Gallium Nitride Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r rRancho Cordoba,High-Quality,

  3. Hydrogen leak detection - low cost distributed gas sensors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen and Fuelasin

  4. AMO Announces Funding Opportunity for Low-Cost, Energy Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic Framework for8.pdfAL2008-07.pdf2 ofAMI System

  5. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts | Departmentof EnergyClosed-Loop Exhaust

  6. Modular Process Equipment for Low Cost Manufacturing of High Capacity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts | Departmentof EnergyClosed-Loop

  7. Solid state electrochemical composite

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2009-06-30T23:59:59.000Z

    Provided is a composite electrochemical device fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems including oxygen generation system.

  8. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  9. Vehicle Technologies Office Merit Review 2015: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by 24M Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, structurally...

  10. Design and prototyping of a low-cost portable mechanical ventilator

    E-Print Network [OSTI]

    Powelson, Stephen K. (Stephen Kirby)

    2010-01-01T23:59:59.000Z

    This paper describes the design and prototyping of a low-cost portable mechanical ventilator for use in mass casualty cases and resource-poor environments. The ventilator delivers breaths by compressing a conventional ...

  11. The Creation of a low-cost, reliable platform for mobile robotics research

    E-Print Network [OSTI]

    Gilbert, Taylor Harrison

    2011-01-01T23:59:59.000Z

    This work documents the planning process, design, fabrication, and integration of a low-cost robot designed for research on the problem of life-long robot mapping. The robotics platform used is the iRobot Create. This robot ...

  12. Low cost monitoring system to diagnose problematic rail bed : case study of Mud Pumping Site

    E-Print Network [OSTI]

    Aw, Eng Sew, 1978-

    2007-01-01T23:59:59.000Z

    This thesis describes the development of low cost sensors and wireless sensor network (WSN) platform aimed at characterizing problematic rail beds (subgrade). The instrumentations are installed at a busy high-speed Northeast ...

  13. UpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays

    E-Print Network [OSTI]

    Paulos, Eric

    , and evaluation of several of in situ persuasive displays integrated and low-cost water flow sensors (Figure 1, culminating in long-term deployment of sensors in four private showers over the course of three weeks. Sensors

  14. Evaluating cost-reduction alternatives and low-cost sourcing opportunities for aerospace castings and forgings

    E-Print Network [OSTI]

    Obermoller, Amber J

    2008-01-01T23:59:59.000Z

    As companies continue to outsource large portions of their manufacturing, managing costs in the supply chain is increasingly important in reducing overall costs and remaining competitive. Low-cost sourcing has become an ...

  15. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  16. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles DE-FC26-07NT43122 DOE Peer Review Presentation Lembit Salasoo, Project Manager & Presenter Ayman El-Refaie,...

  17. Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphite and Olivine-Based Materials for Li-Ion Batteries Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Presentation from the U.S. DOE Office of Vehicle...

  18. An Analysis of Energy Reductions from the Use of Daylighting in Low-Cost Housing

    E-Print Network [OSTI]

    Rungchareonrat, N.

    AN ANALYSIS OF ENERGY REDUCTIONS FROM THE USE OF DAYLIGHTING IN LOW-COST HOUSING A Thesis by NAYARAT RUNGCHAREONRAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2003 Major Subject: Architecture AN ANALYSIS OF ENERGY REDUCTIONS FROM THE USE OF DAYLIGHTING IN LOW-COST HOUSING A Thesis by NAYARAT RUNGCHAREONRAT...

  19. Colloidal spray method for low cost thin coating deposition

    DOE Patents [OSTI]

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2005-01-25T23:59:59.000Z

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  20. Colloidal spray method for low cost thin coating deposition

    DOE Patents [OSTI]

    Pham, Ai-Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA); Lee, Tae H. (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  1. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

    Broader source: Energy.gov [DOE]

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

  2. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31T23:59:59.000Z

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  3. Development of an Electrochemical Separator and Compressor

    SciTech Connect (OSTI)

    Trent Molter

    2011-04-28T23:59:59.000Z

    Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

  4. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect (OSTI)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01T23:59:59.000Z

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

  5. A low-cost, high-resolution, video-rate imaging optical radar

    SciTech Connect (OSTI)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01T23:59:59.000Z

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  6. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N [Los Alamos National Laboratory; Yu, Z [UNIV OF MANCHESTER; Jaworski, A J [UNIV OF MANCHESTER

    2010-01-01T23:59:59.000Z

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  7. ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots

    E-Print Network [OSTI]

    Hauser, Kris

    ROBOPuppet: Low-Cost, 3D Printed Miniatures for Teleoperating Full-Size Robots Anna Eilering of the robot links, which are then 3D printed and assembled. This procedure is generalizable to variety to target robot. smaller scale suitable for desktop use. The puppet is a 3D- printed miniature of the target

  8. Novel technologies and techniques for low-cost phased arrays and scanning antennas 

    E-Print Network [OSTI]

    Rodenbeck, Christopher Timothy

    2004-11-15T23:59:59.000Z

    59 - 71 GHz Intelligent highway systems and intelligent transportation 76 - 77 GHz Consumer radar and civilian airborne radiolocation Q- through W-band The journal model is IEEE Transactions...-wave frequencies. Interest in developing broadband, low-cost methods of * copyrightserif 2003 IEEE. Parts of this chapter are reprinted, with permission, from C.T. Rodenbeck, M. Li, and K. Chang, ?A novel...

  9. Designing Privacy-preserving Smart Meters with Low-cost Microcontrollers

    E-Print Network [OSTI]

    Shenoy, Prashant

    Designing Privacy-preserving Smart Meters with Low-cost Microcontrollers Andres Molina Microsoft Research Cambridge Abstract. Smart meters that track fine-grained electricity usage and implement smart meter deployment is that fine-grained usage data indirectly reveals detailed information about

  10. Low-Cost Truthful Multicast in Selfish and Rational Wireless Ad Hoc Networks

    E-Print Network [OSTI]

    Li, Xiang-Yang

    en- joy a more flexible composition. A wireless ad hoc network is a collection of radio devices limited transmission power. One of the dis- tinctive features of wireless networks is that the signal sent1 Low-Cost Truthful Multicast in Selfish and Rational Wireless Ad Hoc Networks Weizhao Wang Xiang

  11. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%

    E-Print Network [OSTI]

    McGehee, Michael

    Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20.1039/c2ee23073a It is estimated that for photovoltaics to reach grid parity around the planet, they must tandem photovoltaic (HTPV), and show that it is capable of meeting these targets. HTPV is composed

  12. Low-cost, non-precious metal/polymer composite catalysts for fuel cells

    E-Print Network [OSTI]

    Low-cost, non-precious metal/polymer composite catalysts for fuel cells R. Bashyam and P. Zelenay 1 LALP-07-013 Winter 2007 F uel cells, which directly convert a fuel's chemical energy into electricity. Of several different types under development, a polymer electrolyte fuel cell (PEFC) is generally recognized

  13. Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot Bradley E. Bishop*

    E-Print Network [OSTI]

    Crabbe, Frederick

    Assisted Search and Rescue (CRASAR), which coordinates and assists robotic search and rescue efforts [21 Design of a Low-Cost, Highly Mobile Urban Search and Rescue Robot Bradley E. Bishop* Frederick L@usna.edu Keywords: Rescue Robotics, Mobile Robotics, Locomotion, Physical Simulation, Genetic Algorithms Abstract

  14. UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless Identification Applications

    E-Print Network [OSTI]

    Tentzeris, Manos

    UHF Solar Powered Active Oscillator Antenna on Low Cost Flexible Substrate for Wireless nature of the circuit and providing operational autonomy by harvesting solar power without affecting, solar power harvesting. I. INTRODUCTION The increasing use of RFIDs and wireless sensor networks

  15. Testing and Analysis of Low Cost Composite Materials Under Spectrum Loading and High Cycle Fatigue Conditions

    E-Print Network [OSTI]

    -year experimental study of low- cost composite materials for wind turbine blades. Wind turbines are subjected to 109 Cycle, Spectrum Loads, Wind Turbine Blades INTRODUCTION Most turbine blades are constructed from low blades [1]. As wind turbines expand in both size and importance, improvements in materials and lifetime

  16. Description and performance of a highly versatile, low-cost fiber-optic confocal Raman microscope

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Description and performance of a highly versatile, low-cost fiber-optic confocal Raman microscope C for publication 29 September 1995 A versatile fiber-optic confocal Raman microscope has been developed. Fiber and disadvantages.11,12 We report here the development of an automated highly versatile fiber-optic confocal Raman

  17. Design and Evaluation of a Low-Cost Point-of-Use Ultraviolet Water Disinfection Device

    E-Print Network [OSTI]

    Kammen, Daniel M.

    receive chlorinated water while another receives contaminated water with no residual level of chlorineDesign and Evaluation of a Low-Cost Point-of-Use Ultraviolet Water Disinfection Device Alicia Cohn around the world to supply safe drinking water. We have developed a device for disinfecting drinking

  18. Graphenesponges as high-performance low-cost anodes for microbial fuel Xing Xie,ab

    E-Print Network [OSTI]

    Cui, Yi

    Graphene­sponges as high-performance low-cost anodes for microbial fuel cells Xing Xie,ab Guihua Yu February 2012 DOI: 10.1039/c2ee03583a A high-performance microbial fuel cell (MFC) anode was con- structed. Microbial fuel cells (MFCs) harness the metabolism of exoelec- trogens, microorganisms that mediate

  19. Low-Cost Sensor Can Diagnose Bacterial Infections Copyright 2011 by Virgo Publishing.

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Low-Cost Sensor Can Diagnose Bacterial Infections Copyright 2011 by Virgo Publishing. http diagnose bacterial infections in only a few hours. Photo by L. Brian Stauffer Bacterial infections really sensor. Led by University of Illinois chemistry professor Ken Suslick, the team published its results

  20. DEVELOPMENT OF A LOW-COST ROBOTIC MANIPULATOR AND ITS APPLICATION TO HUMAN MOTOR CONTROL STUDIES

    E-Print Network [OSTI]

    Moussavi, Zahra M. K.

    DEVELOPMENT OF A LOW-COST ROBOTIC MANIPULATOR AND ITS APPLICATION TO HUMAN MOTOR CONTROL STUDIES C impedance controlled manipulator to study human motor learning. In particular, the focus was to develop of the mechanical and control components of the manipulator were completed with the aim of applying the system

  1. DESIGN AND PERFORMANCE ANALYSIS OF A LOW-COST AIDED DEAD RECKONING NAVIGATION SYSTEM

    E-Print Network [OSTI]

    Stanford University

    DESIGN AND PERFORMANCE ANALYSIS OF A LOW-COST AIDED DEAD RECKONING NAVIGATION SYSTEM D. Gebre. This is because the cost of the inertial sensors required to mechanize a classical inertial navigator is the stochastic nature of the wind field speed (i.e., the motion of the air mass in which the airplane is flying

  2. BeamStar: A New Low-cost Data Routing Protocol for Wireless Sensor Networks

    E-Print Network [OSTI]

    Hou, Y. Thomas

    BeamStar: A New Low-cost Data Routing Protocol for Wireless Sensor Networks Shiwen Mao and Y-assisted, location-aware routing protocol, which we call BeamStar, for wireless sensor networks. We make a major microorganisms, contaminant transport, ecosystems, and battlefields. Wireless sensor networks, in which each

  3. CaRbON FibeR Demonstrating Innovative Low-Cost

    E-Print Network [OSTI]

    Pennycook, Steve

    for manufacturing carbon fiber and carbon-fiber-reinforced composite structures tend to be slow and energy intensive the development and growth of existing and new US carbon fiber and composites · Job Growth Seed regionalCaRbON FibeR TeChNOLOGy FaCiLiTy Demonstrating Innovative Low-Cost Carbon Fiber for Energy

  4. Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology

    E-Print Network [OSTI]

    Kammen, Daniel M.

    lack access to safe drinking water and an accelerated effort is required if the MDG is to be met (WHOAssessment of a low-cost, point-of-use, ultraviolet water disinfection technology Sarah A. Brownell, Portland, OR, USA Rachel L. Peletz Centre for Affordable Water and Sanitation Technology, Calgary, Canada

  5. Planning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Moghavvemi University ofMalaya INTRODUCTION The use of electronics in the automotive industry will reach (or the position and speed as with other components used in the automotive industry, radars will find widespreadPlanning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications H. Ameri, A. Attaran & M

  6. Volume 7, Issue 1, April 2010 THE INTELLECTUAL PROPERTY IMPLICATIONS OF LOW-COST

    E-Print Network [OSTI]

    Martin, Ralph R.

    Volume 7, Issue 1, April 2010 THE INTELLECTUAL PROPERTY IMPLICATIONS OF LOW-COST 3D PRINTING Simon Bradshaw,* Adrian Bowyer° and Patrick Haufe Abstract In the late 1970s 3D printing started to become established as a manufacturing technology. Thirty years on the cost of 3D printing machines is falling

  7. Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    SciTech Connect (OSTI)

    Carlos H. Rentel

    2007-03-31T23:59:59.000Z

    The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

  8. Proactive Temperature Balancing for Low Cost Thermal Management in MPSoCs

    E-Print Network [OSTI]

    Simunic, Tajana

    Proactive Temperature Balancing for Low Cost Thermal Management in MPSoCs Ayse Kivilcim Coskun-die temperature variations at low performance cost is a very significant challenge for multiprocessor system the future temperature and adjusts the job allocation on the MPSoC to minimize the impact of thermal hot

  9. Capping the Brown Energy Consumption of Internet Services at Low Cost

    E-Print Network [OSTI]

    energy · Trend: Cap the brown energy consumption of large electricity consumers (data centers) · CappingCapping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Energy Consumption · Improving efficiency does not promote green energy or guarantee limits on brown

  10. Engineering metal-impurity nanodefects for low-cost solar cells

    E-Print Network [OSTI]

    LETTERS Engineering metal-impurity nanodefects for low-cost solar cells TONIO BUONASSISI1 online: 14 August 2005; doi:10.1038/nmat1457 A s the demand for high-quality solar-cell feedstock exceeds in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive

  11. Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option.

    E-Print Network [OSTI]

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being

  12. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  13. The segregation of silver nanoparticles in low-cost ceramic water filters

    SciTech Connect (OSTI)

    Larimer, Curtis; Ostrowski, Nicole [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261 (United States); Speakman, Jacquelyn [Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261 (United States); Nettleship, Ian, E-mail: nettles@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261 (United States)

    2010-04-15T23:59:59.000Z

    As an impregnated constituent in low-cost ceramic water filters, silver nanoparticles have a demonstrated antibacterial effect. The bactericidal mechanism is believed to be based on direct contact between silver and the cell wall of a contaminant organism. In this study microstructural analysis was used to examine the effect of the processing method on the distribution of silver nanoparticles in the filter material. Silver nanofluid was impregnated into fired clay ceramic samples by a low-cost soak-and-dry method. Analyses of filter samples by scanning electron microscopy, energy dispersive spectroscopy, and digital optical topological mapping showed that silver was concentrated in near surface pores, a condition that is not optimal for highest probability of silver contact. A simple experiment showed that segregation of silver occurs during the drying phase of impregnation. Drying curves showed that 90% of contained liquid evaporates from the external surface.

  14. 2 DOF Low Cost Platform for Driving Simulator: Modeling and Control Hichem Arioui, Salim Hima and Lamri Nehaoua

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2 DOF Low Cost Platform for Driving Simulator: Modeling and Control Hichem Arioui, Salim Hima simulators need to be better designed to reduce simulator sickness. In this paper, we expose platform design, description and the modeling aspects of a 2 DOF low cost motion platform allowing the restitution

  15. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Vissers, Donald R. (Naperville, IL); Prakash, Jai (Downers Grove, IL)

    1994-01-01T23:59:59.000Z

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  16. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I. (6851 Carpenter St., Downers Grove, IL 60516); Vissers, Donald R. (611 Clover Ct., Naperville, IL 60540); Prakash, Jai (2205 Arbor Cir. 8, Downers Grove, IL 60515)

    1996-01-01T23:59:59.000Z

    An electrochemical cell having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm.sup.3 ; the cell can be 90% recharged in three hours and can operate at temperatures below 160.degree. C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6.times.10.sup.4 cm.sup.2 /g of Ni.

  17. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1996-07-16T23:59:59.000Z

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm{sup 3}; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6{times}10{sup 4}cm{sup 2}/g of Ni. 6 figs.

  18. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-02-01T23:59:59.000Z

    An electrochemical cell is described having a bimodal positive electrode, a negative electrode of an alkali metal, and a compatible electrolyte including an alkali metal salt molten at the cell operating temperature. The positive electrode has an electrochemically active layer of at least one transition metal chloride at least partially present as a charging product, and additives of bromide and/or iodide and sulfur in the positive electrode or the electrolyte. Electrode volumetric capacity is in excess of 400 Ah/cm[sup 3]; the cell can be 90% recharged in three hours and can operate at temperatures below 160 C. There is also disclosed a method of reducing the operating temperature and improving the overall volumetric capacity of an electrochemical cell and for producing a positive electrode having a BET area greater than 6[times]10[sup 4] cm[sup 2]/g of Ni. 8 figures.

  19. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2008-04-01T23:59:59.000Z

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  20. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09T23:59:59.000Z

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  1. A reliable, fast and low cost maximum power point tracker for photovoltaic applications

    SciTech Connect (OSTI)

    Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)

    2010-01-15T23:59:59.000Z

    This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

  2. A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Grubelich, M.C. [Sandia National Labs., Albuquerque, NM (United States); Hartman, J.K.; McCampbell, C.B. [SCB Technologies, Inc., Albuquerque, NM (United States); Churchill, J.K. [Quantic-Holex, Hollister, CA (United States)

    1993-12-31T23:59:59.000Z

    A conventional NSI (NASA standard initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium subhydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.

  3. Low Cost Production of InGaN for Next-Generation Photovoltaic Devices

    SciTech Connect (OSTI)

    Nick M. Sbrockey, Shangzhu Sun, Gary S. Tompa,

    2012-07-09T23:59:59.000Z

    The goal of this project is to develop a low-cost and low-energy technology for production of photovoltaic devices based on InGaN materials. This project builds on the ongoing development by Structured Materials Industries (SMI), of novel thin film deposition technology for Group III-Nitride materials, which is capable of depositing Group-III nitride materials at significantly lower costs and significantly lower energy usage compared to conventional deposition techniques. During this project, SMI demonstrated deposition of GaN and InGaN films using metalorganic sources, and demonstrated compatibility of the process with standard substrate materials and hardware components.

  4. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    SciTech Connect (OSTI)

    Liess, Martin [Rhein Main University of Applied Sciences, Rüsselsheim, Wiesbaden (Germany)

    2014-03-24T23:59:59.000Z

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  5. Low Cost Solar Water Heating R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| Department ofofLow CostSolar

  6. Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| DepartmentRyan Paul,Low-Cost Gas

  7. Low-Cost Light-Emitting Diode Luminaire for General Illumination |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for| DepartmentRyan Paul,Low-Cost

  8. An electrochemical route for making porous nickel oxide electrochemical capacitors

    SciTech Connect (OSTI)

    Srinivasan, V.; Weidner, J.W. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering

    1997-08-01T23:59:59.000Z

    Porous nickel oxide films were prepared by electrochemically precipitating nickel hydroxide and heating the hydroxide in air at 300 C. The resulting nickel oxide films behave as an electrochemical capacitor with a specific capacitance of 59 F/g electrode material. These nickel oxide films maintain high utilization at high rates of discharge (i.e., high power density) and have excellent cycle life. Porous cobalt oxide films were also synthesized. Although the specific capacitances of these films are approximately one-fifth that of the nickel oxide films, the results demonstrate the versatility of fabricating a wide range of porous metal oxide films using this electrochemical route for use in capacitor applications. Electrochemical capacitors have generated wide interest in recent years for use in high power applications (e.g., in a hybrid electric vehicle, where they are expected to work in conjunction with a conventional battery).

  9. Electrochemical construction

    DOE Patents [OSTI]

    Einstein, Harry (Springfield, NJ); Grimes, Patrick G. (Westfield, NJ)

    1983-08-23T23:59:59.000Z

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  10. Electrochemical device

    DOE Patents [OSTI]

    Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Bellows, Richard J. (Westfield, NJ)

    1988-01-12T23:59:59.000Z

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  11. Vehicle Technologies Office Merit Review 2015: Thick Low-Cost, High-Power Lithium-Ion Electrodes via Aqueous Processing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thick low-cost,...

  12. A Low-cost Compliant 7-DOF Robotic Manipulator Morgan Quigley, Alan Asbeck, and Andrew Y. Ng

    E-Print Network [OSTI]

    Ng, Andrew Y.

    A Low-cost Compliant 7-DOF Robotic Manipulator Morgan Quigley, Alan Asbeck, and Andrew Y. Ng a robotic arm with similar performance on many measures to high-end research robotic Morgan Quigley, Alan

  13. Low-cost carriers in Japan : challenges and paths to success - using a corporate simulation model for empirical analysis

    E-Print Network [OSTI]

    Shiotani, Sayaka

    2013-01-01T23:59:59.000Z

    This paper analyzes the causes behind the sluggishness of new airlines, low cost carriers (LCCs), in Japan. The object is to identify and to recommend innovative policy changes and ideas for the industry, by analyzing the ...

  14. LOW-COST BACTERIAL DETECTION SYSTEM FOR FOOD SAFETY BASED ON AUTOMATED DNA EXTRACTION, AMPLIFICATION AND READOUT

    E-Print Network [OSTI]

    Hoehl, Melanie Margarete

    To ensure food, medical and environmental safety and quality, rapid, low-cost and easy-to-use detection methods are desirable. Here, the LabSystem is introduced for integrated, automated DNA purification and amplification. ...

  15. Ion Torren Semiconductor Sequencing Allows Rapid, Low Cost Sequencing of the Human Exome ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Jenkins, David [EdgeBio

    2013-03-22T23:59:59.000Z

    David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  16. Vehicle Technologies Office Merit Review 2015: Low-cost, High Energy Si/Graphene Anodes for Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by XG Sciences at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-cost, high energy Si/graphene...

  17. Vehicle Technologies Office Merit Review 2015: Low?Cost, High?Capacity Lithium Ion Batteries through Modified Surface and Microstructure

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low?cost, high?capacity...

  18. Design, fabrication, and characterization of a low-cost flexural bearing based 3D printing tool head

    E-Print Network [OSTI]

    Ramirez, Aaron Eduardo

    2010-01-01T23:59:59.000Z

    This thesis discusses the design, characterization and optimization of a low-cost additive rapid-prototyping tool head for a technology known as Fused Filament Fabrication for use in an educational curriculum. Building a ...

  19. Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis

    E-Print Network [OSTI]

    Berrada Sounni, Amine

    2010-01-01T23:59:59.000Z

    An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the ...

  20. Low Cost Carbon Fibre: Applications, Performance and Cost Models - Chapter 17

    SciTech Connect (OSTI)

    Warren, Charles David [ORNL; Wheatley, Dr. Alan [University of Sunderland; Das, Sujit [ORNL

    2014-01-01T23:59:59.000Z

    Weight saving in automotive applications has a major bearing on fuel economy. It is generally accepted that, typically, a 10% weight reduction in an automobile will lead to a 6-8% improvement in fuel economy. In this respect, carbon fibre composites are extremely attractive in their ability to provide superlative mechanical performance per unit weight. That is why they are specified for high-end uses such as Formula 1 racing cars and the latest aircraft (e.g. Boeing 787, Airbus A350 and A380), where they comprise over 50% by weight of the structure However, carbon fibres are expensive and this renders their composites similarly expensive. Research has been carried out at Oak Ridge National Laboratories (ORNL), Tennessee, USA for over a decade with the aim of reducing the cost of carbon fibre such that it becomes a cost-effective option for the automotive industry. Aspects of this research relating to the development of low cost carbon fibre have been reported in Chapter 3 of this publication. In this chapter, the practical industrial applications of low-cost carbon fibre are presented, together with considerations of the performance and cost models which underpin the work.

  1. Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures

    SciTech Connect (OSTI)

    Kyoung-Shin Choi

    2013-06-30T23:59:59.000Z

    The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.

  2. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Qazi, Shefah; Agogino, Alice M.

    2009-09-14T23:59:59.000Z

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  3. Low-Cost Substrates for High-Performance Nanorod Array LEDs

    SciTech Connect (OSTI)

    Sands, Timothy; Stach, Eric; Garcia, Edwin

    2009-04-30T23:59:59.000Z

    The completed project, entitled â??Low-Cost Substrates for High-Performance Nanorod LEDs,â?ť targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: â?˘ Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. â?˘ Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. â?˘ Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. â?˘ Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.

  4. Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Philips Lumileds has developed a low-cost, high-power, warm-white LED package for general illumination. During the course of the two-year project, this package was used to commercialize a series of products with correlated color temperatures (CCTs) ranging from 2700 to 5700 K, under the product name LUXEON M. A record efficacy of nearly 125 lm/W was demonstrated at a flux of 1023 lumens, a CCT of 3435 K, and a color rendering index (CRI) of more than 80 at room temperature in the productized package. In an R&D package, a record efficacy of more than 133 lm/W at a flux of 1015 lumens, a CCT of 3475 K, and a CRI greater than 80 at room temperature were demonstrated.

  5. Life and stability testing of packaged low-cost energy storage materials

    SciTech Connect (OSTI)

    Frysinger, G.R.

    1980-07-01T23:59:59.000Z

    A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage-like containers called Chubs is discussed. The results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications have been drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a ..delta..T of 30/sup 0/F can be used for the packaged material.

  6. Design and implementation of a new low-cost subsurface mooring system for efficient data recovery

    SciTech Connect (OSTI)

    Tian, Chuan; Deng, Zhiqun; Tian, Jiwei; Zhao, Wei; Song, Dalei; Xu, Ming; Xu, Xiaoyang; Lu, Jun

    2013-09-23T23:59:59.000Z

    Mooring systems are the most effective method for making sustained time series observations in the oceans. Generally there are two types of ocean mooring systems: surface and subsurface. Subsurface mooring system is less likely to be damaged after deployment than surface system. However, subsurface system usually needs to be retrieved from the ocean for data recovery. This paper describes the design and implementation of a new low-cost subsurface mooring system for efficient data recovery: Timed Communication Buoy System (TCBS). TCBS is usually integrated in the main float and the designated data is downloaded from the control system. After data retrieval, TCBS will separate from main float, rise up to the sea surface, and transmit data by satellite communication.

  7. Evaluation of a low-cost and accurate ocean temperature logger on subsurface mooring systems

    SciTech Connect (OSTI)

    Tian, Chuan; Deng, Zhiqun; Lu, Jun; Xu, Xiaoyang; Zhao, Wei; Xu, Ming

    2014-06-23T23:59:59.000Z

    Monitoring seawater temperature is important to understanding evolving ocean processes. To monitor internal waves or ocean mixing, a large number of temperature loggers are typically mounted on subsurface mooring systems to obtain high-resolution temperature data at different water depths. In this study, we redesigned and evaluated a compact, low-cost, self-contained, high-resolution and high-accuracy ocean temperature logger, TC-1121. The newly designed TC-1121 loggers are smaller, more robust, and their sampling intervals can be automatically changed by indicated events. They have been widely used in many mooring systems to study internal wave and ocean mixing. The logger’s fundamental design, noise analysis, calibration, drift test, and a long-term sea trial are discussed in this paper.

  8. Rheology and stability kinetics of bare silicon nanoparticle inks for low-cost direct printing

    SciTech Connect (OSTI)

    More, Priyesh V.; Jeong, Sunho; Seo, Yeong-Hui; Ryu, Beyong-Hwan; Choi, Youngmin [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Kim, Seong Jip [Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600 Korea and Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Nahm, Sahn [Department of Materials Science and Engineering, Korea University 5-1 Anam-Dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)

    2013-12-16T23:59:59.000Z

    Highly dispersed and stable silicon nanoparticles ink is formulated for its application in direct printing or printable electronics. These dispersions are prepared from free-standing silicon nanoparticles which are not capped with any organic ligand, making it suitable for electronic applications. Silicon nanoparticles dispersions are prepared by suspending the nanoparticles in benzonitrile or ethanol by using polypropylene glycol (PPG) as a binder. All the samples show typical shear thinning behavior while the dispersion samples show low viscosities signifying good quality dispersion. Such thinning behavior favors in fabrication of dense films with spin-coating or patterns with drop casting. The dispersion stability is monitored by turbiscan measurements showing good stability for one week. A low-cost direct printing method for dispersion samples is also demonstrated to obtain micro-sized patterns. Low electrical resistivity of resulting patterns, adjustable viscosity and good stability makes these silicon nanoparticles dispersions highly applicable for direct printing process.

  9. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect (OSTI)

    Kwak, B.; Joshi, Ajey

    2013-03-31T23:59:59.000Z

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  10. Phase-Sensitive Detection in the undergraduate lab using a low-cost microcontroller

    E-Print Network [OSTI]

    Schultz, K D

    2015-01-01T23:59:59.000Z

    Phase-sensitive detection (PSD) is an important experimental technique that allows signals to be extracted from noisy data. PSD is also used in modulation spectroscopy and is used in the stabilization of optical sources. Commercial lock-in amplifiers that use PSD are often expensive and host a bewildering array of controls that may intimidate a novice user. Low-cost microcontrollers such as the Arduino family of devices seem like a good match for learning about PSD; however, making a self-contained device (reference signal, voltage input, mixing, filtering, and display) is difficult, but in the end the project teaches students "tricks" to turn the Arduino into a true scientific instrument.

  11. LEP3: a low-cost, high-luminosity Higgs factory

    E-Print Network [OSTI]

    M. Koratzinos

    2014-11-11T23:59:59.000Z

    The discovery of a relatively light Higgs opens up the possibility of circular e+e- Higgs factories. LEP3 is such a machine with emphasis on low cost, since it re-uses most of the LHC infrastructure, including the tunnel, cryogenics, and the two general-purpose LHC experiments Atlas and CMS, with some modifications. The energy reach of LEP3 is 240GeV in the centre of mass, close to the ZH production maximum. Alternative tunnel diameters and locations are possible, including a Higgs factory housed in the UNK tunnel, UNK-L, and a machine located in a new 80 km tunnel in the Geneva region, TLEP, than can further house a very high energy pp collider. The design merits further consideration and a detailed study should be performed, so that LEP3 can be one more option available to the community for the next step in High Energy Physics.

  12. LEP3: a low-cost, high-luminosity Higgs factory

    E-Print Network [OSTI]

    Koratzinos, M

    2012-01-01T23:59:59.000Z

    The discovery of a relatively light Higgs opens up the possibility of circular e+e- Higgs factories. LEP3 is such a machine with emphasis on low cost, since it re-uses most of the LHC infrastructure, including the tunnel, cryogenics, and the two general-purpose LHC experiments Atlas and CMS, with some modifications. The energy reach of LEP3 is 240GeV in the centre of mass, close to the ZH production maximum. Alternative tunnel diameters and locations are possible, including a Higgs factory housed in the UNK tunnel, UNK-L, and a machine located in a new 80 km tunnel in the Geneva region, TLEP, than can further house a very high energy pp collider. The design merits further consideration and a detailed study should be performed, so that LEP3 can be one more option available to the community for the next step in High Energy Physics.

  13. Electrochemical cell

    DOE Patents [OSTI]

    Redey, Laszlo I. (Downers Grove, IL); Myles, Kevin M. (Downers Grove, IL); Vissers, Donald R. (Naperville, IL); Prakash, Jai (Downers Grove, IL)

    1996-01-01T23:59:59.000Z

    An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.

  14. Thin films of gallium arsenide on low-cost substrates. Final technical report, July 5, 1976-December 5, 1978

    SciTech Connect (OSTI)

    Ruth, R.P.; Dapkus, P.D.; Dupuis, R.D.; Johnson, R.E.; Moudy, L.A.; Yang, J.J.; Yingling, R.D.

    1980-03-01T23:59:59.000Z

    The MO-CVD technique was applied to the growth of thin films of GaAs and GaAl As on inexpensive polycrystalline or amorphous substrate materials (primarily glasses and metals) for use in fabrication of large-area low-cost photovoltaic device structures. Trimethylgallium, arsine, and trimethylaluminum are mixed in appropriate concentrations at room temperature in the gaseous state and pyrolyzed at the substrate, which is heated in a vertical reactor chamber to temperatures of 700 to 750/sup 0/C, to produce the desired film composition and properties. Studies of the properties of grain boundaries in polycrystalline GaAs films by the use of transport measurements as a function of temperature indicated that the grain boundary regions are depleted of majority carriers by a large density of neutral traps at the grain boundary interface, causing a barrier to majority carrier flow in the material. Schottky-barrier solar cells of approx. 3 percent efficiency (simulated AM0 illumination, no AR coating) were demonstrated on thin-film polycrystalline GaAs n/n/sup +/ structures on Mo sheet, Mo film/glass, and graphite substrates. Substantial enhancement of average grain size in polycrystalline MO-CVD GaAs films on Mo sheet was obtained by the addition of HCl to the growth atmosphere during deposition. Extensive investigation of polycrystalline thin-film p-n junctions indicated that the forward voltage of such devices is apparently limited to 0.5 to 0.6V. A laboratory-type deposition apparatus for the formation of TiO/sub 2/ antireflection (AR) coatings by pyrolysis of titanium isopropoxide was assembled and tested. Detailed analyses were made of the materials and labor costs involved in the laboratory-scale fabrication of MO-CVD thin-film GaAs solar cells. Details are presented. (WHK)

  15. Electrochemical cell

    DOE Patents [OSTI]

    Redey, L.I.; Vissers, D.R.; Prakash, J.

    1994-08-23T23:59:59.000Z

    An electrochemical cell is described having an alkali metal negative electrode such as sodium and a positive electrode including Ni or transition metals, separated by a [beta] alumina electrolyte and NaAlCl[sub 4] or other compatible material. Various concentrations of a bromine, iodine and/or sulfur containing additive and pore formers are disclosed, which enhance cell capacity and power. The pore formers may be the ammonium salts of carbonic acid or a weak organic acid or oxamide or methylcellulose. 6 figs.

  16. Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors

    E-Print Network [OSTI]

    Heimann, I.; Bright, V. B.; McLeod, M. W.; Mead, M. I.; Popoola, O. A. M.; Stewart, G. B.; Jones, R. L.

    2015-04-25T23:59:59.000Z

    morning and early afternoon (predominantly between 09:00 and 13:00) across the network where mixing ratios dropped sud- denly (Fig. 3, top panel). These drops may be attributed to rapid changes in sensor temperature usually associated with solar to 30 May... 2010 (bottom panel), with a detailed view of the city centre area marked Fig. 2. Time series of CO (ppb) for one rural and one urban sensor node; covering the whole analysis period (a) and for one week (b). Shown in grey are data recorded at 10...

  17. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    SciTech Connect (OSTI)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31T23:59:59.000Z

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operations to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.

  18. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect (OSTI)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31T23:59:59.000Z

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

  19. Development of a Low Cost Heat Pump Water Heater - First Prototype

    SciTech Connect (OSTI)

    Mei, V. C. [Oak Ridge National Laboratory (Retired); Tomlinson, J. J. [Oak Ridge National Laboratory (Retired)

    2007-09-01T23:59:59.000Z

    Until now the heat pump water heater (HPWH) has been a technical success but a market failure because of its high initial cost. Oak Ridge National Laboratory (ORNL) was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. ORNL was also tasked to verify the technical feasibility of the cost saving opportunities where necessary and appropriate. The objective was to retain most of the HPWH s energy saving performance while reducing cost and simple payback period to approximately three years in a residential application. Several cost saving opportunities were found. Immersing the HPWH condenser directly into the tank allowed the water-circulating pump to be eliminated and a standard electric resistance storage water heater to be used. In addition, designs could be based on refrigerator compressors. Standard water heaters and refrigerator compressors are both reliable, mass produced, and low cost. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water heater tank through a sleeve affixed to one of the standard penetrations at the top of the tank. The sleeve contour causes the bayonet-style condenser to helix while being pushed into the tank, enabling a condenser of sufficient heat transfer surface area to be inserted. Based on this design, ORNL fabricated the first laboratory prototype and completed preliminary laboratory tests in accordance with the DOE Simulated Use Test Procedure. Hardening during double-wall condenser fabrication was not overcome, so the prototype is single-walled with a liner. The prototype unit was found to have an energy factor of 2.02, verifying that the low-cost design retains most of the HPWH s energy saving performance. Industry involvement is being sought to resolve the fabrication issue and quantify progress on reducing cost and simple payback period to approximately three years in a residential application. This report provides information on the design, prototype construction, laboratory test data, and analyses of this HPWH.

  20. Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites

    SciTech Connect (OSTI)

    Singh, M.; Levine, S.R.

    1995-07-01T23:59:59.000Z

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC`s) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  1. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics

    SciTech Connect (OSTI)

    Buonassisi, Tonio

    2013-02-26T23:59:59.000Z

    The objective of this project is to close the efficiency gap between industrial multicrystalline silicon (mc-Si) and monocrystalline silicon solar cells, while preserving the economic advantage of low-cost, high-volume substrates inherent to mc-Si. Over the course of this project, we made significant progress toward this goal, as evidenced by the evolution in solar-cell efficiencies. While most of the benefits of university projects are diffuse in nature, several unique contributions can be traced to this project, including the development of novel characterization methods, defect-simulation tools, and novel solar-cell processing approaches mitigate the effects of iron impurities ("Impurities to Efficiency" simulator) and dislocations. In collaboration with our industrial partners, this project contributed to the development of cell processing recipes, specialty materials, and equipment that increased cell efficiencies overall (not just multicrystalline silicon). Additionally, several students and postdocs who were either partially or fully engaged in this project (as evidenced by the publication record) are currently in the PV industry, with others to follow.

  2. Electrochemical supercapacitors

    DOE Patents [OSTI]

    Rudge, Andrew J. (Los Alamos, NM); Ferraris, John P. (Dallas, TX); Gottesfeld, Shimshon (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    A new class of electrochemical capacitors provides in its charged state a positive electrode including an active material of a p-doped material and a negative electrode including an active material of an n-doped conducting polymer, where the p-doped and n-doped materials are separated by an electrolyte. In a preferred embodiment, the positive and negative electrode active materials are selected from conducting polymers consisting of polythiophene, polymers having an aryl group attached in the 3-position, polymers having aryl and alkyl groups independently attached in the 3- and 4-positions, and polymers synthesized from bridged dimers having polythiophene as the backbone. A preferred electrolyte is a tetraalykyl ammonium salt, such as tetramethylammonium trifluoromethane sulphonate (TMATFMS), that provides small ions that are mobile through the active material, is soluble in acetonitrile, and can be used in a variety of capacitor configurations.

  3. HOW DO THEY DO IT DOWN UNDER? New Zealand dairy producers have huge exports and low costs

    E-Print Network [OSTI]

    Radeloff, Volker C.

    HOW DO THEY DO IT DOWN UNDER? New Zealand dairy producers have huge exports and low costs. But it is the world's largest dairy exporter, and, unlike the European Union and the United States, New Zealand provides no export subsidies. About 95 percent of New Zealand milk ends up as dairy products consumed

  4. Get a whiff of this: Low-cost sensor can diagnose bacterial April 27th, 2011 in Chemistry / Analytical Chemistry

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Get a whiff of this: Low-cost sensor can diagnose bacterial infections April 27th, 2011 in Chemistry / Analytical Chemistry Enlarge A colorimetric sensor array is placed in an Petri dish for culturing bacteria and scanned with an ordinary flatbed photo scanner kept inside a lab incubator. The dots

  5. Hardware and software architecture for state estimation on an experimental low-cost small-scaled helicopter

    E-Print Network [OSTI]

    : Low-cost sensors Embedded systems MEMS Unmanned aerial vehicle Autonomous helicopter Data fusion a b contribution of this paper is to detail, at the light of a successful reported autonomous hovering flight of unmanned aerial vehicles (UAV) with various degrees of auton- omy (see Wise, 2004). Prime examples

  6. Low-Cost Parallel Algorithms for 2:1 Octree Balance Tobin Isaac, Carsten Burstedde, Omar Ghattas

    E-Print Network [OSTI]

    Sminchisescu, Cristian

    Low-Cost Parallel Algorithms for 2:1 Octree Balance Tobin Isaac, Carsten Burstedde, Omar Ghattas§ Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin, USA Email of Texas at Austin, USA §Department of Mechanical Engineering, The University of Texas at Austin, USA

  7. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures

    E-Print Network [OSTI]

    Kammen, Daniel M.

    electric power system models primarily address either day-to-day operation or long-term capacity planningHigh-resolution modeling of the western North American power system demonstrates low-cost and low greenhouse gas emissions. Exploiting intermittent renewable energy resources demands power system planning

  8. Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites

    E-Print Network [OSTI]

    Demirbas, Umit

    2010-01-01T23:59:59.000Z

    This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

  9. Design of a Very Low-power, Low-cost 60 GHz Receiver Front-End Implemented

    E-Print Network [OSTI]

    Boyer, Edmond

    Design of a Very Low-power, Low-cost 60 GHz Receiver Front-End Implemented in 65 nm CMOS Technology- noise amplifier (LNA), mixer, a voltage controlled oscillator (VCO), a local oscillator (LO) buffer, France The research on the design of receiver front-ends for very high data-rate communication in the 60

  10. Quasi-Rheotaxy a new technique to grow large grain thin films on low cost amorphous substrates (*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , could be used to build low cost thin film solar cells. Revue Phys. Appl. 16 (1981) 11-14 JANVIER 1981 is required in thin film direct gap absorbers solar cells to overcome thebfficiency value of 10 % is about 2 comparable with the grain size, reports that a thin film solar cell based on GaAs with a resistivity of 10

  11. Parts: Low Cost Sensor Networks at Scale Michael Beigl, Christian Decker, Albert Krohn, Till Riedel, Tobias Zimmer

    E-Print Network [OSTI]

    Beigl, Michael

    a closer look into the typical use of the above men- tioned sensor network in nowadays, activityµParts: Low Cost Sensor Networks at Scale Michael Beigl, Christian Decker, Albert Krohn, Till}@teco.edu ABSTRACT This paper presents the µPart wireless sensor system espe- cially designed for settings requiring

  12. The function of the clinic is to provide high-quality, low-cost mental health services for the

    E-Print Network [OSTI]

    Dyer, Bill

    The function of the clinic is to provide high- quality, low-cost mental health services in mental health and marriage and family counseling obtain clinical experience. Student counselors the Human Development CliniDevelopment Clinic . . .c . . . Human Development Clinic 1501 S. 3rd Ave

  13. RAID0.5: Active Data Replication for Low Cost Disk Array Data Protection John A. Chandy

    E-Print Network [OSTI]

    Chandy, John A.

    RAID0.5: Active Data Replication for Low Cost Disk Array Data Protection John A. Chandy Department-performance disk subsystems. However, reliability in RAID systems comes at the cost of extra disks. In this paper, we describe a mechanism that we have termed RAID0.5 that enables striped disks with very high data

  14. Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance

    E-Print Network [OSTI]

    Clean renewable energy bonds (CREBs) present a low-cost opportunity for public entities to issue bonds to finance renewable energy projects. The federal government lowers the cost of debt by providing created under the Energy Tax Incentives Act of 2005 (and detailed in Internal Revenue Code Section 54

  15. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31T23:59:59.000Z

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  16. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    SciTech Connect (OSTI)

    Alptekin, Gokhan

    2012-09-30T23:59:59.000Z

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  17. MOD Buffer/YBCO Approach to Fabricate Low-Cost Second Generation HTS Wires

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans [ORNL; Sathyamurthy, Srivatsan [ORNL; Bhuiyan, Md S [ORNL; Martin, Patrick M [ORNL; Aytug, Tolga [ORNL; Kim, Kyunghoon [ORNL; Fayek, Mostafa [ORNL; Leonard, Keith J [ORNL; Li, Jing [ORNL; Zhang, W. [American Superconductor Corporation, Westborough, MA; Rupich, Marty [American Superconductor Corporation, Westborough, MA

    2007-01-01T23:59:59.000Z

    The metal organic deposition (MOD) of buffer layers on RABiTS substrates is considered a potential, low-cost approach to manufacturing high performance Second Generation (2G) high temperature superconducting (HTS) wires. The typical architecture used by American Superconductor in their 2G HTS wire consists of a Ni-W (5 at.%) substrate with a reactively sputtered Y2O3 seed layer, YSZ barrier layer and a CeO2 cap layer. This architecture supports critical currents of over 300 A/cm-width (77 K, self-field) with 0.8 mum YBCO films deposited by the TFA-MOD process. The main challenge in the development of the MOD buffers is to match or exceed the performance of the standard vacuum deposited buffer architecture. We have recently shown that the texture and properties of MOD - La2Zr2Ogamma (LZO) barrier layers can be improved by inserting a thin sputtered Y2O3 seed layer and prepared MOD deposited LZO layers followed by MOD or RF sputtered CeO2 cap layers that support MOD-YBCO films with Ic's of 200 and 255 A/cm-width, respectively. Detailed X-ray and microstructural characterizations indicated that MOD - CeO2 cap reacted completely with MOD YBCO to form BaCeOs. However, sputtered CeO2 cap/MOD YBCO interface remains clean. By further optimizing the coating conditions and reducing the heat-treatment temperatures, we have demonstrated an Ic of 336 A/cm with improved LZO layers and sputtered CeO2 cap and exceeded the performance of that of standard vacuum deposited buffers.

  18. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

    1998-02-01T23:59:59.000Z

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  19. Low Cost, Single Layer Replacement for the Back-Sheet and Encapsulant Layers

    SciTech Connect (OSTI)

    Kempe, M. D.; Thapa, P.

    2008-01-01T23:59:59.000Z

    Ethylene propylene diene monomer (EPDM) based polymers have been formulated for specific use in photovoltaic modules to produce better performance and longer term stability at a lower cost than standard materials. EPDM formulations are advantageous over ethylene vinyl-acetate (EVA) because they can use the same lamination/cure cycle as EVA, they do not need a second back-sheet protective material (e.g. PET/Tedlar), they have a lower glass transition temperature, no melting transition, more constant mechanical moduli as a function of temperature, they are less polar than EVA (provides better corrosion protection), and they have excellent damp heat (85 C/85% relative humidity) resistance against delamination. Module designs typically use EVA on the back side of cells despite the fact that transparency is not advantageous. We have developed a single encapsulant layer that will replace standard module back-sheet constructions consisting of EVA/PET/Tedlar. Because a single low-cost material layer is used, it will provide a significant materials cost savings of about $6 to $8/m{sup 2} as compared to traditional back-sheets. Electrical insulation tests were conducted using 0.85 mm thick stainless steel sheets as a model for a cell. It was found that a polymer layer thickness of about 0.33mm provided better high voltage electrical insulation than a combined film of Tedla (0.038 mm)/PET (0.051 mm)/EVA (0.55 mm). When formulated with a white pigment, reflectivity was comparable to Tedlar{trademark}. Upon accelerated exposure to light at 60C and 60% RH it was found that an EVA layer in front of these materials would decompose before significant yellowing and delamination of the back EPDM layer occurs.

  20. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01T23:59:59.000Z

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  1. Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

  2. Microfluidic electrochemical reactors

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Mitrovski, Svetlana M. (Urbana, IL)

    2011-03-22T23:59:59.000Z

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  3. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect (OSTI)

    None

    2012-02-24T23:59:59.000Z

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  4. A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    A Feasibility Analysis for the Design of A Low-Cost High-Power Energy Storage System Travis Mc://www.funginstitute.berkeley.edu/sites/default/ les/EnergyStorageSystem.pdf May 3, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664 of existing systems. Energy storage is a viable method for increasing the e ciency of a broad range of systems

  5. Testing the normality of the gravitational wave data with a low cost recursive estimate of the kurtosis

    E-Print Network [OSTI]

    E. Chassande-Mottin

    2002-12-02T23:59:59.000Z

    We propose a monitoring indicator of the normality of the output of a gravitational wave detector. This indicator is based on the estimation of the kurtosis (i.e., the 4th order statistical moment normalized by the variance squared) of the data selected in a time sliding window. We show how a low cost (because recursive) implementation of such estimation is possible and we illustrate the validity of the presented approach with a few examples using simulated random noises.

  6. A New Method of Low Cost Production of Ti Alloys to Reduce Energy...

    Energy Savers [EERE]

    of TiH 2 in (a) hydrogen, (b) vacuum (SEM ) Refine grain sizes by controlling H 2 content and phase transformation in as-sintered state High density - >99% ...

  7. Un/DoPack: Re-Clustering of Large System-on-Chip Designs with Interconnect Variation for Low-Cost FPGAs

    E-Print Network [OSTI]

    Lemieux, Guy

    to offer separate low-cost and resource-rich families. For a similar number of logic elements (LEs. This is demonstrated by Table 1, where the low-cost Cyclone family offers significant savings. Unfortunately, some designs may fit within the Cyclone LE and memory capacity limits but not within the routing capacity

  8. Architecture of a Small Low-Cost Satellite D. Del Corso, C. Passerone, L. M. Reyneri, C. Sanso`e, M. Borri, S. Speretta, M. Tranchero

    E-Print Network [OSTI]

    ones, such as solar panels and antennas. The tem- perature range inside the satellite is [+30,+70] CArchitecture of a Small Low-Cost Satellite D. Del Corso, C. Passerone, L. M. Reyneri, C. Sanso`e, M satellite that we have developed. The main design cri- teria were low cost and fault tolerance, which have

  9. Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

    2001-09-30T23:59:59.000Z

    This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

  10. Tunable Electrochemical Properties of Fluorinated Graphene. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Electrochemical Properties of Fluorinated Graphene. Tunable Electrochemical Properties of Fluorinated Graphene. Abstract: The structural and electrochemical properties of...

  11. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10T23:59:59.000Z

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  12. Building America Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California (Fact Sheet), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future of CSP:BrookhavenHygrothermal Performance of aLow-Cost

  13. A Low-cost Audio Computer for Information Dissemination among Illiterate People Groups

    E-Print Network [OSTI]

    Chen, Peter M.

    -shaking experiments at the first resonant frequency (13.9 kHz) demonstrated that the generated charge is proportional. The corresponding energy density is 0.74 mW-h/cm2 , which compares favorably to current chemical batteries (i source), electromagnetic fields (used in RFID tags, inductively powered smart cards, etc.), thermal

  14. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14T23:59:59.000Z

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  15. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. (Spire Corp., Bedford, MA (United States))

    1993-04-01T23:59:59.000Z

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  16. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    S. D. Vora

    2008-02-01T23:59:59.000Z

    Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

  17. Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentation

  18. Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms

  19. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Technologies| Department of

  20. Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopmentEnergy Systems |

  1. Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergy

  2. Renewable Low-Cost Carbon Fiber Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of

  3. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    DOE Patents [OSTI]

    Gering, Kevin L

    2013-08-27T23:59:59.000Z

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  4. Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    S.D. Vora

    2003-02-28T23:59:59.000Z

    Tasks carried out during the first six months of the program are summarized. Development of seal-less cells with increased power density at lower operating temperature (800 C) was started. This required a new cell design and investigation of new cell materials. Conceptual design of the generator and balance of plant (BOP) for a residential system was initiated. Attachment 1 describes the progress in cell development and Attachments 2 and 3 deal with status of the generator and BOP design. Overall progress during the first six months and plans for future work are summarized in Attachment 4.

  5. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-10-19T23:59:59.000Z

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion.

  6. Bio-oil Upgrading with Novel Low Cost Catalysts Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyand SustainedBio-Oil Deployment in the Home Heating is

  7. Building America Top Innovations Hall of Fame Profile Â… Low-Cost Ventilation in Production Housing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronic HeatingManagement ofTheHomes'research

  8. Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartmentPresentationThis presentation, which

  9. Low Cost Carbon Fiber Research in the ALM Materials Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia yofof1

  10. Low Cost Carbon Fiber Research in the LM Materials Program Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia

  11. ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.of Energy251 Assessment of the|

  12. On the Path to Low Cost Renewable Fuels, an Important Breakthrough |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil's Impact on Our NationalCombustion |Department of

  13. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSaw What? Saw

  14. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSaw What?Department of

  15. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSaw What?Department

  16. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSaw

  17. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSawDepartment of

  18. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSawDepartment

  19. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSawDepartmentCarbon

  20. FY 2008 Progress Report for Lightweighting Materials - 7. Low-Cost Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative GeologicReportingEnergy3,EnergyMetals-Steel |Fiber |

  1. FY 2009 Progress Report for Lightweighting Materials - 7. Low-Cost Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1. Recycling FY 2009 ProgressFiber |

  2. DOE Issues 2 Requests for Information on Low-Cost Hydrogen Production and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment of Energy

  3. Combustion/Materials Durability Relationships for Improved Low-Cost Clean Cookstoves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"DepartmentToward Targets ofDOE Cookstove

  4. Development and Commercialization of a Novel Low-Cost Carbon Fiber |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermalEnergy Aaand

  5. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials DevelopmentDepartment of

  6. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials DevelopmentDepartment ofDepartment

  7. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials DevelopmentDepartment

  8. Development of a Low Cost Ultra Specular Advanced Polymer Film Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries withAbstract

  9. Develpment of a low Cost Method to Estimate the Seismic Signiture of a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries1000:Light-Weight, and

  10. Print-based Manufacturing of Integrated, Low Cost, High Performance SSL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation: Hubs+DepartmentDepartment ofJAN 18Luminaries |

  11. Low Cost Components: Advanced High Power & High Energy Battery Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia10 DOE09

  12. Low Cost High Concentration PV Systems for Utility Power Generation Amonix,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos Angeles County,Energia10Inc. |

  13. Low Cost PEM Fuel Cell Metal Bipolar Plates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo Garcia,Cost PEM

  14. Low Cost SiOx-Graphite and High Voltage Spinel Cathode | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo

  15. Low Cost SiOx-Graphite and Olivine Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE Vehicle

  16. Low Cost SiOx-Graphite and Olivine Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo10 DOE Vehicle09

  17. Low-Cost Carbon-Fiber Integration / Users Facility and Commercialization of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTimTextile Precursors |

  18. Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTimTextile

  19. Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of Energy Graphite and

  20. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of Energy Graphite

  1. Low-Cost Packaged CHP System with Reduced Emissions - Fact Sheet, 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment of

  2. Low-Cost Packaged CHP System with Reduced Emissions - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCummins Power Generation, June

  3. Low-Cost Self-Cleaning Coatings for CSP Collectors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCummins Power Generation,

  4. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCummins

  5. Low-Cost, Haziness-Free, Transparent Insulation Based On a Porous Silica

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCumminsMaterial | Department

  6. Low-Cost, Lightweight Solar Concentrators FY13 Q2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCumminsMaterial |Cost,Cost,

  7. Low-Cost, Robust Ceramic Membranes for Gas Separation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment ofCumminsMaterial

  8. Variable-Speed, Low-Cost Motor for Residential HVAC Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of InnovativeofEnergy Variable-Speed,

  9. Energy Department Announces up to $4 Million to Advance Low-Cost Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEM Education | Department of EnergyProduction

  10. Harsh-environment, Low-cost Sensor Technology for Engine and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson Year PursuitHarnessing

  11. A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA FewA LIMITEDA LittleLook

  12. A New Low-Cost Measurement Platform for Urea Quality Monitoring |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA

  13. Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of1.1Energy DPF forWorkshopDepartment|Clean

  14. Solid State Processing of New Low Cost Titanium Powders Enabling Affordable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2CycleofAutomotive Components |

  15. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of Energy Investing for Energy EfficiencyEnergy

  16. Identification of design requirements for a high-performance, low-cost, passive prosthetic knee through user analysis and dynamic simulation

    E-Print Network [OSTI]

    Narang, Yashraj S. (Yashraj Shyam)

    2013-01-01T23:59:59.000Z

    In January 2012, a partnership was initiated between the Massachusetts Institute of Technology and Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS, a.k.a., Jaipur Foot) to design a high-performance, low-cost, passive ...

  17. Low-cost Accelerometers for Robotic Manipulator Perception Morgan Quigley, Reuben Brewer, Sai P. Soundararaj, Vijay Pradeep, Quoc Le, and Andrew Y. Ng

    E-Print Network [OSTI]

    Ng, Andrew Y.

    Low-cost Accelerometers for Robotic Manipulator Perception Morgan Quigley, Reuben Brewer, Sai P pair of joints and infers the joint angles using an M. Quigley, S. P. Soundararaj, Q. Le, and A. Y. Ng

  18. Finished Prokaryotic Genome Assemblies from a Low-cost Combination of Short and Long Reads (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Yin, Shuangye (Broad Institute)

    2013-02-11T23:59:59.000Z

    Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  19. Micro-forging technique for rapid, low-cost manufacture of lens array molds and its application in a biomedical instrument

    E-Print Network [OSTI]

    Saez, Miguel Angel

    2007-01-01T23:59:59.000Z

    Interest in micro-optical components for applications ranging from telecommunications to the life sciences has driven the need for accessible, low-cost fabrication techniques. Most micro-lens fabrication processes are ...

  20. A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors for Minimally-Invasive Surgery

    E-Print Network [OSTI]

    A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors-manufacturing alignment and assembly. The sensor and its custom-fabricated signal conditioning circuitry fit within a 1x1x

  1. Design and engineering of low-cost centimeter-scale repeatable and accurate kinematic fixtures for nanomanufacturing equipment using magnetic preload and potting

    E-Print Network [OSTI]

    Watral, Adrienne

    2011-01-01T23:59:59.000Z

    This paper introduces a low-cost, centimeter-scale kinematic coupling fixture for use in nanomanufacturing equipment. The fixture uses magnetic circuit design techniques to optimize the magnetic preload required to achieve ...

  2. Lessons Learned: Using Low Cost, Uncooled Infrared Cameras for the Rapid Liquid Level Assessment of Chemical UXO and Storage Vessels

    SciTech Connect (OSTI)

    Young, Kevin Larry

    2002-09-01T23:59:59.000Z

    During the fall of 2001, the U.S. Army used low-cost infrared cameras provided by the INEEL to image 3190 aging ton shipping containers to determine if any contained liquid, possibly trace amounts of hazardous mustard agent. The purpose of the scan was to provide quick, "hands-off" assessment of the water-heater-sized containers before moving them with a crane. If the thermal images indicated a possible liquid level, extra safety precautions would be taken prior to moving the container. The technique of using infrared cameras to determine liquid levels in large storage tanks is well documented, but the application of this technique to ton shipping containers (45 to 1036 liters) and even smaller individual chemical munitions (2 to 4 liters) is unique and presents some interesting challenges. This paper describes the lessons learned, problems encountered and success rates associated with using low-cost infrared cameras to look for liquid levels within ton shipping containers and individual chemical munitions.

  3. Conducting polymers as potential active materials in electrochemical supercapacitors

    SciTech Connect (OSTI)

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. [Los Alamos National Lab., NM (United States); Ferraris, J.P. [Texas Univ., Richardson, TX (United States). Dept. of Chemistry

    1992-12-01T23:59:59.000Z

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  4. Conducting polymers as potential active materials in electrochemical supercapacitors

    SciTech Connect (OSTI)

    Rudge, A.; Davey, J.; Raistrick, I.; Gottesfeld, S. (Los Alamos National Lab., NM (United States)); Ferraris, J.P. (Texas Univ., Richardson, TX (United States). Dept. of Chemistry)

    1992-01-01T23:59:59.000Z

    Electronically,conducting polymers represent an interesting class of materials for use in electrochemical capacitors because of the combination of high capacitive energy density and low materials cost. Three generalized types of electrochemical capacitors can be constructed using conducting polymers as active material, and in the third of these, which utilizes conducting polymers that can be both n- and p-doped, energy densities of up to 40 watt-hours per kilogram of active material on both electrodes have been demonstrated.

  5. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1999-01-01T23:59:59.000Z

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  6. High efficiency low cost thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, B.L.

    1999-04-27T23:59:59.000Z

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  7. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    2001-01-01T23:59:59.000Z

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  8. Nanoelectrode array for electrochemical analysis

    DOE Patents [OSTI]

    Yelton, William G. (Sandia Park, NM); Siegal, Michael P. (Albuquerque, NM)

    2009-12-01T23:59:59.000Z

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  9. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect (OSTI)

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24T23:59:59.000Z

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  10. Electrochemical cell stack assembly

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2010-06-22T23:59:59.000Z

    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  11. Low cost power augmentation by water injection on dual fuel gas turbines

    SciTech Connect (OSTI)

    Statler, W.O.; McReynolds, B.

    1995-12-31T23:59:59.000Z

    It is {open_quotes}common knowledge{close_quotes} that the power output of a combustion turbine (gas turbine) can be increased by as much as ten percent above the {open_quotes}dry{close_quotes} output by injecting water into the combustion zone. This enhancement is particularly useful during periods of high inlet air temperature when the turbine output is lowered due to the reduced air flow of the lower density hot air. The additional mass flow of water will partially offset the reduction of air mass flow. The specific heat of the water vapor (roughly twice that of air) allows increased fuel (and output) at approximately twice the rate of that which would result if the air mass flow were increased by a lower inlet air temperature. It is often a big step from {open_quotes}common knowledge{close_quotes} to actual practice and that step is the subject of this paper. In the summer of 1994 the Lincoln Electric System (L.E.S.), a public utility serving Lincoln, Nebraska ran operational tests on their 1974 G.E. MS-7001B gas turbine with water injection on natural gas fuel. The results proved the {open_quotes}common knowledge{close_quotes} in that the {open_quotes}wet{close_quotes} power was increased by approximately 9% above the {open_quotes}dry{close_quotes} power when the water/fuel mass flow ratio was held to a fairly conservative 1.2/1.0. Further testing, in August of 1995, confirmed these results. Test set for October, 1995, will check the injection system while operating on oil fuel. In this case, the water injection is intended as a NOx reduction measure only with the water/fuel ratio being held to a maximum of 0.5/1.0. The {open_quotes}wet{close_quotes} power is expected to increase by 4%. The utility is also planning tests on a similar system being installed on a Westinghouse model 251 gas turbine.

  12. Planar electrochemical device assembly

    DOE Patents [OSTI]

    Jacobson; Craig P. (Lafayette, CA), Visco; Steven J. (Berkeley, CA), De Jonghe; Lutgard C. (Lafayette, CA)

    2010-11-09T23:59:59.000Z

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  13. Planar electrochemical device assembly

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-06-19T23:59:59.000Z

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  14. A low-cost optical sensing device based on paired emitter-detector light emitting diodes. Analytica Chimica Acta 2006

    E-Print Network [OSTI]

    King-tong Lau; Susan Baldwin; Roderick Shepherd; William J. Yerazunis; Shinichi Izuo; Satoshi Ueyama; Dermont Diamond; Emitter-detector Leds; King-tong Lau; Susan Baldwin; Roderick Shepherd; William J; Shinichi Izuo; Satoshi Ueyama; Dermot Diamond

    A low power, high sensitivity, very low cost light emitting diode (LED) based device for intensity based light measurements is described. In this approach, a reverse-biased LED functioning as a photodiode, is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in us) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1(+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. this light intensity dependent discharge process has been applied to measuring concentrations of coloured solutions and a mathematical model developed based on the Beer-Lambert Law.

  15. Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers

    SciTech Connect (OSTI)

    Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

    2008-05-15T23:59:59.000Z

    A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

  16. Low Cost Heliostat Development

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  17. Allegations that low-cost solar space heating systems are being ruled out in the solar in Federal Buildings Demonstration Program

    SciTech Connect (OSTI)

    Not Available

    1981-10-28T23:59:59.000Z

    Results are given of an examination of allegations that Marshall Space Flight Center, in its role as technical reviewer for the DOE, arbitrarily recommended requirements which would effectively rule out the use of low-cost solar space heating systems in the solar in Federal Buildings Demonstration Program. The examination addressed whether Marshall's recommended requirements and its evaluation of the low-cost system in question were based on supporting criteria and data, and was not a technical assessment of the allegations. It was concluded that Marshall's recommended requirements and evaluation of the low-cost system in question were indeed based on supporting criteria and data, and were based on guidelines commonly used in the heating and cooling industry and on data collected by eight independent laboratories. The background information, a discussion of the findings, and a chronology of key events surrounding Marshall's recommended requirements and its evaluation are presented. (LEW)

  18. On Ex Situ NMR: Developing portable low-cost and/or single sided NMR/MRI

    SciTech Connect (OSTI)

    Demas, V; Herberg, J; Maxwell, R; Pines, A; Reimer, J

    2006-06-09T23:59:59.000Z

    Nuclear magnetic resonance spectroscopy (NMR) is of unsurpassed versatility in its ability to non-destructively probe for chemical identity. Portable, low-cost NMR sensors would enable on site identification of potentially hazardous substances, such as signatures from production of nuclear, chemical, and biological weapon agents, narcotics, explosives, toxins, and poisons. There exist however problems that need to be considered in the case of such sensors: (a) small-scale magnets produce inhomogeneous magnetic fields and therefore undesired Larmor frequency distributions that conceal much of the useful spectral information, and (b) sensitivity in most experiments decreases due to the inherently low and strongly inhomogeneous fields associated with portable instruments. Our approach is to: (a) try to improve the field of low cost magnets either with hardware (e.g. magnet design and construction of ''shim coils'') or via special pulse sequences, where the field is ''effectively shimmed'' to appear homogeneous to the sample, and (b) to use microcoils to improve sensitivity and to allow focusing in smaller regions and therefore smaller static field variations. We have been working in setting up a table top, 2-Tesla permanent Halbach magnet system for tabletop NMR. The Spectrometer console is a Tecmag Apollo, controlled by a dell notebook. Currently an external linear chemagnetics rf amplifier is being used, though the power requirements for our system are quite low (a few Watts). The Magnetic Resonance lab in LLNL, has developed several types and sizes of microcoils, which have been proven to perform well for NMR experiments. We have evaluated an rf, 360 {micro}m O.D., microcoil probe that was built previously. We have finished mapping the magnetic field of the magnet. In the optimal position (in terms of field quality), the field inhomogeneity was at 17ppm. Preliminary fluorine spectra with a resolved two peak separation have now been obtained. For the field, as mapped, we have initial designs of first degree shimming, or gradient coils (linear correction to the field). We have calculated ''shim pulses'' to effectively shim the mapped field, for ideal gradient coils. These calculations will be repeated after the coils will be built and evaluated.

  19. A survey of potential low-cost concentrator concepts for use in low-temperature water detoxification

    SciTech Connect (OSTI)

    Wendelin, T.

    1991-12-01T23:59:59.000Z

    Several different concentrator concepts have been considered for use in the detoxification of chemically contaminated water. The reactions of interest are predominantly photocatalytic in nature and are driven by low concentrations (between 1 and 50 suns) of UV radiation in the 300- to 385-nm wavelength range. Optical performance characteristics of these concentrators are thus somewhat different compared to concentrators developed for industrial process heat and electrical energy production. Relaxed optical tolerances might lead to reductions in concentrator cost that, when integrated into overall field system cost, could make the solar-driven process competitive with current UV lamp technology. Aspects of the concentrator system that might realize cost reductions include the concentrating element, the support structure, the tracking and drive system, the manufacturing processes, and the installation procedures. Several ideals have been resurrected from earlier research in the Solar Thermal Program where the need for more stringent optical performance requirements led to a decline or even an end to further investigation. In light of this new application, the most promising of these ideas are presented, including a description and a discussion of the cost and performance trade-offs. In addition, the results of recent investigate research on several of these concepts will be presented. The concepts include a low-cost parabolic trough, the inflatable line-focus concentrator, and the holographic concentrator. 16 refs., 5 figs.

  20. Low Cost Sorbent for Capturing CO{sub 2} Emissions Generated by Existing Coal-fired Power Plants

    SciTech Connect (OSTI)

    Elliott, Jeannine

    2013-08-31T23:59:59.000Z

    TDA Research, Inc. has developed a novel sorbent based post-combustion CO{sub 2} removal technology. This low cost sorbent can be regenerated with low-pressure (ca. 1 atm) superheated steam without temperature swing or pressure-swing. The isothermal and isobaric operation is a unique and advantageous feature of this process. The objective of this project was to demonstrate the technical and economic merit of this sorbent based CO{sub 2} capture approach. Through laboratory, bench-scale and field testing we demonstrated that this technology can effectively and efficiently capture CO{sub 2} produced at an existing pulverized coal power plants. TDA Research, Inc is developing both the solid sorbent and the process designed around that material. This project addresses the DOE Program Goal to develop a capture technology that can be added to an existing or new coal fired power plant, and can capture 90% of the CO{sub 2} produced with the lowest possible increase in the cost of energy. .

  1. Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor for Robotic Manipulation

    E-Print Network [OSTI]

    Todorov, Emanuel

    Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor fingertip force sensor for robotic manipulation. Our design makes the most of 3D printing technology sensor features a detachable fingertip made of 3D- printed materials, and a cantilever mechanism

  2. A low-cost localization system based on Artificial Landmarks Claudio dos S. Fernandes, Mario F. M. Campos and Luiz Chaimowicz

    E-Print Network [OSTI]

    Chaimowicz, Luiz

    A low-cost localization system based on Artificial Landmarks Cl´audio dos S. Fernandes, Mario F. M for improving the Turtlebot1 mobile robot localization system for navigation in unknown structured environments in the environment ceiling. Although the use of artificial landmarks restricts the applicability of this methodology

  3. 208 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 5, MAY 2001 Novel Low-Cost Ultra-Wideband, Ultra-Short-Pulse

    E-Print Network [OSTI]

    Arslan, Hüseyin

    208 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 11, NO. 5, MAY 2001 Novel Low-Cost Ultra communications applica- tions. An UWB, ultra-short-pulse radar has spectrum extending from very low to very high-Wideband, Ultra-Short-Pulse Transmitter with MESFET Impulse-Shaping Circuitry for Reduced Distortion and Improved

  4. SPECIAL ISSUE OF IEEE PROCEEDINGS -RFID -A UNIQUE RADIO INNOVATION FOR THE 21ST CENTURY 1 Low Cost, Ubiquitous RFID Tag Antenna Based

    E-Print Network [OSTI]

    Entekhabi, Dara

    conditions, in effect creating a non-electric memory to monitor state. After identifying the application for low-cost, ubiquitous wireless sensing. Current wireless sensing applications make use of battery the supply chain with a $20 temperature sensor. Battery powered sensors have limited battery life [6

  5. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007

    SciTech Connect (OSTI)

    Tucker, R.

    2008-04-01T23:59:59.000Z

    Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

  6. Dye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light-

    E-Print Network [OSTI]

    Dye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light- to-electricity conversion in indoors low light-to -electricity conversion efficiency in early implementations under AM1.5 solar light. Easy

  7. Electrochemical Hydrogen Compression (EHC) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleateElectrochemical Hydrogen Compression (EHC)

  8. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2014-11-01T23:59:59.000Z

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.” The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  9. Construction and installation of low-cost energy-conservation devices on existing residential structures. Final report

    SciTech Connect (OSTI)

    None

    1983-01-01T23:59:59.000Z

    Through the Neighborhood Housing Services, Incorporated of Charlotte, a series of hands-on workshops and a demonstration site was provided to enable residents of the Plaza-Midwood Neighborhood to build and install a variety of low-cost, durable, small scale, energy conservation systems. This experimental approach enabled homeowners to apply specific technologies to their own homes. These cost effective measures were designed to encourage both self reliance and the use of renewable resources. The weekend projects included protected entry, numerous moveable window insulation devices, solar air collector/greenhouse, window greenhouse and water storage tubes. The building used for retrofit was the office for the Neighborhood Housing Services (NHS), a non-profit corporation formed to help revitalize residential structures and maintain the economic, racial, and social character of existing neighborhoods. The particular neighborhood involved was Plaza-Midwood and covers approximately a 2 square mile area. The neighborhood housing stock is of the 1910 to 1940 variety with the predominate architectual style being bungalow frame, having 1000 to 1900 square feet in area. The neighborhood is a racially integrated one, with about 70% of the residents being homeowners. An estimated 1700 housing units are in this area. The NHS office presently serves as a resource center for area residents who need loans and/or construction assistance. Providing a continuing educational program is a function of this organization. The Grant provided a significant contribution as a resource for energy conservation mined residents. A resource room displaying procedures and diagrams for the various projects in this proposal was established. Additional resource literature was provided and used by local residents.

  10. Electrochemical micro sensor

    DOE Patents [OSTI]

    Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

    1989-09-12T23:59:59.000Z

    A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

  11. Electrochemical membrane incinerator

    DOE Patents [OSTI]

    Johnson, Dennis C. (Ames, IA); Houk, Linda L. (Ames, IA); Feng, Jianren (Ames, IA)

    2001-03-20T23:59:59.000Z

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  12. Electrochemical fabrication of capacitors

    DOE Patents [OSTI]

    Mansour, Azzam N. (Fairfax Sta., VA); Melendres, Carlos A. (Lemont, IL)

    1999-01-01T23:59:59.000Z

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  13. Electrochemical Membrane Incinerator

    SciTech Connect (OSTI)

    Johnson, Dennis C.; Houk, Linda L.; Feng, Jianren

    1998-12-08T23:59:59.000Z

    Electrochemical incineration of benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 {micro}g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called ''supporting electrolyte'' was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  14. Electrochemical fabrication of capacitors

    SciTech Connect (OSTI)

    Mansour, A.N.; Melendres, C.A.

    1999-12-14T23:59:59.000Z

    A film of nickel oxide is anodically deposited on a graphite sheet held in position on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  15. Separators for electrochemical cells

    DOE Patents [OSTI]

    Carlson, Steven Allen; Anakor, Ifenna Kingsley

    2014-11-11T23:59:59.000Z

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Preferably, the inorganic oxide comprises an hydrated aluminum oxide of the formula Al.sub.2O.sub.3.xH.sub.2O, wherein x is less than 1.0, and wherein the hydrated aluminum oxide comprises organic substituents, preferably comprising a reaction product of a multifunctional monomer and/or organic carbonate with an aluminum oxide, such as pseudo-boehmite and an aluminum oxide. Also provided are electrochemical cells comprising such separators.

  16. Development of a Low-Cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications

    SciTech Connect (OSTI)

    Michel Foure, Scott Gaboury, Jim Goldbach, David Mountz and Jung Yi (no longer with company)

    2008-01-31T23:59:59.000Z

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60şC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which – in principle – could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80şC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120şC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council protocols. M41 MEAs shown sizeable advantages over PFSA MEAs in the Open Circuit Voltage Hold test, Relative Humidity Cycling test and the Voltage Cycling test. The main known limitation of the M41 family is its ability to function well at low RH.

  17. Low-Cost Solar Array Project. Progress report 14, August 1979-December 1979 and proceedings of the 14th Project Integration Meeting

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Progress made by the Low-Cost Solar Array Project during the period August through November 1979, is described. Progress on project analysis and integration; technology development in silicon material, large-area sheet silicon, and encapsulation; production process and equipment development; engineering, and operations, and the steps taken to integrate these efforts are detailed. A report on the Project Integration Meeting held December 5-6, 1979, including copies of the visual materials used, is presented.

  18. Joint Development of Coated Conductor and Low Cost Thin Film Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-007-213

    SciTech Connect (OSTI)

    Bhattacharya, R.

    2011-02-01T23:59:59.000Z

    UES plans on developing CIGS thin films by using Metal Organic Deposition (MOD) technique as it is a low-cost, non-vacuum method for scale-up to large area PV modules. NREL will support UES, Inc. through expert processing, characterization and device fabrication. NREL scientists will also help develop a processing phase diagram which includes composition, film thickness, annealing temperature and ambient conditions. Routine measurements of devices and materials will be done under NREL's core support project.

  19. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  20. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    SciTech Connect (OSTI)

    DR. DEVIN MACKENZIE

    2011-12-13T23:59:59.000Z

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost performance, and reductions in operating voltage through thinner and higher uniformity active device layers. We have now installed a pilot encapsulation system at AVI for controlled, high throughput lamination encapsulation of flexible OLEDs in a novel process. Along with this, we have developed, with our materials supply partners, adhesives, barrier films and other encapsulation materials and we are showing total air product lifetimes in the 2-4 years range from a process consistent with our throughput goals of {approx}1M device per month ({approx}30,000 sq. ft. of processed OLEDs). Within the last year of the project, we have been working to introduce the manufacturing improvements made in our LEP deposition and annealing process to our commercial partners. Based on the success of this, a pilot scale-up program was begun. During this process, Add-Vision was acquired by a strategic partner, in no small part, because of the promise of future success of the technology as evidenced by our commercial partners pilot scale-up plans. Overall, the performance, manufacturing and product work in this project has been successful. Additional analysis and device work at LBL has also shown a unique adhesion change with device bias stressing which may result from active layer polymer cross-linking during bias stressing of device. It was shown that even small bias stresses, as a fraction of a full device lifetime stress period, result in measurable chemical change in the device. Further work needs to be conducted to fully understand the chemical nature of this interaction. Elucidation of this effect would enable doped OLED formulation to be engineered to suppress this effect and further extend lifetimes and reduce voltage climb.

  1. Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch

    SciTech Connect (OSTI)

    Spalding, Mark A [The Dow Chemical Company

    2014-08-27T23:59:59.000Z

    The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

  2. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

    1997-01-01T23:59:59.000Z

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  3. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    SciTech Connect (OSTI)

    Cairns, Elton J.; Hietbrink, Earl H.

    1981-01-01T23:59:59.000Z

    This section includes some historical background of the rise and fall and subsequent rebirth of the electric vehicle; and a brief discussion of current transportation needs, and environmental and energy utilization issues that resulted in the renewed interest in applying electrochemical energy conversion technology to electric vehicle applications. Although energy utilization has evolved to be the most significant and important issue, the environmental issue will be discussed first in this section only because of its chronological occurrence. The next part of the chapter is a review of passenger and commercial electric vehicle technology with emphasis on vehicle design and demonstrated performance of vehicles with candidate power sources being developed. This is followed by a discussion of electrochemical power source requirements associated with future electric vehicles that can play a role in meeting modern transportation needs. The last part of the chapter includes first a discussion of how to identify candidate electrochemical systems that might be of interest in meeting electric vehicle power source requirements. This is then followed by a review of the current technological status of these systems and a discussion of the most significant problems that must be resolved before each candidate system can be a viable power source.

  4. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    DOE Patents [OSTI]

    Gering, Kevin L.

    2013-01-01T23:59:59.000Z

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  5. Electrochemical, Structural and Surface Characterization of Nickel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrochemical, Structural and Surface Characterization of NickelZirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Electrochemical, Structural and Surface...

  6. Facile and controllable electrochemical reduction of graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and controllable electrochemical reduction of graphene oxide and its applications. Facile and controllable electrochemical reduction of graphene oxide and its applications....

  7. Advanced Hybrid Water Heater using Electrochemical Compressor...

    Energy Savers [EERE]

    Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

  8. MAKO: a pathfinder instrument for on-sky demonstration of low-cost 350 micron imaging arrays

    E-Print Network [OSTI]

    Swenson, Loren J; Dowell, Charles D; Eom, Byeong H; Hollister, Matthew I; Jarnot, Robert; Kovăcs, Attila; Leduc, Henry G; McKenney, Christopher M; Monroe, Ryan; Mroczkowski, Tony; Nguyen, Hien T; Zmuidzinas, Jonas; 10.1117/12.926223

    2012-01-01T23:59:59.000Z

    Submillimeter cameras now have up to $10^4$ pixels (SCUBA 2). The proposed CCAT 25-meter submillimeter telescope will feature a 1 degree field-of-view. Populating the focal plane at 350 microns would require more than $10^6$ photon-noise limited pixels. To ultimately achieve this scaling, simple detectors and high-density multiplexing are essential. We are addressing this long-term challenge through the development of frequency-multiplexed superconducting microresonator detector arrays. These arrays use lumped-element, direct-absorption resonators patterned from titanium nitride films. We will discuss our progress toward constructing a scalable 350 micron pathfinder instrument focusing on fabrication simplicity, multiplexing density, and ultimately a low per-pixel cost.

  9. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14T23:59:59.000Z

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  10. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  11. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  12. Electrochemical photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, Terje A. (East Patchogue, NY)

    1984-01-01T23:59:59.000Z

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect (OSTI)

    Mattos, L.

    2012-03-01T23:59:59.000Z

    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  14. DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartmentWorkshop |2024 Date:

  15. Q&A: FORGE-ing Ahead to Clean, Low-Cost Geothermal Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergyProvidingPumpkin Power: Turning2 DOE

  16. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  17. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  18. Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Annual Technical Progress Report, Phase 1, 22 October 2002-30 September 2003

    SciTech Connect (OSTI)

    Agro, S. C.; Tucker, R. T.

    2004-03-01T23:59:59.000Z

    The primary objectives of this subcontract are for Specialized Technology Resources, Inc., to work with U.S.-based PV module manufacturers representing crystalline silicon, polycrystalline silicon, amorphous silicon, copper indium diselenide (CIS), and other state-of-the-art thin-film technologies to develop formulations, production processes, prototype and qualify new low-cost, high-performance photovoltaic module encapsulants/packaging materials. The manufacturers will assist in identifying each materials' deficiencies while undergoing development, and then ultimately in qualifying the final optimized materials designed to specifically meet their requirements. Upon completion of this program, new low-cost, high-performance, PV module encapsulant/packaging materials will be qualified, by one or more end-users, for their specific application. Information gathering on topics related to thin-film module technology, including device performance/failure analysis, glass stability, and de vice encapsulation, has been completed. This information has provided concepts and considerations for module failure analysis, accelerated testing design, and encapsulation formulation strategy for thin-film modules.

  19. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOE Patents [OSTI]

    Kunz, Harold R. (Vernon, CT); Breault, Richard D. (Coventry, CT)

    1993-01-01T23:59:59.000Z

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  20. Final report for contract research on electrochemical capacitors based on conducting polymers, January 15--August 31, 1992

    SciTech Connect (OSTI)

    Ferraris, J.P. [Texas Univ., Dallas, TX (United States). Dept. of Chemistry

    1992-10-22T23:59:59.000Z

    Conducting polymers (CPs) have attracted attention as potentially useful materials for electrochemical capacitors due to their high energy storage capacity and their comparatively low cost. During the course of this research the authors explored a number of poly(heteroaromatic) systems, in conjunction with several nonaqueous electrolytes, that could be used as active materials in electrochemical capacitors. They identified a new configuration for such capacitors based on p- and n-dopable polymers and prepared a number4r of such materials. A new electrolyte, TMATFMS, which facilitates n-doping in these polymers was also synthesized and tested. A patent disclosure on these discoveries has been filed with Mr. Ray Wilson of LANL.

  1. Process for electrochemically gasifying coal

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.

    1985-10-25T23:59:59.000Z

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  2. Renewable-reagent electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.B.

    1999-08-24T23:59:59.000Z

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

  3. Renewable-reagent electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

    1999-01-01T23:59:59.000Z

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  4. Electrochemical catalyst recovery method

    DOE Patents [OSTI]

    Silva, L.J.; Bray, L.A.

    1995-05-30T23:59:59.000Z

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  5. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Environmental Management (EM)

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap...

  6. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect (OSTI)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30T23:59:59.000Z

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of ?1.5 kV with falltime 3 ns and risetime 15 ns into a 50? load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  7. Development of Electrochemical Micro Machining

    E-Print Network [OSTI]

    Srinivas Sundarram, Sriharsha

    2008-10-10T23:59:59.000Z

    . Micro electrochemical machining (µECM) removes material while holding micron tolerances and µECM can machine hard metals and alloys. This study aims at developing a novel µECM utilizing high frequency voltage pulses and closed loop control... DEVELOPMENT OF ELECTROCHEMICAL MICRO MACHINING A Thesis by SRIHARSHA SRINIVAS SUNDARRAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  8. Supported liquid membrane electrochemical separators

    DOE Patents [OSTI]

    Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

    1986-01-01T23:59:59.000Z

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  9. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01T23:59:59.000Z

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  10. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01T23:59:59.000Z

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  11. Final report on LDRD project: Low-cost Pd-catalyzed metallization technology for rapid prototyping of electronic substrates and devices

    SciTech Connect (OSTI)

    Chen, K.S.; Morgan, W.P.; Zich, J.L.

    1998-02-01T23:59:59.000Z

    A low-cost, thermally-activated, palladium-catalyzed metallization process was developed for rapid prototyping of polymeric electronic substrates and devices. The process was successfully applied in producing adhesiveless copper/polyimide laminates with high peel strengths and thick copper coating; copper/polyimide laminates are widely used in fabricating interconnects such as printed wiring boards (PWBs) and flexible circuits. Also successfully metallized using this low-cost metallization process were: (1) scaled-down models of radar-and-communication antenna and waveguide; (2) scaled-down model of pulsed-power-accelerator electrode; (3) three-dimensional micro-porous, open-cell vitreous carbon foams. Moreover, additive patterned metallization was successfully achieved by selectively printing or plotting the catalyst ink only on areas where metallization is desired, and by uniform thermal activation. Additive patterned metallization eliminates the time-consuming, costly and environmentally-unfriendly etching process that is routinely carried out in conventional subtractive patterned metallization. A metallization process via ultraviolet (UV) irradiation activation was also demonstrated. In this process palladium-catalyst solution is first uniformly coated onto the substrate. A masking pattern is used to cover the areas where metallization is not wanted. UV irradiation is applied uniformly to activate the palladium catalyst and to cure the polymer carrier in areas that are not covered by the mask. Metal is then deposited by electroless plating only or by a combination of electroless and electrolytic plating. This UV-activation technique is particularly useful in additive fine-line patterned metallization. Lastly, computer models for electrolytic and electroless plating processes were developed to provide guidance in plating-process design.

  12. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09T23:59:59.000Z

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  13. Electrochemical Hydrogen Compressor

    SciTech Connect (OSTI)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01T23:59:59.000Z

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to determine the loss of membrane active sites is recommended. We suspect that the corrosion includes more than simple galvanic mechanisms. The mechanisms involved in this phenomenon are poorly understood. Shunt currents at hydraulic cathode ports were problematic, but are not difficult to cure. In addition to corrosion there is evidence of high component resistivity. This may be due to the deposition of organic compounds, which may be produced electrochemically on the surface of the metal support screens that contact carbon gas diffusion layers (GDLs) or catalyst supports. An investigation of possible electro-organic sythesis mechanisms with emphasis on oxalates formation is warranted. The contaminated cell parts can be placed in an oxidizing atmosphere at high temperature and the weight loss can be observed. This would reveal the existence of organic compounds. Investigation into the effects of conductivity enhancers such as carbon microlayers on supporting carbon paper is also needed. Corrosion solutions should be investigated such as surface passivation of 316 SS parts using nitric acid. Ultra thin silane/siloxane polymer coatings should be tried. These may be especially useful in conjunction with metal felt replacement of carbon paper. A simple cure for the very high, localized corrosion of the anode might be to diffusion bond the metal electrode support screen to bipolar plate. This will insure uniform resistance perpendicular to the plane of the cell and eliminate some of the dependence of the resistance on high stack compression. Alternative materials should be explored. Alternatives to carbon in the cell may be helpful in any context. In particular, alternatives to carbon paper GDLs such as metal felts and alternatives to carbon supports for Pt such as TiC and TiB2 might also be worthwhile and would be helpful to fuel cells as well. Some alternative to the metals we used in the cell, Mo and 316 SS, are potentially useful. These include Al/Mg/Si alloys. Corrosion resistant materials such as Nb and Mo might prove useful as cladding materials that can be hot stamp

  14. High Energy Density Capacitors

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  15. Electrochemical polishing of notches

    DOE Patents [OSTI]

    Kephart, A.R.; Alberts, A.H.

    1989-02-21T23:59:59.000Z

    An apparatus and method are disclosed for the selective electrochemical polishing of a lateral tip of a deep longitudinal notch in a work piece used to test crack initiation properties of materials. A DC power source is connected to the work piece and to an electrode disposed laterally along the distal end of an insulated body which is inserted in the longitudinal notch. The electrode and distal end of the body are disposed along the tip of the notch, but are spaced from the notch so as to provide a lateral passage for an electrolyte. The electrolyte is circulated through the passage so that the electrolyte only contacts the work piece adjacent the passage. Conveniently, the electrolyte is circulated by use of an inlet tube and an outlet tube provided at opposite ends of the passage. These tubes are preferably detachably located adjacent the ends of the passage and suitable seals are provided. A holding device including arms to which the tubes are attached is conveniently used to rapidly and easily locate the test specimen with the passage aligned with the tubes. The electrode is preferably a wire which is located in grooves along the distal end of the insulated body and up one side of the body or a plastic sheath insulated thin metal strip. 4 figs.

  16. Electrochemical NOx Sensor for Monitoring Diesel Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleateElectrochemical Hydrogen Compression

  17. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    UT-Battelle for the U.S. Department of Energy Presentationname CARBON FIBER OVERVIEW Materials LM002 Task FY 2010 Budget Industry Cost Share FY 2011 Budget Industry Cost Share...

  18. Low cost Image Transmission System

    SciTech Connect (OSTI)

    Skogmo, D.

    1994-06-01T23:59:59.000Z

    Throughout the Department of Energy (DOE) complex, sites protect themselves with intrusion detection systems. Some of these systems have sensors in remote areas. These sensors frequently alarm -- not because they have detected a terrorist skulking around the area, but because they have detected a horse, or a dog, or a bush moving in the breeze. Even though the local security force is 99% sure there is no real threat, they must assess each of these nuisance or false alarms. Generally, the procedure consists of dispatching an inspector to drive to the area and make an assessment. This is expensive in terms of manpower and the assessment is not timely. Often, by the time the inspector arrives, the cause of the alarm has vanished. A television camera placed to view the area protected by the sensor could be used to help in this assessment, but this requires the installation of high-quality cable, optical fiber, or a microwave link. Further, to be of use at the present time, the site must have had the foresight to have installed these facilities in the past and have them ready for use now. What is needed is a device to place between the television camera and a modem connecting to a low-bandwidth channel such as radio or a telephone line. This paper discusses the development of such a device: an Image Transmission System, or ITS.

  19. Low Cost Non-Reactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5investsLouisPrepared: 10/28/09 Low

  20. Electrochemically Stable Cathode Current Collectors for Rechargeable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries . Abstract:...

  1. Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO2 Nanowires and Fe2O3 Nanotubes

    E-Print Network [OSTI]

    Wang, Zhong L.

    , super- capacitors (SCs) have attracted much attention due to their high power density and exceptionally

  2. A current density distribution tool

    E-Print Network [OSTI]

    Jagush, Frederic A.

    1989-01-01T23:59:59.000Z

    . I. INTRODUCTION Current density distribution is an important consideration for those involved in electrochemical systems and electroplating in particular. In the printed wiring board (PWB) business, great emphasis is placed on the study of current... exist. Numerical techniques on the other hand, are usually easy to implement and are easily applicable to microcomputers. Their disadvantage as with any approximation technique is that the exactness of the results with This document follows the style...

  3. Electrochemical behavior of lead telluride

    SciTech Connect (OSTI)

    Danilova, M.G.; Sveshnikova, L.L.; Repinskii, S.M.

    1987-07-01T23:59:59.000Z

    The electrochemical behavior of lead telluride was studied in acidic, neutral, and alkaline solutions. It was shown that in the case of anodic polarization in 1 M NaOH the PbTe surface composition is nearly stoichiometric. During cathodic polarization in 1 M NaOH and during anodic polarization in 1 M HCl the surface layer is lead-rich. In the case of anodic polarization in 1 M HCl the surface is tellurium-rich. Cathodic polarization in 1 M NaCl leads to tellurium depletion of the surface layer. Reaction equations describing the electrochemical processes at the PbTe electrode are reported.

  4. A High-Density Seismic Network for Earthquake Early Warning in Taiwan

    E-Print Network [OSTI]

    Wu, Yih-Min

    for Taiwan to seek solutions through scientific research. The Earthquake Early Warning System (EEWS) is oneA High-Density Seismic Network for Earthquake Early Warning in Taiwan Based on Low Cost Sensors for recording strong ground motions. The Earthquake Early Warning (EEW) research group at National Taiwan Uni

  5. Robust Low-Cost Water-Gas Shift Membrane Reactor for High-Purity Hydrogen Production form Coal-Derived Syngas

    SciTech Connect (OSTI)

    James Torkelson; Neng Ye; Zhijiang Li; Decio Coutinho; Mark Fokema

    2008-05-31T23:59:59.000Z

    This report details work performed in an effort to develop a low-cost, robust water gas shift membrane reactor to convert coal-derived syngas into high purity hydrogen. A sulfur- and halide-tolerant water gas shift catalyst and a sulfur-tolerant dense metallic hydrogen-permeable membrane were developed. The materials were integrated into a water gas shift membrane reactor in order to demonstrate the production of >99.97% pure hydrogen from a simulated coal-derived syngas stream containing 2000 ppm hydrogen sulfide. The objectives of the program were to (1) develop a contaminant-tolerant water gas shift catalyst that is able to achieve equilibrium carbon monoxide conversion at high space velocity and low steam to carbon monoxide ratio, (2) develop a contaminant-tolerant hydrogen-permeable membrane with a higher permeability than palladium, (3) demonstrate 1 L/h purified hydrogen production from coal-derived syngas in an integrated catalytic membrane reactor, and (4) conduct a cost analysis of the developed technology.

  6. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    None

    2011-12-05T23:59:59.000Z

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  7. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, W.R.; Storz, L.J.

    1991-03-26T23:59:59.000Z

    An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  8. Sheet electrode for electrochemical systems

    DOE Patents [OSTI]

    Tsien, Hsue C. (Chatham Township, Morris County, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Grimes, Patrick G. (Westfield, NJ); Bellows, Richard J. (Westfield, NJ)

    1983-04-12T23:59:59.000Z

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  9. Separator material for electrochemical cells

    DOE Patents [OSTI]

    Cieslak, Wendy R. (1166 Laurel Loop NE., Albuquerque, NM 87122); Storz, Leonard J. (2215 Ambassador NE., Albuquerque, NM 87112)

    1991-01-01T23:59:59.000Z

    An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

  10. Recognized Leader in Electrochemical Purification

    SciTech Connect (OSTI)

    Hoppe, Eric

    2013-11-20T23:59:59.000Z

    PNNL scientists developed an electrochemical method for purifying copper, a key material that makes possible radiation detection systems of unprecedented sensitivity. The method begins with the purest copper materials available, and results in the lowest-background copper in the world. Chemist Eric Hoppe explains the process.

  11. Recognized Leader in Electrochemical Purification

    ScienceCinema (OSTI)

    Hoppe, Eric

    2014-07-24T23:59:59.000Z

    PNNL scientists developed an electrochemical method for purifying copper, a key material that makes possible radiation detection systems of unprecedented sensitivity. The method begins with the purest copper materials available, and results in the lowest-background copper in the world. Chemist Eric Hoppe explains the process.

  12. Very Low-Cost Internet Access Using KioskNet S. Guo, M.H. Falaki, E.A. Oliver, S. Ur Rahman, A. Seth, M.A. Zaharia, and S. Keshav

    E-Print Network [OSTI]

    California at Irvine, University of

    ) and appears to be economically viable. We estimate that our system requires a capital expenditure of $100Very Low-Cost Internet Access Using KioskNet S. Guo, M.H. Falaki, E.A. Oliver, S. Ur Rahman, A kiosks in developing regions can cost-effectively provide communication and e-governance services

  13. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOE Patents [OSTI]

    Striebel, Kathryn A. (Oakland, CA); Wen, Shi-Jie (Sunnyvale, CA)

    2000-01-01T23:59:59.000Z

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  14. Continuous-feed electrochemical cell with nonpacking particulate electrode

    DOE Patents [OSTI]

    Cooper, J.F.

    1995-07-18T23:59:59.000Z

    An electrochemical cell providing full consumption of electrochemically active particles in a nonpacking, electrolyte-permeable bed has a tapered cell cavity bounded by two nonparallel surfaces separated by a distance that promotes bridging of particles across the cavity. The gap/particle size ratio is maintained as the particles are consumed, decrease in size, and travel from the point of entry to the narrower end of the cell. A cell of this configuration supports a bed of low packing density maintained in a dynamic steady state by alternate formation and collapse of particle bridges across the gap and associated voids over the entire active area of the cell. The cell design can be applied to refuelable zinc/air cells and zinc/ferrocyanide storage batteries. 6 figs.

  15. Machinability of a Stainless Steel by Electrochemical Discharge Microdrilling

    SciTech Connect (OSTI)

    Coteata, Margareta; Pop, Nicolae; Slatineanu, Laurentiu ['Gheorghe Asachi' Technical University of Iasi, Department of Machine Manufacturing Technology, Blvd. D Mangeron 59A, 700050 Iasi (Romania); Schulze, Hans-Peter [Otto-von-Guericke-University Magdeburg, Institute of Fundamental Electrical Engineering and EMC Universitaetsplatz 2, D-39106 Magdeburg (Germany); Besliu, Irina [University 'Stefan cel Mare' of Suceava, Department of Technologies and Management, Str. Universitatii, 13, 720 229 Suceava (Romania)

    2011-05-04T23:59:59.000Z

    Due to the chemical elements included in their structure for ensuring an increased resistance to the environment action, the stainless steels are characterized by a low machinability when classical machining methods are applied. For this reason, sometimes non-traditional machining methods are applied, one of these being the electrochemical discharge machining. To obtain microholes and to evaluate the machinability by electrochemical discharge microdrilling, test pieces of stainless steel were used for experimental research. The electrolyte was an aqueous solution of sodium silicate with different densities. A complete factorial plan was designed to highlight the influence of some input variables on the sizes of the considered machinability indexes (electrode tool wear, material removal rate, depth of the machined hole). By mathematically processing of experimental data, empirical functions were established both for stainless steel and carbon steel. Graphical representations were used to obtain more suggestive vision concerning the influence exerted by the considered input variables on the size of the machinability indexes.

  16. Electrochemical synthesis of multisegmented nanowires

    SciTech Connect (OSTI)

    Kok, Kuan-Ying; Ng, Inn-Khuan; Saidin, Nur Ubaidah [Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2012-11-27T23:59:59.000Z

    Electrochemical deposition has emerged as a promising route for nanostructure fabrication in recent years due to the many inherent advantages it possesses. This study focuses on the synthesis of high-aspect-ratio multisegmented Au/Ni nanowires using template-directed sequential electrochemical deposition techniques. By selectively removing the Ni segments in the nanowires, high-yield of pure gold nanorods of predetermined lengths was obtained. Alternatively, the sacrificial Ni segments in the nanowires can be galvanically displaced with Bi and Te to form barbells structures with Bi{sub x}Te{sub y} nanotubes attached to neighbouring gold segments. Detailed studies on the nanostructures obtained were carried out using various microscopy, diffraction and probebased techniques for structural, morphological and chemical characterizations.

  17. Tribo-electrochemical Characterization of Tantalum during Electrochemical-Mechanical Polishing (ECMP) 

    E-Print Network [OSTI]

    Gao, Feng

    2012-02-14T23:59:59.000Z

    . The friction force and electrochemical reactions were measured simultaneously. Using this setup, we found the factors which affected the frictional behaviors of Ta during ECMP. The technique of single frequency electrochemical impedance spectroscopy (EIS...

  18. Solid state electrochemical current source

    DOE Patents [OSTI]

    Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

    2002-04-30T23:59:59.000Z

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  19. Treating vacuum-carbonate sulfur removal wastewater by electrochemical methods

    SciTech Connect (OSTI)

    Kovalenko, V.S.; Levi, E.V.; Panasenko, L.A.

    1982-11-06T23:59:59.000Z

    The feasibility of treating coke plant waste water which has been desulfurized by the vacuum-carbonate process, by electrochemical methods has been studied in the laboratory. Model systems (potassium formate, potassium ferrocyanide, potassium thiocyanate, potassium thiosulfate) and coke plant wash liquor were electrolyzed using four steel cathodes and 3 anodes (graphite, steel, and nickel); titanium-ruthenium oxide or manganese oxide; lead oxide on a titanium base with a ruthenium sublayer. Products for the model media were respectively, CO/sub 2/(K/sub 2/CO/sub 3/)/H/sub 2/; K/sub 3/Fe(CN)/sub 6/(Fe/sup +3/(Fe(OH)/sub 3/) + CNO/sup -/(N/sub 2/,NH/sub 4/ + CO/sub 2/, K/sub 2/CO/sub 3/))/H/sub 2/; SO/sub 4//sup -2/; CNO/sup -/ + H/sup +/ and CN/sup -/ + H/sub 2/S + H/sup +/; H/sub 2/S + OH (cathode) + SO/sub 4/ + H/sup +/ (anode). Electrolysis of plant waste water produced a decrease in alkalinity, sulfates, carbonates and bicarbonates. Minor amounts of gaseous materials (H/sub 2/S, CO, CO/sub 2/) and prussic acid are produced and should be discharged to the coke oven gas system. The process is efficient, cost effective, requires low cost engineering and provides recyclable wash liquor. Due to their high initial concentration, decomposition of thiocyanates determines the time for full neutraliztion of the waste water. Graphite is the best anode material.

  20. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1988-11-08T23:59:59.000Z

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolytes rendering the electrolyte electrochemically active. 2 figs.

  1. Shock-activated electrochemical power supplies

    DOE Patents [OSTI]

    Benedick, W.B.; Graham, R.A.; Morosin, B.

    1987-04-20T23:59:59.000Z

    A shock-activated electrochemical power supply is provided which is initiated extremely rapidly and which has a long shelf life. Electrochemical power supplies of this invention are initiated much faster than conventional thermal batteries. Power supplies of this invention comprise an inactive electrolyte and means for generating a high-pressure shock wave such that the shock wave is propagated through the electrolyte rendering the electrolyte electrochemically active. 2 figs.

  2. Electrochemical components employing polysiloxane-derived binders

    DOE Patents [OSTI]

    Delnick, Frank M.

    2013-06-11T23:59:59.000Z

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  3. Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels

    SciTech Connect (OSTI)

    Lee, Ai Cheng; Du, Dan; Chen, Baowei; Heng, Chew-Kiat; Lim, Tit-Meng; Lin, Yuehe

    2014-09-07T23:59:59.000Z

    Here we describe an ultrasensitive electrochemical nucleic acids assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL) related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation, and used to label and amplify target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection was studied systematically for the first time. Under optimized conditions, the signal-amplified assay achieved a detection limit of 83 fM targets oligonuecleotides and a 4-order wide dynamic range of target concentration. The resulting assay allowed a robust discrimination between the perfect match and a three-base mismatch sequence. When subjected to full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of approximately 33 pg of the target gene. The high sensitivity and specificity of assay enabled PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15, in comparison to those obtained from negative cell lines HL-60. The approach holds promise for simple, low cost and ultrasensitive electrochemical nucleic acids detection in portable devices, point-of-care and early disease diagnostic applications.

  4. Quantitative analysis of defects in silicon. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project. Final report

    SciTech Connect (OSTI)

    Natesh, R.; Smith, J.M.; Bruce, T.; Qidwai, H.A.

    1980-04-01T23:59:59.000Z

    The complete procedures for the defect analysis of silicon samples using a QTM-720 Image Analyzing System are described, chemical polishing, etching, and QTM operation are discussed. The data from one hundred and seventy four (174) samples, and a discussion of the data are included. The data include twin boundary density, dislocation pit density, and grain boundary length. (WHK)

  5. Center for Electrochemical Energy Science Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy for another term. CEES aims to understand the electrochemical reactivity of oxide materials and their interfaces under the extreme conditions relevant to energy...

  6. Apparatus for combinatorial screening of electrochemical materials

    DOE Patents [OSTI]

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

    2009-12-15T23:59:59.000Z

    A high throughput combinatorial screening method and apparatus for the evaluation of electrochemical materials using a single voltage source (2) is disclosed wherein temperature changes arising from the application of an electrical load to a cell array (1) are used to evaluate the relative electrochemical efficiency of the materials comprising the array. The apparatus may include an array of electrochemical cells (1) that are connected to each other in parallel or in series, an electronic load (2) for applying a voltage or current to the electrochemical cells (1), and a device (3), external to the cells, for monitoring the relative temperature of each cell when the load is applied.

  7. Electrochemical detection of leukemia oncogenes using enzyme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and early disease diagnostic applications. Citation: Lee AC, D Du, B Chen, CK Heng, TM Lim, and Y Lin.2014."Electrochemical detection of leukemia oncogenes using...

  8. Electrochemical arsenic remediation for rural Bangladesh

    SciTech Connect (OSTI)

    Addy, Susan Amrose

    2009-01-01T23:59:59.000Z

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water collected from three regions to below the WHO limit of 10 mu g=L. Prototype fabrication and field testing are currently underway.

  9. Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a

    E-Print Network [OSTI]

    Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a , Christopher D Available online 28 June 2007 Abstract Lithium ion (Li-ion) batteries provide high energy and power density dynamics (i.e. state of charge). Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery

  10. Steady-State Modeling of a Parallel-Plate Electrochemical Fluorination Reactor

    E-Print Network [OSTI]

    Weidner, John W.

    Steady-State Modeling of a Parallel-Plate Electrochemical Fluorination Reactor Kamal Jha *,a Gerald, Minnesota 55144-1000, USA ABSTRACT A steady-state mathematical model of a parallel-plate reactor balances. Profiles of temperature, pressure, vapor volume fraction, and current density in the reactor

  11. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demand—the most costly kind of power for utilities—and with much more versatile performance.

  12. A Renewable Electrochemical Magnetic Immunosensor Based on Gold...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electrochemical Magnetic Immunosensor Based on Gold Nanoparticle Labels. A Renewable Electrochemical Magnetic Immunosensor Based on Gold Nanoparticle Labels. Abstract: A...

  13. A graphene-based electrochemical sensor for sensitive detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A graphene-based electrochemical sensor for sensitive detection of paracetamol . A graphene-based electrochemical sensor for sensitive detection of paracetamol . Abstract: An...

  14. A graphene-based electrochemical sensor for sensitive detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphene-based electrochemical sensor for sensitive detection of paracetamol . A graphene-based electrochemical sensor for sensitive detection of paracetamol . Abstract: An...

  15. Nitrogen-doped Graphene and Its Electrochemical Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doped Graphene and Its Electrochemical Applications. Nitrogen-doped Graphene and Its Electrochemical Applications. Abstract: Nitrogen-doped graphene (N-graphene) is obtained by...

  16. Nitrogen-Doped Graphene and its Application in Electrochemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doped Graphene and its Application in Electrochemical Biosensing. Nitrogen-Doped Graphene and its Application in Electrochemical Biosensing. Abstract: Chemical doping with foreign...

  17. The influence of the electrochemical stressing (potential step...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer The influence of the electrochemical stressing (potential step and...

  18. Integrated Lateral Flow Test Strip with Electrochemical Sensor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Integrated Lateral Flow Test Strip with Electrochemical Sensor...

  19. Effects of Tungsten Oxide Addition on the Electrochemical Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tungsten Oxide Addition on the Electrochemical Performance of Nanoscale Tantalum Oxide-Based Electrocatalysts for Effects of Tungsten Oxide Addition on the Electrochemical...

  20. Papers Based Electrochemical Biosensors: From Test Strips to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics. Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics....