The Density-Enthalpy Method Applied to Model
Vuik, Kees
30 May 2012 om 10.00 uur door IBRAHIM, Master of Science (M.Sc.) Systems Engineering, Pakistan Institute of Engineering and Applied Sciences, Quaid-i-Azam University Islamabad, Pakistan geboren te Haripur, Pakistan. #12;Dit proefschrift is goedgekeurd door de promotor: Prof.dr.ir. C. Vuik Toegevoegd
A step towards quantitative lipoprotein density profiling analysis: applied Rayleigh scattering
Nowlin, Michael
2009-05-15
is imperative in assessing risk factors accurately. Light scattering techniques, primarily Rayleigh scattering, are applied to density separated serum samples in resulting in improved qualitative data with progress in quantitative measurements through imaging...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Apply Application Process Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere....
Kanemoto, Katsuichi Nakatani, Hitomi; Domoto, Shinya
2014-10-28
We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5?×?10{sup 16?}cm{sup ?3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.
Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.
2010-01-15
Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.
Quark-Antiquark Energy Density Function applied to Di-Gauge Boson Production at the LHC
Gideon Alexander; Erez Reinherz-Aronis
2008-09-03
In view of the start up of the 14 TeV pp Large Hadron Collider the quark anti-quark reactions leading to the final states W^+W^-, W^+-Z^0 and Z^0Z^0 are studied, in the frame workn of the Standard Model (SM), using helicity amplitudes. The differential and total cross sections are first evaluated in the parton-parton center of mass system. They are then transformed to their expected behavior in pp collisions through the parton-parton Energy Density Functions which are here derived from the known Parton Density Functions of the proton. In particular the single and joint longitudinal polarizations of the final state di-bosons are calculated. The effect on these reactions from the presence of s-channel heavy vector bosons, like the W' and Z', are evaluated to explore the possibility to utilize the gauge boson pair production as a probe for these 'Beyond the SM' phenomena.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicantOffice ofApply Application
Elastic models of the glass transition applied to a liquid with density anomalies
M. Pica Ciamarra; Peter Sollich
2015-08-19
Elastic models of the glass transition relate the relaxation dynamics and the elastic properties of structural glasses. They are based on the assumption that the relaxation dynamics occurs through activated events in the energy landscape whose energy scale is set by the elasticity of the material. Here we investigate whether such elastic models describe the relaxation dynamics of systems of particles interacting via a purely repulsive harmonic potential, focusing on a volume fraction and temperature range that is characterized by entropy--driven water--like density anomalies. We do find clear correlations between relaxation time and diffusivity on the one hand, and plateau shear modulus and Debye--Waller factor on the other, thus supporting the validity of elastic models of the glass transition. However, we also show that the plateau shear modulus is not related to the features of the underlying energy landscape of the system, at variance with recent results for power--law potentials. This challenges the common potential energy landscape interpretation of elastic models.
Stachiv, I., E-mail: stachiv@fzu.cz [Institute of Physics, Czech Academy of Sciences, Prague (Czech Republic); Advanced Manufacturing Institute with High-Tech Innovations, National Chung Cheng University, Chiayi County, Taiwan (China); Zapomel, J. [Institute of Thermomechanics, Czech Academy of Sciences, Prague (Czech Republic); Chen, Y.-L. [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Department of Physics, National Taiwan University, Taipei, Taiwan (China); Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, Taiwan (China)
2014-03-28
Thin films are widely used in microelectronics, optics, filters, and various sensing devices. We propose a method to simultaneously determine the elastic modulus and density or thickness of ultrathin films deposited on various substrate materials. This methodology utilizes measurement of the resonant frequencies of the micro-/nanoresonator under intentionally applied axial tension and, consequently, the beam to string transition. Elastic modulus and density/thickness of thin film are obtained from the ratio between the resonant frequencies of the nanoresonator with and without applied axial force.
Mirtschink, André; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.
2014-05-14
Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z < 2, which includes weakly bound negative ions and a quantum phase transition at a critical value of Z, representing a big challenge for density functional theory. We use accurate wavefunction calculations to validate our results, comparing energies and Kohn-Sham potentials, thus also providing useful reference data close to and at the quantum phase transition. We show that our functional is able to bind H{sup ?} and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results.
Kevin Leung; Susan B. Rempe; Peter A. Schultz; Eduardo M. Sproviero; Victor S. Batista; Michael E. Chandross; Craig J. Medforth
2006-10-26
We apply Density Functional Theory (DFT) and the DFT+U technique to study the adsorption of transition metal porphine molecules on atomistically flat Au(111) surfaces. DFT calculations using the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional correctly predict the palladium porphine (PdP) low-spin ground state. PdP is found to adsorb preferentially on gold in a flat geometry, not in an edgewise geometry, in qualitative agreement with experiments on substituted porphyrins. It exhibits no covalent bonding to Au(111), and the binding energy is a small fraction of an eV. The DFT+U technique, parameterized to B3LYP predicted spin state ordering of the Mn d-electrons, is found to be crucial for reproducing the correct magnetic moment and geometry of the isolated manganese porphine (MnP) molecule. Adsorption of Mn(II)P on Au(111) substantially alters the Mn ion spin state. Its interaction with the gold substrate is stronger and more site-specific than PdP. The binding can be partially reversed by applying an electric potential, which leads to significant changes in the electronic and magnetic properties of adsorbed MnP, and ~ 0.1 Angstrom, changes in the Mn-nitrogen distances within the porphine macrocycle. We conjecture that this DFT+U approach may be a useful general method for modeling first row transition metal ion complexes in a condensed-matter setting.
Density-dependent covariant energy density functionals
Lalazissis, G. A.
2012-10-20
Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.
$author.value
Current research topics by the Applied Math Faculty members include: Numerical analysis and applications of finite difference, finite element and spectral ...
High Energy Density Laboratory Plasmas Program | National Nuclear...
National Nuclear Security Administration (NNSA)
Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...
CX-010703: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
High Energy Density Laboratory Plasmas Program Financial Assistance to Universities and Institutions CX(s) Applied: A1, A9, B3.6 Date: 08/29/2012 Location(s): Nationwide Offices(s): NNSA-Headquarters
Categorical Exclusion Determinations: National Energy Technology...
Broader source: Energy.gov (indexed) [DOE]
August 27, 2014 CX-012437: Categorical Exclusion Determination High Energy Density Lithium Battery CX(s) Applied: B3.6 Date: 41878 Location(s): New York Offices(s): National...
CX-011826: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Cooling Tower Water Sampling and Analysis for Legionella pneumophila Density CX(s) Applied: B3.1 Date: 01/06/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office
CX-009100: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Cooling Tower Water Sampling and Analysis for Legionella Pneumophila Density CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office
CX-100133 Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Advanced High Torque Density Magnetically Geared Generator Award Number: DE-EE0006801 CX(s) Applied: A9, B5.15 Date: 12/2/2014 Location(s): NC Office(s): Golden Field Office
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
1993-12-31
From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.
Phenomenological Relativistic Energy Density Functionals
Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.
2009-08-26
The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.
Maximum-likelihood density modification
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Structural Biology Group, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2000-08-01
A likelihood-based density modification approach is developed that can incorporate expected electron-density information from a wide variety of sources. A likelihood-based approach to density modification is developed that can be applied to a wide variety of cases where some information about the electron density at various points in the unit cell is available. The key to the approach consists of developing likelihood functions that represent the probability that a particular value of electron density is consistent with prior expectations for the electron density at that point in the unit cell. These likelihood functions are then combined with likelihood functions based on experimental observations and with others containing any prior knowledge about structure factors to form a combined likelihood function for each structure factor. A simple and general approach to maximizing the combined likelihood function is developed. It is found that this likelihood-based approach yields greater phase improvement in model and real test cases than either conventional solvent flattening and histogram matching or a recent reciprocal-space solvent-flattening procedure [Terwilliger (1999 ?), Acta Cryst. D55, 1863–1871].
Applied Mathematics Department of Applied Mathematics
Applied Mathematics Department of Applied Mathematics 208 Engineering 1 Building 10 W. 32nd St, Graduate Studies: Xiaofan Li The Department of Applied Mathematics puts mathe- matics to work solving, such as how to construct methods for multi-criteria decision making (requiring discrete mathematics
Laboratory Density Functionals
B. G. Giraud
2007-07-26
We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.
Ions in solution: Density corrected density functional theory (DC-DFT)
Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
2014-05-14
Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup ?} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.
Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities
Harrison; Neil (Santa Fe, NM), Singleton; John (Los Alamos, NM), Migliori; Albert (Santa Fe, NM)
2008-08-05
A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.
Statistical density modification using local pattern matching
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2003-10-01
Statistical density modification can make use of local patterns of density found in protein structures to improve crystallographic phases. A method for improving crystallographic phases is presented that is based on the preferential occurrence of certain local patterns of electron density in macromolecular electron-density maps. The method focuses on the relationship between the value of electron density at a point in the map and the pattern of density surrounding this point. Patterns of density that can be superimposed by rotation about the central point are considered equivalent. Standard templates are created from experimental or model electron-density maps by clustering and averaging local patterns of electron density. The clustering is based on correlation coefficients after rotation to maximize the correlation. Experimental or model maps are also used to create histograms relating the value of electron density at the central point to the correlation coefficient of the density surrounding this point with each member of the set of standard patterns. These histograms are then used to estimate the electron density at each point in a new experimental electron-density map using the pattern of electron density at points surrounding that point and the correlation coefficient of this density to each of the set of standard templates, again after rotation to maximize the correlation. The method is strengthened by excluding any information from the point in question from both the templates and the local pattern of density in the calculation. A function based on the origin of the Patterson function is used to remove information about the electron density at the point in question from nearby electron density. This allows an estimation of the electron density at each point in a map, using only information from other points in the process. The resulting estimates of electron density are shown to have errors that are nearly independent of the errors in the original map using model data and templates calculated at a resolution of 2.6 Å. Owing to this independence of errors, information from the new map can be combined in a simple fashion with information from the original map to create an improved map. An iterative phase-improvement process using this approach and other applications of the image-reconstruction method are described and applied to experimental data at resolutions ranging from 2.4 to 2.8 Å.
MATHMATICS & APPLIED STATISTICS
Frey, Jesse C.
MATHMATICS & APPLIED STATISTICS Graduate Studies in Build Your Future with Graduate Study in Mathematics or Applied Statistics Our graduate programs can help you advance your career in education will deepen your knowledge and prepare you for further study. The Master of Science in Applied Statistics
Visualization of electronic density
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan
2015-04-22
An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.
Lula, J.W.
1982-01-01
A formulation for low density syntactic foam desiccant, using a polyimide resin binder, glass microbubble filler, and molecular sieve desiccant powder has been developed. The formulation may be modified easily to meet specific part requirements such as density and desired moisture pickup. Some parts can be molded to size.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical...
The following sample of the publications has been made available to you by members of the Applied faculty through their personal homepages. Prof. Zhiqiang
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world...
INTRODUCTION APPLIED GEOPHYSICS
Merriam, James
GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am
Applied Music Curriculum Guide
Kearfott, R. Baker
1 Applied Music Curriculum Guide The University of Louisiana at Lafayette School of Music #12;2 Revised Spring 2009 UNIVERSITY OF LOUISIANA, Lafayette SCHOOL OF MUSIC APPLIED MUSIC CURRICULUM GUIDE Dr. Garth Alper, Director DEGREES OFFERED Bachelor of Music with emphases in Performance, Theory
Accurate neutralino relic density
Paolo Gondolo; Joakim Edsjo
1998-04-30
We enlarge our set of supersymmetric models and update accelerator constraints in our precise calculation of the relic density of the lightest neutralino, which includes relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes among charginos and neutralinos.
Analytical Chemistry Applied Mathematics
Heller, Barbara
Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture ManagementAnalytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology
Sandia Energy - Applied & Computational Math
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Applied & Computational Math Home Energy Research Advanced Scientific Computing Research (ASCR) Applied & Computational Math Applied & Computational Mathcwdd2015-03-26T13:34:5...
KATAYUN (KATY) BARMAK Department of Applied Physics and Applied Mathematics
Columbia University
MEMBERSHIP OF PROFESSIONAL SOCIETIES IEEE, Materials Research Society (MRS); American Physical Society (APS1 KATAYUN (KATY) BARMAK Department of Applied Physics and Applied Mathematics Seeley W. Mudd. of Applied Physics and Applied Mathematics, Columbia University 2011-present Philips Electronics Professor
Information Science, Computing, Applied Math
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science...
Grover, William H.
We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of ...
High Energy Density Laboratory Plasmas
High Energy Density Laboratory Plasmas General Plasma Science Developing founda/ons and advancing fundamental understanding #12;The High Energy Density developing innovative techniques to study the properties of instabilities in magnetized-high-energy-density
of sample crack density. The reverberation spectroscopy technique is applied to carbon fiber reinforced plastic CFRP composites exposed to increasing thermal loading. Considerable gain in sensitivity
A LARGE HIGH CURRENT DENSITY SUPERCONDUCTING SOLENOID FOR THE TIME PROJECTION CHAMBER EXPERIMENT
Green, M.A.
2011-01-01
TPC magnet integrates the superconduct- ing coil, the quenchto 1978 Applied Superconductivity Conference in Pittsburgh,HIGH CURRENT DENSITY SUPERCONDUCTING SOLENOID FOR THE TIME
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicantOffice ofApply ApplicationApply
Multiple density layered insulator
Alger, Terry W. (Tracy, CA)
1994-01-01
A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.
Statistical approach to nuclear level density
Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.
2014-10-15
We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.
Nov 11, 2009 ... Location: Engineering (Periodicals) ... wave propagation in such systems is examined in reference (4). Gassman (5, 6) has ... Now Research Scientist at Missile. Systems ... Presented at the Applied Mechanics Division Summer Conference,. Berkeley ..... This will be true in some cases for a water- saturated ...
FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting
APPLYING RESEARCH ON METACOGNITION
School of Medicine01/09/14 #12;Define metacognition and explain its importance in teaching and learning, understand key genetic terms.) Next, apply knowledge to determine inheritance patterns and to formulate students presume that a best response strategy is to relate everything they know about a subject figuring
Gedanken densities and exact constraints in density functional theory
Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
CX-011741: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Illinois Institute of Technology - Prototype of Rechargeable Nanoelectric Fuel Battery for Electric Vehicle Systems with High Energy Density, Low Viscosity, and Integrated Thermal Management Function CX(s) Applied: B3.6 Date: 11/19/2013 Location(s): Illinois, Illinois Offices(s): Advanced Research Projects Agency-Energy
CX-009894: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
25A1988 - Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage - Metal-Air Ionic Liquid CX(s) Applied: B3.6 Date: 12/16/2009 Location(s): Arizona Offices(s): Advanced Research Projects Agency-Energy
CX-011743: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
University of Maryland - Safe, Low-Cost, High-Energy Density, Solid State Lithium-ION Batteries CX(s) Applied: B3.6 Date: 11/19/2013 Location(s): Maryland Offices(s): Advanced Research Projects Agency-Energy
Office of Energy Efficiency and Renewable Energy (EERE)
(0674-1542) Sila Nanotechnologies Inc. - Doubling the Energy Density of Lithium-Ion Batteries for Transportation CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Georgia Offices(s): Advanced Research Projects Agency-Energy
ORISE: Applied health physics projects
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support...
Waggoner, L.O.
1998-02-05
The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools to someone byApplied Science/Techniques
High Energy Density Capacitors
2010-07-01
BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.
Model comparison for the density structure across solar coronal waveguides
Arregui, I; Ramos, A Asensio
2015-01-01
The spatial variation of physical quantities, such as the mass density, across solar atmospheric waveguides governs the timescales and spatial scales for wave damping and energy dissipation. The direct measurement of the spatial distribution of density, however, is difficult and indirect seismology inversion methods have been suggested as an alternative. We applied Bayesian inference, model comparison, and model-averaging techniques to the inference of the cross-field density structuring in solar magnetic waveguides using information on periods and damping times for resonantly damped magnetohydrodynamic (MHD) transverse kink oscillations. Three commonly employed alternative profiles were used to model the variation of the mass density across the waveguide boundary. Parameter inference enabled us to obtain information on physical quantities such as the Alfv\\'en travel time, the density contrast, and the transverse inhomogeneity length scale. The inference results from alternative density models were compared a...
APPLIED TECHNOLOGY Strategic Plan Summary
Heller, Barbara
SCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan Summary | 1 SCHOOL OF APPLIED TECHNOLOGY STRATEGIC PLAN SUMMARY MISSION STATEMENT The mission Technology and Management program to achieve national visibility. #12;School of Applied Technology Strategic
V. E. Oberacker; A. S. Umar
2015-02-13
In this manuscript we provide an outline of the numerical methods used in implementing the density constrained time-dependent Hartree-Fock (DC-TDHF) method and provide a few examples of its application to nuclear fusion. In this approach, dynamic microscopic calculations are carried out on a three-dimensional lattice and there are no adjustable parameters, the only input is the Skyrme effective NN interaction. After a review of the DC-TDHF theory and the numerical methods, we present results for heavy-ion potentials $V(R)$, coordinate-dependent mass parameters $M(R)$, and precompound excitation energies $E^{*}(R)$ for a variety of heavy-ion reactions. Using fusion barrier penetrabilities, we calculate total fusion cross sections $\\sigma(E_\\mathrm{c.m.})$ for reactions between both stable and neutron-rich nuclei. We also determine capture cross sections for hot fusion reactions leading to the formation of superheavy elements.
Nuclear Energy Density Optimization
M. Kortelainen; T. Lesinski; J. Moré; W. Nazarewicz; J. Sarich; N. Schunck; M. V. Stoitsov; S. Wild
2010-05-27
We carry out state-of-the-art optimization of a nuclear energy density of Skyrme type in the framework of the Hartree-Fock-Bogoliubov (HFB) theory. The particle-hole and particle-particle channels are optimized simultaneously, and the experimental data set includes both spherical and deformed nuclei. The new model-based, derivative-free optimization algorithm used in this work has been found to be significantly better than standard optimization methods in terms of reliability, speed, accuracy, and precision. The resulting parameter set UNEDFpre results in good agreement with experimental masses, radii, and deformations and seems to be free of finite-size instabilities. An estimate of the reliability of the obtained parameterization is given, based on standard statistical methods. We discuss new physics insights offered by the advanced covariance analysis.
Oberacker, V E
2015-01-01
In this manuscript we provide an outline of the numerical methods used in implementing the density constrained time-dependent Hartree-Fock (DC-TDHF) method and provide a few examples of its application to nuclear fusion. In this approach, dynamic microscopic calculations are carried out on a three-dimensional lattice and there are no adjustable parameters, the only input is the Skyrme effective NN interaction. After a review of the DC-TDHF theory and the numerical methods, we present results for heavy-ion potentials $V(R)$, coordinate-dependent mass parameters $M(R)$, and precompound excitation energies $E^{*}(R)$ for a variety of heavy-ion reactions. Using fusion barrier penetrabilities, we calculate total fusion cross sections $\\sigma(E_\\mathrm{c.m.})$ for reactions between both stable and neutron-rich nuclei. We also determine capture cross sections for hot fusion reactions leading to the formation of superheavy elements.
Low density microcellular foams
LeMay, James D. (Castro Valley, CA)
1991-01-01
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, James D. (Castro Valley, CA)
1992-01-01
Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, J.D.
1991-11-19
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
Low density microcellular foams
Aubert, James H. (Albuquerque, NM); Clough, Roger L. (Albuquerque, NM); Curro, John G. (Placitas, NM); Quintana, Carlos A. (Albuquerque, NM); Russick, Edward M. (Albuquerque, NM); Shaw, Montgomery T. (Mansfield Center, CT)
1987-01-01
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.
A novel density of state method for complex action systems
Biagio Lucini; Kurt Langfeld
2014-11-01
Recently, a new and efficient algorithm (the LLR method) has been proposed for computing densities of states in statistical systems and gauge theories. In this talk, we explore whether this novel density of states method can be applied to numerical computations of observables in systems for which the action is complex. To this purpose, we introduce a generalised density of states, in terms of which integrals of oscillating observables can be determined semi-analytically, and we define a strategy to compute it with the LLR method. As a case study, we apply these ideas to the Z(3) spin model at finite density, finding a remarkable agreement of our results for the phase twist with those obtained with the worm algorithm for all explored chemical potentials, including values for which there are cancellations over sixteen orders of magnitude. These findings open new perspectives for dealing with the sign problem on physically more relevant systems.
High Energy Density Microwaves
Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)
1999-04-01
These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)
A. Benseny; G. Albareda; A. S. Sanz; J. Mompart; X. Oriols
2014-10-20
Bohmian mechanics provides an explanation of quantum phenomena in terms of point particles guided by wave functions. This review focuses on the formalism of non-relativistic Bohmian mechanics, rather than its interpretation. Although the Bohmian and standard quantum theories have different formalisms, both give exactly the same predictions for all phenomena. Fifteen years ago, the quantum chemistry community began to study the practical usefulness of Bohmian mechanics. Since then, the scientific community has mainly applied it to study the (unitary) evolution of single-particle wave functions, either by developing efficient quantum trajectory algorithms or by providing a trajectory-based explanation of complicated quantum phenomena. Here we present a large list of examples showing how the Bohmian formalism provides a useful solution in different forefront research fields for this kind of problems (where the Bohmian and the quantum hydrodynamic formalisms coincide). In addition, this work also emphasizes that the Bohmian formalism can be a useful tool in other types of (non-unitary and nonlinear) quantum problems where the influence of the environment or the global wave function are unknown. This review contains also examples on the use of the Bohmian formalism for the many-body problem, decoherence and measurement processes. The ability of the Bohmian formalism to analyze this last type of problems for (open) quantum systems remains mainly unexplored by the scientific community. The authors of this review are convinced that the final status of the Bohmian theory among the scientific community will be greatly influenced by its potential success in these type of problems that present non-unitary and/or nonlinear quantum evolutions. A brief introduction of the Bohmian formalism and some of its extensions are presented in the last part of this review.
Nuclear Energy Density Functionals Constrained by Low-Energy QCD
Dario Vretenar
2008-02-06
A microscopic framework of nuclear energy density functionals is reviewed, which establishes a direct relation between low-energy QCD and nuclear structure, synthesizing effective field theory methods and principles of density functional theory. Guided by two closely related features of QCD in the low-energy limit: a) in-medium changes of vacuum condensates, and b) spontaneous breaking of chiral symmetry; a relativistic energy density functional is developed and applied in studies of ground-state properties of spherical and deformed nuclei.
Applying Mathematics.... ... to catch criminals
O'Leary, Michael
Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42
Journal of Applied Ecology 2004
Holl, Karen
Journal of Applied Ecology 2004 41, 922933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41
Journal of Applied Ecology 2002
Holl, Karen
Journal of Applied Ecology 2002 39, 960970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology
Journal of Applied Ecology 2007
Journal of Applied Ecology 2007 44, 748759 © 2007 The Authors. Journal compilation © 2007 British, distribution, edge, marbled murrelets, model transferability, old-growth Journal of Applied Ecology (2007) 44-nesting Alcid © 2007 The Authors. Journal compilation © 2007 British Ecological Society, Journal of Applied
Broader source: Energy.gov [DOE]
This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of a soil moisture/density gauge (Class 7 -...
Ligand identification using electron-density map correlations
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States); Adams, Paul D.; Moriarty, Nigel W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, BLDG 64R0121, Berkeley, CA 94720 (United States); Cohn, Judith D. [Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545 (United States)
2007-01-01
An automated ligand-fitting procedure is applied to (F{sub o} ? F{sub c})exp(i?{sub c}) difference density for 200 commonly found ligands from macromolecular structures in the Protein Data Bank to identify ligands from density maps. A procedure for the identification of ligands bound in crystal structures of macromolecules is described. Two characteristics of the density corresponding to a ligand are used in the identification procedure. One is the correlation of the ligand density with each of a set of test ligands after optimization of the fit of that ligand to the density. The other is the correlation of a fingerprint of the density with the fingerprint of model density for each possible ligand. The fingerprints consist of an ordered list of correlations of each the test ligands with the density. The two characteristics are scored using a Z-score approach in which the correlations are normalized to the mean and standard deviation of correlations found for a variety of mismatched ligand-density pairs, so that the Z scores are related to the probability of observing a particular value of the correlation by chance. The procedure was tested with a set of 200 of the most commonly found ligands in the Protein Data Bank, collectively representing 57% of all ligands in the Protein Data Bank. Using a combination of these two characteristics of ligand density, ranked lists of ligand identifications were made for representative (F{sub o} ? F{sub c})exp(i?{sub c}) difference density from entries in the Protein Data Bank. In 48% of the 200 cases, the correct ligand was at the top of the ranked list of ligands. This approach may be useful in identification of unknown ligands in new macromolecular structures as well as in the identification of which ligands in a mixture have bound to a macromolecule.
Sandia Energy - Applied Turbulent Combustion
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and they form the basis for the creation of validated submodels that bridge fundamental energy sciences with applied device engineering and optimization. Turbulent-combustion-lab...
The Foundations of Applied Mathematics
Baez, John
The Foundations of Applied Mathematics John Baez Category-Theoretic Foundations of Mathematics Workshop May 5, 2013 #12;We often picture the flow of information about mathematics a bit like this: SCIENCE AND ENGINEERING APPLIED MATHEMATICS PURE MATHEMATICS FOUNDATIONS OF MATHEMATICS #12;Of course
SIAM REVIEW c 2006 Society for Industrial and Applied Mathematics Vol. 48, No. 4, pp. 745768
Menon, Govind
prove uniform convergence of densities to a self-similar solution with exponential tail, under Division of Applied Mathematics, Brown University, Providence, RI 02912 (menon@dam.brown. edu). Department
Low density carbonized composite foams
Kong, Fung-Ming (Pleasanton, CA)
1991-01-01
A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.
Neutralino relic density including coannihilations
Paolo Gondolo; Joakim Edsjo
1997-11-25
We give an overview of our precise calculation of the relic density of the lightest neutralino, in which we included relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes with charginos and neutralinos.
Low density metal hydride foams
Maienschein, Jon L. (Oakland, CA); Barry, Patrick E. (Pleasant Hill, CA)
1991-01-01
Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.
Integration by Parts on Wiener Space and the Existence of Occupation Densities
Imkeller, Peter; Nualart, David
1994-03-02
We present a general criterion for the existence of an occupation density, which is based on the integration by parts formula on Wiener space. This criterion is applied to two particular examples of anticipating processes. First we discuss the case...
Hampshire, Damian
a bending apparatus designed for use in horizontal split-pair magnet systems with a 40 mm diameter bore of the figures in this paper are available online at http://ieeexplore.ieee.org. Digital Object Identifier 10 on the bending beam design developed by the University of Twente [6]. It consists of a Cu-Be bending beam 78 mm
Wu, Yongfeng; Xiao, Weike
2014-02-01
We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5?) topological shifts from both the binomial distribution and the random distribution.
Level Density in the Complex Scaling Method
Ryusuke Suzuki; Takayuki Myo; Kiyoshi Kato
2005-05-18
It is shown that the continuum level density (CLD) at unbound energies can be calculated with the complex scaling method (CSM), in which the energy spectra of bound states, resonances and continuum states are obtained in terms of $L^2$ basis functions. In this method, the extended completeness relation is applied to the calculation of the Green functions, and the continuum-state part is approximately expressed in terms of discretized complex scaled continuum solutions. The obtained result is compared with the CLD calculated exactly from the scattering phase shift. The discretization in the CSM is shown to give a very good description of continuum states. We discuss how the scattering phase shifts can inversely be calculated from the discretized CLD using a basis function technique in the CSM.
GRADUATE BOOKLET Physics / Applied Physics
Rock, Chris
GRADUATE BOOKLET Physics / Applied Physics This booklet contains rules, guidelines and general information about graduate studies in the Physics Department at Texas Tech University. It does not replace documents. Contents I. General Comments: Admission, general policies, deadlines, etc II. Minimum
Modeling applied to problem solving
Pawl, Andrew
We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...
IIT SCHOOL OF APPLIED TECHNOLOGY
Heller, Barbara
. MANUFACTURINGTECHNOLOGY. #12;BE A LEADER OF THE NEXT INDUSTRIAL REVOLUTION. An undergraduate degree in IndustrialINDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY INDUSTRIAL OPERATIONS. RESOURCE MANAGEMENT. INDUSTRIAL FACILITIES. SUPPLY CHAIN MANAGEMENT. SUSTAINABILITY
Electronvibration coupling in time-dependent density-functional theory: Application to benzene
Bertsch George F.
Electronvibration coupling in time-dependent density-functional theory: Application to benzene G://jcp.aip.org/about/rights_and_permissions #12;Electronvibration coupling in time-dependent density-functional theory: Application to benzene G for electronvibration coupling, we apply it to the optical properties of the * transitions in benzene
Magnetic confinement of a high-density cylindrical plasma Eduardo Ahedoa)
Carlos III de Madrid, Universidad
collisional plasma column, confined by an axial magnetic field and a cylindrical vessel, is studiedMagnetic confinement of a high-density cylindrical plasma Eduardo Ahedoa) E. T. S. Ingenieros the independent influence of the applied magnetic field and the plasma density on the plasma response. The strong
Self-interaction errors in nuclear energy density functionals
N. Chamel
2010-12-21
When applied to a single nucleon, nuclear energy density functionals may yield a non-vanishing internal energy thus implying that the nucleon is interacting with itself. It is shown how to avoid this unphysical feature for semi-local phenomenological functionals containing all possible bilinear combinations of local densities and currents up to second order in the derivatives. The method outlined in this Rapid Communication could be easily extended to functionals containing higher order terms, and could serve as a guide for constraining the time-odd part of the functional.
Jacek Dobaczewski Density functional theory and energy
Dobaczewski, Jacek
Jacek Dobaczewski Density functional theory and energy density functionals in nuclear physics Jacek UNEDFCollaboration,http://unedf.org/ Universal Nuclear Energy Density FunctionalUniversal Nuclear Energy Density in Poland per voivodship Energy density functional 245 647 Price voivodship functional 654 763 295 580
High-density fluid compositions
Sanders, D.C.
1981-09-29
Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.
Building a Universal Nuclear Energy Density Functional
Carlson, Joe A.; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James
2012-12-30
During the period of Dec. 1 2006 – Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.
Time Dependent Density Functional Theory An introduction
Botti, Silvana
Time Dependent Density Functional Theory An introduction Francesco Sottile LSI, Ecole Polytechnique (ETSF) Time Dependent Density Functional Theory Palaiseau, 7 February 2012 1 / 32 #12;Outline 1 Frontiers 4 Perspectives and Resources Francesco Sottile (ETSF) Time Dependent Density Functional Theory
CX-009418: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office
CX-009420: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office
CX-009419: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office
About density functional theory interpretation
Kirill Koshelev
2015-05-28
Two forms of relativistic density functional are derived from Dirac equation. Based on their structure analysis model of split electron is proposed. In this model electric charge and mass of electron behave like two point-like particles. It is shown that two electrons obeying this model cannot occupy the same quantum state. Empirical verification of the model is discussed.
Longitudinal polarized parton densities updated
Leader, Elliot; Sidorov, Aleksander V.; Stamenov, Dimiter B. [Imperial College, Prince Consort Road, London SW7 2BW (United Kingdom); Bogoliubov Theoretical Laboratory Joint Institute for Nuclear Research 141980 Dubna (Russian Federation); Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences Blvd. Tsarigradsko Chaussee 72, Sofia 1784 (Bulgaria)
2006-02-01
We have reanalyzed the world data on inclusive polarized DIS, in both NLO and LO QCD, including the new HERMES and COMPASS data. The updated NLO polarized densities are given in both the MS and JET schemes. The impact of the new data on the results is discussed.
Magnetic confinement of a high-density cylindrical plasma
Ahedo, Eduardo [E. T. S. Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)
2011-10-15
The stationary structure of a weakly collisional plasma column, confined by an axial magnetic field and a cylindrical vessel, is studied for the high-density case, when the diamagnetic azimuthal current is large enough to demagnetize partially the plasma. The plasma response is characterized mainly by two dimensionless parameters: the ratios of the electron gyroradius and the electron skin-depth to the plasma radius, and each of them measures the independent influence of the applied magnetic field and the plasma density on the plasma response. The strong magnetic confinement regime, characterized by very small wall losses, is limited to the small gyroradius and large skin-depth ranges. In the high-density case, when the electron skin-depth is smaller than the electron gyroradius, the skin-depth turns out to be the magnetic screening length, so that the bulk of the plasma behaves as unmagnetized.
Applying for a Training Contract
, usual deadline is July 31, 2013 for entry in September 2015. Students should apply in the 2nd year aimed at 2nd year LLB students & final year non-law students. Competition for these places is often more will successfully complete the Legal Practice Course each year. From the point of view of the student, there can
Applied Sustainability Political Science 319
Young, Paul Thomas
1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception
Journal of Applied Ecology 2006
Thomas, Len
Journal of Applied Ecology 2006 43, 377384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal
Applying the Continuous Monitoring Technical
by providing technical leadership for the nation's measurement and standards infrastructure. ITL develops tests of technical, physical, administrative, and management standards and guidelines for the cost-effective securityApplying the Continuous Monitoring Technical Reference Model to the Asset, Configuration
temperature heat pumps applied to
Oak Ridge National Laboratory
Very high- temperature heat pumps applied to energy efficiency in industry Application of industrial heat pumps June 21 th 2012 J-L Peureux, E. Sapora, D. Bobelin EDF R&D #12;Achema 2012 Frankfurt There are thermal requirements in the industrial plant Treq Heat exchanger = Cons ~ 0 CO2 ~ -100% Treq
Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers
Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao
2006-01-25
The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.
Communication: Self-interaction correction with unitary invariance in density functional theory
Pederson, Mark R.; Ruzsinszky, Adrienn; Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
2014-03-28
Standard spin-density functionals for the exchange-correlation energy of a many-electron ground state make serious self-interaction errors which can be corrected by the Perdew-Zunger self-interaction correction (SIC). We propose a size-extensive construction of SIC orbitals which, unlike earlier constructions, makes SIC computationally efficient, and a true spin-density functional. The SIC orbitals are constructed from a unitary transformation that is explicitly dependent on the non-interacting one-particle density matrix. When this SIC is applied to the local spin-density approximation, improvements are found for the atomization energies of molecules.
Density Functional Theory (DFT) Rob Parrish
Sherrill, David
· References 2 #12;Wavefunction Approach 3 Hydrogen 421 Wavefunction at Density Isosurface. Really hard to find Easy to do this Why? Because of Hermitian Operators: Kinetic Energy Density: #12;Density Functional Approach 4 Hydrogen 421 Density (Why is it grayscale?) A bit less obvious Probably easier to find
Updated Axion CDM energy density
Ji-Haeng Huh
2008-10-08
We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale Lambda_{QCD}, the current quark masses m_q's and the Peccei-Quinn scale F_a, including firstly introduced 1.85 factor which is from the initial overshoot.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Density variations and anomalies in palladium compacts
Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.
1992-05-14
Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.
Probability distribution of the vacuum energy density
Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen
2010-12-15
As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.
Density functional theory of freezing: Analysis of crystal density
Laird, Brian Bostian; McCoy, John D.; Haymet, A. D. J.
1987-09-01
the natural variables are temperature, chemical potential, and volume. The pressures are set equal by varying the liquid density until the grand thermodynamic potential, flO = - pV /kT, of the solid phase equals that of the liquid phase. It should... with temperature T, volume V, and chemical potential J.L. The particles interact via a potential energy U(rl, ... ,rn ) and feel an external single particle potential ifJ (r). Defining a dimen sionless single particle effective potential by u (r) = pJ.L - pif...
Cosmic density and velocity fields in Lagrangian perturbation theory
Mikel Susperregi; Thomas Buchert
1997-08-04
A first- and second-order relation between cosmic density and peculiar-velocity fields is presented. The calculation is purely Lagrangian and it is derived using the second-order solutions of the Lagrange-Newton system obtained by Buchert & Ehlers. The procedure is applied to two particular solutions given generic initial conditions. In this approach, the continuity equation yields a relation between the over-density and peculiar-velocity fields that automatically satisfies Euler's equation because the orbits are derived from the Lagrange-Newton system. This scheme generalizes some results obtained by Nusser et al. (1991) in the context of the Zel'dovich approximation. As opposed to several other reconstruction schemes, in this approach it is not necessary to truncate the expansion of the Jacobian given by the continuity equation in order to calculate a first- or second-order expression for the density field. In these previous schemes, the density contrast given by (a) the continuity equation and (b) Euler's equation are mutually incompatible. This inconsistency arises as a consequence of an improper handling of Lagrangian and Eulerian coordinates in the analysis. Here, we take into account the fact that an exact calculation of the density is feasible in the Lagrangian picture and therefore an accurate and consistent description is obtained.
Fusion programs in applied plasma physics
Not Available
1992-02-01
The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.
Improving experimental phases for strong reflections prior to density modification
Uervirojnangkoorn, Monarin [University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany); University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany); Hilgenfeld, Rolf, E-mail: hilgenfeld@biochem.uni-luebeck.de [University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany); Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People’s Republic of (China); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Read, Randy J. [University of Cambridge, Cambridge CB2 0XY (United Kingdom); University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck (Germany)
2013-10-01
A genetic algorithm has been developed to optimize the phases of the strongest reflections in SIR/SAD data. This is shown to facilitate density modification and model building in several test cases. Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005 ?), Acta Cryst. D61, 899–902], the impact of identifying optimized phases for a small number of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. A computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.
Applied Mathematics Conferences and Workshops | U.S. DOE Office...
Office of Science (SC) Website
Applied Mathematics Applied Mathematics Conferences And Workshops Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics...
Rock Density | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and Electric JumpDensity Jump to:
International combustion engines; Applied thermosciences
Ferguson, C.R.
1985-01-01
Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.
ORISE: Applied health physics projects
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHow toContactUndergraduateApplied
Sandia Energy - Applied Turbulent Combustion
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied Turbulent Combustion Home
DENSITY OF STATES CALCULATIONS FOR CARBON
Adler, Joan
DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES EDUARDO WARSZAWSKI #12;#12;DENSITY OF STATES CALCULATIONS FOR CARBON ALLOTROPES AND MIXTURES Research Thesis Submitted in Partial;#12;Contents Abstract xiii 1 Introduction 1 1.1 Carbon allotropes
At the Intersection of Applied Formal Methods
Zimmerman, Daniel M.
of Technology University of Washington Tacoma NTU Graduate Seminar, - 7 January 2011 #12;Outline · Applied
Building Reliable Software Applied Formal Methods
Zimmerman, Daniel M.
Institute of Technology University of Washington Tacoma #12;Outline · Applied Formal Methods · Correctness
Low density expansion for Lyapunov exponents
Hermann Schulz-Baldes
2006-07-12
In some quasi-one-dimensional weakly disordered media, impurities are large and rare rather than small and dense. For an Anderson model with a low density of strong impurities, a perturbation theory in the impurity density is developed for the Lyapunov exponent and the density of states. The Lyapunov exponent grows linearly with the density. Anomalies of the Kappus-Wegner type appear for all rational quasi-momenta even in lowest order perturbation theory.
Oxides having high energy densities
Ceder, Gerbrand; Kang, Kisuk
2013-09-10
Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.
Low-Density Attack Revisited Tetsuya Izu
International Association for Cryptologic Research (IACR)
Low-Density Attack Revisited Tetsuya Izu Jun Kogure Takeshi Koshiba Takeshi Shimoyama Secure The low-density attack proposed by Lagarias and Odlyzko is a powerful algorithm against the subset sum, densities of the subset sum problems should be higher than 0.9408... in order to avoid the low
Ultimate Energy Densities for Electromagnetic Pulses
Mankei Tsang
2008-03-06
The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.
RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride
Jeffery, F.R.; Shanks, H.R.
1980-08-26
A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.
Norm estimates of complex symmetric operators applied to quantum systems
Emil Prodan; Stephan R. Garcia; Mihai Putinar
2005-10-24
This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\\"odinger operators appearing in the complex scaling theory of resonances.
Branch xylem density variations across the Amazon Basin
2009-01-01
increase wood density in Eucalyptus grandis seedlings? ,Changes in wood density of Eucalyptus camaldulensis due to
Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals
Vu, Kevin; Li, Li; Rupp, Matthias; Chen, Brandon F; Khelif, Tarek; Müller, Klaus-Robert; Burke, Kieron
2015-01-01
Accurate approximations to density functionals have recently been obtained via machine learning (ML). By applying ML to a simple function of one variable without any random sampling, we extract the qualitative dependence of errors on hyperparameters. We find universal features of the behavior in extreme limits, including both very small and very large length scales, and the noise-free limit. We show how such features arise in ML models of density functionals.
Equation of state for tungsten over a wide range of densities and internal energies
Khishchenko, Konstantin V
2015-01-01
A caloric model, which describes the pressure--density--internal-energy relationship in a broad region of condensed-phase states, is applied for tungsten. As distinct from previously known caloric equations of state for this material, a new form of the cold-compression curve at $T = 0$~K is used. Thermodynamic characteristics along the cold curve and shock Hugoniots are calculated for the metal and compared with some theoretical results and experimental data available at high energy densities.
Spin projection with double hybrid density functional theory
Thompson, Lee M.; Hratchian, Hrant P.
2014-07-21
A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.
Density waves in the shearing sheet I. Swing amplification
B. Fuchs
2001-03-02
The shearing sheet model of a galactic disk is studied anew. The theoretical description of its dynamics is based on three building blocks: Stellar orbits, which are described here in epicyclic approximation, the collisionless Boltzmann equation determining the distribution function of stars in phase space, and the Poisson equation in order to take account of the self-gravity of the disk. Using these tools I develop a new formalism to describe perturbations of the shearing sheet. Applying this to the unbounded shearing sheet model I demonstrate again how the disturbances of the disk evolve always into `swing amplified' density waves, i.e. spiral-arm like, shearing density enhancements, which grow and decay while the wave crests swing by from leading to trailing orientation. Several examples are given how such `swing amplification' events are incited in the shearing sheet.
Aerodynamic Focusing Of High-Density Aerosols
Ruiz, D. E.; Fisch, Nathaniel
2014-02-24
High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.
Energy density bounds for black strings
Shinya Tomizawa
2005-06-07
The conserved charge called Y-ADM mass density associated with asymptotically translational Killing-Yano tensor gives us an appropriate physical meaning about the energy density of $p$ brane spacetimes or black strings. We investigated the positivity of energy density in black string spacetimes, using the spinorial technique introduced by Witten. Recently, the positivity of Y-ADM mass density in p brane spacetimes was discussed. In this paper, we will extend this discussion to the transversely asymptotically flat black string spacetimes containing an apparent horizon. We will give the sufficient conditions for the Y-ADM mass density to become positive in such spacetimes.
A Classical Density-Functional Theory for Describing Water Interfaces
Jessica Hughes; Eric Krebs; David Roundy
2012-08-31
We develop a classical density functional for water which combines the White Bear fundamental-measure theory (FMT) functional for the hard sphere fluid with attractive interactions based on the Statistical Associating Fluid Theory (SAFT-VR). This functional reproduces the properties of water at both long and short length scales over a wide range of temperatures, and is computationally efficient, comparable to the cost of FMT itself. We demonstrate our functional by applying it to systems composed of two hard rods, four hard rods arranged in a square and hard spheres in water.
CX-007571: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office
CX-007596: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Ohio Advanced Transportation Partnership CX(s) Applied: B5.23 Date: 01/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory
CX-012729: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Hydrogen Sulfide Scavenger BOA (Multiple) CX(s) Applied: B5.2Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office
CX-008588: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office
CX-008684: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration
CX-010148: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Merritt Radio Station Upgrade CX(s) Applied: B1.19 Date: 04/18/2013 Location(s): Washington Offices(s): Bonneville Power Administration
CX-008706: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Tunk Mountain Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/30/2012 Location(s): Washington Offices(s): Bonneville Power Administration
CX-012716: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy
CX-008543: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Colorado State Energy Plan 2012 CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Colorado Offices(s): Golden Field Office
CX-012333: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office
CX-011165: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office
CX-012817: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Bell Maintenance Headquarters Access Road Maintenance CX(s) Applied: B1.3Date: 41890 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-006225: Categorical Exclusion Determination | Department of...
Broader source: Energy.gov (indexed) [DOE]
Infrastructure Upgrades - Materials and Fuel Complex (MFC)- Irradiated Materials Characterization Laboratory (IMCL) CX(s) Applied: B3.6 Date: 06072011 Location(s): Idaho Falls,...
CX-010791: Categorical Exclusion Determination | Department of...
Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08142013 Location(s): Texas...
Categorical Exclusion Determinations: Science | Department of...
Broader source: Energy.gov (indexed) [DOE]
Determination Establishment of an Easement for Enhanced Electrical Service to the Computational Sciences Facility CX(s) Applied: B1.7 Date: 08302011 Location(s):...
CX-011634: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office
CX-008993: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-008993: Categorical Exclusion Determination "Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets CX(s) Applied: A9, B3.6 Date: 0822...
CX-012776: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office
CX-008146: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC
CX-004095: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exclusion Determination CX-004095: Categorical Exclusion Determination Thermal Transport Properties of Nanostructured Materials for Energy Conversion CX(s) Applied: B3.6 Date: 09...
CX-008144: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Planned Repair of Flow Lines CX(s) Applied: B5.4 Date: 08/09/2011 Location(s): Wyoming Offices(s): RMOTC
CX-003164: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Categorical Exclusion Determination CX-003164: Categorical Exclusion Determination Optimization of Biomass Production Across a Landscape CX(s) Applied: A9 Date: 07262010...
CX-012730: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Replace West Hackberry Radio Tower CX(s) Applied: B1.19Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office
CX-011069: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory
CX-010057: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration
CX-011214: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office
CX-012795: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
North Bonneville Substation 23- Kilovolt Line Retermination CX(s) Applied: B4.11Date: 41926 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-010618: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory
CX-012789: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Building 440 CNM Clean Room Expansion CX(s) Applied: B3.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office
CX-008438: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory
CX-008282: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory
Categorical Exclusion Determinations: Western Area PowerAdministratio...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...
CX-012311: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Accelerator Test Facility II CX(s) Applied: B3.10 Date: 05/28/2014 Location(s): New York Offices(s): Brookhaven Site Office
CX-008799: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office
CX-010763: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-010763: Categorical Exclusion Determination Nevada Desert Research Institute- Photovoltaic Installation CX(s) Applied: B5.16 Date: 07172013 Location(s): Nevada Offices(s):...
CX-012254: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05/28/2014 Location(s): Tennessee Offices(s): Golden Field Office
CX-012253: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05/27/2014 Location(s): Oregon Offices(s): Golden Field Office
CX-004351: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
4351: Categorical Exclusion Determination CX-004351: Categorical Exclusion Determination Center for Development of Math, Science and Technology CX(s) Applied: B1.15 Date: 1029...
CX-003959: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
59: Categorical Exclusion Determination CX-003959: Categorical Exclusion Determination Federal Bureau of Investigation Radiological Dispersion Device Training CX(s) Applied: B1.2...
CX-010689: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office
CX-005987: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
87: Categorical Exclusion Determination CX-005987: Categorical Exclusion Determination Stion Corporation - Superstrate Device for High Efficiency Tandem Modules CX(s) Applied: A9,...
Categorical Exclusion (CX) Determinations By Date | Department...
Office of Environmental Management (EM)
(CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...
CX-100022: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-100022: Categorical Exclusion Determination CX-100022: Categorical Exclusion Determination EERE Demonstration for Advanced Retro-Commissioning Technology CX(s) Applied: A9,...
CX-001378: Categorical Exclusion Determination | Department of...
Office of Environmental Management (EM)
378: Categorical Exclusion Determination CX-001378: Categorical Exclusion Determination Wackenhut Services, Incorporated Training Facility CX(s) Applied: B1.2 Date: 10282009...
CX-012664: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
SBIR/STTR Phase 0 Outreach and Assistance Program CX(s) Applied: A8Date: 41844 Location(s): IllinoisOffices(s): Chicago Office
CX-007826: Categorical Exclusion Determination | Department of...
007826: Categorical Exclusion Determination CX-007826: Categorical Exclusion Determination "Crittenden City Facilities Re-Roofing CX(s) Applied: B5.1 Date: 01312012 Location(s):...
CX-012433: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory
CX-000310: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
0: Categorical Exclusion Determination CX-000310: Categorical Exclusion Determination New Jersey Revision 1 - Energy Efficiency Upgrades for State Buildings CX(s) Applied: A9, A11,...
CX-009923: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-009923: Categorical Exclusion Determination CX-009923: Categorical Exclusion Determination Project Icebreaker CX(s) Applied: A9, B3.1 Date: 01072013 Location(s): Ohio...
CX-007056: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
7056: Categorical Exclusion Determination CX-007056: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1 Date: 09192011 Location(s):...
CX-100290 Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
0 Categorical Exclusion Determination CX-100290 Categorical Exclusion Determination Location, Location, Efficiency (Milwaukee, WI) Award Number: DE-EE0007069 CX(s) Applied: A9,...
CX-003197: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
7: Categorical Exclusion Determination CX-003197: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Systems for Utility Power Generation CX(s) Applied:...
CX-007370: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
370: Categorical Exclusion Determination CX-007370: Categorical Exclusion Determination Idaho-TRIBE-SHOSHONE-BANNOCK TRIBE OF THE FORT HALL RESERVATION OF IDAHO CX(s) Applied:...
CX-008534: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Peter Wentz Geothermal CX(s) Applied: B5.19 Date: 05/23/2012 Location(s): Pennsylvania Offices(s): Golden Field Office
CX-008204: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Energize Missouri HUG Finch CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office
CX-008203: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Energize Missouri HUG Demoret CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office
CX-009442: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Cutters Grove, Anoka CX(s) Applied: A9, B5.19 Date: 07/31/2012 Location(s): Minnesota Offices(s): Golden Field Office
CX-007836: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Building Retrofits CX(s) Applied: B5.19 Date: 01/30/2012 Location(s): Illinois Offices(s): Energy Efficiency and Renewable Energy
CX-008241: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Energize Missouri HUG Teter CX(s) Applied: B5.19 Date: 05/15/2012 Location(s): Missouri Offices(s): Golden Field Office
CX-008205: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Energize Missouri HUG Weaver CX(s) Applied: B5.19 Date: 03/23/2012 Location(s): Missouri Offices(s): Golden Field Office
CX-012097: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Microgrid Demonstration Project CX(s) Applied: B5.15 Date: 03/24/2014 Location(s): Idaho Offices(s): Idaho Operations Office
CX-002327: Categorical Exclusion Determination | Department of...
Office of Environmental Management (EM)
Determination Central Facility Area and Advanced Test Reactor-Complex Analytical and Research and Development Laboratory Operation (Overarching) CX(s) Applied: B3.6 Date: 05...
CX-005162: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
5162: Categorical Exclusion Determination CX-005162: Categorical Exclusion Determination Green Chemistry - CEAM Phase 3 - Working Bug LLC CX(s) Applied: B5.1 Date: 02082011...
CX-008545: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Solar Energy Evolution and Diffusion Studies CX(s) Applied: A9 Date: 06/19/2012 Location(s): CX: none Offices(s): Golden Field Office
CX-012200: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management
CX-100081: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exclusion Determination CX-100081: Categorical Exclusion Determination Harnessing the Hydro-Electric Potential of Engineered Drops Award Number: DE-EE0005428 CX(s) Applied:...
CX-012122: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
OCGen Module Mooring Project CX(s) Applied: B5.25 Date: 04/29/2014 Location(s): Maine Offices(s): Golden Field Office
CX-006209: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Determination Missouri Independent Energy Efficiency Program: Anheuser-Busch - Brewery Energy Efficiency Retrofits CX(s) Applied: B5.1 Date: 07012011 Location(s): Saitn...
CX-010109: Categorical Exclusion Determination | Department of...
Office of Environmental Management (EM)
09: Categorical Exclusion Determination CX-010109: Categorical Exclusion Determination Curecanti-Poncha 230 Kilovolt Transmission Line Cross Bar Ranch Project CX(s) Applied: B1.3...
CX-008683: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration
CX-009698: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Sale of Lakeside Radio Station CX(s) Applied: B1.24 Date: 12/27/2012 Location(s): Oregon Offices(s): Bonneville Power Administration
CX-012231: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Mica Peak Radio Station upgrade CX(s) Applied: B1.19 Date: 06/09/2014 Location(s): Washington Offices(s): Bonneville Power Administration
CX-011190: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Alberton Communication Site Construction CX(s) Applied: B1.19 Date: 08/26/2013 Location(s): Montana Offices(s): Bonneville Power Administration
CX-010155: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration
CX-011401: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Minto Lodge Rehabilitation CX(s) Applied: B5.1 Date: 11/19/2013 Location(s): Alaska Offices(s): Golden Field Office
CX-010237: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Pittsburgh Green Innovators Synergy Center CX(s) Applied: A9 Date: 02/28/2013 Location(s): Pennsylvania Offices(s): Golden Field Office
CX-008973: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Petrography Laboratory CX(s) Applied: B3.6 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory
CX-010730: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Paisley Geothermal Integration CX(s) Applied: B1.7 Date: 08/09/2013 Location(s): Oregon Offices(s): Bonneville Power Administration
CX-008161: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration
CX-008700: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Natapoc Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration
CX-012788: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Bio-Aviation Fuel LCA with GREET CX(s) Applied: B5.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office
CX-012718: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Idaho State University Reactor Laboratory Modernization CX(s) Applied: B1.31Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy
CX-012189: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office
CX-012317: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
High Performance Computing Upgrades CX(s) Applied: B1.31 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy
CX-012725: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Materials and Fuel Complex (MFC)-782 Fire Sprinkler Installation CX(s) Applied: B2.2Date: 41829 Location(s): IdahoOffices(s): Nuclear Energy
CX-010515: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Energy Efficiency Public Service Campaign CX(s) Applied: A9 Date: 06/14/2013 Location(s): New York Offices(s): Golden Field Office
CX-007856: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Sacramento Regional Energy Alliance CX(s) Applied: B5.23 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office
CX-007858: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Southwest Solar Transformation Initiative CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): California Offices(s): Golden Field Office
CX-008250: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Geotechnical Core Drilling for USGS 138 CX(s) Applied: B3.1 Date: 04/18/2012 Location(s): Idaho Offices(s): Nuclear Energy
CX-012110: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Cowlitz Falls Fish Facility Access Agreement Extension CX(s) Applied: A2 Date: 04/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration
CX-009398: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Domestic Source Recovery CX(s) Applied: B2.6 Date: 11/01/2012 Location(s): New Mexico Offices(s): Los Alamos Site Office
CX-012705: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Materials and Fuels Complex (MFC)-703 Fire Alarm Replacement CX(s) Applied: B2.2Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy
CX-011250: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Determination Transforming Photovoltaic Installations Toward Dispatchable, Schedulable Energy Solutions CX(s) Applied: B3.6, B5.15 Date: 10172013 Location(s): Oregon...
CX-005950: Categorical Exclusion Determination | Department of...
Determination Wisconsin Clean Transportation Partnership: Riteway Bus Services Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 06012011 Location(s): Oak Creek,...
CX-006893: Categorical Exclusion Determination | Department of...
Exclusion Determination Ohio Advanced Transportation PartnershipFrito Lay Columbus Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 09282011 Location(s): Columbus,...
CX-008535: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
King County Biogas and Nutrient Reduction CX(s) Applied: A9 Date: 05/22/2012 Location(s): Washington Offices(s): Golden Field Office
CX-011110: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Advancements in Algal Biomass Yield CX(s) Applied: A9 Date: 08/29/2013 Location(s): Hawaii Offices(s): Golden Field Office
CX-010343: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Bald Hill Farms Property Funding CX(s) Applied: B1.25 Date: 05/10/2013 Location(s): Oregon Offices(s): Bonneville Power Administration
CX-011630: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
9831 Wall Construction Project CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office
CX-012816: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Rogue-Gold Beach Access Road Improvement CX(s) Applied: B1.3Date: 41890 Location(s): OregonOffices(s): Bonneville Power Administration
CX-011177: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Hebo Substation Access Road Maintenance CX(s) Applied: B1.3 Date: 09/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration
CX-011184: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Salmon Creek Pond Property Funding CX(s) Applied: B1.25 Date: 08/29/2013 Location(s): Washington Offices(s): Bonneville Power Administration
CX-008698: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Poorman Ponds Property Funding CX(s) Applied: B1.25 Date: 06/12/2012 Location(s): Washington Offices(s): Bonneville Power Administration
CX-009630: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
ICP Routine Maintenance CX(s) Applied: B1.3 Date: 11/06/2012 Location(s): Idaho Offices(s): Idaho Operations Office
CX-009632: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
INTEC – Suspect RH-TRU (AMWTP) CX(s) Applied: NO CX GIVEN Date: 11/23/2012 Location(s): Idaho Offices(s): Idaho Operations Office
CX-012722: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Test Reactor Area (TRA)-653 Conference Room Modifications CX(s) Applied: B1.15Date: 41829 Location(s): IdahoOffices(s): Nuclear Energy
CX-011564: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Excess Facilities Deactivation and Demolition CX(s) Applied: B1.23 Date: 11/05/2013 Location(s): Idaho Offices(s): Idaho Operations Office
CX-009753: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Propane Corridor Development Program CX(s) Applied: B5.22 Date: 12/06/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory
CX-012482: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Mid-Atlantic Regional Infrastructure Development Project CX(s) Applied: B5.22Date: 41862 Location(s): MarylandOffices(s): National Energy Technology Laboratory
CX-012002: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration
CX-010772: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Water Security Test Bed (WSTB) CX(s) Applied: B3.6 Date: 07/17/2013 Location(s): Idaho Offices(s): Nuclear Energy
CX-100159 Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Proposed Rulemaking for Energy Conservation Standards for Commercial and Industrial Pumps RIN: 1904-AC54 CX(s) Applied: B5.1
CX-100160 Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Proposed Rulemaking for Energy Conservation Standards for Residential Dehumidifiers RIN: 1904-AC81 CX(s) Applied: B5.1
CX-012706: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy
CX-009295: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Energy Regional Innovation Cluster CX(s) Applied: B3.6 Date: 09/05/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory
CX-003226: Categorical Exclusion Determination | Department of...
Exclusion Determination Parris Island Wind Resource Assessment; National Renewable Energy Laboratory Tracking Number 10-032 CX(s) Applied: A9, B3.1 Date: 08042010...
CX-010258: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Bangladesh Meteorological Instrumentation Installation CX(s) Applied: A9 Date: 04/26/2013 Location(s): Colorado Offices(s): Golden Field Office
CX-008803: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office
CX-002355: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Categorical Exclusion Determination CX-002355: Categorical Exclusion Determination Kansas City Power and Light (KCP&L) Green Impact Zone Smart Grid Demonstration CX(s) Applied:...
CX-010113: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Compression Stress Relaxometer CX(s) Applied: B3.6 Date: 03/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office
CX-012434: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory
CX-009587: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
City of Houston, Texas CX(s) Applied: B5.1 Date: 12/12/2012 Location(s): Texas Offices(s): Golden Field Office
CX-010261: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Nevada State Energy Program Formula CX(s) Applied: B5.16 Date: 04/26/2013 Location(s): Nevada Offices(s): Golden Field Office
CX-009635: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
INTEC – U-233 Waste Stream Disposition CX(s) Applied: NO CX GIVEN Date: 12/15/2012 Location(s): Idaho Offices(s): Idaho Operations Office
CX-009019: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Determination CX-009019: Categorical Exclusion Determination "Catalyst-Assisted Manufacture of Olefins from Natural Gas Liquids: Prototype Development CX(s) Applied: A9, B3.6...
CX-011625: Categorical Exclusion Determinationc
Broader source: Energy.gov [DOE]
9103 Second Floor Refurbishment CX(s) Applied: B1.3 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office
CX-008609: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Vermont State Energy Program CX(s) Applied: A9, A11 Date: 07/03/2012 Location(s): Vermont Offices(s): Golden Field Office
CX-012790: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-004247: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exclusion Determination CX-004247: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 10142010 Location(s): Indian Trail,...
CX-012655: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Acquisition of Access Road Easements CX(s) Applied: B1.24Date: 41849 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-012809: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
LURR 20140313 City of Vancouver Sewer Lateral CX(s) Applied: B4.9Date: 41906 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-012651: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
LURR20140464 - Spencer May - Fence Construction CX(s) Applied: B4.9Date: 41858 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-012632: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
LURR 20140456 - Salmon Creek Avenue Pathway Project CX(s) Applied: B4.9Date: 41885 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-012808: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
LURR 20140504 Ross Substation Comcast Fiber Installation CX(s) Applied: B4.9Date: 41906 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-012637: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
LURR 20140521 - David King - Sewer Line Installation CX(s) Applied: B4.9Date: 41876 Location(s): OregonOffices(s): Bonneville Power Administration
CX-010398: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Power Line Configuration CX(s) Applied: B4.13 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office
CX-010091: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Power Line Configuration 2013-1 CX(s) Applied: B4.13 Date: 04/15/2012 Location(s): Idaho Offices(s): Nuclear Energy
CX-002194: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-002194: Categorical Exclusion Determination Install Demonstration Wind Turbine at Weldon Spring, Missouri, Site CX(s) Applied: B5.1 Date: 04282010 Location(s):...
CX-012812: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Chemawa-Salem #1 & #2 Access Road Maintenance CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration
CX-012469: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Gas Analysis Services CX(s) Applied: B3.6Date: 41876 Location(s): OregonOffices(s): National Energy Technology Laboratory
CX-010656: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Stormwater Drainage Repair CX(s) Applied: B1.3 Date: 06/18/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office
CX-011995: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exclusion Determination CX-011995: Categorical Exclusion Determination Hat Rock Tap Switching Station Equipment Transfer CX(s) Applied: B1.24 Date: 04102014 Location(s):...
CX-005991: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-005991: Categorical Exclusion Determination Prairie Village, Kansas Ground Source Heat Pump Relocation CX(s) Applied: B5.1 Date: 05252011 Location(s): Prairie Village,...
CX-012118: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Hydro Research Foundation University Research Awards - Tufts CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office
CX-010437: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Rocky Ridge Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/31/2013 Location(s): Montana Offices(s): Bonneville Power Administration
CX-011239: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Security Upgrades at Multiple Substations CX(s) Applied: ? Date: 10/02/2013 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration
CX-012474: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory
CX-007418: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Sidewalks to School CX(s) Applied: B1.13 Date: 12/13/2011 Location(s): South Carolina Offices(s): Golden Field Office
CX-006211: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exclusion Determination Missouri Independent Energy Efficiency Program: Henniges Automotive - Process Air Compressor Upgrades CX(s) Applied: B5.1 Date: 07182011 Location(s):...
CX-009423: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration
CX-012310: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Sawmill Creek Stream Bank Erosion CX(s) Applied: B1.3 Date: 06/06/2014 Location(s): Illinois Offices(s): Argonne Site Office
CX-009132: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Landfill Gas Utilization Plant CX(s) Applied: B5.21 Date: 08/02/2012 Location(s): New York Offices(s): Golden Field Office
CX-012566: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Z-Area Fire Tank Painting CX(s) Applied: B1.3Date: 41865 Location(s): South CarolinaOffices(s): Savannah River Operations Office
CX-007893: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
SunShot Massachusetts CX(s) Applied: A9, A11 Date: 02/10/2012 Location(s): Massachusetts Offices(s): Golden Field Office
CX-012463: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory
CX-011626: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office
CX-010869: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Nauticas Research Program CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): Illinois Offices(s): Argonne Site Office
CX-007407: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Advanced Floating Turbine CX(s) Applied: A9 Date: 12/07/2011 Location(s): Ohio Offices(s): Golden Field Office
CX-010768: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy
CX-012810: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration
CX-009513: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Aquatic Invasive Mussels Monitoring CX(s) Applied: B3.1 Date: 10/15/2012 Location(s): CX: none Offices(s): Bonneville Power Administration
CX-012658: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Chief Joseph and Custer Substations Security Fence Replacement CX(s) Applied: B1.11Date: 41843 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-007549: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Harrisonville - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office
CX-007550: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Kearney - Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 01/10/2012 Location(s): Missouri Offices(s): Golden Field Office
CX-007417: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Shift CX(s) Applied: B5.1 Date: 12/21/2011 Location(s): Pennsylvania Offices(s): Golden Field Office
CX-010532: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Various Demolition Jobs CX(s) Applied: B1.23 Date: 06/07/2013 Location(s): Illinois Offices(s): Fermi Site Office
CX-012796: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Big Eddy-Redmond #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41919 Location(s): OregonOffices(s): Bonneville Power Administration
CX-012818: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
La Pine-Chiloquin Wood Pole Replacements CX(s) Applied: B1.3Date: 41887 Location(s): OregonOffices(s): Bonneville Power Administration
CX-012813: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Redmond-Pilot Butte #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration
CX-012799: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Malin-Hilltop Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration
CX-012805: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Brasada-Harney #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41908 Location(s): OregonOffices(s): Bonneville Power Administration
CX-012798: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Davis Creek Tap Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration
CX-009166: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes CX(s) Applied:...
CX-011534: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration
Shamis, Mira, E-mail: mshamis@princeton.edu [Department of Mathematics, Princeton University, Princeton New Jersey 08544, USA and Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540 (United States)] [Department of Mathematics, Princeton University, Princeton New Jersey 08544, USA and Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540 (United States)
2013-11-15
We use the supersymmetric formalism to derive an integral formula for the density of states of the Gaussian Orthogonal Ensemble, and then apply saddle-point analysis to give a new derivation of the 1/N-correction to Wigner's law. This extends the work of Disertori on the Gaussian Unitary Ensemble. We also apply our method to the interpolating ensembles of Mehta–Pandey.
Academic Plan Faculty of Applied Science & Engineering
Toronto, University of
Academic Plan Faculty of Applied Science & Engineering University of Toronto 2011 to 2016 Approved by Faculty Council October 6, 2011 #12;Faculty of Applied Science & Engineering Academic Plan Table ........................................................................................... 13 Chapter 4: Educating Future Engineers
Deep Vadose Zone Applied Field Research Initiative
Deep Vadose Zone Applied Field Research Initiative Fiscal Year 2012 Annual Report #12;Prepared Tasks 25 References 25 Appendix: FY2012 Products for the Deep Vadose Zone Applied Field Research Initiative Contents #12;Message from the Deep Vadose Zone- Applied Field Research Initiative Project Manager
Montana State University 1 Applied Mathematics
Maxwell, Bruce D.
Montana State University 1 Applied Mathematics Option M 171Q Calculus I 4 or M 181Q 348 Techniques of Applied Math I 3 M 349 Techniques of Applied Mathematics II 3 M 386R Software Applications in Mathematics 3 M 441 Numerical Linear Algebra & Optimization 3 M 442 Numerical Solution
Journal of Computational and Applied Mathematics
Bohner, Martin
Journal of Computational and Applied Mathematics Most downloaded articles January - August 2004 1: a survey Journal of Computational and Applied Mathematics, 141 (2002) 1-26 2. M. Z. Liu, M. H. Song and Z([t])*1 Journal of Computational and Applied Mathematics, 166 (2004) 361-370 3. S. Kutluay, A. Esen and I
Online Master of Science in Applied Psychology
Zhou, Xianghong Jasmine
Online Master of Science in Applied Psychology #12;Online Master of Science in Applied Psychology of psychology to today's changing business environment. On behalf of the University of Southern California, I Psychology online program. Here at USC, we recognize the importance of applying psychology in many areas
The Quantum Energy Density: Improved E
Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.
2013-01-01
We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.
Considering Air Density in Wind Power Production
Zénó Farkas
2011-03-11
In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.
Method of synthesizing a low density material
Lorensen, L.E.; Monaco, S.B.
1987-02-27
A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.
Considering Air Density in Wind Power Production
Farkas, Zénó
2011-01-01
In the wind power production calculations the air density is usually considered as constant in time. Using the CIPM-2007 equation for the density of moist air as a function of air temperature, air pressure and relative humidity, we show that it is worth taking the variation of the air density into account, because higher accuracy can be obtained in the calculation of the power production for little effort.
M. Stoitsov; M. Kortelainen; S. K. Bogner; T. Duguet; R. J. Furnstahl; B. Gebremariam; N. Schunck
2010-09-17
In a recent series of papers, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the Density Matrix Expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory (EFT) two- and three-nucleon interactions. Due to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Since the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present paper is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition (SVD) optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test $\\chi^2$ function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.
3-D capacitance density imaging system
Fasching, G.E.
1988-03-18
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.
Mini-review of Electron Density Visualization
Adler, Joan; Adler, Omri; Kreif, Meytal; Cohen, Or; Grosso, Bastien; Hashibon, Adham; Cooper, Valentino R
2015-01-01
We describe both educational and research oriented examples of electronic density visualization with AViz. Several detailed cases are presented and the procedures for their preparation are described.
Chiral dynamics and peripheral transverse densities Granados...
Office of Scientific and Technical Information (OSTI)
dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...
Uncertainty Quantification for Nuclear Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search Title: Uncertainty Quantification...
Uncertainty Quantification for Nuclear Density Functional Theory...
Office of Scientific and Technical Information (OSTI)
Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search This content will become publicly...
Building a Universal Nuclear Energy Density Functional
Bertulani, Carlos A.
2014-09-10
This grant had two components: Density functional theory and pairing and Nuclear reactions. This final report summarizes the activities for this SciDAC-2 project.
A STUDY OF COMPUTATIONAL FLUID DYNAMICS APPLIED TO ROOM AIR FLOW
for supplying me a copy of his three-dimensional, laminar, constant density fluid flow computer program, whichi A STUDY OF COMPUTATIONAL FLUID DYNAMICS APPLIED TO ROOM AIR FLOW By JAMES W. WEATHERS Bachelor of the requirements for the Degree of MASTER OF SCIENCE May, 1992 #12;ii A STUDY OF COMPUTATIONAL FLUID DYNAMICS
Yu, Peter K.N.
2006-01-01
Applied Radiation and Isotopes 64 (2006) 10271030 Independence of calibration curves for EBT for dosimetry in radiation therapy. Due to the weak dependence of its response on the photon energy (variations may be changing or unknown. In order to convert a map of optical densities into a map of absorbed
Menut, Laurent
the a priori uncertainties in anthropogenic NOx and volatile organic compounds (VOC) emissions: (1) The a posteriori probability density function (pdf) for NOx emissions is not modified in its averageBayesian Monte Carlo analysis applied to regional-scale inverse emission modeling for reactive
Thin film limits for Ginzburg--Landau with strong applied magnetic fields
Stan Alama; Lia Bronsard; Bernardo Galvão-Sousa
2009-11-06
In this work, we study thin-film limits of the full three-dimensional Ginzburg-Landau model for a superconductor in an applied magnetic field oriented obliquely to the film surface. We obtain Gamma-convergence results in several regimes, determined by the asymptotic ratio between the magnitude of the parallel applied magnetic field and the thickness of the film. Depending on the regime, we show that there may be a decrease in the density of Cooper pairs. We also show that in the case of variable thickness of the film, its geometry will affect the effective applied magnetic field, thus influencing the position of vortices.
Surface Symmetry Energy of Nuclear Energy Density Functionals
N. Nikolov; N. Schunck; W. Nazarewicz; M. Bender; J. Pei
2010-12-28
We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron- rich matter and description of fission rates for r-process nucleosynthesis.
Physics Procedia 00 (2015) 15 Mini-review of Electron Density Visualization
Adler, Joan
2015-01-01
Vizualization) package [1, 2], developed at the Technion and now part of the FP7 SimPhoNy project [3]. 1 #12]. When we were developing the AViz visualization package for atomistic simulation and discussing how to show electronic density we thought that perhaps, applying it off-label using the dot representation
Electronvibration coupling in time-dependent density-functional theory: Application to benzene
Bertsch George F.
Electronvibration coupling in time-dependent density-functional theory: Application to benzene G for electronvibration coupling, we apply it to the optical properties of the * transitions in benzene with the electronic excitations. In this work, we have chosen the benzene model for an exploratory study
Time Dependent Density Functional Theory An Introduction
Botti, Silvana
Time Dependent Density Functional Theory An Introduction Francesco Sottile Laboratoire des Solides) Belfast, 29 Jun 2007 Time Dependent Density Functional Theory Francesco Sottile #12;Intro Formalism Linear Response Formalism 3 TDDFT in practice: The ALDA: Achievements and Shortcomings 4 Resources Time
Enhancing critical current density of cuprate superconductors
Chaudhari, Praveen
2015-06-16
The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.
Neutral depletion and the helicon density limit
Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.
2013-12-15
It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.
Density functional theory for carbon dioxide crystal
Chang, Yiwen; Mi, Jianguo Zhong, Chongli
2014-05-28
We present a density functional approach to describe the solid?liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Differentiable but exact formulation of density-functional theory
Kvaal, Simen Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M.; School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD
2014-05-14
The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ? > 0, pairs of conjugate functionals ({sup ?}E, {sup ?}F) that converge to (E, F) pointwise everywhere as ? ? 0{sup +}, and such that {sup ?}F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup ?}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup ?}E, {sup ?}F). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup ?}F, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.
Building America Expert Meeting: Recommendations for Applying...
Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems Building America Expert Meeting: Recommendations...
Alumni & Industry Magazine Chemical Engineering & Applied Chemistry
Prodiæ, Aleksandar
grease, waste animal fats, recycled veg- etable oils and agricultural seed oils into biodiesel. BioxAlumni & Industry Magazine Chemical Engineering & Applied Chemistry University of Toronto Volume 10
Modeling International Relationships in Applied General Equilibrium...
in Applied General Equilibrium (MIRAGE) AgencyCompany Organization: International Food Policy Research Institute, Centre d'Etudes Prospectives et d'Informations...
Environmental Impact and Sustainability Applied General Equilibrium...
Model (ENVISAGE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Environmental Impact and Sustainability Applied General Equilibrium Model (ENVISAGE) Agency...
High energy density Z-pinch plasmas using flow stabilization
Shumlak, U. Golingo, R. P. Nelson, B. A. Bowers, C. A. Doty, S. A. Forbes, E. G. Hughes, M. C. Kim, B. Knecht, S. D. Lambert, K. K. Lowrie, W. Ross, M. P. Weed, J. R.
2014-12-15
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.
Periodic subsystem density-functional theory
Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide
2014-11-07
By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.
Chiral dynamics and peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1989-10-10
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, R.W.
1988-05-26
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W. (Pleasant Hill, CA)
1989-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Low density, resorcinol-formaldehyde aerogels
Pekala, Richard W. (Pleasant Hill, CA)
1991-01-01
The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.
Instabilities in the Nuclear Energy Density Functional
M. Kortelainen; T. Lesinski
2010-02-05
In the field of Energy Density Functionals (EDF) used in nuclear structure and dynamics, one of the unsolved issues is the stability of the functional. Numerical issues aside, some EDFs are unstable with respect to particular perturbations of the nuclear ground-state density. The aim of this contribution is to raise questions about the origin and nature of these instabilities, the techniques used to diagnose and prevent them, and the domain of density functions in which one should expect a nuclear EDF to be stable.
Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz
Pohl, Vincent
2015-01-01
The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ mo...
Relation between plasma plume density and gas flow velocity in atmospheric pressure plasma
Yambe, Kiyoyuki; Taka, Shogo; Ogura, Kazuo [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)] [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)
2014-04-15
We have studied atmospheric pressure plasma generated using a quartz tube, helium gas, and copper foil electrode by applying RF high voltage. The atmospheric pressure plasma in the form of a bullet is released as a plume into the atmosphere. To study the properties of the plasma plume, the plasma plume current is estimated from the difference in currents on the circuit, and the drift velocity is measured using a photodetector. The relation of the plasma plume density n{sub plu}, which is estimated from the current and the drift velocity, and the gas flow velocity v{sub gas} is examined. It is found that the dependence of the density on the gas flow velocity has relations of n{sub plu} ? log(v{sub gas}). However, the plasma plume density in the laminar flow is higher than that in the turbulent flow. Consequently, in the laminar flow, the density increases with increasing the gas flow velocity.
Extra-galactic high-energy transients: event rate densities and luminosity functions
Sun, Hui; Li, Zhuo
2015-01-01
Several types of extra-galactic high-energy transients have been discovered, which include high-luminosity and low-luminosity long-duration gamma-ray bursts (GRBs), short-duration GRBs, supernova shock breakouts (SBOs), and tidal disruption events (TDEs) without or with an associated relativistic jet. In this paper, we apply a unified method to systematically study the redshift-dependent event rate densities and the global luminosity functions (ignoring redshift evolution) of these transients. We introduce some empirical formulae for the redshift-dependent event rate densities for different types of transients, and derive the local specific event rate density, which also represents its global luminosity function. Long GRBs have a large enough sample to reveal features in the global luminosity function, which is best characterized as a triple power law. All the other transients are consistent with having a single power law luminosity function. The total event rate density depends on the minimum luminosity, and...
Degenerate ground states and nonunique potentials: Breakdown and restoration of density functionals
Capelle, K.; Ullrich, C. A.; Vignale, G.
2007-07-15
The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK theorem, as all mappings between densities, wave functions, and potentials can break down. Two weaker theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the internal, total, and exchange-correlation energy functionals to the extent needed in applications of DFT to atoms, molecules, and solids. The joint-degeneracy theorem constrains the nature of possible degeneracies in general many-body systems.
UNL Core for Applied Genomics and Ecology
Farritor, Shane
UNL Core for Applied Genomics and Ecology Bioinformatics training Roche 454 GS-FLX Registration, Microbiomes, Variant Analysis, Whole Genomes, Transcriptomes Data Analysis and Statistics CAGE database and employer. University of Nebraska-Lincoln*Core for Applied Genomics and Ecology* 323 Filley Hall *Lincoln
FACULTY OF APPLIED SCIENCE ENGINEERING NEWS
Pulfrey, David L.
in the race. After their two competition cars were totalled, they've now regroupFACULTY OF APPLIED SCIENCE ENGINEERING NEWS FALL 2014 / WINTER 2015 PROTECTING THE ENVIRONMENT -- USING NATURAL ENGINEERING SURVIVE AND THRIVE APPLIED RESEARCH FACILITY -- STAR -- TAKES OFF
Disease management Applying Stylet Oil, Sulforix or
Isaacs, Rufus
1 Disease management Applying Stylet Oil, Sulforix or Armicarb now to vines with powdery mildew will reduce disease pressure next year. Do not apply Sulforix to sulfur-sensitive grapes. Bunch rots are best controlled by leaf pulling, but application of Fungastop may help reduce sour rot. Insect management Low
Nuclear Facilities and Applied Technologies at Sandia
Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom
2014-11-28
The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.
Gui Lu Long; Yi-Fan Zhou; Jia-Qi Jin; Yang Sun; Hai-Woong Lee
2006-04-20
We clarify different definitions of the density matrix by proposing the use of different names, the full density matrix for a single-closed quantum system, the compressed density matrix for the averaged single molecule state from an ensemble of molecules, and the reduced density matrix for a part of an entangled quantum system, respectively. We show that ensembles with the same compressed density matrix can be physically distinguished by observing fluctuations of various observables. This is in contrast to a general belief that ensembles with the same compressed density matrix are identical. Explicit expression for the fluctuation of an observable in a specified ensemble is given. We have discussed the nature of nuclear magnetic resonance quantum computing. We show that the conclusion that there is no quantum entanglement in the current nuclear magnetic resonance quantum computing experiment is based on the unjustified belief that ensembles having the same compressed density matrix are identical physically. Related issues in quantum communication are also discussed.
Turbulent density fluctuations in the solar wind
Ingale, Madhusudan
2015-01-01
Treatments of the radio scattering due to density turbulence in the solar wind typically employ asymptotic approximations to the phase structure function. We use a general structure function (GSF) that straddles the asymptotic limits and quantify the relative error introduced by the approximations. We show that the regimes where GSF predictions are accurate than those of its asymptotic approximations is not only of practical relevance, but are where inner scale effects influence the estimate of the scatter-broadening. Thus we propose that GSF should henceforth be used for scatter broadening calculations and estimates of quantities characterizing density turbulence in the solar corona and solar wind. In the next part of this thesis we use measurements of density turbulence in the solar wind from previously publish observations of radio wave scattering and interplanetary scintillations. Density fluctuations are inferred using the GSF for radio scattering data and existing analysis methods for IPS. Assuming that...
Spin- and Pair-Density-Wave Glasses
Mross, David F.
Spontaneous breaking of translational symmetry, known as density-wave order, is common in nature. However, such states are strongly sensitive to impurities or other forms of frozen disorder leading to fascinating glassy ...
LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS
Kutyniok, Gitta
LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS KARLHEINZ GRÂ¨OCHENIG, GITTA KUTYNIOK's conditions to the setting of locally compact abelian (LCA) groups, relying in an analogous way on the basics
Density controlled carbon nanotube array electrodes
Ren, Zhifeng F. (Newton, MA); Tu, Yi (Belmont, MA)
2008-12-16
CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.
Shock compression of low-density foams
Holmes, N.C.
1993-07-01
Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Breast Density and Cancer | GE Global Research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Breast Cancer Awareness Series: Understanding Breast Density Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...
Alpha track density using a semiconductor detector
Hamilton, Ian Scott
1993-01-01
of factors including variation in the initial dielectric thickness, and other undefined parameters. In addition, the resultant radon concentration reading is dependent upon the calibration factor used to interpret the track density reading. Obtaining...
Primordial Density Fluctuations in Phase Coupling Gravity
C. E. M. Batista; M. Schiffer
1996-01-10
In this paper we study the evolution of density perturbations in the framework of Phase Coupling Gravity theory at the very early universe. We show that these perturbation display an exponential-like behaviour.
Density shock waves in confined microswimmers
Tsang, Alan Cheng Hou
2015-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...
Density of states of disordered systems
van Rossum, Mark; Nieuwenhuizen, Th.M; Hofstetter, E; Schreiber, M
1994-05-15
Density of states calculations for the tight-binding model with diagonal disorder are presented. An instanton approach is used to calculate the tails of the spectrum, including all prefactors. It is shown that a Hartree ...
Densities of Minor-Closed Graph Families
Eppstein, David
2010-01-01
N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner’sChudnovsky, B. Reed, and P. Seymour. The edge-density for KReferences [1] N. Alon, P. Seymour, and R. Thomas. A
Spacetime Average Density (SAD) cosmological measures
Page, Don N.
2014-11-01
The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.
Rapid chain tracing of polypeptide backbones in electron-density maps
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2010-03-01
A method for rapid chain tracing of polypeptide backbones at moderate resolution is presented. A method for the rapid tracing of polypeptide backbones has been developed. The method creates an approximate chain tracing that is useful for visual evaluation of whether a structure has been solved and for use in scoring the quality of electron-density maps. The essence of the method is to (i) sample candidate C{sup ?} positions at spacings of approximately 0.6 Å along ridgelines of high electron density, (ii) list all possible nonapeptides that satisfy simple geometric and density criteria using these candidate C{sup ?} positions, (iii) score the nonapeptides and choose the highest scoring ones, and (iv) find the longest chains that can be made by connecting nonamers. An indexing and storage scheme that allows a single calculation of most distances and density values is used to speed up the process. The method was applied to 42 density-modified electron-density maps at resolutions from 1.5 to 3.8 Å. A total of 21 428 residues in these maps were traced in 24 CPU min with an overall r.m.s.d. of 1.61 Å for C{sup ?} atoms compared with the known refined structures. The method appears to be suitable for rapid evaluation of electron-density map quality.
Ligand identification using electron-density mapcorrelations
Terwilliger, Thomas C.; Adams, Paul D.; Moriarty, Nigel W.; Cohn,Judith D.
2006-12-01
A procedure for the identification of ligands bound incrystal structuresof macromolecules is described. Two characteristics ofthe density corresponding to a ligand are used in the identificationprocedure. One is the correlation of the ligand density with each of aset of test ligands after optimization of the fit of that ligand to thedensity. The other is the correlation of a fingerprint of the densitywith the fingerprint of model density for each possible ligand. Thefingerprints consist of an ordered list of correlations of each the testligands with the density. The two characteristics are scored using aZ-score approach in which the correlations are normalized to the mean andstandard deviation of correlations found for a variety of mismatchedligand-density pairs, so that the Z scores are related to the probabilityof observing a particular value of the correlation by chance. Theprocedure was tested with a set of 200 of the most commonly found ligandsin the Protein Data Bank, collectively representing 57 percent of allligands in the Protein Data Bank. Using a combination of these twocharacteristics of ligand density, ranked lists of ligand identificationswere made for representative (F-o-F-c) exp(i phi(c)) difference densityfrom entries in the Protein Data Bank. In 48 percent of the 200 cases,the correct ligand was at the top of the ranked list of ligands. Thisapproach may be useful in identification of unknown ligands in newmacromolecular structures as well as in the identification of whichligands in a mixture have bound to a macromolecule.
Redshift Evolution of Galaxy Cluster Densities
R. G. Carlberg; S. L. Morris; H. K. C. Yee; E. Ellingson
1997-01-20
The number of rich galaxy clusters per unit volume is a strong function of Omega, the cosmological density parameter, and sigma_8, the linear extrapolation to z=0 of the density contrast in 8/h Mpc spheres. The CNOC cluster redshift survey provides a sample of clusters whose average mass profiles are accurately known, which enables a secure association between cluster numbers and the filtered density perturbation spectrum. We select from the CNOC cluster survey those EMSS clusters with bolometric L_x>=10^45 erg/s and a velocity dispersion exceeding 800 km/s in the redshift ranges 0.18-0.35 and 0.35-0.55. We compare the number density of these subsamples with similar samples at both high and low redshift. Using the Press-Schechter formalism and CDM style structure models, the density data are described with sigma_8=0.75+/-0.1 and Omega=0.4+/-0.2 (90% confidence). The cluster dynamical analysis gives Omega=0.2+/-0.1$ for which sigma_8=0.95+/-0.1 (90% confidence). The predicted cluster density evolution in an \\Omega=1 CDM model exceeds that observed by more than an order of magnitude.
Force Density Balance inside the Hydrogen Atom
Himpsel, F J
2015-01-01
Motivated by the long-debated question about the internal stability of the electron, the force densities acting on the charge density of the 1s electron in the H atom are investigated. The problem is mapped onto the canonical formalism for a classical Dirac field coupled to the electric field of an external point charge. An explicit calculation shows that the attractive Coulomb force density is balanced exactly at every point in space by the repulsive confinement force density. The latter requires evaluating the divergence of the stress tensor for the 1s solution of the Dirac equation. Such a local force balance goes beyond the global stability criteria that are usually given for the H atom. This concept is extended to the internal stability of any charged particle by investigating the force densities acting on its surrounding vacuum polarization. At large distances one has to consider only the charge density of virtual electrons and positrons, induced by a point charge in the vacuum of quantum electrodynamic...
Towards the island of stability with relativistic energy density functionals
Prassa, V.; Niksic, T.; Lalazissis, G. A.; Vretenar, D.
2012-10-20
Relativistic energy density functionals (REDF) provide a complete and accurate, global description of nuclear structure phenomena. Modern semi-empirical functionals, adjusted to the nuclear matter equation of state and to empirical masses of deformed nuclei, are applied to studies of shapes of superheavy nuclei. The theoretical framework is tested in a comparison to empirical masses, quadrupole deformations, and energy barriers of actinide nuclei. The model is used in a self-consistent mean-field calculation of spherical, axial and triaxial shapes of superheavy nuclei, alpha-decay energies and lifetimes. The effect of explicit treatment of collective correlations is analyzed in calculations that consistently use a collective Hamiltonian model based on REDFs.
Roadmap: Applied Engineering Applied Engineering and Technology Management Bachelor of Science
Sheridan, Scott
Roadmap: Applied Engineering Applied Engineering and Technology Management Bachelor of Science2013 Page 1 of 2 | Last Updated: 21-May-12/JS This roadmap is a recommended semester-by-semester plan TECH 43550 Computer-Aided Manufacturing 3 General Elective 6 #12;Roadmap: Applied Engineering
apply to program Energy audit and
, the country has the potential to improve the energy performance of one third of its building stock's demand for fossil fuel imports. Improving energy! SAV ING S! Homeowners apply to program Energy audit and retrofit plan Financing though grants
15.075 Applied Statistics, Spring 2003
Newton, Elizabeth
This course is an introduction to applied statistics and data analysis. Topics include collecting and exploring data, basic inference, simple and multiple linear regression, analysis of variance, nonparametric methods, and ...
MSc Applied Mathematics Stochastic Operations Research
Boucherie, Richard J.
MSc Applied Mathematics Stochastic Operations Research Richard Boucherie #12;20150106Stochastic Operations Research #12;Stochastic Operations Research: Team http://www.utwente.nl/ewi/sor/staff/ 20150106Stochastic Operations Research #12;Operations Research: The World http
Applying Ethical Principles to Information and Communication
California at San Diego, University of
Applying Ethical Principles to Information and Communication Technology Research A Companion Clayman, DHS Science & Technology · John Heidemann, University of California, ISI · Douglas Maughan, DHS Science & Technology · Jenny McNeill, SRI International · Peter Neumann, SRI International · Charlotte
Fluid Bed Combustion Applied to Industrial Waste
Mullen, J. F.; Sneyd, R. J.
1985-01-01
Because of its unique ability to handle a wide variety of liquids and solids in an energy efficient and environmentally acceptable manner, fluid bed combustion is being increasingly applied to the utilization of waste materials and low grade fuels...
A. La Rosa Lecture Notes APPLIED OPTICS
light energy is transmitted from one point to another in an optical system. 2. Classical theoryA. La Rosa Lecture Notes APPLIED OPTICS ________________________________________________________________________ 11.1 Optics in different regimes The electromagnetic spectrum From: http
Applied Fluid Mechanics I) Course goals
Leu, Tzong-Shyng "Jeremy"
design. #12;2 Textbook " Applied Fluid Mechanics" by Robert L. Mott, Sixth Edition in SI unit 1 Exam 30 Final Exam 30 (Total of 100) (30%)(&10%) () PDF lecture notes if any can be downloaded from
Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo
Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.
2014-10-01
We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.
Density equalizing map projections (cartograms) in public health applications
Merrill, D.W.
1998-05-01
In studying geographic disease distributions, one normally compares rates among arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing some of the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP){copyright}. Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease risk is constant. On the transformed map, the statistical analysis of the observed distribution is greatly simplified. Even for sparse distributions, the statistical significance of a supposed disease cluster can be calculated with validity. The DEMP algorithm was applied to a data set previously analyzed with conventional techniques; namely, 401 childhood cancer cases in four counties of California. The distribution of cases on the transformed map was analyzed visually and statistically. To check the validity of the method, the identical analysis was performed on 401 artificial cases randomly generated under the assumption of uniform risk. No statistically significant evidence for geographic non-uniformity of rates was found, in agreement with the original analysis performed by the California Department of Health Services.
Energy Density Fluctuations in Inflationary Cosmology
Harald F. Muller; Christoph Schmid
1994-12-07
We analyze the energy density fluctuations contributed by scalar fields $\\Phi$ with vanishing expectation values, $\\langle\\Phi\\rangle=0$, which are present in addition to the inflaton field. For simplicity we take $\\Phi$ to be non--interacting and minimally coupled to gravity. We use normal ordering to define the renormalized energy density operator $\\rho$, and we show that any normal ordering gives the same result for correlation functions of $\\rho$. We first consider massless fields and derive the energy fluctuations in a single mode $\\vk$, the two--point correlation function of the energy density, the power spectrum, and the variance of the smeared energy density, $\\ddR$. Mass effects are investigated for energy fluctuations in single modes. All quantities considered are scale invariant at the second horizon crossing (Harrison--Zel'dovich type) for massless and for unstable massive fields. The magnitude of the relative fluctuations $\\de\\rho/\\rt$ is of order $(\\Hi/\\Mp)^2$ in the massless case, where $\\Hi$ is the Hubble constant during inflation. For an unstable field of mass $m_\\Phi\\ll\\Hi$ with a decay rate $\\Gamma_\\Phi$ the magnitude is enhanced by a factor $\\sqrt{m_\\Phi/\\Gamma_\\Phi}$. Finally, the prediction for the cosmic variance of the average energy density in a sample is given in the massless case.
Orbital-optimized density cumulant functional theory
Sokolov, Alexander Yu. Schaefer, Henry F.
2013-11-28
In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.
Fabrication of low density ceramic material
Meek, T.T.; Blake, R.D.; Sheinberg, H.
1985-01-01
A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.
High power density solid oxide fuel cells
Pham, Ai Quoc; Glass, Robert S.
2004-10-12
A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.
Strongly Interacting Matter at High Energy Density
Larry McLerran
2008-12-08
This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition . At high baryon density and low temperature, large $N_c$ arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.
Density functional theory study of (OCS)2^-
Bilalbegovic, G
2007-01-01
The structural and electronic properties of the carbonyl sulfide dimer anion are calculated using density functional theory within a pseudopotential method. Three geometries are optimized and investigated: C2v and C2 symmetric, as well as one asymmetric structure. A distribution of an excess charge in three isomers are studied by the Hirshfeld method. In an asymmetric (OCS)2^- isomer the charge is not equally divided between the two moieties, but it is distributed as OCS^{-0.6} OCS^{-0.4}. Low-lying excitation levels of three isomers are compared using the time-dependent density functional theory in the Casida approach.
Low density, microcellular foams, preparation, and articles
Young, Ainslie T. (Los Alamos, NM); Marsters, Robert G. (Jemez Springs, NM); Moreno, Dawn K. (Espanola, NM)
1984-01-01
A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Low density, microcellular foams, preparation, and articles
Young, A.T.
1982-03-03
A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.
Dark Energy Density in Brane World
Hai-Bao Wen; Xin-Bing Huang
2005-02-08
We present a possible explanation to the tiny positive cosmological constant under the frame of AdS$_5$ spacetime embedded by a dS$_4$ brane. We calculate the dark energy density by summing the zero point energy of massive scalar fields in AdS$_5$ spacetime. Under the assumption that the radius of AdS$_5$ spacetime is of the same magnitude as the radius of observable universe, the dark energy density in dS$_4$ brane is obtained, which is smaller than the observational value. The reasons are also discussed.
Configuration Interactions Constrained by Energy Density Functionals
B. Alex Brown; Angelo Signoracci; Morten Hjorth-Jensen
2010-09-24
A new method for constructing a Hamiltonian for configuration interaction calculations with constraints to energies of spherical configurations obtained with energy-density-functional (EDF) methods is presented. This results in a unified model that reproduced the EDF binding-energy in the limit of single-Slater determinants, but can also be used for obtaining energy spectra and correlation energies with renormalized nucleon-nucleon interactions. The three-body and/or density-dependent terms that are necessary for good nuclear saturation properties are contained in the EDF. Applications to binding energies and spectra of nuclei in the region above 208Pb are given.
Particle-vibration coupling within covariant density functional theory
E. Litvinova; P. Ring; V. Tselyaev
2007-05-08
Covariant density functional theory, which has so far been applied only within the framework of static and time dependent mean field theory is extended to include Particle-Vibration Coupling (PVC) in a consistent way. Starting from a conventional energy functional we calculate the low-lying collective vibrations in Relativistic Random Phase Approximation (RRPA) and construct an energy dependent self-energy for the Dyson equation. The resulting Bethe-Salpeter equation in the particle-hole ($ph$) channel is solved in the Time Blocking Approximation (TBA). No additional parameters are used and double counting is avoided by a proper subtraction method. The same energy functional, i.e. the same set of coupling constants, generates the Dirac-Hartree single-particle spectrum, the static part of the residual $ph$-interaction and the particle-phonon coupling vertices. Therefore a fully consistent description of nuclear excited states is developed. This method is applied for an investigation of damping phenomena in the spherical nuclei with closed shells $^{208}$Pb and $^{132}$Sn. Since the phonon coupling terms enrich the RRPA spectrum with a multitude of $ph\\otimes$phonon components a noticeable fragmentation of the giant resonances is found, which is in full agreement with experimental data and with results of the semi-phenomenological non-relativistic approach.
Building A Universal Nuclear Energy Density Functional (UNEDF)
Carlson, Joe, Los Alamos National Laboratory, Los Alamos, NM; Furnstahl, Dick, Ohio State University, Columbus, OH; Horoi, Mihai, Central Michigan University, Mount Pleasant, MI; Lusk, Rusty, Argonne National Laboratory, Argonne, IL; Nazarewicz, Witek, University of Tennessee, Knoxville, TN; Ng, Esmond, Berkeley National Laboratory, Berkeley, CA; Thompson, Ian, Lawrence Livermore National Laboratory, Livermore, CA; Vary, James, Iowa State University, Ames, Iowa
2012-09-30
During the period of Dec. 1 2006 â?? Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: first, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory. The main physics areas of UNEDF, defined at the beginning of the project, were: ab initio structure; ab initio functionals; DFT applications; DFT extensions; reactions.
S. Terashima; H. Sakaguchi; H. Takeda; T. Ishikawa; M. Itoh; T. Kawabata; T. Murakami; M. Uchida; Y. Yasuda; M. Yosoi; J. Zenihiro; H. P. Yoshida; T. Noro; T. Ishida; S. Asaji; T. Yonemura
2008-02-02
Cross sections and analyzing powers for proton elastic scattering from $^{116,118,120,122,124}$Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm$^{-1}$ to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.
Vaden, Timothy D.; Imre, D.; Beranek, Josef; Zelenyuk, Alla
2011-01-04
Particle density is an important and useful property that is difficult to measure because it usually 5 requires separate instruments to measure two particle attributes. As density measurements are 6 often performed on size-classified particles, they are hampered by low particle numbers, and 7 hence poor temporal resolution. We present here a new method for measuring particle densities 8 using our single particle mass spectrometer, SPLAT. This method takes advantage of the fact 9 that the detection efficiency in our single particle mass spectrometer drops off very rapidly as the 10 particle size decreases below ~125 nm creating a distinct sharp feature on the small particle side 11 of the vacuum aerodynamic size distribution. Thus, the two quantities needed to determine 12 particle density, the particle diameter and vacuum aerodynamic diameter, are known. We first 13 test this method on particles of known composition and find that the densities it yields are 14 sufficiently accurate. We then apply the method to obtain the densities of particles that were 15 characterized during an airborne field campaign. In addition, we show that the distinctive 16 features of the vacuum aerodynamic size distribution can be used to characterize the instrument 17 detection efficiency as a function of particle size. In general, the method presented here reduces 18 complexity and yields information with high temporal resolution while the instrument is 19 collecting routine data on particle size and composition.
Light-front representation of chiral dynamics in peripheral transverse densities
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Granados, Carlos G.; Weiss, Christian
2015-07-31
The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore »and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less
Device and method for electron beam heating of a high density plasma
Thode, Lester E. (Los Alamos, NM)
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
Light-front representation of chiral dynamics in peripheral transverse densities
C. Granados; C. Weiss
2015-03-16
The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances $b = O(M_\\pi^{-1})$ the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.
On the Determination of the Mean Cosmic Matter Density and the Amplitude of Density Fluctuations
Thomas H. Reiprich
2002-07-02
The cosmological implications from a new estimate of the local X-ray galaxy cluster abundance are summarized. The results are then compared to independent observations. It is suggested that `low' values for the mean cosmic matter density and the amplitude of mass density fluctuations currently do not appear unreasonable observationally.
neutron density. The neutron density (nn) of the source was modeled by solving the simul-
West, Stuart
neutron density. The neutron density (nn) of the source was modeled by solving the simul- taneousT is the thermal neutron velocity, l is the decay constant, Ns is the s-process abun- dance, bsÀ is the maxwellian-averaged neutron capture cross-section, and t0 is the average neutron exposure (21). The branching decay of 186Re
Apply: Building Energy Efficiency Frontiers and Innovation Technologie...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015 Funding Opportunity Announcement Apply: Building Energy Efficiency Frontiers and Innovation...
Energy density fluctuations in inflationary cosmology
Müller, H F; Muller, Harald F; Schmid, Christoph
1994-01-01
We analyze the energy density fluctuations contributed by scalar fields \\Phi with vanishing expectation values, \\langle\\Phi\\rangle=0, which are present in addition to the inflaton field. For simplicity we take \\Phi to be non--interacting and minimally coupled to gravity. We use normal ordering to define the renormalized energy density operator \\rho, and we show that any normal ordering gives the same result for correlation functions of \\rho. We first consider massless fields and derive the energy fluctuations in a single mode \\vk, the two--point correlation function of the energy density, the power spectrum, and the variance of the smeared energy density, \\ddR. Mass effects are investigated for energy fluctuations in single modes. All quantities considered are scale invariant at the second horizon crossing (Harrison--Zel'dovich type) for massless and for unstable massive fields. The magnitude of the relative fluctuations \\de\\rho/\\rt is of order (\\Hi/\\Mp)^2 in the massless case, where \\Hi is the Hubble constan...
Photovoltaic retinal prosthesis with high pixel density
Palanker, Daniel
Photovoltaic retinal prosthesis with high pixel density Keith Mathieson1,4 , James Loudin1 to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which pixel, demonstrating the possibility of a fully integrated photovoltaic retinal prosthesis with high
Density Functional Theory Models for Radiation Damage
Density Functional Theory Models for Radiation Damage S.L. Dudarev EURATOM/CCFE Fusion Association and informative as the most advanced experimental techniques developed for the observation of radiation damage investigation and assessment of radiation damage effects, offering new insight into the origin of temperature
Liquid Walls Innovative High Power Density Concepts
California at Los Angeles, University of
erosion as limiting factors -Results in smaller and lower cost components (chambLiquid Walls Innovative High Power Density Concepts (Based on the APEX Study) http for the Chamber Technology that can: 1. Improve the vision for an attractive fusion energy system 2. Lower
IMPROVED DENSITY ESTIMATORS FOR INVERTIBLE LINEAR PROCESSES
Wefelmeyer, Wolfgang
IMPROVED DENSITY ESTIMATORS FOR INVERTIBLE LINEAR PROCESSES Anton Schick Department of Mathematical-statistic with kernel of the form K(x) = k(x - ay)k(y) dy. Schick and Wefelmeyer (2004b, 2007a) prove functional central and Schick (2007) obtain similar results for derivatives of convolutions. Schick and Wefelmeyer (2008b
Population density of San Joaquin kit fox
McCue, P.; O'Farrell, T.P.; Kato, T.; Evans, B.G.
1982-01-01
Populations of the endangered San Joaquin kit fox, vulpes macrotis mutica, are known to occur on the Elk Hills Naval Petroleum Reserve No. 1. This study assess the impact of intensified petroleum exploration and production and associated human activities on kit fox population density. (ACR)
ADAPTIVE DENSITY ESTIMATION WITH MASSIVE DATA SETS
Scott, David W.
recognition, density estima tion, and data visualization. However, one already hears stories of logistic the data, and some require the data to be in core. 1.1 Reversing Efficiency Roles What general solution can we propose? It is our po sition that massive data sets reverse our usual focus This research
Nuclear spin-density wave theory
Yao Cheng
2009-09-15
Recently [arXiv:0906.5417], we reported a quantum phase transition of 103mRh excited by bremsstrahlung pumping. The long-lived Moessbauer excitation is delocalized as a neutral quasiparticle carrying a spin current. This letter gives a general theory for a nuclear spin-density wave propagating on crystals consisting of identical nuclei with a multipolar transition.
Durable high-density data storage
Stutz, R.A.; Lamartine, B.C.
1996-09-01
This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.
Density waves in the Calogero model - revisited
Bardek, V. Feinberg, J. Meljanac, S.
2010-03-15
The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.
Fission fragment mass yield deduced from density distribution in the pre-scission configuration
M. Warda; A. Zdeb
2015-02-19
Static self-consistent methods usually allow to determine the most probable fission fragments mass asymmetry. We have applied random neck rupture mechanism to the nuclei in the configuration at the end of fission paths. Fission fragment mass distributions have been deduced from the pre-scission nuclear density distribution obtained from the self-consistent calculations. Potential energy surfaces as well as nuclear shapes have been calculated in the fully microscopic theory, namely the constrained Hartree-Fock-Bogolubov model with the effective Gogny D1S density-dependent interaction. The method has been applied for analysis of fission of Fm-256,258, Cf-252 and Hg-180 and compared with the experimental data.
Controlling the Actuation Rate of Low Density Shape Memory Polymer...
Office of Scientific and Technical Information (OSTI)
Controlling the Actuation Rate of Low Density Shape Memory Polymer Foams in Water Citation Details In-Document Search Title: Controlling the Actuation Rate of Low Density Shape...
Using Radio Waves to Control Fusion Plasma Density
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics...
Real-Time Simultaneous Measurements of Size, Density, and Composition...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of...
Density Log At Valles Caldera - Redondo Geothermal Area (Wilt...
Density Log At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log At Valles...
DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS
Bieniosek, F.M.
2010-01-01
for high energy density physics and fusion applications,IFSA 2007, Journal of Physics, Conference Series 112 (2008)high energy density physics experiments F. M. Bieniosek, E.
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...
Error Analysis in Nuclear Density Functional Theory (Journal...
Office of Scientific and Technical Information (OSTI)
Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...
Mitigating Breakdown in High Energy Density Perovskite Polymer...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012...
Inhomogeneity smoothing using density valley formed by ion beam...
Office of Scientific and Technical Information (OSTI)
Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density...
WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITY OF EACH SPECIES OF A COLLISION-LESS PLASMA
Cary, John R.
2012-01-01
A LiBRARY ANL WAVE-ENERGY DENSITY AND WAVE-MOMENTUM DENSITYof Califomia. To be in WAVE-ENERGY DENSITY AND WAVE~HOMENTUMExpress1ons for the wave-energy density and wave-momentum
Method of applying coatings to substrates
Hendricks, Charles D. (Livermore, CA)
1991-01-01
A method for applying novel coatings to substrates is provided. The ends of multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hithereto unavailable compositions, are provided.
?Linear Gas Jet with Tailored Density Profile"
KRISHNAN, Mahadevan
2012-12-10
Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.
Covariant density functional theory with two-phonon coupling in nuclei
Ring, P.; Litvinova, E.; Tselyaev, V.
2012-10-20
A full description of excited states within the framework of density functional theory requires energy dependent self energies. We present a new class of many-body models. It allows a parameter free description of the fragmentation of nuclear states induced by mode coupling of two-quasiparticle and two-phonon configurations. The method is applied for an investigation of low-lying dipole excitations in Sn isotopes with large neutron excess.
Fincke, J.R.; Berggren, M.J.; Johnson, S.A.
1980-01-01
The technique of reconstructive tomography has been applied to the measurement of average density and density distribution in multiphase flows. The technique of reconstructive tomography provides a model independent method of obtaining flow field density information. The unique features of interest in application of a practical tomographic densitometer system are the limited number of data values and the correspondingly coarse reconstruction grid (0.5 by 0.5 cm). These features were studied both experimentally, through the use of prototype hardware on a 3-in. pipe, and analytically, through computer generation of simulated data. Prototypical data were taken on phantoms constructed of Plexiglas and laminated Plexiglas, wood, and polyurethane foam. Reconstructions obtained from prototype data were compared with reconstructions from the simulated data.
Dynamical density functional theory for the diffusion of injected Brownian particles
H. Löwen; M. Heinen
2014-09-08
While the theory of diffusion of a single Brownian particle in confined geometries is well-established by now, we discuss here the theoretical framework necessary to generalize the theory of diffusion to dense suspensions of strongly interacting Brownian particles. Dynamical density functional theory (DDFT) for classical Brownian particles represents an ideal tool for this purpose. After outlining the basic ingredients to DDFT we show that it can be readily applied to flowing suspensions with time-dependent particle sources. Particle interactions lead to considerable layering in the mean density profiles, a feature that is absent in the trivial case of noninteracting, freely diffusing particles. If the particle injection rate varies periodically in time with a suitable frequency, a resonance in the layering of the mean particle density profile is predicted.
Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure
Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel
2015-01-01
The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...
Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas
2015-06-26
A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore »science, chemistry, and biology.« less
Parthapratim Biswas; H. Shimoyama; L. R. Mead
2009-10-23
We apply the maximum entropy principle to construct the natural invariant density and Lyapunov exponent of one-dimensional chaotic maps. Using a novel function reconstruction technique that is based on the solution of Hausdorff moment problem via maximizing Shannon entropy, we estimate the invariant density and the Lyapunov exponent of nonlinear maps in one-dimension from a knowledge of finite number of moments. The accuracy and the stability of the algorithm are illustrated by comparing our results to a number of nonlinear maps for which the exact analytical results are available. Furthermore, we also consider a very complex example for which no exact analytical result for invariant density is available. A comparison of our results to those available in the literature is also discussed.
Can the energy density of gravitational field be interpreted as dark energy?
V. Majernik
2008-07-31
After a brief review of the Maxwell-like approach to gravity we consider the issue of the negative energy of gravitational field which is a consequence of the field approach to the phenomenon of gravitation. Due to the existence of the negative field energy {\\it within} a mass body its total energy content is smaller than the positive energy assigned to its mass energy. We study the total energy content of a spherically symmetrical mass body having constant matter density, and show that its total energy content depends on its radius. We show that under certain circumstances, the total energy content of a mass body achieves negative values so that the force at its surface becomes repulsive. We apply this idea to the evolution of universe filled by matter and the negative energy density of its gravitational field. Since the negative energy density causes the negative pressure it might be considered as an agent which causes the acceleration of the universe.
Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer
Eriksson, J. Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C.; Giacomelli, L.
2014-11-15
In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 ± 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.
The problem of the universal density functional and the density matrix functional theory
Bobrov, V. B. Trigger, S. A.
2013-04-15
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.
Applied Microearthquake Techniques for Geothermal Resource Development
Foulger, G. R.
. In recent years, interest in exploiting geothermal energy has increased greatly, accompanied by interest. The microearthquake techniques currently producing the most useful results for geothermal energy production, and whichApplied Microearthquake Techniques for Geothermal Resource Development Gillian R. Foulger1 & Bruce
QUARTERLY OF APPLIED MATHEMATICS VOLUME , NUMBER 0
Zhu, Song Chun
reweighting the energy function. We construct ELMs in the model space for two classic statistical learning, two-step EM and Swendsen-Wang cuts, in the energy landscapes. 1. Introduction. In many statisticalQUARTERLY OF APPLIED MATHEMATICS VOLUME , NUMBER 0 XXXX XXXX, PAGES 000Â000 MAPPING ENERGY
Security Implications of Applying the Communications Assistance
Landau, Susan
of these is the recent FBI request to ap- ply the Communications Assistance for Law Enforcement Act (CALEA) to Vo with CALEA (without issuing specific regulations on what that would mean). The FBI has suggested that CALEA to innovate, while the latter is simply dangerous. The current FBI and FCC direction on CALEA applied to Vo
Optical Tweezers Physics 464 Applied Optics,
Optical Tweezers Physics 464 Applied Optics, By Scott Cline #12;Project Topics · Brief history · Typical set-up · How they work · Common use #12;Discovery · Effects of optical scattering and gradient forces discovered by Arthur Ashkin 1970 · Method of creating an "optical trap" established in 1986
gifted.msu.edu Apply online at
curriculum for motivated, intelligent middle school and high school students. Our programs aim to enhancegifted.msu.edu Apply online at On the banks of the Red Cedar, There's a school that's known to all; Its specialty is winning, And those Spartans play good ball; Spartan teams are never beaten, All
Institute for Critical Technology and Applied Science
Crawford, T. Daniel
and a Polymer Engineer with Michelin Americas Research and Development Corporation in Greenville, SC. He has hadInstitute for Critical Technology and Applied Science www.ictas.vt.edu NEW HORIZONS ICTAS SEMINAR) 3. CBET-Broadening Participation Research Initiation Grant in Engineering Program (BRIGE) 4. Science
APPLIED SPECTROSCOPY 135A focal point
Denver, University of
measured as a ratio to the mea- sured emission of CO2 and calibrated by means of a certified cylinder 2190 E. ILIFF AVE. DENVER, COLORADO 80208 Spectroscopy Applied to On-Road Mobile Source Emissions INTRODUCTION N ot to be confused with emis- sion spectroscopy, the detec- tion of mobile source emis- sions
Master of Science (MSc) Applied Geographical
Molinari, Marc
Master of Science (MSc) Applied Geographical Information Systems and Remote Sensing Student on remote sensing and geographical information systems/science (GIS) skills to ready students for practical Information Systems and Remote Sensing (AGISRS) MSc programme. The programme is designed to provide training
Faculty of Engineering Bachelor of Applied Science
Faculty of Engineering Bachelor of Applied Science in Engineering The demands on professional engineers around the world are increasing in terms of what they must address: our society must confront technical, societal and environmental issues. www.uwindsor.ca/engineering As an engineer, you will have
Submitted to Applied Spectroscopy December 2006
of the components. However, the blends exhibited greatly reduced PMMA backbone vibrational intensities, suggesting biomedical applications such as bone fillers or bone grafts. Of the two blend components, one is transientSubmitted to Applied Spectroscopy December 2006 Raman Characterization in Blends of Poly
166 Applied Rheology Volume 17 Issue 3
Radin, Charles
to the question: Is there a statistical mechanics of static sand piles? Granular media is occasionally the subject of statistical mechanics methods for static granu- lar media. The round table consisted of five panelists: Dr166 Applied Rheology Volume 17 Â· Issue 3 Conference Report II The 96th Statistical Mechanics
Building on a Base: Applying Physics Education
Colorado at Boulder, University of
...) #12;APS In recent years, physics education research has emerged as a topic of research within physics departments. ... The APS applauds and supports the acceptance in physics departments of research in physicsBuilding on a Base: Applying Physics Education Research to Physics Teaching S.J. Pollock CU Boulder
APPLIED PHYSICS REVIEWSFOCUSED REVIEW Adhesive wafer bonding
Lü, James Jian-Qiang
APPLIED PHYSICS REVIEWSFOCUSED REVIEW Adhesive wafer bonding F. Niklausa Microsystem Technology 9 February 2006 Wafer bonding with intermediate polymer adhesives is an important fabrication-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive
Doctor of Applied Social Research Housing Pathway
Little, Tony
DASR Doctor of Applied Social Research Housing Pathway · The programme is intended for experienced professionals whose work may require them to design, commission, evaluate or interpret research in housing process (including legislation), Scottish, UK and EU housing policy and governance structures
Vadose Zone Modeling Applied to Stormwater Infiltration
Clark, Shirley E.
? Infiltration Applications (not bio- infiltration) Long Island Recharge 3-day Study (silty underlayer) #121 Vadose Zone Modeling Applied to Stormwater Infiltration Shirley E. Clark, Ph.D., P.E. J. Bradley Mikula, M.S. Katherine H. Baker, Ph.D. Benefits of Urban Stormwater Infiltration? 0
Graduate Certificate in Applied Statistics Earn a graduate certificate in Applied Statistics
Frey, Jesse C.
Graduate Certificate in Applied Statistics Earn a graduate certificate in Applied Statistics from their statistical knowledge and demonstrate their expertise in statistics beyond the undergraduate level. Program in programs that utilize statistics. Admission Requirements Applicants must submit an application, a statement
Ion Density Deviations in Semipermeable Ionic Microcapsules
Qiyun Tang; Alan R. Denton
2015-07-07
By implementing the nonlinear Poisson-Boltzmann theory in a cell model, we theoretically investigate the influence of polyelectrolye gel permeability on ion densities and pH deviations inside the cavities of ionic microcapsules. Our calculations show that variations in permeability of a charged capsule shell cause a redistribution of ion densities within the capsule, which ultimately affects the pH deviation and Donnan potential induced by the electric field of the shell. We find that semipermeable capsules can induce larger pH deviations inside their cavities that can permeable capsules. Furthermore, with increasing capsule charge, the influence of permeability on pH deviations progressively increases. Our theory, while providing a self-consistent method for modeling the influence of permeability on fundamental properties of ionic microgels, makes predictions of practical significance for the design of microcapsules loaded with fluorescent dyes, which can serve as biosensors for diagnostic purposes.
Ultra-high density diffraction grating
Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.
2012-12-11
A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.
Density of States for HP Lattice Proteins
Michael Bachmann; Wolfhard Janke
2007-10-22
The density of states contains all informations on energetic quantities of a statistical system, such as the mean energy, free energy, entropy, and specific heat. As a specific application, we consider in this work a simple lattice model for heteropolymers that is widely used for studying statistical properties of proteins. For short chains, we have derived exact results from conformational enumeration, while for longer ones we developed a multicanonical Monte Carlo variant of the nPERM-based chain growth method in order to directly simulate the density of states. For simplification, only two types of monomers with respective hydrophobic (H) and polar (P) residues are regarded and only the next-neighbour interaction between hydrophobic monomers, being nonadjacent along the chain, is taken into account. This is known as the HP model for the folding of lattice proteins.
Global coherence of dust density waves
Killer, Carsten; Melzer, André
2014-06-15
The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.
Inductor Geometry With Improved Energy Density
Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E
2014-10-01
The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.
Energy flux density in a thermoacoustic couple
Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.
1996-06-01
The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.
Fluctuations at finite temperature and density
Borsanyi, Szabolcs
2015-01-01
Fluctuations of conserved charges in a grand canonical ensemble can be calculated as derivatives of the free energy with respect to the respective chemical potential. They are directly related to experimentally available observables that describe the hadronization in heavy ion collisions. The same derivatives can be used to extrapolate zero density results to finite chemical potential. We review the recent lattice calculations in the staggered formalism and discuss its implications to phenomenology and resummed perturbation theory.
Nuclear fission in covariant density functional theory
A. V. Afanasjev; H. Abusara; P. Ring
2013-09-12
The current status of the application of covariant density functional theory to microscopic description of nuclear fission with main emphasis on superheavy nuclei (SHN) is reviewed. The softness of SHN in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers of SHN are considerably affected both by triaxiality and octupole deformation.
Energy-momentum Density of Gravitational Waves
Amir M. Abbassi; Saeed Mirshekari
2014-11-29
In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.
Energy trapping from Hagedorn densities of states
Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk
2013-04-26
In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.
2010-04-01
Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.
Pavin, Nenad
Spectral Densities and Frequencies in the Power Spectrum of Higher Order Repeat Alpha Satellite in Human DNA Molecule* Vladimir Paar,a,** Nenad Pavin,a Ivan Basar,a Marija Rosandi},b Ivica Luketin was applied to the central segment of a fully sequenced genomic seg- ment from the centromeric region in human
Density and Temperature in Quantum Nuclear Systems
Zheng, Hua
2014-10-01
of this is the Isovector Giant Dipole Resonance (IVGDR). The situations discussed above apply to the nucleus near its ground state. How- ever, important phenomena and objects in the universe, such as the Big-Bang (BB) [24, 25, 26, 27, 28], Supernovae explosions (SN) [28...
Radiography to measure the longitudinal density gradients of Pd compacts
Back, D.D.
1992-05-14
This study used radiography to detect and quantify density gradients in green compacts of Palladium powder. Ultrasonic velocity measurements had been tried previously, but they were affected by material properties, in addition to the density, so that an alternative was sought. The alternative technique used radiographic exposures of a series of standard compacts whose density is known and correlated with the radiographic film density. These correlations are used to predict the density in subsequent compacts.
Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Read, Randy J. [University of Cambridge, Cambridge CB2 0XY (United Kingdom); Adams, Paul D. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Brunger, Axel T. [Stanford University, 318 Campus Drive West, Stanford, CA 94305-5432 (United States); Afonine, Pavel V.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720 (United States); Hung, Li-Wei [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2012-07-01
A density-based procedure is described for improving a homology model that is locally accurate but differs globally. The model is deformed to match the map and refined, yielding an improved starting point for density modification and further model-building. An approach is presented for addressing the challenge of model rebuilding after molecular replacement in cases where the placed template is very different from the structure to be determined. The approach takes advantage of the observation that a template and target structure may have local structures that can be superimposed much more closely than can their complete structures. A density-guided procedure for deformation of a properly placed template is introduced. A shift in the coordinates of each residue in the structure is calculated based on optimizing the match of model density within a 6 Å radius of the center of that residue with a prime-and-switch electron-density map. The shifts are smoothed and applied to the atoms in each residue, leading to local deformation of the template that improves the match of map and model. The model is then refined to improve the geometry and the fit of model to the structure-factor data. A new map is then calculated and the process is repeated until convergence. The procedure can extend the routine applicability of automated molecular replacement, model building and refinement to search models with over 2 Å r.m.s.d. representing 65–100% of the structure.
Adiabatic electronic flux density: a Born-Oppenheimer Broken Symmetry ansatz
Vincent Pohl; Jean Christophe Tremblay
2015-10-20
The Born-Oppenheimer approximation leads to the counterintuitive result of a vanishing electronic flux density upon vibrational dynamics in the electronic ground state. To circumvent this long known issue, we propose using pairwise anti-symmetrically translated vibronic densities to generate a symmetric electronic density that can be forced to satisfy the continuity equation approximately. The so-called Born-Oppenheimer broken symmetry ansatz yields all components of the flux density simultaneously while requiring only knowledge about the nuclear quantum dynamics on the electronic adiabatic ground state potential energy surface. The underlying minimization procedure is transparent and computationally inexpensive, and the solution can be computed from the standard output of any quantum chemistry program. Taylor series expansion reveals that the implicit electron dynamics originates from non-adiabatic coupling to the explicit Born-Oppenheimer nuclear dynamics. The new approach is applied to the ${\\rm H}_2^+$ molecular ion vibrating in its ${}^2\\Sigma^+_g$ ground state. The electronic flux density is found to have the correct nodal structure and symmetry properties at all times.
Reduction of Cosmological Data for the Detection of Time-varying Dark Energy Density
Jason Dick; Lloyd Knox; Mike Chu
2006-07-10
We present a method for reducing cosmological data to constraints on the amplitudes of modes of the dark energy density as a function of redshift. The modes are chosen so that (1) one of them has constant density and (2) the others are non-zero only if there is time-variation in the dark energy density and (3) the amplitude errors for the time-varying modes are uncorrelated with each other. We apply our method to various combinations of three-year WMAP data, baryon acoustic oscillation data, the 'Gold' supernova data set, and the Supernova Legacy Survey data set. We find no significant evidence for a time-varying dark energy density or for non-zero mean curvature. Although by some measure the limits on four of the time-varying mode amplitudes are quite tight, they are consistent with the expectation that the dark energy density does not vary on timescales shorter than a Hubble time. Since we do not expect detectable time variation in these modes, our results should be viewed as a systematic error test which the data have passed. We discuss a procedure to identify modes with maximal signal-to-noise ratio.
Dynamic density field measurements of an explosively driven ????? phase transition in iron
Hull, L. M.; Gray, G. T.; Warthen, B. J.
2014-07-28
We provide a unique set of observations of the behavior of the ??? phase transition under a complex axially symmetric loading path created by sweeping a detonation wave along the end surface of a cylindrical sample. The primary data sets are the measured mass density distributions acquired at 5 independent times during the sweep of the detonation along the surface. Shocked regions and boundaries are measured, as well as regions and boundaries of elevated density (presumed to be the ??phase iron). The formation and dynamics of these regions were captured and are available for comparisons to material descriptions. We also applied 16 Photon Doppler Velocimetry probes to capture the free surface velocity along a discrete set of radially distributed points in order to compare and correlate the density measurements with previous shock wave studies. The velocimetry data are in nearly exact agreement with previous shock wave studies of the ??? phase transition, the density distributions, while generally in agreement with expectations evolved from the shock wave studies, show that the epsilon phase is generated in regions of high shear stress but at hydrostatic stresses below the typically quoted 13?GPa value. The density field measurements are particularly useful for observing the effects of the forward and reverse transformation kinetics, as well as the reverse transformation hysteresis.
The impact of Hall physics on magnetized high energy density plasma jets
Gourdain, P.-A.; Seyler, C. E.; Atoyan, L.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Pikuz, S. A.; Potter, W. M.; Schrafel, P. C.; Shelkovenko, T. A.
2014-05-15
Hall physics is often neglected in high energy density plasma jets due to the relatively high electron density of such jets (n{sub e}???10{sup 19}?cm{sup ?3}). However, the vacuum region surrounding the jet has much lower densities and is dominated by Hall electric field. This electric field redirects plasma flows towards or away from the axis, depending on the radial current direction. A resulting change in the jet density has been observed experimentally. Furthermore, if an axial field is applied on the jet, the Hall effect is enhanced and ignoring it leads to serious discrepancies between experimental results and numerical simulations. By combining high currents (?1 MA) and magnetic field helicity (15° angle) in a pulsed power generator such as COBRA, plasma jets can be magnetized with a 10?T axial field. The resulting field enhances the impact of the Hall effect by altering the density profile of current-free plasma jets and the stability of current-carrying plasma jets (e.g., Z-pinches)
Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model
Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas
2006-03-17
A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars.
Credit Requirements for Graduation Pure and Applied Mathematics
Kasahara, Hironori
Engineering Pure and Applied Physics Chemistry and Biochemistry Applied Chemistry Life Science and Medical Pure and Applied Mathematics Computer Science and Communications Engineering Modern Mechanical Engineering Civil and Environmental Engineering Department of Earth Sciences,Resources and Environmental
GEORGIA TECH RESEARCH CORPORATION APPLIED RESEARCH MASTER AGREEMENT
Li, Mo
1 GEORGIA TECH RESEARCH CORPORATION APPLIED RESEARCH MASTER AGREEMENT Effective Date: ________________ Applied Research Master Agreement Number: ______________ THIS APPLIED RESEARCH MASTER AGREEMENT this Master Agreement. Task Order shall use the sample format provided in Attachment A and will include
Nuclear Energy Density Optimization: UNEDF2
M. Kortelainen; J. McDonnell; W. Nazarewicz; E. Olsen; P. -G. Reinhard; J. Sarich; N. Schunck; S. M. Wild; D. Davesne; J. Erler; A. Pastore
2014-10-30
The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.
Landau's necessary density conditions for LCA groups
Gröchenig, K; Seip, K
2008-01-01
H. Landau's necessary density conditions for sampling and interpolation may be viewed as a general principle resting on a basic fact of Fourier analysis: The complex exponentials $e^{i kx}$ ($k$ in $\\mathbb{Z}$) constitute an orthogonal basis for $L^2([-\\pi,\\pi])$. The present paper extends Landau's conditions to the setting of locally compact abelian (LCA) groups, relying in an analogous way on the basics of Fourier analysis. The technicalities--in either case of an operator theoretic nature--are however quite different. We will base our proofs on the comparison principle of J. Ramanathan and T. Steger.
Particle transport inferences from density sawteeth
Chen, J.; Li, Q.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Liao, K.; Gentle, K. W., E-mail: k.gentle@mail.utexas.edu [Institute for Fusion Studies, University of Texas, Austin, Texas 78712 (United States)
2014-05-15
Sawtooth oscillations in tokamaks are defined by their effect on electron temperature: a rapid flattening of the core profile followed by an outward heat pulse and a slow core recovery caused by central heating. Recent high-resolution, multi-chord interferometer measurements on JTEXT extend these studies to particle transport. Sawteeth only partially flatten the core density profile, but enhanced particle diffusion on the time scale of the thermal crash occurs over much of the profile, relevant for impurities. Recovery between crashes implies an inward pinch velocity extending to the center.
Method of high-density foil fabrication
Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.
2003-12-16
A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.
Symmetry energy in nuclear density functional theory
W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar
2013-07-22
The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.
Identification of cell density signal molecule
Schwarz, R.I.
1998-04-21
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.
Identification of cell density signal molecule
Schwarz, Richard I. (Oakland, CA)
1998-01-01
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.
Category:Rock Density | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID Roadmap ContactRock Density Jump to: navigation,
A Case Study of the Applied Learning Academy: Reconceptualized Quantum Design of Applied Learning
Gordon, Denise
2010-07-14
The purpose of this qualitative study was to examine the Applied Learning Academy (ALA) and allow the lessons learned from this public school to emerge from the narrative stories of past students, parents, teachers, administrators, and local...
Gillespie, Dirk
2013-10-01
An algorithm to approximately calculate the partition function (and subsequently ensemble averages) and density of states of lattice spin systems through non-Monte-Carlo random sampling is developed. This algorithm (called the sampling-the-mean algorithm) can be applied to models where the up or down spins at lattice nodes interact to change the spin states of other lattice nodes, especially non-Ising-like models with long-range interactions such as the biological model considered here. Because it is based on the Central Limit Theorem of probability, the sampling-the-mean algorithm also gives estimates of the error in the partition function, ensemble averages, and density of states. Easily implemented parallelization strategies and error minimizing sampling strategies are discussed. The sampling-the-mean method works especially well for relatively small systems, systems with a density of energy states that contains sharp spikes or oscillations, or systems with little a priori knowledge of the density of states.
The density of states approach for the simulation of finite density quantum field theories
K. Langfeld; B. Lucini; A. Rago; R. Pellegrini; L. Bongiovanni
2015-03-02
Finite density quantum field theories have evaded first principle Monte-Carlo simulations due to the notorious sign-problem. The partition function of such theories appears as the Fourier transform of the generalised density-of-states, which is the probability distribution of the imaginary part of the action. With the advent of Wang-Landau type simulation techniques and recent advances, the density-of-states can be calculated over many hundreds of orders of magnitude. Current research addresses the question whether the achieved precision is high enough to reliably extract the finite density partition function, which is exponentially suppressed with the volume. In my talk, I review the state-of-play for the high precision calculations of the density-of-states as well as the recent progress for obtaining reliable results from highly oscillating integrals. I will review recent progress for the $Z_3$ quantum field theory for which results can be obtained from the simulation of the dual theory, which appears to free of a sign problem.
The density of states approach for the simulation of finite density quantum field theories
Langfeld, K; Rago, A; Pellegrini, R; Bongiovanni, L
2015-01-01
Finite density quantum field theories have evaded first principle Monte-Carlo simulations due to the notorious sign-problem. The partition function of such theories appears as the Fourier transform of the generalised density-of-states, which is the probability distribution of the imaginary part of the action. With the advent of Wang-Landau type simulation techniques and recent advances, the density-of-states can be calculated over many hundreds of orders of magnitude. Current research addresses the question whether the achieved precision is high enough to reliably extract the finite density partition function, which is exponentially suppressed with the volume. In my talk, I review the state-of-play for the high precision calculations of the density-of-states as well as the recent progress for obtaining reliable results from highly oscillating integrals. I will review recent progress for the $Z_3$ quantum field theory for which results can be obtained from the simulation of the dual theory, which appears to fr...
Advanced Multivariate Analysis Tools Applied to Surface Analysis...
Office of Scientific and Technical Information (OSTI)
Advanced Multivariate Analysis Tools Applied to Surface Analysis. Citation Details In-Document Search Title: Advanced Multivariate Analysis Tools Applied to Surface Analysis. No...
Optical Diagnostics and Modeling Tools Applied to Diesel HCCI...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Optical Diagnostics and Modeling Tools Applied to Diesel HCCI Optical Diagnostics and Modeling Tools Applied to Diesel HCCI 2002 DEER Conference Presentation: Caterpillar Engine...