Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Demonstrations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demonstrations Demonstrations Technology Demonstrations Efficient new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the environment. However, many high-performing technologies are not readily adopted in the marketplace due to lack of information about their real-world performance. To address this gap in information, the DOE frequently supports demonstrations to assess technologies' energy performance, installation procedures, operations, and maintenance characteristics. The information from these demonstrations helps consumers make more informed decisions and helps U.S. manufacturers validate the performance of their products. Frequently Asked Questions How does DOE prioritize demonstration projects?

2

New Technology Demonstration Program  

E-Print Network [OSTI]

New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

3

Offsite demonstrations for MWLID technologies  

SciTech Connect (OSTI)

The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner {trademark}/PLUME, Hybrid Directional Drilling, Seamist{trademark}/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals.

Williams, C. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R. [Tech. Reps., Inc., Albuquerque, NM (United States)

1995-04-01T23:59:59.000Z

4

Clean Coal Technology Demonstration Program  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy’s Clean Coal Technology Demonstration Program (1986-1993) laid the foundation for effective technologies now in use that have helped significantly lower emissions of sulfur dioxide (SO2), nitrogen oxides (NOx) and airborne particulates (PM10).

5

Decision support software technology demonstration plan  

SciTech Connect (OSTI)

The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

SULLIVAN,T.; ARMSTRONG,A.

1998-09-01T23:59:59.000Z

6

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

7

Demonstrating and Deploying Integrated Retrofit Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014 BTO Peer Review Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014...

8

EM Engineering & Technology Roadmap and Major Technology Demonstration...  

Office of Environmental Management (EM)

Steven L. Krahn Director, Waste Processing Office of Engineering and Technology April 2008 EM Engineering & Technology Roadmap and Major Technology Demonstrations Introduction ...

9

Performance Demonstration Program Management Plan  

SciTech Connect (OSTI)

To demonstrate compliance with the Waste Isolation Pilot Plant (WIPP) waste characterization program, each testing and analytical facility performing waste characterization activities participates in the Performance Demonstration Program (PDP). The PDP serves as a quality control check against expected results and provides information about the quality of data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed by an independent organization to each of the facilities participating in the PDP. There are three elements within the PDP: analysis of simulated headspace gases, analysis of solids for Resource Conservation and Recovery Act (RCRA) constituents, and analysis for transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques. Because the analysis for TRU radionuclides using NDA techniques involves both the counting of drums and standard waste boxes, four PDP plans are required to describe the activities of the three PDP elements. In accordance with these PDP plans, the reviewing and approving authority for PDP results and for the overall program is the CBFO PDP Appointee. The CBFO PDP Appointee is responsible for ensuring the implementation of each of these plans by concurring with the designation of the Program Coordinator and by providing technical oversight and coordination for the program. The Program Coordinator will designate the PDP Manager, who will coordinate the three elements of the PDP. The purpose of this management plan is to identify how the requirements applicable to the PDP are implemented during the management and coordination of PDP activities. The other participants in the program (organizations that perform site implementation and activities under CBFO contracts or interoffice work orders) are not covered under this management plan. Those activities are governed by the organization’s quality assurance (QA) program and procedures or as otherwise directed by CBFO.

Carlsbad Field Office

2005-07-01T23:59:59.000Z

10

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

11

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

12

Government-sponsored demonstrations of new technologies  

Science Journals Connector (OSTI)

...435959 CONTR . MANSFIELD, E, ECONOMICS TECHNOLOGI ( 1968 ). NELSON...North Carolina; a water desalination demonstration plant built...D Chicago expressway o Desalination (Pt. Loma) LO o Fish protein...1974); E. Mansfield, The Economics of Technological Change...

WS Baer; LL Johnson; EW Merrow

1977-05-27T23:59:59.000Z

13

Oak Ridge City Center Technology Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge City Center Technology Demonstration Project David Thrash, Principal Investigator Oak Ridge City Center, LLC Track Name May 18, 2010 This presentation does not contain...

14

Joint Capability Technology Demonstration (JCTD) Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Capability Technology Demonstration Industry Day Presentations Partnering with Utilities for Energy Efficiency & Security 2010 Smart Grid Peer Review Day Two Morning Presentations...

15

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

16

SPIDERS Joint Capability Technology Demonstration Industry Day...  

Broader source: Energy.gov (indexed) [DOE]

Technology Demonstration Industry Day May 2, 2014 - 1:15pm Addthis An image of a patch with a spider on it. The Smart Power Infrastructure Demonstration for Energy...

17

Advanced hydrogen utilization technology demonstration  

SciTech Connect (OSTI)

This report presents the results of a study done by Detroit Diesel Corporation (DDC). DDC used a 6V-92TA engine for experiments with hydrogen fuel. The engine was first baseline tested using methanol fuel and methanol unit injectors. One cylinder of the engine was converted to operate on hydrogen fuel, and methanol fueled the remaining five cylinders. This early testing with only one hydrogen-fueled cylinder was conducted to determine the operating parameters that would later be implemented for multicylinder hydrogen operation. Researchers then operated three cylinders of the engine on hydrogen fuel to verify single-cylinder idle tests. Once it was determined that the engine would operate well at idle, the engine was modified to operate with all six cylinders fueled with hydrogen. Six-cylinder operation on hydrogen provided an opportunity to verify previous test results and to more accurately determine the performance, thermal efficiency, and emissions of the engine.

Hedrick, J.C.; Winsor, R.E. [Detroit Diesel Corp., MI (United States)] [Detroit Diesel Corp., MI (United States)

1994-06-01T23:59:59.000Z

18

Los Alamos Team Demonstrates Bottle Scanner Technology  

SciTech Connect (OSTI)

Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

Espy, Michelle; Schultz, Larry

2014-05-06T23:59:59.000Z

19

Los Alamos Team Demonstrates Bottle Scanner Technology  

ScienceCinema (OSTI)

Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

Espy, Michelle; Schultz, Larry

2014-06-02T23:59:59.000Z

20

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Environmental Control Technologies - Combined SO2 /NOx Control Technologies Milliken Clean Coal Technology Demonstration Project - Project Brief [PDF-342KB] New York State Electric & Gas Corporation, Lansing, NY PROGRAM PUBLICATIONS Final Reports Milliken Clean Coal Technology Demonstration Project, Project Performance and Economics Report, Final Report (Apr 1999) Volume 1 [PDF-12.4MB] Volume 2 [PDF-15.7MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Milliken Clean Coal Technology Demonstration Project, Project Performance Summary [PDF-1.4MB] (Nov 2002) Milliken Clean Coal Demonstration Project: A DOE Assessment [PDF-1.1MB] (Aug 2001) Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers, Topical Report No.12 [PDF-1.28MB] (June 1999)

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technoclimat- Green Technologies Demonstration Program (Quebec, Canada)  

Broader source: Energy.gov [DOE]

The Green technologies demonstration program aiming to reduce greenhouse gas emissions is a product of Measure 20 of the 2006-2012 Climate Change Action Plan (CCAP). This CCAP measure encourages...

22

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Environmental Control Technologies - SO2 Control Technologies 10-MW Demonstration of Gas Suspension Absorption - Project Brief [PDF-342KB] Airpol, Inc., West Paducah, KY PROGRAM PUBLICATIONS Final Reports Clean Coal Technology III: 10-MW Demonstration of Gas Suspension Absorption, Final Project Performance and Economics Report [PDF-8.2MB] ((June 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 10-MW Demonstration of Gas Suspension Absorption, Project Performance Summary [PDF-2.0MB] ((June 1999) The Removal of SO2 Using Gas Suspension Absorption Technology Demonstration Project - A DOE Assessment (Sept 1996) [PDF-212KB] SO2 Removal Using Gas Suspension Absorption Technology, Topical Report No. 4 [PDF-680KB] (Apr 1995)

23

Environmental management technology demonstration and commercialization  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [and others

1995-12-31T23:59:59.000Z

24

Technology Performance Exchange  

Broader source: Energy.gov (indexed) [DOE]

Technology Performance Exchange Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem: Perceived fiscal risk associated with the installation of unfamiliar technologies impedes adoption rates for cost-effective, energy-saving products. Impact of Project: Enable end users to quickly and

25

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Environmental Control Technologies - NOx Control Technologies Demonstration of Selective Catalytic Reduction Technology for the Control of NOx Emissions from High-Sulfur Coal-Fired Boilers - Project Brief [PDF-247KB] Southern Company Services, Pensacola, FL PROGRAM PUBLICATIONS Final Reports Innovative Clean Coal Technologies (ICCT) Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NOx) Emissions from High-Sulfur Coal-Fired Boilers Volume 1, Final Report [PDF-29MB] (Oct 1996) Volume 2, Appendices A-N [PDF-20.2MB] (Oct 1996) Volume 3, Appendices O-T [PDF-17.9MB] (Oct 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Demonstration Of Selective Catalytic Reduction For The Control Of NOx Emissions From High-Sulfur Coal-Fired Boilers, Project Performance Summary [PDF-1.1MB] (Nov 2002)

26

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

27

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combined SO2 / NOx Control Technologies Combined SO2 / NOx Control Technologies SNOX(tm) Flue Gas Cleaning Demonstration Project - Project Brief [PDF-359KB] ABB Environmental Systems, Niles, OH PROGRAM PUBLICATIONS Final Reports Final Report Volume II: Project Performance and Economics [PDF-10.2MB] (July 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports ABB Environmental Systems SNOX(tm) Flue Gas Cleaning Demonstration Project, Project Performance Summary [PDF-450KB] (June 1999) SNOX(tm) Flue Gas Cleaning Demonstration Project: A DOE Assessment [PDF-185KB] (June 2000) Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No. 13 [PDF-500KB] (May 1999) Design Reports Final Report Volume I: Public Design [PDF-3.9MB] (July 1996)

28

Off site demonstrations for MWLID technologies  

SciTech Connect (OSTI)

Open demonstrations of technologies developed by the Office of Technology Development`s (QTD`s) Mixed Waste Landfill Integrated Demonstration (MWLID) should facilitate regulatory acceptance and speed the transfer and commercialization of these technologies. The purpose of the present project is to identify the environmental restoration needs of hazardous waste and/or mixed waste landfill owners within a 25-mile radius of Sandia National Laboratories (SNL). Most municipal landfills that operated prior to the mid-1980s accepted household/commercial hazardous waste and medical waste that included low-level radioactive waste. The locations of hazardous and/or mixed waste landfills within the State of New Mexico were. identified using federal, state, municipal and Native American tribal environmental records. The records reviewed included the US Environmental Protection Agency (EPA) Superfund Program CERCLIS Event/Site listing (which includes tribal records), the New Mexico Environment Department (NMED), Solid Waste Bureau mixed waste landfill database, and the City of Albuquerque Environmental Health Department landfill database. Tribal envirorunental records are controlled by each tribal government, so each tribal environmental officer and governor was contacted to obtain release of specific site data beyond what is available in the CERCLIS listings.

Williams, C. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R. [Tech Reps, Inc., Albuquerque, NM (United States)

1995-04-01T23:59:59.000Z

29

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

30

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

31

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

32

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

33

Oak Ridge City Center Technology Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge City Center Technology Demonstration Project Oak Ridge City Center Technology Demonstration Project Project objectives: To broaden market understanding of large-scale...

34

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest...

35

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity 2012 DOE Hydrogen...

36

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

37

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOx Control Technologies NOx Control Technologies 180-MWe Demonstration of Advanced Tangentially-Fired Combustion Techniques for the Reduction of NOx Emissions from Coal-Fired Boilers - Project Brief [PDF-280KB] Southern Company Services, Inc., Lynn Haven, FL PROGRAM PUBLICATIONS Final Reports 180-MWe Demonstration of Advanced Tangentially-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal-Fired Boilers, Final Report and Key Project Findings [PDF-4.6MB] (Feb 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports 180-MWe Demonstration of Advanced Tangentially Fired Combustion Techniques for the Reduction of NOx Emissions, Project Performance Summary [PDF-1.9MB] (June 1999) The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment [PDF-243KB] (Mar 2000)

38

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Advanced Flue Gas Desulfurization Demonstration Project - Project Brief [PDF-250KB] Pure Air on the Lake L.P., Chesterton, IN PROGRAM PUBLICATIONS Final Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, Final Technical Report, Volume II: Project Performance and Economics [PDF-25MB] (Apr 1996) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Advanced Flue Gas Desulfurization (AFGD) Demonstration Project: A DOE Assessment [PDF-235KB] (Aug 2001) Advanced Flue Gas Desulfurization Demonstration Project, Project Performance Summary [PDF-1.96MB] (June 1999) Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers, Topical Report No.12 [PDF-1.28MB] (June 1999) Design Reports

39

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full-Scale Demonstration of Low-NOx Cell Burner Retrofit - Project Brief [PDF-294KB] Full-Scale Demonstration of Low-NOx Cell Burner Retrofit - Project Brief [PDF-294KB] The Babcock & Wilcox Company, Aberdeen, OH PROGRAM PUBLICATIONS Final Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Final Report [PDF-3.6MB] (July 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Project Performance Summary [PDF-1.18MB] (June 1999) Full-Scale Demonstration of Low-NOx Cell Burner Retrofit: A DOE Assessment [PDF-1.1MB] (Nov 2000) Reducing Emissions of Nitrogen Oxides via Low-NOx Burner Technologies, Topical Report No. 5 [PDF-825KB] (Sept 1996) Design Reports Full-Scale Demonstration of Low-NOx Cell Burner Retrofit, Public Design Report [PDF-2.68MB] (Aug 1991)

40

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project - Project Brief [PDF-317KB] The Babcock & Wilcox Co., Dilles Bottom, OH PROGRAM PUBLICATIONS Final Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Final Report [PDF-27.5MB] (Sept 1995) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration: A DOE Assessment [PDF-296KB] (Dec 2000) SOx-NOx-Rox Box(tm) Flue Gas Cleanup Demonstration Project, Project Performance Summary [PDF-1.4MB] (June 1999) Technologies for the Combined Control of Sulfur Dioxide and Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No. 13 [PDF-500KB] (May 1999) Design Reports 5 MWe SNRBT Demonstration Facility: Detailed Design Report [PDF-4.5MB] (Nov 1992)

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Apply: Commercial Building Technology Demonstrations (DE-FOA-0001084)  

Broader source: Energy.gov [DOE]

Closed Deadline: May 19, 2014 DOE seeks to fund demonstration and deployment activities for technologies that are ready for market adoption but that may be underutilized due to market barriers including perception of risk, gaps in information and data on performance as well as cost.

42

NETL: Mercury Emissions Control Technologies - Demonstration of Mer-Cure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Mer-Cure Technology for Enhanced Mercury Control Demonstration of Mer-Cure Technology for Enhanced Mercury Control ALSTOM Power, Inc. – U.S. Power Plant Laboratories (ALSTOM-PPL) proposes herein a consortium-based program to demonstrate ALSTOM-PPL's Mer-Cure™ technology – a novel, sorbent-based (Mer-Clean™ ) mercury control technology in coal-fired boilers. The program objective is (i) to demonstrate at a full scale greater than 90% mercury capture based on baseline mercury level (ii) at a cost significantly less than 50% of the $60,000/lb of mercury removed. The proposed full-scale demonstration program is to perform two- to six-month test campaigns in three independent host sites with various boiler configurations over a two-year period. The demonstration program will include a two- to four-week short-term field test followed by two- to six-month long-term demonstration for each of the three selected sites.

43

Integrated, Automated Distributed Generation Technologies Demonstration  

SciTech Connect (OSTI)

The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

Jensen, Kevin

2014-09-30T23:59:59.000Z

44

Fuel Cell Technologies Office: National Hydrogen Learning Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Hydrogen National Hydrogen Learning Demonstration Status Webinar (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Google Bookmark Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Delicious Rank Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: National Hydrogen Learning Demonstration Status Webinar (Text Version) on

45

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

46

Joint Capability Technology Demonstration (JCTD) Industry Day Agenda  

Broader source: Energy.gov [DOE]

Agenda outlines the activities of the 2014 Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Industry Day in Fort Carson, Colorado.

47

Frequently Asked Questions About the Technology Demonstration GATEWAY Program  

Broader source: Energy.gov [DOE]

This page addresses many of the questions about the DOE Solid-State Lighting Technology Demonstration GATEWAY program raised by potential eligible participants, such as manufacturers, demonstration...

48

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Title Demonstration of Advanced Filtration Technologies: Developing Energy-rebate Criteria through Performing Standard Laboratory Tests and Statistical Analyses Publication Type Report LBNL Report Number LBNL-61684 Year of Publication 2007 Authors Xu, Tengfang T., and Duo Wang Call Number LBNL-61684 Abstract Fan-filter unit systems are used for re-circulating clean air in cleanrooms are gaining popularity in California as well as in the rest of the world. Under normal operation, fan-filter units require high power demand, typically ranging from 100 to 300 W per square meter of cleanroom floor area (or approximately 10-30 W/ft2). Operating 7 by 24, they normally consume significant electric energy, while providing required contamination control for cleanrooms in various industries. Previous studies focused on development of a standard test procedure for fan-filter units. This project is to improve the methods, and develop new information to demonstrate the methods can be used to assist the industries to apply more energy-efficient fan-filter units in cleanrooms.

49

SPIDERS Joint Capability Technology Demonstration Industry Day Presentations  

Broader source: Energy.gov [DOE]

Presentations from the SPIDERS Joint Capability Technology Demonstration Industry Day, which occurred on April 22, 2014, at Fort Carson, Colorado.

50

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOx Control Technologies NOx Control Technologies Demonstration of Coal Reburning for Cyclone Boiler NOx Control - Project Brief [PDF-320KB] The Babcock & Wilcox Company, Cassville, WI Program Publications Final Reports Demonstration of Coal Reburning for Cyclone Boiler NOx Control, Final Project Report [PDF-14.4MB] (Feb 1994) Appendices 1 - 5 [PDF-2.6MB] (Feb 1994) Appendix 1: Small Boiler Simulator Description Appendix 2: Statement of Work by Task and Subtask Appendix 3: Evaluation of Reburning for NOx Control from Lignite-Fired Cyclone Boilers Appendix 4: Nelson Dewey In-Furnace gas Species and Temperature Measurements Appendix 5: Balance of Plant Details Appendix 6: Test Report - Nelson Dewey Cyclone Reburn Optimization and Performance Environmental Tests [PDF-6.2MB] (Feb 1994)

51

Property:Did The Test Results Demonstrate Projected Performance...  

Open Energy Info (EERE)

Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

52

Technology Performance Exchange (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet, 'The Technology Performance Exchange' will be presented at the ET Summit, held at the Pasadena Convention Center on October 15-17, 2012. The Technology Performance Exchange will be a centralized, Web-based portal for finding and sharing energy performance data for commercial building technologies.

Not Available

2012-10-01T23:59:59.000Z

53

Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations  

SciTech Connect (OSTI)

The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report analyzes the retrieval testing issues and describes what has been learned and issues that need further resolution. As such, it can serve as a guide to additional testing that must be performed before the systems are used in-tank. The major issues discussed are tank access, deployment, mining strategy, waste retrieval, liquid scavenging (liquid usage), maneuverability, positioning, static and dynamic performance, remote operations, reliability, availability, maintenance, tank safety, and cost.

Berglin, E.J.

1998-02-05T23:59:59.000Z

54

Demonstration and Field Test of airjacket technology  

SciTech Connect (OSTI)

There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

1998-06-01T23:59:59.000Z

55

Hot demonstrations of nuclear-waste processing technologies  

Science Journals Connector (OSTI)

Several types of nuclear-waste-treatment technologies are currently being demonstrated at Argonne National Laboratory-West, ranging from complex,...

H. F. McFarlane; K. M. Goff; F. S. Felicione; C. C. Dwight; D. B. Barber

1997-07-01T23:59:59.000Z

56

Demonstration of Air-Power-Assist (APA) Engine Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Direct Energy Recovery in Heavy Duty Application Demonstration of Air-Power-Assist (APA) Engine Technology for Clean Combustion and Direct Energy Recovery in...

57

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Advanced Electric Power Generation - Advanced Combustion Systems Clean Coal Diesel Demonstration Project - Project Brief [PDF-57KB] Arthur D. Little, Inc., Fairbanks, AK PROGRAM PUBLICATIONS Final Reports Not Available CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Clean Coal Diesel Demonstration Project: A DOE Assessment [PDF-590KB] (July 2007) Annual/Quarterly Technical Reports Coal Diesel Combined-Cycle Project, Annual Report [PDF-2.7MB] (June 1998) January 1996 - January 1997 Interim Reports Coal-Fueled Diesel System for Stationary Power Applications - Technology Development Topical Report [PDF-9.5 MB] (Aug 1995) Final Report [PDF-12.4 MB] March 1988 - June 1994 (Oct 1995) Environmental Reports Environmental Assessment - Coal-Fired Diesel Generator [PDF-4.2MB] (May 1997)

58

Clean Coal Technology Demonstration Program: Program Update 1998  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

1999-03-01T23:59:59.000Z

59

Clean Coal Technology Demonstration Program: Program Update 2001  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

Assistant Secretary for Fossil Energy

2002-07-30T23:59:59.000Z

60

Clean Coal Technology Demonstration Program: Program Update 1999  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clean Coal Technology Demonstration Program: Program Update 2000  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2001-04-01T23:59:59.000Z

62

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

63

OCIO Technology Summit: High Performance Computing | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OCIO Technology Summit: High Performance Computing OCIO Technology Summit: High Performance Computing January 16, 2015 - 12:51pm Addthis OCIO Technology Summit: High Performance...

64

OCIO High Performance Computing Technology Summit | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OCIO High Performance Computing Technology Summit OCIO High Performance Computing Technology Summit The OCIO High Performance Computing Technology Summit is on Wednesday, January...

65

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

2014-03-01T23:59:59.000Z

66

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network [OSTI]

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

67

EIS-0146: Programmatic for Clean Coal Technology Demonstration Program  

Broader source: Energy.gov [DOE]

This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

68

Computer Simulation Technology and Demonstration S. Schafrik & M. Karmis  

E-Print Network [OSTI]

Computer Simulation Technology and Demonstration S. Schafrik & M. Karmis Virginia Center for Coal constraints. A user- friendly visual simulation computer tool for the Windows environment is demonstrated INTRODUCTION Imitating the operations of real-life systems or proc- esses is the main purpose of computer

69

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Broader source: Energy.gov (indexed) [DOE]

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

70

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Broader source: Energy.gov (indexed) [DOE]

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

71

DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama |  

Broader source: Energy.gov (indexed) [DOE]

Project Begins Demonstrating CCUS Technology in Project Begins Demonstrating CCUS Technology in Alabama DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama August 22, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide (CO2) injection has begun at the world's first fully integrated coal power and geologic storage project in southwest Alabama, with the goals of assessing integration of the technologies involved and laying the foundation for future use of CO2 for enhanced oil recovery (EOR). The "Anthropogenic Test"--conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven partnerships in DOE's Regional Carbon Sequestration Partnerships program--uses CO2 from a newly constructed post-combustion CO2-capture facility at Alabama Power's 2,657-megawatt Barry Electric Generating Plant (Plant Barry). It will help

72

Topic Area 1: Technology Demonstration Projects | Open Energy Information  

Open Energy Info (EERE)

1: Technology Demonstration Projects 1: Technology Demonstration Projects Jump to: navigation, search Geothermal ARRA Funded Projects for Topic Area 1: Technology Demonstration Projects Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

73

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Environmental Control Technologies - SO2 Control Technologies Demonstration of Innovative Applications of Technology for the CT-121 FGD Process - Project Brief [PDF-265KB] Southern Company Services, Newnan, GA PROGRAM PUBLICATIONS Final Reports Demonstration of Innovative Applications of Technology for the CT-121 FGD Process, Final Report (Jan 1997) Volume 1, Executive Summary [PDF-4.6MB] Volume 2, Operation [PDF-32.8MB] Volume 2 Appendices [PDF-6.3MB] Volume 3, Equipment Vol 3a, Materials and Maintenance [PDF-34.6MB] Vol 3b, Instrumentation and Control [PDF-1.2MB] Vol 3c, Materials Test & Evaluation Program [PDF-28.2MB] Volume 4, Gypsum Stacking &Byproduct Evaluation [PDF-11.3MB] Volume 5, Environmental Monitoring Plan [PDF-3MB] Volume 5 Appendices [PDF-5.8MB]

74

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Control Technologies - Combined SO2/NOx Control Technologies Environmental Control Technologies - Combined SO2/NOx Control Technologies Commercial Demonstration of the NOXSO SO2/NOx Removal Flue Gas Cleanup System - Project Brief [PDF-188KB] NOXSO Corporation - Alcoa Warrick Power Station, Hammond, IN Program Publications Final Reports Not Available Annual/Quarterly Technical Reports Commercial Demonstration of the NOXSO SO2/NOx Removal Flue Gas Cleanup System Quarterly Technical Progress Reports Report No. 16. December 1994 - February 1995 [PDF-2.3MB] Report No. 15. (Sept - November 1994 [PDF-2.0MB] Report No. 14. June - August 1994 [PDF-2.8MB] Report No. 13. March - May 1994 [PDF-2.4MB] Report No. 12. December 1993 - February 1994 [PDF-3.0MB] Report No. 11. (Sept - November 1993 [PDF-3.3MB] Report No. 10. June - August 1993 [PDF-3.8MB]

75

Automated Demand Response Technology Demonstration Project for Small and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Demonstration Project for Small and Technology Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings Publication Type Report LBNL Report Number LBNL-4982E Year of Publication 2011 Authors Page, Janie, Sila Kiliccote, Junqiao Han Dudley, Mary Ann Piette, Albert K. Chiu, Bashar Kellow, Edward Koch, and Paul Lipkin Date Published 07/2011 Publisher CEC/LBNL Keywords demand response, emerging technologies, market sectors, medium commercial business, openadr, small commercial, small commercial business, technologies Abstract Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

76

Automated Demand Response Technologies and Demonstration in New York City  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Demonstration in New York City Technologies and Demonstration in New York City using OpenADR Title Automated Demand Response Technologies and Demonstration in New York City using OpenADR Publication Type Report LBNL Report Number LBNL-6470E Year of Publication 2013 Authors Kim, Joyce Jihyun, Sila Kiliccote, and Rongxin Yin Date Published 09/2013 Publisher LBNL/NYSERDA Abstract Demand response (DR) - allowing customers to respond to reliability requests and market prices by changing electricity use from their normal consumption pattern - continues to be seen as an attractive means of demand-side management and a fundamental smart-grid improvement that links supply and demand. Since October 2011, the Demand Response Research Center at Lawrence Berkeley National Laboratory and New York State Energy Research and Development Authority have conducted a demonstration project enabling Automated Demand Response (Auto-DR) in large commercial buildings located in New York City using Open Automated Demand Response (OpenADR) communication protocols. In particular, this project focuses on demonstrating how OpenADR can automate and simplify interactions between buildings and various stakeholders in New York State including the independent system operator, utilities, retail energy providers, and curtailment service providers. In this paper, we present methods to automate control strategies via building management systems to provide event-driven demand response, price response and demand management based on OpenADR signals. We also present cost control opportunities under day-ahead hourly pricing for large customers and Auto-DR control strategies developed for demonstration buildings. Lastly, we discuss the communication architecture and Auto-DR system designed for the demonstration project to automate price response and DR participation.

77

Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

2014-01-01T23:59:59.000Z

78

{open_quotes}A status report on the Clean Coal Technology Demonstration Program{close_quotes}  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry co-funded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of large-scale {open_quotes}showcase{close_quotes} facilities built across the country. The program takes the most promising, advanced coal-based technologies and moves them into the commercial marketplace through demonstration. These demonstrations are on a scale large enough to generate all the data, from design, construction and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies capable of being applied to the U.S. coal resource base and encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications.

Miller, C.L.; Uthus, D. [Clean Coal Technology Program, Washington, DC (United States); Huber, D.; Hoppe, J. [Burns and Roe Enterprises, Inc., Fairfax, VA (United States)

1993-12-31T23:59:59.000Z

79

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Industrial Applications Cement Kiln Flue Gas Recovery Scrubber - Project Brief [PDF-247KB] Passamaquoddy Technology Limited Partnership, Thomaston, ME Program Publications Final Reports Passamaquoddy Technology Recovery Scrubber(tm) Final Report, Volume 1 [PDF-5.4MB] (Feb 1994) Final Report, Volume 2 and Appendices A - M [PDF-10.4MB] (Feb 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Cement Kiln Flue Gas Recovery Scrubber Project: A DOE Assessment [PDF-246KB] (Nov 2001) Cement Kiln Flue Gas Recovery Scrubber, Project Performance Summary [PDF-2MB] (June 1999) Design Reports Passamaquoddy Technology Recovery Scrubber(tm) Public Design Report (Oct 1993) [PDF-2.7MB) Interim Reports Interim Technical Report [PDF-973KB] (Mar 1992)

80

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect (OSTI)

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US DOE Geothermal Program US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Geothermal Technologies Program 2010 Peer Review May 20, 2010 3 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Principal Investigators Robert C. Beiswanger Jr. Vice President for Business Affairs and Treasurer Dr. Edwin G. Clausen Vice President for Academic Affairs and Dean of the College

82

Simulator platform for fast reactor operation and safety technology demonstration  

SciTech Connect (OSTI)

A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

2012-07-30T23:59:59.000Z

83

Performance of a NGS-based MCAO demonstrator: the  

E-Print Network [OSTI]

Performance of a NGS-based MCAO demonstrator: the NGC3366 and NGC2346 simulations Venice 2001% of the energy. These quantities are com- puted using a measured C 2 n pro#12;le and for asterisms of natural

Tokovinin, Andrei A.

84

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Advanced Electric Power Generation - Fluidized Bed Combustion JEA Large-Scale CFB Combustion Demonstration Project - Project Brief [PDF-169KB] JEA, Jacksonville, FL PROGRAM PUBLICATIONS Final Reports Final Technical Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-438KB](July 2005) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports JEA Large-Scale CFB Combustion Demonstration Project: A DOE Assessment [PDF-177KB] (Nov 2005) The JEA Large-Scale CFB Combustion Demonstration Project, Topical Report No.22 [PDF-2.1MB] (Mar 2003) Design Reports Detailed Public Design Report for the JEA Large-Scale CFB Combustion Demonstration Project [PDF-2.5MB] (June 2003) Appendices 4, 5, and 6: Major Equipment List,

85

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Wastewater Recycling Technology  

SciTech Connect (OSTI)

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

2014-08-14T23:59:59.000Z

86

Evolving performance characteristics of clean coal technologies  

SciTech Connect (OSTI)

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

87

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

88

Demonstration and Performance Monitoring of Foundation Heat Exchangers in Low Load, High Performance Research Homes  

Broader source: Energy.gov (indexed) [DOE]

Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Low Load, High Performance Research Homes Piljae Im, Ph.D. Oak Ridge National Laboratory Building America Technical Update Meeting April 29 - 30, Denver, Colorado ACKNOWLEDGEMENT * This project was sponsored by the Building Technologies Office of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy and the Tennessee Valley Authority (TVA). Managed by UT-Battelle for the U.S. Department of Energy 2 PRESENTATION OVERVIEW * INTRODUCTION * FIELD TEST OF THE FOUNDATION HEAT EXCHANGER (FHX) CONCEPT * FOUNDATION HEAT EXCHANGER PERFORMANCE MEASUREMENTS * ADDITIONAL FINDINGS AND COST COMPARISON * SUMMARY Managed by UT-Battelle for the U.S. Department of Energy

89

FY 2009 Progress: Process Monitoring Technology Demonstration at PNNL  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) is developing and demonstrating three technologies designed to assist in the monitoring of reprocessing facilities in near-real time. These technologies include 1) a multi-isotope process monitor (MIP), 2) a spectroscopy-based monitor that uses UV-Vis-NIR (ultraviolet-visible-near infrared) and Raman spectrometers, and 3) an electrochemically modulated separations approach (EMS). The MIP monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (uranium, plutonium, neptunium), selected fission products, and major cold flow sheet chemicals. The EMS approach provides an on-line means for separating and concentrating elements of interest out of complex matrices prior to detection via nondestructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. A general overview of the technologies and ongoing demonstration results are described in this report.

Arrigo, Leah M.; Christensen, Ronald N.; Fraga, Carlos G.; Liezers, Martin; Peper, Shane M.; Thomas, Elizabeth M.; Bryan, Samuel A.; Douglas, Matthew; Laspe, Amy R.; Lines, Amanda M.; Peterson, James M.; Ward, Rebecca M.; Casella, Amanda J.; Duckworth, Douglas C.; Levitskaia, Tatiana G.; Orton, Christopher R.; Schwantes, Jon M.

2009-12-01T23:59:59.000Z

90

Building Technologies Office: Performance Metrics Tiers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

91

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Reports on Withdrawn & Terminated Projects Warren Station Externally Fired Combined-Cycle Demo. Project - (There is no Project Brief for this project) Pennsylvania Electric Company PROGRAM PUBLICATIONS Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Warren Station EFCC Demonstration Project (June 1994) U.S. Department of Energy report DOE/FE-0316P. (Available from NTIS as DE94017288) PAPERS AND PRESENTATIONS Externally Fired Combined Cycle: An Effective Coal-Fueled Technology for Repowering and New Generation (Mar 1995) L.E. Stoddard et al., (Black and Veatch), 20th International Technical Conference on Coal Utilization and Fuels Systems. U.S. Department of Energy Report CONF-950313-2 and DOE/MC/31327-95/C0451 (Available from NTIS as DE95012295).

92

DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION  

SciTech Connect (OSTI)

The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

Barry L. Burks

2002-12-01T23:59:59.000Z

93

Scale-Up and Demonstration of Fly Ash Ozonation Technology  

SciTech Connect (OSTI)

The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

Rui Afonso; R. Hurt; I. Kulaots

2006-03-01T23:59:59.000Z

94

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Advanced Electric Power Generation - Fluidized Bed Combustion McIntosh Unit 4A PCFB Demonstration Project - Project Brief [PDF-186KB] Lakeland Department of Electric & Water, Lakeland, FL PROGRAM PUBLICATIONS Annual/Quarterly Technical Reports Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, January - December 1993 (Apr 1994) -- Not Available Pressurized Circulating Fluidized Bed (PCFB) Repowering Project, Annual Report, August 1991 - December 1992 (Apr 1993) -- Not Available Interim Reports Karhula Hot Gas Cleanup Test Results (June 1994) -- Not Available PCFB Repowering Project 80 MW Plant Description (May 1994) -- Not Available Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Progam: Pressurized Circulating Fluidized Bed Demonstration Project (June 1991) -- Not Available

95

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Industrial Applications Advanced Cyclone Combustor with Internal Sulfur, Nitrogen, and Ash Control - Project Brief [PDF-302KB] Coal Tech Corp., Williamsport, PA PROGRAM PUBLICATIONS Final Reports Demonstration of an Advanced Cyclone Coal Combustor with Internal Sulfur Nitrogen, and Ash Control for the Conversion of a 23-MMBtu/Hour Oil Fired Boiler to Pulverized Coal (Aug 1991) Volume 1: Final Technical Report [PDF-5.9MB] Appendixes I through VI [PDF-8.9MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports The Coal Tech Advanced Cyclone Combustor Demonstration Project -- A DOE Assessment [PDF-234KB] (May 1993) Environmental Reports Annual Environmental Report for The Demonstration of an Advanced Cyclone Coal Combustor, with Internal Sulfur, Nitrogen, and Ash Control for the Conversion of a 23 MMBtu/Hour Boiler to Coal [PDF-812KB] (Sept 1987)

96

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Applications Industrial Applications Blast Furnace Granular-Coal Injection System Demonstration Project - Project Brief [PDF-314KB] Bethlehem Steel Corp., Burns Harbor, IN PROGRAM PUBLICATIONS Final Reports Blast Furnace Granular Coal Injection System Demonstration Project, Project Performance and Economics, Final Report Vol. 2 [PDF-3.8MB] (Oct 1999) Annual/Quarterly Technical Reports Blast Furnace Granular Coal Injection Project, Annual Reports January - December 1998 [PDF-1.7MB] January - December 1997 [PDF-1.7MB] January - December 1996 [PDF-1.7MB] January - December 1995 [PDF-2.6MB] January - December 1994 [PDF-2MB] (July 1995) January - December 1993[PDF-1.5MB] (June 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports

97

Automated Demand Response Technologies and Demonstration in New York City using OpenADR  

E-Print Network [OSTI]

and G. Heffner. “Do enabling technologies affect customerAutomated Demand Response Technologies and Demonstration inof Standards and Technology (NIST) along with organizations

Kim, Joyce Jihyun

2014-01-01T23:59:59.000Z

98

Building Technologies Office: Global Superior Energy Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Superior Energy Global Superior Energy Performance Partnership to someone by E-mail Share Building Technologies Office: Global Superior Energy Performance Partnership on Facebook Tweet about Building Technologies Office: Global Superior Energy Performance Partnership on Twitter Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Google Bookmark Building Technologies Office: Global Superior Energy Performance Partnership on Delicious Rank Building Technologies Office: Global Superior Energy Performance Partnership on Digg Find More places to share Building Technologies Office: Global Superior Energy Performance Partnership on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

99

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Environmental Control Technologies - SO2 Control Technologies Confined Zone Dispersion Flue Gas Desulfurization Demo. - Project Brief [PDF-296KB] Bechtel Corp., Seward, PA PROGRAM PUBLICATIONS Final Reports Confined Zone Dispersion Project, Final Technical Report [PDF-7.8MB] ((June 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Confined Zone Dispersion Project: A DOE Assessment [PDF-178KB] (Nov 1999) Design Reports Confined Zone Dispersion Project, Public Design Report (Oct 1993) U.S. Department of Energy report DOE/PC/90456-T10 Cover page through Section 3.5.3 [PDF-6.3 MB] (Oct 1993) Section 3.6 through a portion of Appendix C [PDF-6.1 MB] (Oct 1993) Balance of Appendix C [PDF-5.7 MB] (Oct 1993) Interim Reports

100

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Environmental Control Technologies - Combined SO2 / NOx Control Technologies Enhancing the Use of Coals by Gas Reburning and Sorbent Injection - Project Brief [PDF-328KB] Energy and Environmental Research Inc., Springfield/Hennepin, IL PROGRAM PUBLICATIONS Final Reports Enhancing the Use of Coals by Gas Reburning and Sorbent Injection Volume 1: Program Overview, Part A-Final Public Design Report, Part B-Project Performance and Economics [PDF-17MB] (Feb 1997) Volume 2: Gas Reburning-Sorbent injection at Hennepin Unit 1 [PDF-12MB] (Mar 1996) Volume 3: Gas Reburning-Sorbent Injection at Edwards Unit 1 [PDF-3.8MB] (Mar 1996) Volume 4: Gas Reburning-Sorbent Injection at Lakeside Unit 7 [PDF-21.9MB] (Mar1996) Volume 5: Guideline Manual [PDF-6.9MB] (Sept 1998)

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Purpose and Value of Successful Technology Demonstrations Â… The Energy Independence and Security Act of 2007 Demonstrations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purpose and Value of Successful Technology Demonstrations - The Energy Purpose and Value of Successful Technology Demonstrations - The Energy Independence and Security Act of 2007 Demonstrations by Steve Bossart, NETL Senior Management and Technical Advisor, and Steve Pullins, Team Leader, DOE/NETL Modern Grid Strategy Our industry has piloted many, many technologies, but truly deployed few. Can we say that we completely understand the value of a single technology piloted in a couple different utilities? Or, must we integrate this technology with other technologies in a real-world environment to discover those additional values and benefits that go beyond its solo application? When we survey the industry for technology penetration, we find a sad picture....many solo pilots, but little evidence of integrated advanced technologies. The reasons are simple and clear.

102

Technology Performance Exchange | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Performance Exchange Performance Exchange Technology Performance Exchange A collaboration between the U.S. Department of Energy's (DOE's) Federal Energy Management Program Office and the Building Technologies Office, the Technology Performance Exchange will establish a Web-based portal and accompanying database that allows technology suppliers to submit product performance data that private and public sector end users can use to make fact-based procurement decisions. Suppliers will populate the database with technologies that affect building activities, including construction, commissioning, maintenance, monitoring, equipment, and verification. This project will help the U.S. energy efficiency technology market by providing objective product performance data to building engineers and

103

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler - Project Brief [PDF-252KB] Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler - Project Brief [PDF-252KB] Energy and Environmental Research Corp., Denver, CO PROGRAM PUBLICATIONS Final Reports Evaluation of Gas Reburning and Low NOx Burners on a Wall-Fired Boiler: Performance and Economics Report, Gas Reburning-Low NOx Burner System, Cherokee Station Unit No. 3, Final Report [PDF-17.2MB] (July 1998) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Evaluation of Gas Reburning and Low-NOx Burners on a Wall-Fired Boiler: A DOE Assessment [PDF-309KB] (Feb 2001) Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers, Topical Report No.14 [PDF-1.2MB] ((May 1999) Reduction of NOx and SO2 Using Gas Reburning, Sorbent Injection, and Integrated Technologies, Topical Report No. 3 [PDF-1MB] ((Sept 1993)

104

Explosive ordinance disposal technology demonstration using the telerobotic small emplacement excavator  

SciTech Connect (OSTI)

The small emplacement excavator (SEE) is a ruggedized military vehicle with backhoe and front loader used by the US Army for explosive ordinance disposal (EOD), combat engineer, and general utility excavation activities. In order to evaluate the feasibility of removing personnel from the vehicle during the high risk EOD excavation tasks a development and demonstration project was initiated to evaluate performance capabilities of the SEE under telerobotic control. This feasibility study was performed at the request of the Ordinance Missile and Munitions Center and School (OMMCS) at the Redstone Arsenal to help define requirements for further joint service development activities. Development of a telerobotic SEE (TSEE) was performed by the Oak Ridge National Laboratory (ORNL) in a project funded jointly by the US Army Project Manager for Ammunition Logistics (PM-AMMOLOG) and the Department of Energy (DOE) Office of Technology Development (OTD) Robotics Technology Development Program (RTDP). A technology demonstration of the TSEE was conducted at McKinley Range, Redstone Arsenal, Huntsville, Alabama, on September 13--17, 1993. The primary objective of the demonstration was to evaluate and demonstrate the feasibility of remote EOD. During the demonstration, approximately 40 EOD specialists were instructed on telerobotic operation of the TSEE and then were asked to complete a series of simulated EOD tasks. Upon completion of the tasks, participants completed an evaluation of the system including human factors performance data.

Burks, B.L.; Killough, S.M.; Thompson, D.H.; Dinkins, M.A. [Oak Ridge National Lab., TN (United States). Robotics & Process Systems Div.

1994-06-01T23:59:59.000Z

105

Energy Technology Cost and Performance Data | Open Energy Information  

Open Energy Info (EERE)

Energy Technology Cost and Performance Data Energy Technology Cost and Performance Data (Redirected from US Department of Energy - Energy Technology Cost and Performance Data) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Cost and Performance Data Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Resource assessment Resource Type: Dataset Website: www.nrel.gov/analysis/tech_cost_data.html Equivalent URI: cleanenergysolutions.org/content/energy-technology-cost-and-performanc Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: Energy Technology Cost and Performance Data: Homepage[1] Logo: Energy Technology Cost and Performance Data This data indicates the range of recent cost estimates for renewable energy

106

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

107

Clean Coal Technology Demonstration Program. Program update 1995  

SciTech Connect (OSTI)

This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

NONE

1996-04-01T23:59:59.000Z

108

Apply: Commercial Building Technology Demonstrations (DE-FOA...  

Office of Environmental Management (EM)

Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Commercial Building...

109

Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)  

SciTech Connect (OSTI)

A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.

Berglin, E.J.

1997-07-31T23:59:59.000Z

110

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-19T23:59:59.000Z

111

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-13T23:59:59.000Z

112

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2006-04-01T23:59:59.000Z

113

"INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE"  

E-Print Network [OSTI]

Energy Technology Laboratory (NETL) in Morgantown, West Virginia. NETL provided both technical and fiscal

Hazen, Terry

114

Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary  

SciTech Connect (OSTI)

The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

Not Available

1994-02-01T23:59:59.000Z

115

Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program  

Science Journals Connector (OSTI)

The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions based on the results of the engineering characterization tests will be used to correlate the results of the 30 day mission simulation.

E. C. Cady

1997-01-01T23:59:59.000Z

116

Eddy current NDE performance demonstrations using simulation tools  

SciTech Connect (OSTI)

To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

Maurice, L. [EDF - CEIDRE, 2 rue Ampere, 93206 Saint-Denis Cedex 1 (France); Costan, V.; Guillot, E.; Thomas, P. [EDF - R and D, THEMIS, 1, avenue du General de Gaulle, 92141 Clamart (France)

2013-01-25T23:59:59.000Z

117

OTM and UTARI personnel will perform Technology  

E-Print Network [OSTI]

OTM and UTARI personnel will perform Technology Readiness (TRL) & Manufacturing Readiness (MRL to the Office of Technology Management via the OTM webpage OTM and UTARI personnel will review the IPD and meet for the technology; At the same time, OTM may assist in obtaining funding (SBIR/STTR, etc.) and/or technology may (a

Huang, Haiying

118

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect (OSTI)

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

119

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

120

Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

for Block and Head - Thermal Barrier Coatings for Reduced Heat Transfer * Trailer Aerodynamic Devices that are Functional * Engine Sensor Technologies 4 Innovation You Can...

122

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

123

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

124

Post-Shred Materials Recovery Technology Development and Demonstration  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

125

Post-Shred Materials Recovery Technology Development and Demonstration  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

126

E-Print Network 3.0 - advanced technologies demonstrated Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 9 Enterprise: Exploration Systems TTHHEEMMEESS Summary: technologies. The Exploration Systems Enterprise is responsible for developing and demonstrating the...

127

E-Print Network 3.0 - advanced technology demonstration Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 9 Enterprise: Exploration Systems TTHHEEMMEESS Summary: technologies. The Exploration Systems Enterprise is responsible for developing and demonstrating the...

128

The Purpose and Value of Successful Technology Demonstrations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act of 2007 Demonstrations by Steve Bossart, NETL Senior Management and Technical Advisor, and Steve Pullins, Team Leader, DOENETL Modern Grid Strategy Our industry has...

129

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

130

Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001  

Broader source: Energy.gov [DOE]

results of a demonstration of a microturbine simulator used to mimic the behavior of a distributed energy resource on an electrical system

131

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm29jody.pdf More Documents & Publications Post-Shred Materials Recovery Technology...

132

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 5  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Advanced Electric Power Generation - Integrated Gasification Combined Cycle Kentucky Pioneer IGCC Demonstration Project - Project Brief [PDF-80KB] Kentucky Pioneer Energy, L.L.C.; Trapp, Clark County, KY PROGRAM PUBLICATIONS Final Report Kentucky Pioneer Energy LLC Integrated Gasification Combined Cycle Project: 2 MW Fuel Cell Demonstration [PDF-3.2MB] (Apr 2006) Design Reports Kentucky Pioneer Energy IGCC CCT Demonstration Project, 2 MW Fuel Cell Demonstration, Basis of Design [PDF-696KB] (May 2002) Environmental Reports Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project: Final Environmental Impact Statement, [PDF-5.7MB] (Nov 2002) Appendices A-C and E [PDF-965KB] Appendix D, Pages 1-40 [PDF-5.2MB] Appendix D, Pages 41-71 [PDF-4.3MB]

133

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Rosebud SynCoal Partnership, Colstrip, MT PROGRAM PUBLICATIONS Final Reports Advanced Coal Conversion Process Demonstration Final Technical Report [PDF-362KB] (Sept 2004) Annual/Quarterly Technical Reports Advanced Coal Conversion Process Demonstration Annual Technical Progress Reports January - December 1991 [PDF-920KB] January - December 1992 [PDF-2.9MB] January - December 1993 [PDF-3.3MB] January - December 1995 [PDF-2.9MB] January - December 1996 [PDF-250KB] January - December 1997 [PDF-264KB] January - December 1998 [PDF-188KB] January - December 1999 [PDF-212KB] January - December 2000 [PDF-231KB] Advanced Coal Conversion Process Demonstration Quarterly Technical Progress Reports

134

A design study for a medium-scale field demonstration of the viscous barrier technology  

SciTech Connect (OSTI)

This report is the design study for a medium-scale field demonstration of Lawrence Berkeley National Laboratory`s new subsurface containment technology for waste isolation using a new generation of barrier liquids. The test site is located in central California in a quarry owned by the Los Banos Gravel Company in Los Banos, California, in heterogeneous unsaturated deposits of sand, silt, and -ravel typical of many of the and DOE cleanup sites and particularly analogous to the Hanford site. The coals of the field demonstration are (a) to demonstrate the ability to create a continuous subsurface barrier isolating a medium-scale volume (30 ft long by 30 ft wide by 20 ft deep, i.e. 1/10th to 1/8th the size of a buried tank at the Hanford Reservation) in the subsurface, and (b) to demonstrate the continuity, performance, and integrity of the barrier.

Moridis, G. [Lawrence Berkeley National Lab., CA (United States); Yen, P. [Bechtel Corp., San Francisco, CA (United States); Persoff, P.; Finsterle, S.; Williams, P.; Myer, L.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

1996-09-01T23:59:59.000Z

135

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indirect Liquefaction Indirect Liquefaction Commercial-Scale Demonstration of the Liquid-Phase Methanol (LPMEOH(tm)) Process - Project Brief [PDF-282KB] Air Products Liquid Phase Conversion Company, L.P., Kingsport, TN PROGRAM PUBLICATIONS Final Reports Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(tm)) Process, Final Report [PDF-3.5MB] (June 2003) Annual/Quarterly Technical Reports Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(tm)) Process, Technical Progress Reports No. 34, October - December 2002 [PDF-448KB] No. 33, July - September 2002 [PDF-116KB] No. 32, April - June 2002 [PDF-148KB] No. 31, January - March 2002 [PDF-156KB] No. 30, October - December 2001 [PDF-141KB] No. 29, July - September 2001 [PDF-129KB] No. 28, April - June 2001 [PDF-154KB]

136

NETL: Mercury Emissions Control Technologies - Field Demonstration of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Demonstration of Enhanced Sorbent Injection for Mercury Control Field Demonstration of Enhanced Sorbent Injection for Mercury Control ALSTOM will test their proprietary activated carbon-based sorbent which promotes oxidation and capture of mercury via preparation with chemical additives. ALSTOM proposes to test the sorbents at three utilities burning different coals, PacificCorpÂ’s Dave Johnston (PRB), Basin ElectricÂ’s Leland Olds (North Dakota Lignite) and Reliant EnergyÂ’s Portland Unit (bituminous). Other project partners include Energy and Environmental Research Center, North Dakota Industrial Commission and Minnkota Power who will be a non-host utility participant. Upon completion of this two year project, ALSTOM will demonstrate the capability of controlling mercury emissions from units equipped with electrostatic precipitators, a configuration representing approximately 75% of the existing units.

137

RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

2014-03-01T23:59:59.000Z

138

DOE`s Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies  

SciTech Connect (OSTI)

A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy`s (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency`s (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper.

Hightower, M.

1995-08-01T23:59:59.000Z

139

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mild Gasification Mild Gasification ENCOAL® Mild Coal Gasification Project - Project Brief [PDF-279KB] ENCOAL Corporation, Gillette, WY PROGRAM PUBLICATIONS Final Reports ENCOAL Mild Coal Gasification Project Final Reports [PDF-6.8MB] (Sept 1997) (Includes the following 3 reports) ENCOAL Project Final Report [PDF-460KB] (Sept 1997) Final Design Modifications Report [PDF-5.2MB] (Sept 1997) Commercial Plant Feasibility Study [PDF-1MB] (Sept 1997) Annual/Quarterly Technical Reports ENCOAL Mild Coal Gasification Project Annual Report, October 1994 - September 1995 [PDF-2.6MB] (Jan 1996) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report, October 1993-September 1994 [PDF-1.5MB] (Mar 1995) ENCOAL Mild Coal Gasification Demonstration Project, Annual Report [PDF-1.6MB] (Oct 1993)

140

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS  

SciTech Connect (OSTI)

As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

CHARLES M. WEBER

2008-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

142

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Revisit of Energy Use and Technologies of High PerformanceEnvironmental Energy Technologies Division May 2014 ThisRevisit of Energy Use and Technologies of High Performance

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

143

Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies  

SciTech Connect (OSTI)

This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated to what would have been the added municipal (community) management costs involved with maintaining closed landfills. (2) With greater quantities of recovered material being returned to and integrated into manufacturing and the marketplace, reduced demand upon virgin wood sources could help lead the way to promoting improved relations and environmental balance between producers and consumers further expanding the value of our natural resource without adding environmental burden.

Auburn Machinery, Inc.

2004-07-15T23:59:59.000Z

144

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wabash River Coal Gasification Repowering Project - Project Brief [PDF-250KB] Wabash River Coal Gasification Repowering Project - Project Brief [PDF-250KB] Wabash River Coal Gasification Repowering Project Joint Venture West Terre Haute, IN Program Publications Final Reports Wabash River Coal Gasification Repowering Project, Final Technical Report [PDF-8.2MB] (Aug 2000) Annual/Quarterly Technical Reports Wabash River Coal Gasification Repowering Project, Annual Technical Progress Reports 1995 [PDF-1.7MB] (Mar 1999) 1996 [PDF-3.8MB] (Feb 2000) 1997 [PDF-4.8MB] 1998 [PDF-3.6MB] 1999 [PDF-3.4MB] (June 2000) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Wabash River Coal Gasification Repowering Project, Project Performance Summary [PDF-2.5MB] (June 2002) Wabash River Coal Gasification Repowering Project: A DOE Assessment [PDF-295KB] (Jan 2002)

145

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies Office.

146

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

147

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

148

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

149

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

150

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

151

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot  

Broader source: Energy.gov (indexed) [DOE]

Project - Technology Demonstration of Fixatives Applied Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms More Documents & Publications Demonstration of Fixatives to Control Contamination and Accelerate D&D Demonstration of DeconGel (TM) at the Oak Ridge National Laboratory Building 2026 D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

152

Demonstration of Recessed Downlight Technologies: Power and Illumination Assessment  

SciTech Connect (OSTI)

Solid state lighting (SSL), specifically light-emitting diodes (LED), has been advancing at a rapid pace, and there are presently multiple products available that serve as direct replacements for traditional luminaires. In this demonstration, conventional recessed lights in a conference room were used to compare conventional incandescent A-lamps, incandescent reflector R-lamps, dimming compact fluorescent lamps (CFL), to an LED replacement product. The primary focus during the study was on light delivered to the task plane as provided by the power required by the lighting system. Vertical illuminance, dimming range, and color shift are also important indicators of lighting quality and are discussed in the report. The results clearly showed that LEDs, with dimming-capable drivers, are much more efficient than incandescent and CFLs. Further, LEDs provide much smoother and consistent dimming than dimmable CFLs. On the potential negative side, it is important that the dimming switch be identified as compatible with the LED driver. A wide variety of dimmer switches are capable of dimming LEDs down to 15% of full light output, while select others can be capable of dimming LEDs down to 5%. In addition, LEDs can be intensive light sources, which can result in uncomfortable glare in some applications and to some occupants. Higher ceiling (9-foot or greater) or non-specular reflectors can act to alleviate the potential for glare.

Parker, Steven A.; Beeson, Tracy A.

2009-11-20T23:59:59.000Z

153

Demonstration and Performance Monitoring of Foundation Heat Exchangers...  

Energy Savers [EERE]

for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options...

154

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 3  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Advanced Electric Power Generation - Advanced Combustion Systems Healy Clean Coal Project - Project Brief [PDF-226KB] Alaska Industrial Development and Export Authority, Healy, AK PROGRAM PUBLICATIONS Final Reports Healy Clean Coal Project, Project Performance and Economics Report, Final Report: Volume 2 [PDF-1.2MB] (Apr 2001) Annual/Quarterly Technical Reports Healy Clean Coal Project , Quarterly Technical Progress Reports Numbers 1 and 2, January - June 1991 [PDF-1.3MB] Number 3, July - September 1991 [PDF-579KB] Number 4, October - December 1991 [PDF-862KB] Number 5, January - March 1992 [PDF-668KB] Number 6, April - June 1992 [PDF-1.2MB] Number 14, April - June 1994 [PDF-311KB] Numbers 16-19, October 1994 - September 1995 [PDF-1.3MB] Number 20, October - December 1995 [PDF-653KB]

155

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Coal Quality Expert(tm) - Project Brief [PDF-313KB] Development of the Coal Quality Expert(tm) - Project Brief [PDF-313KB] ABB Combustion Engineering, Inc., and CQ, Inc. Pittsburgh, PA and Homer City, PA PROGRAM PUBLICATIONS Final Reports Final Report: Development of a Coal Quality Expert [PDF-6.9MB] (June 1998) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Development of a Coal Quality ExpertT: A DOE Assessment [PDF-1.5MB] (Nov 2000) Interim Reports Characterization and Evaluation of the Cleanability of Subbituminous Coals from Powder River Basin [PDF-18.4MB] (June 1993) Coal Cleanability Characterization of Pratt and Utley Seam Coal [PDF-10.1MB] (Aug 1992) Coal Cleanability Characterization of Pratt and Utley Seam Coal, Trace Element Addendum [PDF-10.1MB] (June 1993)

156

Performance Demonstration Based Probablity of Detection (POD) Curves for Fatigue Cracks in Piping  

SciTech Connect (OSTI)

This paper evaluates non-destructive examination (NDE) detection capabilities for fatigue cracks in piping. Industry performance demonstration initiative (PDI) data for fatigue crack detection were used to develop a matrix of statistically based probability of detection (POD) curves that consider various NDE performance factors. Seven primary performance factors were identified – Material, Crack Geometry/Type, NDE Examination Access, NDE Procedure, Examiner Qualification, Pipe Diameter, and Pipe Wall Thickness. A database of 16,181 NDE performance observations, with 18 fields associated with each observation, was created and used to develop statistically based POD curves for 42 stainless steel and 14 carbon steel performance cases. Subsequent comparisons of the POD fits for each of the cases showed that excellent NDE performance for fatigue cracks can be expected for ferritic materials. Very little difference was observed between the POD curves for the 14 carbon steel performance cases considered in this study and NDE performance could therefore be represented by a single POD curve. For stainless steel, very good performance can also be expected for circumferential cracks located on the same side of the weld from which the NDE examination is made. POD depended primarily on component thickness. Three POD curves for stainless steel were prepared. Best estimate and the associated 95% confidence bounds for POD versas through-wall depth logistic regression digital data are provided. Probabilistic fracture mechanics (PFM) calculations were performed to compare best estimate leak probabilities obtained from both the new performance-based POD curves and previous PFM models. This work was performed under joint funding by EPRI and the U.S. Department of Energy (DOE), Office of Nuclear Energy Science and Technology’s Nuclear Energy Plant Optimization (NEPO) program.

Gosselin, Stephen R.; Simonen, Fredric A.; Heasler, Patrick G.; Becker, F. L.; Doctor, Steven R.; Carter, R. G.

2005-07-01T23:59:59.000Z

157

DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE  

SciTech Connect (OSTI)

General Atomics (GA) has recently completed a Phase I program for the development of a two-step alternative to incineration for the destruction of organics in transuranic wastes at the Savannah River Site. This process is known as thermal desorption-supercritical water oxidation, or TD-SCWO. The GA TD process uses heat to volatilize and transport organics from the waste material for subsequent treatment by SCWO. SCWO oxidizes organics in a steam medium at elevated temperatures and pressures in a manner that achieves excellent destruction efficiencies and compliance with all environmental requirements without the need for complex pollution-abatement equipment. This application of TD-SCWO is focused on a full-scale batch process for 55-gallon drums of mixed transuranic waste at the Savannah River Site. The Phase I reduced-scale test results show that the process operates as intended on surrogate waste matrices chosen to be representative of Savannah River Site transuranic mixed wastes. It provides a high degree of hydrogen removal and full containment of the radionuclide surrogate, with minimal requirements for pre-treatment and post-treatment. Other test objectives were to verify that the process produces no dioxins or furans, and meets all applicable regulatory criteria for retention of toxic metals, particulate, and criteria pollutants, while meeting WIPP/WAC and TRUPACT-II requirements. Thermal desorption of surrogate SRS mixed wastes at 500 psi and 1000 F met all tested requirements for WIPP/WAC and TRUPACT-II. SCWO of the desorbed surrogate organic materials at 500 psi and 1500 F also appears to meet all requirements for a nonincineration alternative, although >99.99% DRE for chlorinated solvents has not yet been demonstrated.

Mike Spritzer

2003-02-01T23:59:59.000Z

158

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Piñon Pine IGCC Power Project - Project Brief [PDF-313KB] Piñon Pine IGCC Power Project - Project Brief [PDF-313KB] Sierra Pacific Power Company, Reno, NV PROGRAM PUBLICATIONS Final Reports Piñon Pine IGCC Project, Final Technical Report [PDF-14.1MB] (Jan 2001) Annual/Quarterly Technical Reports Piñon Pine Power Project Annual Reports August 1992 - December 1993 [PDF-2.4MB] January - December 1994 [PDF-2.3MB] January - December 1995 [PDF-3.1MB] January - December 1996 [PDF-6.1MB] CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Piñon Pine IGCC Power Project: A DOE Assessment [PDF-321KB] (Dec 2002) Topical Report Number 8: The Piñon Pine Power Project [PDF-850KB] (Dec 1996) Design Reports Tracy Power Station-Unit No. 4 Piñon Pine Power Project Public Design Report [PDF-4.7MB] (Dec 1994)

159

DEMONSTRATION OF A FULL-SCALE RETROFIT OF THE ADVANCED HYBRID PARTICULATE COLLECTOR TECHNOLOGY  

SciTech Connect (OSTI)

The Advanced Hybrid Particulate Collector (AHPC), developed in cooperation between W.L. Gore & Associates and the Energy & Environmental Research Center (EERC), is an innovative approach to removing particulates from power plant flue gas. The AHPC combines the elements of a traditional baghouse and electrostatic precipitator (ESP) into one device to achieve increased particulate collection efficiency. As part of the Power Plant Improvement Initiative (PPII), this project was demonstrated under joint sponsorship from the U.S. Department of Energy and Otter Tail Power Company. The EERC is the patent holder for the technology, and W.L. Gore & Associates was the exclusive licensee for this project. The project objective was to demonstrate the improved particulate collection efficiency obtained by a full-scale retrofit of the AHPC to an existing electrostatic precipitator. The full-scale retrofit was installed on an electric power plant burning Powder River Basin (PRB) coal, Otter Tail Power Company's Big Stone Plant, in Big Stone City, South Dakota. The $13.4 million project was installed in October 2002. Project related testing concluded in December 2005. The following Final Technical Report has been prepared for the project entitled ''Demonstration of a Full-Scale Retrofit of the Advanced Hybrid Particulate Collector Technology'' as described in DOE Award No. DE-FC26-02NT41420. The report presents the operation and performance results of the system.

Tom Hrdlicka; William Swanson

2005-12-01T23:59:59.000Z

160

Energy Technology Cost and Performance Data | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Energy Technology Cost and Performance Data Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Cost and Performance Data Agency/Company /Organization: United States Department of Energy Sector: Energy Topics: Resource assessment Resource Type: Dataset Website: www.nrel.gov/analysis/tech_cost_data.html Equivalent URI: cleanenergysolutions.org/content/energy-technology-cost-and-performanc Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation References: Energy Technology Cost and Performance Data: Homepage[1]

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect (OSTI)

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

162

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect (OSTI)

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: • Laboratory studies • Mathematical modeling • Sonic tool design and development • Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40°C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

163

Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels - Technology Management, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Scale SOFC Demonstration Using Small Scale SOFC Demonstration Using Bio-based and Fossil Fuels-Technology Management, Inc. Background In this congressionally directed project, Technology Management, Inc. (TMI) will develop and demonstrate a residential scale prototype solid oxide fuel cell (SOFC) system at end-user sites. These small-scale systems would operate continuously on either conventional or renewable biofuels, producing cost effective, uninterruptible

164

Heber Binary-Cycle Geothermal Demonstration Power Plant: Half-load testing, performance, and thermodynamics  

SciTech Connect (OSTI)

This report describes the project's activities during the period July 1986 through June 1987; and includes results of two annual outages and eight months of low power testing and operating. The Heber Binary-Cycle Geothermal Demonstration Power Plant is a 45 MWe electric power generating plant in the Imperial Valley of Southern California. The purpose of the Heber Binary Project is to demonstrate the capability of binary-cycle technology to economically utilize moderate-temperature (300/degree/F to 410/degree/F (150/degree/C to 210/degree/C)) geothermal resources for electric power production. The main objective of the project is to show performance, cost, and environmental acceptability of binary-cycle technology. Experience with demonstration plant and heat supply facilities is described. Details of equipment problems are included. Heat supply shortfall prevented the planned ascent to full power, but binary-cycle experience was favorable at power levels up to 50% of design. 68 refs., 80 figs., 34 tabs.

Berning, J.L.; Fishbaugher, J.R.

1988-08-01T23:59:59.000Z

165

Vehicle Technologies Office Merit Review 2014: Performance of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends...

166

Technology Performance Exchange - 2014 BTO Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Performance Exchange - 2014 BTO Peer Review Technology Performance Exchange - 2014 BTO Peer Review Project Objective This project's overall goal is to ensure that...

167

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.6 Technology Validation  

Broader source: Energy.gov [DOE]

Technology Validation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

168

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

R. Linderman; T. Brunschwiler; B. Smith; B. Michel

2008-01-07T23:59:59.000Z

169

High Performance Thermal Interface Technology Overview  

E-Print Network [OSTI]

An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

Linderman, R; Smith, B; Michel, B

2008-01-01T23:59:59.000Z

170

GATEWAY Demonstrations  

Broader source: Energy.gov [DOE]

DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

171

LED Lamp Project Lights the Way to Flicker-Free Replacement Jade Sky Technologies and UC Davis's California Lighting Technology Center demonstrate the  

E-Print Network [OSTI]

, 2014 ­ Jade Sky Technologies ("JST"), a clean-tech start-up manufacturer of LED Technologies and UC Davis's California Lighting Technology Center demonstrate the lighting Specification. JST collaborated with UC Davis's California Lighting Technology Center

California at Davis, University of

172

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

173

Performance Engineering Technology for Scientific Component Software  

SciTech Connect (OSTI)

Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress reports for the first two years describe those year's achievements in detail. We discuss progress in the last project period in this document. Deployment of our work in CCA components, frameworks, and applications is an important metric of success. We also summarize the project's accomplishments in this regard at the end of the report. A list of project publications is also given.

Malony, Allen D.

2007-05-08T23:59:59.000Z

174

Building Technologies Office: Buildings Performance Database Analysis Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

175

Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

2014-03-01T23:59:59.000Z

176

Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration  

SciTech Connect (OSTI)

Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

Peterson, T.S.; McCabe, G.H.; Brockbank, B.R. [and others

1995-05-01T23:59:59.000Z

177

Technology Transfer Webinar on November 12: High-Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

178

Arid site characterization and technology assessment: Volatile Organic Compounds-Arid Integrated Demonstration  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Volatile Organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) program was initiated in March 1991 to evaluate technologies for all phases of remediation of VOCs in soils and groundwater at DOE arid/semiarid sites. The primary site for field demonstrations under the VOC-Arid ID program is the Hanford Site. The purpose of this report is to describe (1) the bases for technologies currently under evaluation in the VOC-Arid ID program; (2) the types of subsurface contamination at DOE arid/semiarid sites; and (3) the areas of potential common technology interests based on perceived technology needs at other DOE sites. This report was compiled by Pacific Northwest Laboratory in response to DOE`s Office of Technology Development`s mission to carry out an aggressive program to accelerate the development and implementation of new and existing technologies to meet a 30-year goal set by DOE in June 1989 to clean up all of its sites and to bring all sites into compliance with current and future environmental regulations. A key component of this program is the development of technologies that are better, faster, safer, and cheaper than those technologies currently available. Included in this report are an evaluation of technologies currently (fiscal year 1993) being pursued at the Hanford Site under the auspices of the VOC-Arid ID program, an assessment of subsurface contaminants at arid/semiarid sites, a summarization of technologies under consideration at other DOE sites, a discussion of areas of potential common technology interests, and the conclusions. Also included are a summary of the extent of contamination at the DOE arid/semiarid sites under consideration and a bibliography of source documents from which this report was prepared.

Riley, R.G.

1993-06-01T23:59:59.000Z

179

Mixed Waste Focus Area alternative oxidation technologies development and demonstration program  

SciTech Connect (OSTI)

The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology development and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.

Borduin, L.C. [Los Alamos National Lab., NM (United States); Fewell, T.; Gombert, D.; Priebe, S. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1998-07-01T23:59:59.000Z

180

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect (OSTI)

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix C: Hydrogen Quality  

Broader source: Energy.gov [DOE]

Appendix C: Hydrogen Quality section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated February 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

182

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: Mark Stutman, Consortium for Building Energy Innovation The Penn State Consortium for Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small- and medium-sized commercial buildings (SMSCBs).

183

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

184

FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control.

Kriikku, E.M.

1994-08-30T23:59:59.000Z

185

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect (OSTI)

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

186

Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program  

SciTech Connect (OSTI)

Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

2001-07-13T23:59:59.000Z

187

GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory Tennessee GammaCam TM Technology Demonstration at ORNL Buildings 3026C and 3026D Challenge Buildings 3026C and 3026D at the Oak Ridge National Laboratory (ORNL) are in an advanced stage of deterioration. Rainwater damage and physical aging have reduced the structural integrity of these facilities to the point where human entry is restricted. Consequently, most activities within these facilities have ceased, including internal surveillance and maintenance. Characterization of contaminants of concern both inside and near the building is problematic. Technology is needed to remotely detect and quantify radiological contamination in facilities/spaces not fit for human entry due to physical, chemical or radiological

188

The Purpose and Value of Successful Technology Demonstrations Â… The Energy Independence and Security Act of 2007 Demonstrations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Race for Investment - Race for Investment by Steve Pullins, Team Leader, DOE/NETL Modern Grid Strategy It seems to be clear from the investment data that private investment and consumer investment is rapidly taking place in the energy technology space, even if utilities don't invest in this space. Tom Friedman's Energy Technology At GridWeek 2008, Tom Friedman shared from his new book, "Hot, Flat, and Crowded" about the emerging ET revolution, meaning Energy Technology. He related how ET is transformational like IT (information technology) has been over the last 25 years. As I thought about this during his presentation, it seemed to me that there is a connection with the Edge Movement that we are seeing today in the electricity sector. The Edge Movement is the high speed innovation and investment evident at the edge of the

189

OPERATIONAL PERFORMANCES DEMONSTRATION OF POLYMER-CERAMIC EMBEDDED CAPACITORS FOR MMIC APPLICATIONS  

E-Print Network [OSTI]

coefficient and the thermal conductivity between the ceramic dielectric, the terminations, the solderOPERATIONAL PERFORMANCES DEMONSTRATION OF POLYMER- CERAMIC EMBEDDED CAPACITORS FOR MMIC candidates for dielectric materials applied for embedded passives are polymer- ceramic nanocomposites

Boyer, Edmond

190

Microsoft PowerPoint - Progress in Battery Swapping Technology and Demonstration in China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgressinBatterySwapping ProgressinBatterySwapping TechnologyandDemonstrationinChina Jianfeng Hua Email: huajf@tsinghua.edu.cn Tel: 010-62789570 2 Outline Background Battery Swapping Demonstration in China Conclusion 3 HowtorefuelforElectricalVehicle? AC Charging DC Charging Battery Swapping ï‚— Duetothelimiteddrivingrangeofelectricalvehicle, therefuelforalongdistancedrivingisanessential

191

Long-Term Demonstration of Sorbent Enhancement Additive Technology for Mercury Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Term DemonsTraTion of sorbenT Long-Term DemonsTraTion of sorbenT enhancemenT aDDiTive TechnoLogy for mercury conTroL Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. The combustion of subbituminous coals typically results in higher fractions of elemental mercury emissions than the combustion of bituminous coals. This complicates mercury capture efforts, particularly for technologies using powdered activated carbon (PAC) injection, because elemental mercury is not readily captured by PAC injection alone. In short, unmodified PACs are better suited for bituminous coals than for subbituminous coals. Various proprietary sorbent enhancement additives (SEA) have been developed to increase the mercury reactivity of PACs, and perhaps fly

192

Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project  

SciTech Connect (OSTI)

The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ``Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.`` Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well.

Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Lombard, K.H. [Bechtel Savannah River, Inc., Aiken, SC (United States); Enzien, M.V. [Argonne National Lab., IL (United States); Dougherty, J.M. [US Environmental Protection Agency, Irving, TX (United States); Wear, J. [Catawba State Coll., Salisbury, NC (United States)

1994-06-01T23:59:59.000Z

193

GHG Mitigation Technology Performance Evaluations Underway at the GHG Technology Verification Center  

Science Journals Connector (OSTI)

The Greenhouse Gas (GHG) Technology Verification Center is one of 12 ... technology performance data. The Center focuses on GHG mitigation and monitoring technologies and has completed ... natural gas industry, e...

Stephen D. Piccot; David A. Kirchgessner

2000-01-01T23:59:59.000Z

194

The Mobile Test and Demonstration Unit, A Cooperative Project Between EPRI, Utilities and Industry to Demonstrate New Water Treatment Technologies  

E-Print Network [OSTI]

and has demonstrated that membrane processes like MF, UF, NF and RO can successfully be applied to remove BOD and TSS from process streams, often recovering valuable solids, reducing sewer charges and meeting environmental regulations....

Strasser, J.; Mannapperuma, J.

195

Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes  

SciTech Connect (OSTI)

The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

Im, Piljae [ORNL] [ORNL; Hughes, Patrick [ORNL] [ORNL; Liu, Xiaobing [ORNL] [ORNL

2012-01-01T23:59:59.000Z

196

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

197

Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled “Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations.”

198

Performance demonstration program plan for RCRA constituent analysis of solidified wastes  

SciTech Connect (OSTI)

Performance Demonstration Programs (PDPS) are designed to help ensure compliance with the Quality Assurance Objectives (QAOs) for the Waste Isolation Pilot Plant (WIPP). The PDPs are intended for use by the Department of Energy (DOE) Carlsbad Area Office (CAO) to assess and approve the laboratories and other measurement facilities supplying services for the characterization of WIPP TRU waste. The PDPs may also be used by CAO in qualifying laboratories proposing to supply additional analytical services that are required for other than waste characterization, such as WIPP site operations. The purpose of this PDP is to test laboratory performance for the analysis of solidified waste samples for TRU waste characterization. This performance will be demonstrated by the successful analysis of blind audit samples of simulated, solidified TRU waste according to the criteria established in this plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAOs. The concentration of analytes in the PDP samples will address levels of regulatory concern and will encompass the range of concentrations anticipated in actual waste characterization samples. Analyses that are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses and the samples on which they are performed are referred to as WIPP samples for the balance of this document.

NONE

1995-06-01T23:59:59.000Z

199

Waste management technology development and demonstration programs at Brookhaven National Laboratory  

SciTech Connect (OSTI)

Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes have been developed from bench-scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full-scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt % nitrate salt, compared with a maximum of about 20 wt % for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt % incinerator fly ash have been formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt %.

Kalb, P.D.; Colombo, P.

1991-12-31T23:59:59.000Z

200

Waste management technology development and demonstration programs at Brookhaven National Laboratory  

SciTech Connect (OSTI)

Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes have been developed from bench-scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full-scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt % nitrate salt, compared with a maximum of about 20 wt % for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt % incinerator fly ash have been formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt %.

Kalb, P.D.; Colombo, P.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL  

SciTech Connect (OSTI)

Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

2011-05-27T23:59:59.000Z

202

Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration  

SciTech Connect (OSTI)

This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

1990-10-01T23:59:59.000Z

203

The Purpose and Value of Successful Technology Demonstrations Â… The Energy Independence and Security Act of 2007 Demonstrations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Rural America in Rural America by Steve Pullins, Team Leader, DOE/NETL Modern Grid Strategy About two years ago Pat Hoffman and Eric Lightner of DOE, Steve Bossart of DOE/NETL, and I had a discussion about whether the DOE solicitations around integration of distributed systems favor large utility versus small utility participation. It was discussed as a concern because of the risk in developing an energy technology (ET) that favors one group over another. There is a lot of talk and PR on what the "big guys" are doing but what about the value to rural America? Is a Smart Grid only for the big guys? Checking Our Pulse Is rural America (electrification) sufficiently different from urban or suburban America to make a Smart Grid not valuable to them? If there is value, how can it be cost-effectively applied with

204

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network [OSTI]

and P. Price, 2009. “Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

205

EM Performs Tenth Technology Readiness Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Performs Tenth Technology Readiness Assessment Performs Tenth Technology Readiness Assessment EM Performs Tenth Technology Readiness Assessment January 31, 2012 - 12:00pm Addthis Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. WASHINGTON, D.C. - EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006. A TRA is an intensive peer review process through which the maturity of a technology is evaluated. A TRA utilizes the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration

206

EM Performs Tenth Technology Readiness Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EM Performs Tenth Technology Readiness Assessment EM Performs Tenth Technology Readiness Assessment EM Performs Tenth Technology Readiness Assessment January 31, 2012 - 12:00pm Addthis Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. Employees with Savannah River Remediation, the SRS liquid waste contractor, review mock-ups of the SCIX technology at the Savannah River National Laboratory. WASHINGTON, D.C. - EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006. A TRA is an intensive peer review process through which the maturity of a technology is evaluated. A TRA utilizes the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration

207

Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single- blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

Carlsbad Field Office

2006-09-21T23:59:59.000Z

208

Demonstration of Smart Building Controls to Manage Building Peak Loads: Innovative Non-Wires Technologies  

SciTech Connect (OSTI)

As a part of the non-wires solutions effort, BPA in partnership with Pacific Northwest National Laboratory (PNNL) is exploring the use of two distributed energy resources (DER) technologies in the City of Richland. In addition to demonstrating the usefulness of the two DER technologies in providing peak demand relief, evaluation of remote direct load control (DLC) is also one of the primary objectives of this demonstration. The concept of DLC, which is used to change the energy use profile during peak hours of the day, is not new. Many utilities have had success in reducing demand at peak times to avoid building new generation. It is not the need for increased generation that is driving the use of direct load control in the Northwest, but the desire to avoid building additional transmission capacity. The peak times at issue total between 50 and 100 hours a year. A transmission solution to the problem would cost tens of millions of dollars . And since a ?non wires? solution is just as effective and yet costs much less, the capital dollars for construction can be used elsewhere on the grid where building new transmission is the only alternative. If by using DLC, the electricity use can be curtailed, shifted to lower use time periods or supplemented through local generation, the existing system can be made more reliable and cost effective.

Katipamula, Srinivas; Hatley, Darrel D.

2004-12-22T23:59:59.000Z

209

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Ozone Based Laundry Systems  

SciTech Connect (OSTI)

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, Sout Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Sutherland, T. A.; Foley, K. J.

2014-08-14T23:59:59.000Z

210

Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report  

SciTech Connect (OSTI)

The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

NONE

1997-07-01T23:59:59.000Z

211

Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes  

SciTech Connect (OSTI)

In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

Roesener, W.S.; Mason, J.B.; Ryan, K. [THOR Treatment Technologies, LLC, 7800 E Union Ave, Denver, CO 80237 (United States); Bryson, S. [MSE Technologies Applications, Inc., 200 Technology Way, Butte, MT 59702 (United States); Eldredge, H.B. [Eldredge Engineering, P.A., 1090 Blue Ridge Dr., Idaho Falls, ID 83402 (United States)

2006-07-01T23:59:59.000Z

212

Performance and Analysis of Photovoltaic (PV)Technologies  

E-Print Network [OSTI]

Performance and Analysis of Photovoltaic (PV)Technologies at Selected Sites This report presents As part of Cooperative Agreement No. DE-EE0003507 Under Task 3.1: Photovoltaic Systems September 2014`i at Manoa #12;Performance and Analysis of Different Photovoltaic Technologies at Selected Sites Prepared

213

Building Technologies Office: Global Superior Energy Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Superior Energy Performance Partnership Global Superior Energy Performance Partnership Graphic of Global Superior Energy Performance working groups, including energy management led by the United States, power led by Japan, combined heat and power led by Finland, steel led by Japan, cool roofs led by the United states, and cement led by Japan. GSEP, a multi-country effort to create and coordinate nationally accredited energy performance certification programs, comprises a number of working groups. Credit: DOE The U.S. Department of Energy (DOE) supports the Superior Energy Performance (SEP) program, which provides industrial facilities and commercial buildings a framework for achieving continual improvement in energy efficiency while maintaining market competitiveness. SEP aims to provide a transparent, globally accepted system for energy management and continuous energy performance improvement.

214

Building Technologies Office: Advanced Insulation for High Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Insulation for Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project to someone by E-mail Share Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Facebook Tweet about Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Twitter Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Google Bookmark Building Technologies Office: Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Research Project on Delicious Rank Building Technologies Office: Advanced Insulation for High

215

Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies  

SciTech Connect (OSTI)

Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology.

Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

2008-06-01T23:59:59.000Z

216

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms  

Broader source: Energy.gov (indexed) [DOE]

Demonstration Demonstration D&D Toolbox - FIU Tech Demo FIU Technology Demonstration - Selected technology platform(s) was demonstrated at the hot cell mockup facility at the FIU's Applied Research Center tech demo site in Miami, FL. Page 1 of 2 Oak Ridge National Laboratory Tennessee Florida New York D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Challenge Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. Efficient and safe D&D of the facilities will require the use of remotely operated technologies. In addition, the D&D of a hot cell facility requires that each of the hot cells be

217

Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980  

SciTech Connect (OSTI)

The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

none,

1980-03-20T23:59:59.000Z

218

LIMB demonstration project extension  

SciTech Connect (OSTI)

The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

Not Available

1990-09-21T23:59:59.000Z

219

COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH  

SciTech Connect (OSTI)

Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

Roy Scandrol

2003-10-01T23:59:59.000Z

220

COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH  

SciTech Connect (OSTI)

Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

Roy Scandrol

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Technology Planning for Energy Savings Performance Contracts |  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Planning for Energy Savings Performance Advanced Technology Planning for Energy Savings Performance Contracts Advanced Technology Planning for Energy Savings Performance Contracts October 7, 2013 - 1:40pm Addthis Call for Projects FEMP recently issued a notice of intent to release a Funding Opportunity Announcement that will provide grants to develop capital combined heat and power projects. Read the call for projects. Legislation emphasizes the implementation of energy-efficiency and renewable energy technologies in Federal agencies. The Federal Energy Management Program (FEMP) assists agencies in identifying and planning opportunities to deploy advanced technologies using energy savings performance contracts (ESPC). A Federal financing specialist (FFS) will work with a project facilitator and a U.S. Department of Energy (DOE) national laboratory team to identify

222

SPACE-R thermionic space nuclear power system: Design and technology demonstration. Monthly report for 1 August 1994--1 September 1994  

SciTech Connect (OSTI)

The objective of this program is to design, develop, demonstrate, and advance the technology for thermionic space nuclear power system (TI-SNPS) to meet key functional requirements with reliable 5{approximately}40 kWe output and 18-month near-term/10-year long-term goals. A 40 kWe TI-SNPS point design will be prepared, and key technologies and critical components supporting that design will be validated. This program will produce an assessed design of a 40 kWe-EOL space nuclear power system. Phase 1 will provide for the performance of parametric trade studies and demonstration of key technologies, resulting in a preferred conceptual design for the TI-SNPS. The focus of the tasks is technology validation drive by the system design.

Not Available

1994-10-01T23:59:59.000Z

223

Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program. Revision 1  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) consists of a series of tests conducted on a regular frequency to evaluate the capability for nondestructive assay of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed with TRU waste characterization systems. Measurement facility performance will be demonstrated by the successful analysis of blind audit samples according to the criteria set by this Program Plan. Intercomparison between measurement groups of the DOE complex will be achieved by comparing the results of measurements on similar or identical blind samples reported by the different measurement facilities. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess the performance of measurement groups regarding compliance with established Quality Assurance Objectives (QAOs). As defined for this program, a PDP sample consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components, once manufactured, will be secured and stored at each participating measurement facility designated and authorized by Carlsbad Area Office (CAO) under secure conditions to protect them from loss, tampering, or accidental damage.

None

1997-05-01T23:59:59.000Z

224

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

DOE Carlsbad Field Office

2001-04-06T23:59:59.000Z

225

EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)  

Broader source: Energy.gov [DOE]

The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

226

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

227

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

228

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

229

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

230

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

231

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

232

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

233

Solid SCR Demonstration Truck Application | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SCR Demonstration Truck Application Solid SCR Demonstration Truck Application Demonstrate the feasibility and performance of the FEV Solid SCR (Ammonium Carbamate) Technology...

234

NREL: Energy Analysis - Energy Technology Cost and Performance Data for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bookmark and Share Bookmark and Share Energy Technology Cost and Performance Data for Distributed Generation Transparent Cost Database Button Recent cost estimates for distributed generation (DG) renewable energy technologies are available across capital costs, operations and maintenance (O&M) costs, and levelized cost of energy (LCOE). Use the tabs below to navigate the charts. The LCOE tab provides a simple calculator for both utility-scale and DG technologies that compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update)

235

Energy Technology Cost and Performance Data | OpenEI  

Open Energy Info (EERE)

Technology Cost and Performance Data Technology Cost and Performance Data Dataset Summary Description This data indicates the range of recent cost estimates for renewable energy and other technologies. The estimates are shown in dollars per installed kilowatts of generating capacity. This data provides a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. All costs are in 2006 dollars per installed kilowatts in the United States. Source NREL Date Released August 06th, 2009 (5 years ago) Date Updated August 06th, 2009 (5 years ago) Keywords analysis Department of Energy DOE National Renewable Energy Laboratory Data application/vnd.ms-excel icon Energy Technology Cost and Performance Data (xls, 107.5 KiB) text/csv icon Capacity Factor (csv, 1.8 KiB)

236

The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system  

SciTech Connect (OSTI)

In 1989 the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands, in an environment where increased competition, a wider range of services and vendors, and much narrower operating margins all contribute to increased system efficiencies and capacity. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment--the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI). The WAMS project also brings added focus and resources to the evolving Western System Dynamic Information Network, or WesDINet. This is a collective response of the Western Systems Coordinating Council (WSCC) member utilities to their shared needs for direct information about power system characteristics, model fidelity, and operational performance. The WAMS project is a key source of the technology and backbone communications needed to make WesDINet a well integrated, cost effective enterprise network demonstrating the role of dynamic information technology in the emerging utility environment.

Mittelstadt, W.A. [USDOE Bonneville Power Administration, Portland, OR (United States); Krause, P.E.; Wilson, R.E. [USDOE Western Area Power Administration, Golden, CO (United States); Overholt, P.N. [USDOE, Washington, DC (United States); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Hauer, J.F. [Pacific Northwest National Lab., Richland, WA (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

237

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

and Renewable Energy, Office of Building Technology,and Renewable Energy, Office of Building Technology,and renewable energy improvements to the building. One of

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

238

Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

Carlsbad Field Office

2001-01-31T23:59:59.000Z

239

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

240

Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER)  

Broader source: Energy.gov [DOE]

A new DOE Subsurface Crosscut, known as SubTER, coalesces energy technologies that use the subsurface for energy production, storage, and waste management.

242

Report to Congress on the Use of the Waste Isolation Pilot Plant to Develop and Demonstrate Transparency Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the Use of the Waste Isolation Pilot Plant to Develop and Demonstrate Transparency Technologies Introduction This report describes the Department of Energy's plan for evaluating the use of the Waste Isolation Pilot Plant (WIPP) repository system to develop transparency technologies. This report fulfills the requirement of Senate Report 106-50 on the National Defense Authorization Act for Fiscal Year 2000 for the Department of Energy (DOE) to develop a plan to establish a nuclear waste disposal demonstration test bed facility. Congressional Request In Report 106-50 the Senate Armed Services Committee directed DOE to develop a plan to establish a demonstration and training program using the WIPP repository system as a test bed facility to develop transparent monitoring technologies for waste storage

243

Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint  

SciTech Connect (OSTI)

Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

McConnell, R.; Symko-Davies, M.

2006-05-01T23:59:59.000Z

244

Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application  

SciTech Connect (OSTI)

The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA system were delivered to VPTNA and then assembly of APA engine was completed by June 2007. Functional testing of APA engine was performed and AC and AM modes testing were completed by October 2007. After completing testing, data analysis and post processing were performed. Especially, the models were instrumental in identifying some of the key issues with the experimental HVA system. Based upon the available engine test results during AC and AM modes, the projected fuel economy improvement over the NY composite cycle is 14.7%. This is close to but slightly lower than the originally estimated 18% from ADVISOR simulation. The APA project group demonstrated the concept of APA technology by using simulation and experimental testing. However, there are still exists of technical challenges to meet the original expectation of APA technology. The enabling technology of this concept, i.e. a fully flexible valve actuation system that can handle high back pressure from the exhaust manifold is identified as one of the major technical challenges for realizing the APA concept.

Hyungsuk Kang; Chun Tai

2010-05-01T23:59:59.000Z

245

Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool  

SciTech Connect (OSTI)

Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of excavation, 50% of which was construction excavation. There are six pipes in all excavations (three par

Hughes, Patrick [ORNL; Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

246

New Technology Demonstration of Microturbine with Heat Recovery at Fort Drum, New York  

SciTech Connect (OSTI)

This report replaces PNNL-14417 and documents a project to demonstrate and evaluate a combined heat and power-configured microturbine system.

Friedrich, Michele; Armstrong, Peter R.; Smith, David L.

2004-04-30T23:59:59.000Z

247

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Broader source: Energy.gov [DOE]

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

248

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network [OSTI]

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer...

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

249

DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants  

Broader source: Energy.gov [DOE]

Affirms Commitment to Clean Coal Technology Investments; Requests $648 Million for Coal Research, Development and Deployment for FY09 Budget - Largest Coal Budget Request in more than 25 years...

250

Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration  

Broader source: Energy.gov [DOE]

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

251

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix B: Input/Output Matrix  

Broader source: Energy.gov [DOE]

Appendix B: Input/Output Matrix section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

252

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 1.0 Introduction  

Broader source: Energy.gov [DOE]

Introduction section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated March 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

253

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.9 Market Transformation  

Broader source: Energy.gov [DOE]

Market Transformation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

254

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 5.0 Systems Integration  

Broader source: Energy.gov [DOE]

Systems Integration section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

255

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.1 Hydrogen Production  

Broader source: Energy.gov [DOE]

Hydrogen Production technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

256

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.5 Manufacturing R&D  

Broader source: Energy.gov [DOE]

Manufacturing R&D technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

257

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 6.0 Program Management  

Broader source: Energy.gov [DOE]

Program Management section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

258

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 4.0 Systems Analysis  

Broader source: Energy.gov [DOE]

Systems Analysis section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

259

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.8 Education and Outreach  

Broader source: Energy.gov [DOE]

Education and Outreach technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

260

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.0 Technical Plan  

Broader source: Energy.gov [DOE]

Technical Plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated May 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 2.0 Program Benefits  

Broader source: Energy.gov [DOE]

Program Benefits section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

262

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.2 Hydrogen Delivery  

Broader source: Energy.gov [DOE]

Hydrogen Delivery technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

263

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.3 Hydrogen Storage  

Broader source: Energy.gov [DOE]

Hydrogen Storage technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

264

Enabling Detailed Energy Analyses via the Technology Performance Exchange: Preprint  

SciTech Connect (OSTI)

One of the key tenets to increasing adoption of energy efficiency solutions in the built environment is improving confidence in energy performance. Current industry practices make extensive use of predictive modeling, often via the use of sophisticated hourly or sub-hourly energy simulation programs, to account for site-specific parameters (e.g., climate zone, hours of operation, and space type) and arrive at a performance estimate. While such methods are highly precise, they invariably provide less than ideal accuracy due to a lack of high-quality, foundational energy performance input data. The Technology Performance Exchange was constructed to allow the transparent sharing of foundational, product-specific energy performance data, and leverages significant, external engineering efforts and a modular architecture to efficiently identify and codify the minimum information necessary to accurately predict product energy performance. This strongly-typed database resource represents a novel solution to a difficult and established problem. One of the most exciting benefits is the way in which the Technology Performance Exchange's application programming interface has been leveraged to integrate contributed foundational data into the Building Component Library. Via a series of scripts, data is automatically translated and parsed into the Building Component Library in a format that is immediately usable to the energy modeling community. This paper (1) presents a high-level overview of the project drivers and the structure of the Technology Performance Exchange; (2) offers a detailed examination of how technologies are incorporated and translated into powerful energy modeling code snippets; and (3) examines several benefits of this robust workflow.

Studer, D.; Fleming, K.; Lee, E.; Livingood, W.

2014-08-01T23:59:59.000Z

265

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM BIM and Demonstrating Code Compliance TOPIC BRIEF 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIM and Demonstrating Code Compliance TOPIC BRIEF 1 BIM and Demonstrating Code Compliance TOPIC BRIEF 1 Building Information Modeling and Demonstrating Code Compliance Demonstrating or verifying compliance with codes, standards, or other criteria governing building design is achieved through a set of specific tasks. These include producing construction documents; providing specifications for the products, materials, equipment, and systems to be used; and describing how they come together to create the envisioned building. W hen building construction documents and specifications are produced, they should include all information necessary to prescribe how the building is to be constructed. Plans and specifications should be readily usable to verify compliance with prescriptive requirements of codes, standards, or other desired

266

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety, Codes and Standards Safety, Codes and Standards Multi-Year Research, Development and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use with market deployment and commercialization underway. The Safety, Codes and Standards sub-program (SCS) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing information resources for their safe use. SCS relies on extensive input from automobile

267

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 4.0 Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis Systems Analysis Multi-Year Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the FCT Program's decision- making process by evaluating technologies and pathways and determining technology gaps, risks, and benefits. The Systems Analysis sub-program works at all levels of the program, including technology analysis for specific sub-programs, policy and infrastructure analysis, and high-level implementation and

268

EECBG Success Story: Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits  

Broader source: Energy.gov [DOE]

As one of the windiest states in the country, Kansas is a great place to harness wind and solar power. Through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the Resourceful Kansas team is teaching the rest of the state about all the technologies that are out there. Learn more.

269

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost and Performance Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia NREL Technical Monitor: Jordan Macknick

270

Building Technologies Office: High Performance Windows Volume Purchase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Performance Windows Volume Purchase High Performance Windows Volume Purchase DOE's Building Technologies Office (BTO) is coordinating a volume purchase of high performance windows, and low-e storm windows, to expand the market of these high efficiency products. Price is the principal barrier to more widespread market commercialization. The aim of this volume purchase initiative is to work with industry and potential buyers to make highly insulated windows more affordable. Announcement EPA Most Efficient Program for window technology to launched in January 2013. Program Highlights Features Image of person signing document. Volume Purchase RFP Arrow Image of a question mark. Frequently Asked Questions Arrow Image of low-e storm window with two orange-yellow arrows hitting the window and reflecting back inside. Building Envelope and Windows R&D Program Blog Arrow

271

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect (OSTI)

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

272

An Update of the U.S. Clean Coal Technology Demonstration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Fossil Energy, U.S. Department ol Energy Office of Fossil Energy, U.S. Department ol Energy Notable First Annual Clean Coal Conference -Technology Developers Linked with Wide Range of Users- Clean Coal Briefs MuchoftheDepartmentofEnergy's tftmtion this summer in the Clean 7oal Technology Program focused on L series of public "scoping" meetings hat were held across the nation. These nettings are one of the first steps aded for the Department to com- ~IeteanEnvironmentalImpactState- nent. a comprehensive analysis re- luired by the National Environmen- ,a1 Policy Act (NEPA) for certain mjects. While a requirement of law, hex meetings--as well as the entire 'JEPA process-provide excellent opportunities for the Department and he industrial project sponsors to work with local communities, both educat-

273

An Update of the U.S. Clean Coal Technology Demonstration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ofiice of Fossil Energy, U.S. Department of Energy Ofiice of Fossil Energy, U.S. Department of Energy Clean Coal Briefs Progress continued in the program this quarteras Southern Company Servic- es' SCR test project became the 23rd government/industry cooperative ven- ture to move into operations (see story p, 7). Look for results and other data in future issues of Clean Coul Today. Tthe Second Annual Clean Coal Technology Conference was held in Atlanta,GA,fromSeptember7-9,1993. This year's conference attracted a large number of overseas visitors who are interested in learning more about the clean coal technologies being demon- strated in the United States. Special thanks to the Southern States Energy Board for its help and hospitality this year, and to Georgia Power Company for its kind hospitality during the tour of

274

GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D  

Broader source: Energy.gov [DOE]

The GammaCam system is an effective tool for remotely identifying high gamma radiation in radioactive environments.  Its versatility allows the user to perform preliminary characterization of an...

275

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas  

Broader source: Energy.gov [DOE]

WASHINGTON D.C. — Today, the Department of Energy and Skyonic Corporation marked the opening of a major project demonstration for converting carbon dioxide (CO2) into commercial products. This new plant will use a first-of-its-kind process to capture 75,000 tons of CO2 from a San Antonio, Texas, cement plant and convert the greenhouse gas into other products, including sodium carbonate and sodium bicarbonate, hydrochloric acid and bleach.

276

Technology Cost and Performance Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Technology Cost and Performance Toolkit (Redirected from Gateway:International/Technology Performance and Costs) Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and

277

Technology Cost and Performance Toolkit | Open Energy Information  

Open Energy Info (EERE)

Technology Cost and Performance Toolkit Technology Cost and Performance Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country 2.3. Assess public and private sector capacity to support initiatives 2.4. Assess and improve the national GHG inventory and other economic and resource data as needed for LEDS development

278

Benchmarking and performance improvement at Rocky Flats Technology Site  

SciTech Connect (OSTI)

The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

Elliott, C. [Kaiser-Hill Co., (United States); Doyle, G. [EG and G Rocky Flats, Inc., Golden, CO (United States); Featherman, W.L. [Project Performance Corp. (United States)

1997-03-01T23:59:59.000Z

279

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E - Acronyms E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test ASTM American Society for Testing and Materials ATP Adenosine-5'-Triphosphate Bchl Bacteriochlorophyll BES (DOE Office of) Basic Energy Sciences BEV Battery Electric Vehicle BNL (DOE) Brookhaven National Laboratory BOP Balance of Plant

280

Risk and Performance Technologies: Identifying the Keys to Successful Implementation  

SciTech Connect (OSTI)

The nuclear power industry has been utilizing risk and performance based technologies for over thirty years. Applications of these technologies have included risk assessment (e.g. Individual Plant Examinations), burden reduction (e.g. Risk-Informed Inservice Inspection, RI-ISI) and risk management (Maintenance Rule, 10CFR50.65). Over the last five to ten years the number of risk-informed (RI) burden reduction initiatives has increased. Unfortunately, the efficiencies of some of these applications have been questionable. This paper investigates those attributes necessary to support successful, cost-effective RI-applications. The premise to this paper is that by understanding the key attributes that support one successful application, insights can be gleaned that will streamline/coordinate future RI-applications. This paper is an extension to a paper presented at the Pressure Vessel and Piping (PVP-2001) Conference. In that paper, a number issues and opportunities were identified that needed to be assessed in order to support future (and efficient) RI-applications. It was noted in the paper that a proper understanding and resolution of these issues will facilitate implementation of risk and performance technology in the operation, maintenance and design disciplines. In addition, it will provide the foundation necessary to support regulatory review and approval. (authors)

McClain, Lynn [Niagara Mohawk (United States); Smith, Art [Entergy Operations (United States); O'Regan, Patrick [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States)

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology  

SciTech Connect (OSTI)

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

None

2005-05-01T23:59:59.000Z

282

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

NONE

1997-12-31T23:59:59.000Z

283

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

NONE

1997-12-31T23:59:59.000Z

284

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

285

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

286

High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance  

SciTech Connect (OSTI)

Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode of operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.

J. E. O'Brien; X. Zhang; R. C. O'Brien; G. Tao

2011-11-01T23:59:59.000Z

287

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel will require the use of diverse domestic energy sources and advanced fuels and technologies in all sectors of the economy. Achieving these goals requires a robust, comprehensive research and development (R&D) portfolio that balances short-term

288

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants  

SciTech Connect (OSTI)

The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was refocused to address pre-mixed combustion phenomenon for IGCC applications. The work effort on this task was shifted to another joint GE Energy/DOE-NETL program investigation, High Hydrogen Pre-mixer Designs, as of April 1, 2004. Task 4--Information Technology (IT) Integration: The fourth task was originally to demonstrate Information Technology (IT) tools for advanced technology coal/IGCC powerplant condition assessment and condition based maintenance. The task focused on development of GateCycle. software to model complete-plant IGCC systems, and the Universal On-Site Monitor (UOSM) to collect and integrate data from multiple condition monitoring applications at a power plant. The work on this task was stopped as of April 1, 2004.

Kenneth A. Yackly

2005-12-01T23:59:59.000Z

289

Survey of LWR environmental control technology performance and cost  

SciTech Connect (OSTI)

This study attempts to establish a ranking for species that are routinely released to the environment for a projected nuclear power growth scenario. Unlike comparisons made to existing standards, which are subject to frequent revision, the ranking of releases can be used to form a more logical basis for identifying the areas where further development of control technology could be required. This report describes projections of releases for several fuel cycle scenarios, identifies areas where alternative control technologies may be implemented, and discusses the available alternative control technologies. The release factors were used in a computer code system called ENFORM, which calculates the annual release of any species from any part of the LWR nuclear fuel cycle given a projection of installed nuclear generation capacity. This survey of fuel cycle releases was performed for three reprocessing scenarios (stowaway, reprocessing without recycle of Pu and reprocessing with full recycle of U and Pu) for a 100-year period beginning in 1977. The radioactivity releases were ranked on the basis of a relative ranking factor. The relative ranking factor is based on the 100-year summation of the 50-year population dose commitment from an annual release of radioactive effluents. The nonradioactive releases were ranked on the basis of dilution factor. The twenty highest ranking radioactive releases were identified and each of these was analyzed in terms of the basis for calculating the release and a description of the currently employed control method. Alternative control technology is then discussed, along with the available capital and operating cost figures for alternative control methods.

Heeb, C.M.; Aaberg, R.L.; Cole, B.M.; Engel, R.L.; Kennedy, W.E. Jr.; Lewallen, M.A.

1980-03-01T23:59:59.000Z

290

Environmental management technology demonstration and commercialization. Semi-annual progress report, April 1, 1995--October 31, 1995  

SciTech Connect (OSTI)

Several field-portable (e.g., gas chromatrography (GC), gas chromatography-mass spectrometry (GC-MS)) instruments are available for the measurement of organic pollutants. However, solid samples such as soils, sludges, and sediments must first be extracted before analysis can be performed. Conventional extraction methods based on liquid solvent (e.g., Soxhlet extraction) are not practical in the field because of the large volumes fo solvents required as well as clumsy apparatus and glassware. However, supercritical fluid extraction (SFE) has been demonstrated in several studies by the Energy & Environmental Research Center (EERS) to extract a broad range of organic pollutants from soils and sediments successfully. Of the approximately 100 major organic pollutants identified as problems for the US Department of Energy (DOE) sites, our SFE laboratory has demonstrated efficient SFE recoveries for about half, and published literature has addressed an additional 40%. SFE in the off-line mode (i.e., collection of extracted organics in a small voluem of liquid solvent) has also been demonstrated to be easily performed in the field with only generator electrical power for support. Recent advances in flow restrictor design have virtually eliminated the mechanical problems previously associated with the performance of SFE in the field.

NONE

1995-11-01T23:59:59.000Z

291

Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites  

SciTech Connect (OSTI)

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

Not Available

1993-11-01T23:59:59.000Z

292

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

293

IMPROVING THERMOELECTRIC TECHNOLOGY PERFORMANCE AND DURABILITY WITH AEROGEL  

E-Print Network [OSTI]

aerogel as an effective sublimation barrier for a wide range of thermoelectric technologies based on Si

Jeff Sakamoto; Thierry Caillat; Jean-pierre Fleurial; Steve Jones; Jong-ah Paik; Winny Dong

294

The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

Matthews, Mark L.; Eriksson, Leif G.

2003-02-25T23:59:59.000Z

295

Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

NONE

1994-12-31T23:59:59.000Z

296

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO[sub x]) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO[sub x]) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO[sub x] to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO[sub 2] and SO[sub 3]. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

297

INSTRUMENTATION DEVELOPMENT, MEASUREMENT AND PERFORMANCE EVALUATION OF ENVIRONMENTAL TECHNOLOGIES  

SciTech Connect (OSTI)

Many DOE applications would significantly benefit from the availability of robust and convenient instrumentation for trace-level actinide monitoring and analysis. This project focuses on developing new instrumentation for on-line or at-line monitoring for actinides with isotopic analysis capability. In addition, analytical protocols for a novel concentration method for actinides are being investigated. These efforts focus on demonstrating these techniques using uranium. In addition to its value in the analytical laboratory, the combination of a simple concentration technique with a robust isotopic monitor could provide a powerful method for addressing a number of outstanding DOE needs. Potential applications include monitors for waste water and sewage treatment systems influent and effluent, and the ability to determine the isotopic content of transuranic species in low-activity waste fractions for waste classification and product acceptance. For example, the need for improved monitoring for uranium, plutonium, and americium in treatment plant influent is clearly identified in need RF-ER11. With some additional sample pretreatment, such technology could also impact materials characterization needs by providing on-site isotopic analyses in a system that is smaller and significantly less complex than inductively coupled plasma mass spectrometry (ICP-MS).

Unknown

2001-12-31T23:59:59.000Z

298

EC MoDeRn Project: In-situ Demonstration of Innovative Monitoring Technologies for Geological Disposal - 12053  

SciTech Connect (OSTI)

Monitoring to provide information on the evolution of geological disposal presents several challenges. The 4-year, euros M 5, EC MoDeRn Project (http://www.modern-fp7.eu/), which commenced in 2009, addresses monitoring processes, state-of-the-art technology and innovative research and development of monitoring techniques. This paper discusses some of the key drivers for the development of innovative monitoring techniques and provides outlines of the demonstration programmes being conducted within MoDeRn. The aim is to develop these innovative monitoring techniques and to demonstrate them under realistic conditions present in underground laboratories. These demonstration projects, applying a range of different monitoring techniques, are being carried out at underground research facilities in different geological environments at HADES URL in Belgium (plastic clay), Bure in France (indurated clay) and at Grimsel Test Site (granite) in Switzerland. These are either built upon existing infrastructure (EC ESDRED Low pH shotcrete and TEM experiments at Grimsel; and PRACLAY experiment and underground galleries in HADES) or will be attached to infrastructure that is being developed and financed by resources outside of this project (mock-up disposal cell in Bure). At Grimsel Test Site, cross-hole and hole-to-tunnel seismic methods are being employed as a means to monitor induced changes in an artificially saturated bentonite wall confined behind a shotcrete plug. Recognising the limitations for travel-time tomography for monitoring a disposal cell, full waveform inversion techniques are being employed to enhance the capacity to monitor remote from the excavation. At the same Grimsel location, an investigation will be conducted of the potential for using a high frequency wireless (HFW) sensor network embedded within the barrier system; this will include the possibility of providing energy remotely to isolated sensors. At the HADES URL, the monitoring programme will utilise the PRACLAY gallery equipped to simulate a disposal gallery for heat-generating high-level waste evaluating fibre-optic based sensing techniques, including distributed sensing for thermal distribution and long-term reliability in harsh conditions. It also includes the potential to improve the treatment of signals from micro-seismic monitoring to enable enhanced understanding of the evolution around the gallery following its excavation due to ventilation, saturation and heating, and to image a water-bearing concretion layer. HADES URL will also be used to test wireless techniques to transmit monitoring data from the underground to the surface. The main focus of this contribution is to evaluate magneto-inductive data transmission; and to optimise energy usage. At the Bure underground facility in France, monitoring systems have been developed and will be embedded into the steel liner for the mock-up high-level waste disposal tunnel. The aim of this programme is to establish the capacity to conduct integrated monitoring activities inside the disposal cell, on the cell liner and in the near-field and to assess the capability of the monitoring to withstand construction and liner emplacement procedures. These projects, which are supported by focused development and testing of the monitoring systems, will allow the testing of both the effectiveness of these techniques applied to disposal situations and to understand the limits of these monitoring technologies. This approach should also enhance the confidence of key stakeholders in the ability to understand/confirm the changes occurring within a disposal cell. In addition, remote or 'non-intrusive' monitoring technologies are evaluated to provide a means of enhancing understanding of what is occurring in an isolated disposal cell. The projects also test solutions for embedded monitoring systems in challenging (risk of damage) situations. The outputs from this work will lead to improved understanding of these state-of-the-art techniques and allow focused development of those techniques beneficial to future monitoring progr

Breen, B.J. [NDA, Herdus House, Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3HU (United Kingdom); Garcia-Sineriz, J.L. [AITEMIN, c/Margarita Salas 14-Parque Leganes Tecnologico-Leganes, ES-28918, Madrid (Spain); Maurer, H. [ETH Zurich, ETH Honggerberg, CH-8093, Zurich (Switzerland); Mayer, S. [ANDRA, 1-7 rue Jean-Monnet, F-92298 Chatenay-Malabry cedex (France); Schroeder, T.J. [NRG, P.O. Box 25, NL-1755 ZG Petten (Netherlands); Verstricht, J. [EURIDICE EIG, c/o SCK.CEN, Boeretang 200, BE-2400 Mol (Belgium)

2012-07-01T23:59:59.000Z

299

DOE/EA-1449; Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash, King George County, Virginia (August 2002)  

Broader source: Energy.gov (indexed) [DOE]

9 9 ENVIRONMENTAL ASSESSMENT Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash, King George County, Virginia United States Department of Energy National Energy Technology Laboratory August 2002 Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray-dryer Ash, King George County, Virginia ENVIRONMENTAL ASSESSMENT 2 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed action is for the U.S. Department of Energy (DOE) to provide cost- shared financial support to Universal Aggregates, LLC, for the design, construction, and operation of a lightweight aggregate manufacturing plant at the Mirant-Birchwood Power Plant Facility (Mirant-Birchwood Facility) in King George County, Virginia.

300

Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cummins SuperTruck Program- Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

302

Cummins SuperTruck Program- Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

303

Cummins SuperTruck Program- Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

304

Current status of MHI CO2 capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application  

Science Journals Connector (OSTI)

(1) It is becoming increasingly evident that the prolonged utilization of fossil fuels for primary energy production, especially coal which is relatively cheap and abundant, is inevitable and that Carbon Capture and Storage (CCS) technology can significantly reduce CO2 emissions from this sector thus allowing the continued environmentally sustainable use of this important energy commodity on a global basis. (2) MHI has co-developed the Kansai Mitsubishi Carbon Dioxide Recovery Process (KM-CDR Process™) and KS-1™ absorbent, which has been deployed in seven CO2 capture plants, now under commercial operation operating at a CO2 capture capacity of 450 metric tons per day (tpd). In addition, a further two commercial plants are now under construction all of which capture CO2 from natural gas fired flue gas boilers and steam reformers. Accordingly this technology is now available for commercial scale CO2 capture for gas boiler and gas turbine application. (3) However before offering commercial CO2 capture plants for coal fired flue gas application, it is necessary to verify the influence of, and develop countermeasures for, related impurities contained in coal fired flue gas. This includes the influence on both the absorbent and the entire system of the CO2 capture plant to achieve high operational reliability and minimize maintenance requirements. (4) Preventing the accumulation of impurities, especially the build up of dust, is very important when treating coal fired flue gas and MHI has undertaken significant work to understand the impact of impurities in order to achieve reliable and stable operating conditions and to efficiently optimize integration between the CO2 capture plant, the coal fired power plant and the flue gas clean up equipment. (5) To achieve this purpose, MHI constructed a 10 tpd CO2 capture demonstration plant at the Matsushima 1000 MW Power Station and confirmed successful, long term demonstration following ?5000 hours of operation in 2006–07 with 50% financial support by RITE, as a joint program to promote technological development with the private sector, and cooperation from J-POWER. (6) Following successful demonstration testing at Matsushima, additional testing was undertaken in 2008 to examine the impact of entrainment of higher levels of flue gas impurities (primarily \\{SOx\\} and dust by bypassing the existing FGD) and to determine which components of the CO2 recovery process are responsible for the removal of these impurities. Following an additional 1000 demonstration hours, results indicated stable operational performance in relation to the following impurities; (1) SO2: Even at higher SO2 concentrations were almost completely removed from the flue gas before entering the CO2 absorber. (2) Dust: The accumulation of dust in the absorbent was higher, leading to an advanced understanding of the behavior of dust in the CO2 capture plant and the dust removal efficiency of each component within the CO2 recovery system. The data obtained is useful for the design of large-scale units and confirms the operating robustness of the CO2 capture plant accounting for wide fluctuations in impurity concentrations. (7) This important coal fired flue gas testing showed categorically that minimizing the accumulation of large concentrations of impurities, and to suppress dust concentrations below a prescribed level, is important to achieve long-term stable operation and to minimize maintenance work for the CO2 capture plant. To comply with the above requirement, various countermeasures have been developed which include the optimization of the impurity removal technology, flue gas pre treatment and improved optimization with the flue gas desulfurization facility. (8) In case of a commercial scale CO2 capture plant applied for coal fired flue gas, its respective size will be several thousand tpd which represents a considerable scale-up from the 10 tpd demonstration plant. In order to ensure the operational reliability and to accurately confirm the influence and the behavior of the impurities in coal fired fl

Takahiko Endo; Yoshinori Kajiya; Hiromitsu Nagayasu; Masaki Iijima; Tsuyoshi Ohishi; Hiroshi Tanaka; Ronald Mitchell

2011-01-01T23:59:59.000Z

305

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

306

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

NONE

1992-12-31T23:59:59.000Z

307

Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

308

Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Broader source: Energy.gov [DOE]

Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

309

Revisit of Energy Use and Technologies of High Performance Buildings  

E-Print Network [OSTI]

Energy performance of LEED for new construction buildings:New Buildings Institute.New Buildings Institute. 2013. Buildings database, http://

Li Ph.D., Cheng

2014-01-01T23:59:59.000Z

310

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Fourth quarterly technical progress report, [October--December, 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a U. S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NOx control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NOx concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. During this quarter, tests of the LNCFS Level III system were conducted to determine the effect that fuel fineness has on NOx emissions and unburned carbon levels. Results showed that changing the fineness of the fuel has almost no effect on NOx emissions; however, unburned carbon levels can be reduced significantly by increasing fuel fineness.

Not Available

1992-12-31T23:59:59.000Z

311

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

312

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

313

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-05-18T23:59:59.000Z

314

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies  

E-Print Network [OSTI]

Power and Performance of Native and Java Benchmarks on 130nm to 32nm Process Technologies Hadi with chip power reduc- tions. This paper examines how well process technology and mi- croarchitecture delivered on this assumption. This paper evalu- ates power and performance of native and Java workloads

Paris-Sud XI, Université de

315

Competitive Performance Assessment of Dynamic Vehicle Routing Technologies  

E-Print Network [OSTI]

the load. On the demand side, the motivation for this work is two-fold. The growing demand for customer-responsive@wam.umd.edu and Patrick Jaillet Massachusetts Institute of Technology Department of Civil & Environmental Engineering. In this environment, demands arrive randomly over time and are described by pick up, delivery locations and hard time

316

Photovoltaics for Bulk Power Applications: Cost/Performance Targets and Technology Prospects  

Science Journals Connector (OSTI)

Photovoltaic (PV) power technology has shown steady progress over the past ten years toward its ultimate use in bulk — i.e., energy-significant — electric power applications, including demonstration of highly ...

Edgar A. DeMeo

1991-01-01T23:59:59.000Z

317

Fuels Performance Group: Center for Transportation Technologies and Systems  

SciTech Connect (OSTI)

Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

Not Available

2008-08-01T23:59:59.000Z

318

Technology Performance Exchange - 2013 BTO Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building Energy Modeling Library Whole Building Performance-Based Procurement Training Small- and Medium-Size Building Automation and Control System Needs: Scoping Study...

319

Building Technologies Office: Home Performance with ENERGY STAR®  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Performance with ENERGY STAR® Performance with ENERGY STAR® Homeowners across the United States can find trusted contractors who follow a comprehensive approach, recommended by ENERGY STAR®, to save money on energy bills while improving home comfort. The Home Performance with ENERGY STAR (HPwES) program provides homeowners with resources to identify trusted contractors that can help them understand their home's energy use, as well as identify home improvements that increase energy performance and improve comfort. Participating contractors can recommend and perform energy improvements, such as air sealing, insulation that can fix drafty and uncomfortable rooms, and install high efficiency heating and cooling equipment. These improvements can lower utility bills. Contractors that participate in HPwES are qualified by local sponsors such as utilities, state energy offices, and other organizations to ensure that they can offer high-quality, comprehensive energy assessments (also known as "energy audits") using sophisticated equipment to diagnose a home's energy, health, and safety issues.

320

Minimizing the Cost of Innovative Nuclear Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor Park  

E-Print Network [OSTI]

Presented is a methodology to analyze the expected Levelised Cost Of Electricity (LCOE) in the face of technology uncertainty for Accelerator-Driven Subcritical Reactors (ADSRs). It shows that flexibility in the design and deployment strategy...

Cardin, Michel-Alexandre; Steer, Steven J.; Nuttall, William J.; Parks, Geoffrey T.; Gonçalves, Leonardo V.N.; de Neufville, Richard

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vehicle Technologies Office Merit Review 2014: SCAQMD: Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

322

The Solar Power Tower Jülich — A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbözl; G. Koll…

2009-01-01T23:59:59.000Z

323

EERE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FOA  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) posted a Notice of Intent (NOI), on behalf of the Fuel Cell Technologies Office (FCTO), for a Funding Opportunity Announcement (FOA)...

324

LIMB demonstration project extension  

SciTech Connect (OSTI)

The main objectives of this project are: (1) To demonstrate the general applicability of Limestone Injection Multistage Burner (LIMB) technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater Plant. (2) To demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptance operability is maintained. During the past quarter, activities for phase I, design and permitting, and phase II, construction, shakedown and start-up were completed for phase III, operation, data collection, reporting and disposition, activities continued with consol completing the revisions to the Coolside Topical report, the completion of LIMB Extension testing, and the start of demobilization and restoration.

Not Available

1991-12-16T23:59:59.000Z

325

Annual measured performance of building-integrated solar energy systems in demonstration low-energy solar house  

Science Journals Connector (OSTI)

This paper presents the details of the output and efficiency of the annual performance of building-integrated solar energy systems for a solar water heating system and solar photovoltaic (PV) modules of a demonstration near-zero-energy solar house that was constructed on the campus of the Korea Institute of Energy Research. The thermal systems installed in the house were a solar water heating system with building-integrated solar collectors for water heating and for part of the space heating and a ground-coupled heat pump for space cooling and part of the space heating. Solar PV modules were installed on the roof of the house. The performance of these systems was monitored for more than 1 yr. The annual efficiencies of the building's integrated solar collectors and solar PV were 22.8% and 10.9% respectively. The total annual solar fraction of the solar heating system was 69.7% with an annual solar heat production of 248?kW h/m2. This paper also focuses on the efficiency of the house's solar storage based upon intentionally varied drainage of hot water from the storage tank. It was found that the thermal loss from the solar storage tank has a strong functional relationship with the thermal demand of the solar storage tank per unit volume. For example when the hot water consumption was reduced by half during September the thermal loss increased to more than 70% which would otherwise have been around 30%.

2014-01-01T23:59:59.000Z

326

Proposal of an environmental performance index to assess solid waste treatment technologies  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Proposal of a new concept in waste management: Cleaner Treatment. Black-Right-Pointing-Pointer Development of an index to assess quantitatively waste treatment technologies. Black-Right-Pointing-Pointer Delphi Method was carried out so as to define environmental indicators. Black-Right-Pointing-Pointer Environmental performance evaluation of waste-to-energy plants. - Abstract: Although the concern with sustainable development and environment protection has considerably grown in the last years it is noted that the majority of decision making models and tools are still either excessively tied to economic aspects or geared to the production process. Moreover, existing models focus on the priority steps of solid waste management, beyond waste energy recovery and disposal. So, in order to help the lack of models and tools aiming at the waste treatment and final disposal, a new concept is proposed: the Cleaner Treatment, which is based on the Cleaner Production principles. This paper focuses on the development and validation of the Cleaner Treatment Index (CTI), to assess environmental performance of waste treatment technologies based on the Cleaner Treatment concept. The index is formed by aggregation (summation or product) of several indicators that consists in operational parameters. The weights of the indicator were established by Delphi Method and Brazilian Environmental Laws. In addition, sensitivity analyses were carried out comparing both aggregation methods. Finally, index validation was carried out by applying the CTI to 10 waste-to-energy plants data. From sensitivity analysis and validation results it is possible to infer that summation model is the most suitable aggregation method. For summation method, CTI results were superior to 0.5 (in a scale from 0 to 1) for most facilities evaluated. So, this study demonstrates that CTI is a simple and robust tool to assess and compare the environmental performance of different treatment plants being an excellent quantitative tool to support Cleaner Treatment implementation.

Goulart Coelho, Hosmanny Mauro, E-mail: hosmanny@hotmail.com [Federal University of Minas Gerais, School of Engineering, Department of Sanitary and Environmental Engineering, Bloco 2, Sala 4628, Av. Antonio Carlos, 6627 Pampulha, Belo Horizonte, Minas Gerais, CEP 30.270-901 (Brazil); Lange, Lisete Celina [Federal University of Minas Gerais, School of Engineering, Department of Sanitary and Environmental Engineering, Bloco 2, Sala 4628, Av. Antonio Carlos, 6627 Pampulha, Belo Horizonte, Minas Gerais, CEP 30.270-901 (Brazil); Coelho, Lineker Max Goulart [Ecole des Ponts ParisTech 6 et 8 avenue Blaise-Pascal, Cite Descartes Champs-sur-Marne, 77455, Marne-la-Vallee (France)

2012-07-15T23:59:59.000Z

327

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.7 Hydrogen Safety, Codes and Standards  

Broader source: Energy.gov [DOE]

Hydrogen Safety, Codes and Standards technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

328

Technology Review's "35 under 35" Recognizes Two ARPA-E Performers |  

Broader source: Energy.gov (indexed) [DOE]

Technology Review's "35 under 35" Recognizes Two ARPA-E Performers Technology Review's "35 under 35" Recognizes Two ARPA-E Performers Technology Review's "35 under 35" Recognizes Two ARPA-E Performers December 12, 2011 - 9:55am Addthis Dr. Riccardo Signorelli, CEO of FastCAP Systems meets with Secretary Chu. Signorelli founded a startup focused on researching and developing carbon nanotube ultracapacitors and was chosen by Technology Review as a "35 Under 35" innovator along with Foro Energy's Dr. Joel Moxely (another ARPA-E performer). | Courtesy of ARPA-E. Dr. Riccardo Signorelli, CEO of FastCAP Systems meets with Secretary Chu. Signorelli founded a startup focused on researching and developing carbon nanotube ultracapacitors and was chosen by Technology Review as a "35 Under

329

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.  

Broader source: Energy.gov [DOE]

Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOE’s Advanced Vehicle Testing Activity.

330

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Cummins Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins SuperTruck...

331

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

332

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

Not Available

1992-02-03T23:59:59.000Z

333

Knowledge-Based Parallel Performance Technology for Scientific Application Competitiveness Final Report  

SciTech Connect (OSTI)

The primary goal of the University of Oregon's DOE "Ã?Â?competitiveness" project was to create performance technology that embodies and supports knowledge of performance data, analysis, and diagnosis in parallel performance problem solving. The target of our development activities was the TAU Performance System and the technology accomplishments reported in this and prior reports have all been incorporated in the TAU open software distribution. In addition, the project has been committed to maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute (PERI) and Center for Technology for Advanced Scientific Component Software (TASCS). This collaboration has proved valuable for translation of our knowledge-based performance techniques to parallel application development and performance engineering practice. Our outreach has also extended to the DOE Advanced CompuTational Software (ACTS) collection and project. Throughout the project we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops.

Allen D. Malony; Sameer Shende

2011-08-15T23:59:59.000Z

334

Decentralized coordination through digital technology, dynamic pricing, and Customer-Driven control: the GridWise testbed demonstration project  

SciTech Connect (OSTI)

The project highlights the idea that technology-enabled decentralized coordination can achieve the same, or better, economic and reliability benefits when compared to utility-focused centralized physical and economic control. Among the design's unique features was a retail double auction with five-minute market-clearing intervals that included residential customers as direct, active market participants. (author)

Chassin, David P.; Kiesling, Lynne

2008-10-15T23:59:59.000Z

335

PON-10-603 Advanced Medium-and Heavy-Duty Vehicle Technologies Pre-Commercial Demonstrations Questions and Answers  

E-Print Network [OSTI]

Center for Sustainable Energy Energy Independence Now EPRI Gas Technology Institute Natural Gas Vehicle. Applicant eligibility is determined on a case-by-case basis. 1 The Energy Commission will use two databases Coalition Plug-In America San Francisco Clean City Coalition Western Propane Gas Association NOTE

336

NETL: PPII - Commercial Demonstration of the Manufactured Aggregate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration Project Documents - Industrial Applications Demonstration Project Documents - Industrial Applications Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash - Project Brief [PDF-72KB] Universal Aggregates, LLC, King George County, VA PROJECT FACT SHEET Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash [PDF-412KB] (Feb 2008) PROGRAM PUBLICATIONS Final Report Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Absorber Ash [PDF-4.5MB] (Nov 2007) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash: A DOE Assessment [PDF-170KB] (Mar 2008)

337

Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor  

Broader source: Energy.gov [DOE]

Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

338

PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS  

SciTech Connect (OSTI)

North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

2004-02-01T23:59:59.000Z

339

An Update ofthe U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Issue No. 4, Fat, ,991 3 Issue No. 4, Fat, ,991 An Update ofthe U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy Nine New Clean Coal Technology Projects Selected In Fourth Round of Competition Clean Coal Briefs Highlights ofthis past quarter of the Clean Coal Technology Demonstra- tion Program include the addition 01 nine new projects selected for funding under the fourth round of competition, a new $203 million cooperative agree- ment for a pressurized circulating flu- idized bed combustion plant in Des Moines, Iowa, and the kick-off of next year's planned fifth round with the announcement of public meetings (see separate stories for details). The 42 government-industry projects now in the Clean Coal Pro- gram family-with a total value ex-

340

Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Tech-X Corporation has accessed the high performance computing (HPC) facilities at the Science and Technology Facilities Council's (STFC)  

E-Print Network [OSTI]

Tech-X Corporation has accessed the high performance computing (HPC) facilities at the Science high performance computing (HPC) and simulation technology. A research collaboratory in association

Zharkova, Valentina V.

342

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

343

Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint  

SciTech Connect (OSTI)

This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

Wagner, M. J.

2012-04-01T23:59:59.000Z

344

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, first quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO{sub x} emissions for each day of long-term testing are presented. The average NO{sub x} emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO{sub x} combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

345

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO[sub x] combustion technologies on NO[sub x] emissions and boiler performance. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO[sub x] control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO[sub x] concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progess report presents the LNCFS Level III long-term data collected during this quarter. NO[sub x] emissions for each day of long-term testing are presented. The average NO[sub x] emission during long-term testing was 0.39 lb/MBtu at an average load of 155 MW. The effect of the low NO[sub x] combustion system on other combustion parameters such as carbon monoxide, excess oxygen level, and carbon carryover are also included.

Not Available

1992-05-20T23:59:59.000Z

346

Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The stepwise approach that is being used to evaluate the NO{sub x} control technologies requires three plant outages to successively install the test instrumentation and the different levels of the low NO{sub x} concentric firing system (LNCFS). Following each outage, a series of four groups of tests are performed. These are (1) diagnostic, (2) performance, (3) long-term, and (4) verification. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency. This technical progress report presents the LNCFS Level I short-term data collected during this quarter. In addition, a comparison of all the long-term emissions data that have been collected to date is included.

Not Available

1992-11-25T23:59:59.000Z

347

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.2 Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Plan - Delivery Technical Plan - Delivery Multi-Year Research, Development and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems, including those used in vehicles, back-up power sources, and distributed power generators, will likely depend on a hydrogen delivery infrastructure that provides the same level of safety, convenience, and functionality as existing liquid and gaseous fossil

348

NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing of DEVAP prototype validates modeled Testing of DEVAP prototype validates modeled predictions of 40% to 85% energy savings. Researchers in the NREL Buildings group are moving the award-winning desiccant enhanced evaporative (DEVAP) air conditioning technol- ogy further toward commercialization by demonstrating that its energy-saving perfor- mance matches closely with thermodynamic model predictions. Industry partners Synapse Product Development and AIL Research built two prototypes of DEVAP based on NREL's design and modeling, which were tested in NREL's Advanced HVAC Systems Laboratory. Experiments added confidence to the predicted energy savings of 40% in humid climates and 85% in dry climates, empowering the model as a tool for developing marketable designs, and illustrating the potential of DEVAP to transform

349

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

350

Demonstration of New Technologies Required for the Treatment of Mixed Waste Contaminated with {ge}260 ppm Mercury  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) defines several categories of mercury wastes, each of which has a defined technology or concentration-based treatment standard, or universal treatment standard (UTS). RCRA defines mercury hazardous wastes as any waste that has a TCLP value for mercury of 0.2 mg/L or greater. Three of these categories, all nonwastewaters, fall within the scope of this report on new technologies to treat mercury-contaminated wastes: wastes as elemental mercury; hazardous wastes with less than 260 mg/kg [parts per million (ppm)] mercury; and hazardous wastes with 260 ppm or more of mercury. While this report deals specifically with the last category--hazardous wastes with 260 ppm or more of mercury--the other two categories will be discussed briefly so that the full range of mercury treatment challenges can be understood. The treatment methods for these three categories are as follows: Waste as elemental mercury--RCRA identifies amalgamation (AMLGM) as the treatment standard for radioactive elemental mercury. However, radioactive mercury condensates from retorting (RMERC) processes also require amalgamation. In addition, incineration (IMERC) and RMERC processes that produce residues with >260 ppm of radioactive mercury contamination and that fail the RCRA toxicity characteristic leaching procedure (TCLP) limit for mercury (0.20 mg/L) require RMERC, followed by AMLGM of the condensate. Waste with <260 ppm mercury--No specific treatment method is specified for hazardous wastes containing <260 ppm. However, RCRA regulations require that such wastes (other than RMERC residues) that exceed a TCLP mercury concentration of 0.20 mg/L be treated by a suitable method to meet the TCLP limit for mercury of 0.025 mg/L. RMERC residues must meet the TCLP value of {ge}0.20 mg/L, or be stabilized and meet the {ge}0.025 mg/L limit. Waste with {ge}260 ppm mercury--For hazardous wastes with mercury contaminant concentrations {ge}260 ppm and RCRA-regulated organic contaminants (other than incinerator residues), incineration or retorting (IMERC or RMERC) is the treatment standard. For wastes with mercury contaminant concentrations {ge}260 ppm that are inorganic, including incinerator and retort residues, RMERC is the treatment standard. Mercury hazardous waste contaminated with {ge}260 ppm mercury is the primary focus of this report.

Morris, M.I.

2002-02-06T23:59:59.000Z

351

Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology  

Science Journals Connector (OSTI)

Abstract Stimulated by the extreme market conditions, the increase in performance and the reduction of manufacturing costs of standard crystalline silicon solar cells and modules have been quite significant in the last years. This progress was achieved mainly by process and material improvements avoiding additional process complexity. As todays cells are predominantly limited by optical and recombination losses at the rear surface, dielectric rear surface passivation represents an obvious approach to overcome the limitations. In recent years several concepts have been developed to implement dielectric rear side passivation into industrial-scale mass production. In this paper a short review is given about the evolution of dielectric rear side passivation technologies as well as on state-of-the-art cell and module results. Simple and cost effective cell and module designs utilizing standard as well as innovative manufacturing technologies are presented. Furthermore, it is shown that for all major steps multiple process options are available to further reduce the manufacturing costs. Using an optimized emitter and screen-printed metallization on commercially available 156 mm×156 mm p-type Czochralski-grown crystalline silicon wafers best cell efficiencies of 19.9% without dielectric rear surface passivation and 21.0% with dielectric rear surface passivation are demonstrated. Replacing the screen-printed front contacts by electroplated nickel–copper contacts record efficiencies of up to 21.3% are reached. By optimizing the module design and materials to reduce the resistive and optical losses, a peak module power of up to 306 W and 19.5% aperture area efficiency are achieved.

Axel Metz; Dennis Adler; Stefan Bagus; Henry Blanke; Michael Bothar; Eva Brouwer; Stefan Dauwe; Katharina Dressler; Raimund Droessler; Tobias Droste; Markus Fiedler; Yvonne Gassenbauer; Thorsten Grahl; Norman Hermert; Wojtek Kuzminski; Agata Lachowicz; Thomas Lauinger; Norbert Lenck; Mihail Manole; Marcel Martini; Rudi Messmer; Christine Meyer; Jens Moschner; Klaus Ramspeck; Peter Roth; Ruben Schönfelder; Berthold Schum; Jörg Sticksel; Knut Vaas; Michael Volk; Klaus Wangemann

2014-01-01T23:59:59.000Z

352

The DOE Wide Area Measurement System (WAMS) Project -- Demonstration of dynamic information technology for the future power system  

SciTech Connect (OSTI)

In 1989 the Bonneville Power Administration (BPA) and the Western Power Administration (WAPA) joined the US Department of Energy (DOE) in an assessment of longer-term research and development needs for future electric power system operation. The effort produced a progressively sharper vision of a future power system in which enhanced control and operation are the primary means for serving new customer demands in an environment characterized by increased competition, a wider range of services and vendors, and much narrower operating margins. Technology and infrastructure for real time access to wide area dynamic information were identified as critical path elements in realizing that vision. In 1995 the DOE accordingly launched the Wide Area Measurement System (WAMS) Project jointly with the two Power Marketing Administrations (PMAs) to address these issues in a practical operating environment the western North America power system. The Project draws upon many years of PMA effort and related collaboration among the western utilities, plus an expanding infrastructure that includes regionally involved contractors, universities, and National Laboratories plus linkages to the Electric Power Research Institute (EPRI).

Mittelstadt, W.A. [Bonneville Power Administration (United States); Hauer, J.F. [Pacific Northwest Lab., Richland, WA (United States); Krause, P.E.; Wilson, R.E. [Western Power Administration (United States); Overholt, P.N. [USDOE (United States); Rizy, D.T. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

353

Demonstration and Deployment Strategy Workshop | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Demonstration and Deployment Strategy Workshop Demonstration and Deployment Strategy Workshop The Bioenergy Technologies Office's (BETO's) Demonstration and Deployment Strategy...

354

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Appendix C: Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page C - 1 Page C - 1 2012 Appendix C: Hydrogen Quality Appendix C - Hydrogen Quality The hydrogen fuel quality specification in Table C.1 below is based on the SAE International Surface Vehicle Standard SAE-2719 - Hydrogen Fuel Quality Guideline for Fuel Cell Vehicles, June 2011. This specification has been harmonized to the extent possible with the draft international standard, ISO/DIS 14687-2, Hydrogen Fuel - Product Specification - Part 2: Proton exchange membrane (PEM) fuel cell applications for road vehicles, recently approved by the International Organization for Standardization (ISO). The primary purpose of this specification is to ensure that the effects of possible fuel contaminants on fuel cell performance and durability in early commercial vehicles are acceptable. Modeling and

355

Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1  

SciTech Connect (OSTI)

This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

Not Available

1994-02-01T23:59:59.000Z

356

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

357

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

NONE

1996-12-31T23:59:59.000Z

358

Building America Best Practices Series, Volume 13 - Energy Performance Techniques and Technologies: Perserving Historic Homes  

Broader source: Energy.gov (indexed) [DOE]

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Energy Performance Techniques and Technologies: Preserving Historic Homes BUILDING AMERICA BEST PRACTICES SERIES VOLUME 13. PREPARED BY Pacific Northwest National Laboratory & Kaufman Heritage Conservation February 28, 2011 R February 28, 2011 * PNNL-20185 BUILDING AMERICA BEST PRACTICES SERIES Energy Performance Techniques and Technologies: Preserving Historic Homes PREPARED BY Pacific Northwest National Laboratory Michelle Britt, Michael C. Baechler, Theresa Gilbride, Marye Hefty, Erin Makela, and Elaine Schneider and Kaufman Heritage Conservation Ned Kaufman, Ph.D. February 28, 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RLO 1830 PNNL-20185 This report was prepared as an account of work sponsored by an agency of the

359

Arsenic Removal Technologies and the Effect of Source Water Quality on Performance  

SciTech Connect (OSTI)

Arsenic removal technologies that are effective at the tens of ppb level include coagulation, followed by settling/microfiltration, ion exchange by mineral surfaces,and pressure-driven membrane processes (reverse osmosis, nanofiltration and ultrafiltration). This report describes the fundamental mechanisms of operation of the arsenic removal systems and addresses the critical issues of arsenic speciation, source water quality on the performance of the arsenic removal systems and costs associated with the different treatment technology categories.

KHANDAKER, NADIM R.; BRADY, PATRICK V.

2002-07-01T23:59:59.000Z

360

Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxice Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2000/1111 2000/1111 Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal- Fired Boilers: A DOE Assessment August 1998 U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center Morgantown, WV/Pittsburgh, PA 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or respon- sibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

362

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-11-01T23:59:59.000Z

363

Hypermodular Distributed Solar Power Satellites -- Exploring a Technology Option for Near-Term LEO Demonstration and GLPO Full-Scale Plants  

E-Print Network [OSTI]

This paper presents a new and innovative design for scaleable space solar power systems based on satellite self-assembly and microwave spatial power combination. Lower system cost of utility-scale space solar power is achieved by independence of yet-to-be-built in-space assembly and transportation infrastructure. Using current and expected near-term technology, this study explores a design for near-term space solar power low-Earth orbit demonstrators and for mid-term utility-scale power plants in geosynchronous Laplace plane orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

Leitgab, Martin

2013-01-01T23:59:59.000Z

364

Major Demonstrations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Major Demonstrations Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies to hasten their adoption into the commercial marketplace. Through the year 2030, electricity consumption in the United States is expected to grow by about 1 percent per year. The ability of coal-fired generation to help meet this demand could be limited by concerns over greenhouse gas emissions. While the Major Demonstrations performed to date

365

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network [OSTI]

of Grid Integrated Technologies at the Demand to Gridof Grid Integrated Technologies at the Demand to GridCommercial Adoption of DR Technologies Related Activities

Ghatikar, Girish

2014-01-01T23:59:59.000Z

366

Vehicle Technologies Office Merit Review 2013: A High-Performance PHEV Battery Pack  

Broader source: Energy.gov [DOE]

Presentation given by LG Chem at 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a high-performance battery pack the company is researching for plug-in electric vehicles.

367

Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography  

E-Print Network [OSTI]

SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

Lebendiker, Mario

368

Graz University of Technology Institute of High Voltage Engineering and System Performance  

E-Print Network [OSTI]

.hspt@tugraz.at u www.hspt.tugraz.at Institute of High Voltage Engineering and System Performance Test Laboratory systems Test of insulators, fittings and accessories Testing of high voltage equipment Impulse voltage and current tests On-site-test of medium voltage cables Electrical methods in environmental technology

369

Emerging Technology Retrofit Demonstration Projects  

Broader source: Energy.gov [DOE]

Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

370

Fuel Cell Demonstration Program  

SciTech Connect (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

371

The Influence of Inward Technology Transfers and International Entrepreneurial Orientation on the Export Performance of Egyptian SMEs.  

E-Print Network [OSTI]

??This study examines the influence of inward technology transfers and international entrepreneurial orientation (IEO) on the export performance of small and medium-sized firms (SMEs). IEO… (more)

Gaber, Heba

2013-01-01T23:59:59.000Z

372

Utility advanced turbine system (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This initial report summarizes work accomplished during the third quarter of 1995. The most significant accomplishments reported include the following. Overall design continued, progressing from preliminary and conceptual design activities to detailed design activities. The aerodynamic design of six out of eight 9H turbine airfoils was completed. The 9H compressor design concept was finalized including rotor configuration, aerodynamic design of compressor, and compressor structure. Conceptual on-base and external piping layout was begun. The ATS Phase 3 Cooperative Agreement was negotiated and signed.

NONE

1995-12-31T23:59:59.000Z

373

Objectives and Current Status of the IAEA Network of Centers of Excellence: Training in and Demonstration of Waste Disposal Technologies in Underground Research Laboratories  

SciTech Connect (OSTI)

Underground Research Laboratories (URLs) to develop and demonstrate technologies for the safe geologic disposal of radioactive wastes have been established for national purposes by several Member States of the International Atomic Energy Agency (IAEA). Under the auspices of the IAEA, nationally developed URLs and associated research institutions are being offered for use by other nations. These facilities form a Network of Centers of Excellence for training in and development of waste disposal technologies. Experience gained in the operation of the facilities, and through associated experimentation and demonstrations, will be transferred to participating Member States through hands-on work at the facilities. The Network consists of Network Members and Network Participants who share co-operative activities. Network Members are owners of facilities who have offered them to be part of the Network. At this time there are eight Members consisting of six underground facilities, a laboratory, and a university. Network Participants can potentially come from any interested IAEA Member State having spent nuclear fuel for disposal, with or without an established program for geologic disposal. There are presently about 15 Network Participants. A significant Network activity beginning in 2003 will be a Coordinated Research Project (CRP) on characterization and evaluation of swelling clays for use in engineered barrier systems of geologic repositories. At the end of this project, every involved Member State should be able to identify and characterize a swelling clay that is suitable for use in a geologic repository. As the Network grows, additional CRPs to be carried out in the Underground Research Facilities of the Network Members will be defined.

Bell, M. J.; Knapp, M. R.

2003-02-27T23:59:59.000Z

374

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, fourth quarter 1991  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

375

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, Second quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

376

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, First quarter 1992  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-12-31T23:59:59.000Z

377

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO[sub x]) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (No[sub x]) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO[sub x] combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO[sub x] reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO[sub x] burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO[sub x] reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-08-24T23:59:59.000Z

378

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers  

SciTech Connect (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company's Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions on other combustion parameters such as parameters such as particulate characteristics and boiler efficiency.

Not Available

1992-04-21T23:59:59.000Z

379

Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 8, April--June, 1992  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U. S. coal.

Not Available

1992-08-01T23:59:59.000Z

380

Montana ICTL Demonstration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Montana ICTL Demonstration Program Montana ICTL Demonstration Program Background The Department of Energy (DOE) funds basic and applied research toward the development of technologies that will allow the U.S. to depend to a greater extent on renewable fuels, especially those derived from domestic sources of energy. Coal is one of the nation's most abundant domestic energy resources; however, conventional technologies using coal release large amounts of carbon dioxide (CO

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The application of metal cutting technologies in tasks performed in radioactive environments  

SciTech Connect (OSTI)

The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ``We need it ASAP`` design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter.

Fogle, R.F.; Younkins, R.M.

1997-05-01T23:59:59.000Z

382

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 6, October--December, 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

383

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1992-02-01T23:59:59.000Z

384

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 2, October--December 1990  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

385

Innovative Clean Coal Technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide NO{sub x} control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

Not Available

1991-02-01T23:59:59.000Z

386

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Quarterly report No. 3, January--March 1991  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

387

Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor.

Not Available

1991-07-01T23:59:59.000Z

388

Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment  

SciTech Connect (OSTI)

This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

1994-07-01T23:59:59.000Z

389

Dual-fuel natural gas/diesel engines: Technology, performance, and emissions. Topical report, February 1993-November 1994  

SciTech Connect (OSTI)

An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NOx and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

Turner, S.H.; Weaver, C.S.

1994-11-01T23:59:59.000Z

390

LIMB demonstration project extension and Coolside demonstration: A DOE assessment  

SciTech Connect (OSTI)

The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have already reached the proof-of-concept stage. This document serves as a DOE post-project assessment of the CCT Round 1 project ``LIMB Demonstration Project Extension and Coolside Demonstration'', described in a report to Congress (Babcock and Wilcox 1987), a paper by DePero et al. (1992), and in a report by Goots et al. (1992). The original limestone injection multistage burner (LIMB) demonstration work was conducted by Babcock and Wilcox Company (B and W) beginning in 1984, under the sponsorship of the US Environmental Protection Agency (EPA) and the State of Ohio Coal Development Office (OCDO). In 1987, B and W and the Ohio Edison Company agreed to extend the full-scale demonstration of LIMB technology under the sponsorship of DOE through its CCT Program, and with support from OCDO and Consolidation Coal Company, now known as CONSOL. In a separate effort, CONSOL had been developing another flue gas desulfurization (FGD) technology known as the Coolside process. Both LIMB and Coolside use sorbent injection to remove SO{sub 2}. The LIMB process injects the sorbent into the furnace and the Coolside injects the sorbent into the flue gas duct. In addition, LIMB uses low-NO{sub x} burners to reduce NO{sub x} emissions; hence it is categorized as a combination SO{sub 2}/NO{sub x} control technology. To take advantage of synergism between the two processes, the CCT project was structured to incorporate demonstration of both the LIMB and Coolside processes. Coolside testing was accomplished between July 1989 and February 1990, and the LIMB Extension test program was conducted between April 1990 and August 1991. The host site for both tests was the 105 MWe coal-fired Unit 4 at Ohio Edison's Edgewater Station in Lorain, Ohio. The major performance objectives of this project were successfully achieved, with SO{sub 2} emissions reductions of up to 70% demonstrated in both processes.

National Energy Technology Laboratory

2000-04-30T23:59:59.000Z

391

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

392

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Broader source: Energy.gov (indexed) [DOE]

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

393

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

394

National Hydrogen Learning Demonstration Status | Department...  

Energy Savers [EERE]

Hydrogen Learning Demonstration Status National Hydrogen Learning Demonstration Status Download presentation slides from the Fuel Cell Technologies Program webinar "National...

395

CubeSat deformable mirror demonstration  

E-Print Network [OSTI]

The goal of the CubeSat Deformable Mirror Demonstration (DeMi) is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form factor deformable mirrors are a key technology needed ...

Cahoy, Kerri

396

Pilot Demonstration of Technology for the Production of High Value Materials from the Ultra-Fine (PM 2.5) Fraction of Coal Combustion Ash  

SciTech Connect (OSTI)

Work on the project focused on the determination of the hydraulic classification characteristics of the Coleman and Mill Creek ashes. The work utilized the hydraulic classifier developed earlier in the project. Testing included total yield, recovery of <5 {micro}m ash diameter particles and LOI partitioning as functions of dispersant dosage and type, retention time and superficial velocity. Yields as high as 21% with recoveries of up to 2/3 of the <5 {micro}m ash fractions were achieved. Mean particle size (D{sub 50}) of varied from 3.7 to 10 {micro}m. The ashes were tested for there pozzolanic activity in mortars as measured by strength activity index using ASTM criteria. Additional testing included air entrainment reagent demand and water requirements. The classified products all performed well, demonstrating excellent early strength development in the mortars. Some increased air entrainment demand was noted. The conceptual design of a process demonstration unit PDU was also completed. A flexible, trailer-mounted field unit is envisioned.

T.L. Robl; J.G. Groppo; Robert Rathebone

2005-12-14T23:59:59.000Z

397

SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993  

SciTech Connect (OSTI)

This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

Not Available

1993-05-01T23:59:59.000Z

398

Engine coolant technology, performance, and life for light-duty applications  

SciTech Connect (OSTI)

Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

1999-08-01T23:59:59.000Z

399

California: Next-Generation Geothermal Demonstration Launched  

Office of Energy Efficiency and Renewable Energy (EERE)

First-of-its-kind achievement successfully demonstrates that EGS technologies are commercially viable.

400

Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project  

SciTech Connect (OSTI)

The growing number of cores provided by today’s high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data – even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-Productivity Supercomputing (VI-HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-HPS training activities together within the past three years.

Malony, Allen D. [Department of Computer and Information Science, University of Oregon] [Department of Computer and Information Science, University of Oregon; Wolf, Felix G. [Juelich Supercomputing Centre, Forschungszentrum Juelich] [Juelich Supercomputing Centre, Forschungszentrum Juelich

2014-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sulfur Iodine Process Summary for the Hydrogen Technology Down-Selection: Process Performance Package  

SciTech Connect (OSTI)

This document describes the details of implementing a Sulfur-Iodine (S-I) hydrogen production plant to deploy with the Next General Nuclear Power Plant (NGNP). Technical requirements and specifications are included, and a conceptual plant design is presented. The following areas of interest are outlined in particular as a baseline for the various technology comparisons: (1) Performance Criteria - (a) Quantity of hydrogen produced, (b) Purity of hydrogen produced, (c) Flexibility to serve various applications, (d) Waste management; (2) Economic Considerations - (a) Cost of hydrogen, (b) Development costs; and (3) Risk - (a) Technical maturity of the S-I process, (b) Development risk, (c) Scale up options.

Benjamin Russ

2009-06-01T23:59:59.000Z

402

JEA successfully completes world's largest CFB demonstration  

SciTech Connect (OSTI)

JEA (formerly the Jacksonville Electric Authority) has successfully completed an eighth year landmark demonstration project that continues in baseload commercial operation. It scales up atmospheric fluidized-bed technology demonstration to the near-300-MW size, providing important data on a technology that can achieve > 90% SO{sub 2} removal and 60% NOx reduction at relatively high efficiencies and at costs comparable to those of conventional pulverized coal plants. The article recounts the history of the project. Performance tests showed a blend of coal and petcoke were most efficient as a feedstock. 3 figs.

NONE

2005-09-30T23:59:59.000Z

403

An Approach for Preoperative Planning and Performance of MR-guided Interventions Demonstrated With a Manual Manipulator in a 1.5T MRI Scanner  

SciTech Connect (OSTI)

Purpose: The aim of this work was to develop and test a general methodology for the planning and performance of robot-assisted, MR-guided interventions. This methodology also includes the employment of software tools with appropriately tailored routines to effectively exploit the capabilities of MRI and address the relevant spatial limitations. Methods: The described methodology consists of: (1) patient-customized feasibility study that focuses on the geometric limitations imposed by the gantry, the robotic hardware, and interventional tools, as well as the patient; (2) stereotactic preoperative planning for initial positioning of the manipulator and alignment of its end-effector with a selected target; and (3) real-time, intraoperative tool tracking and monitoring of the actual intervention execution. Testing was performed inside a standard 1.5T MRI scanner in which the MR-compatible manipulator is deployed to provide the required access. Results: A volunteer imaging study demonstrates the application of the feasibility stage. A phantom study on needle targeting is also presented, demonstrating the applicability and effectiveness of the proposed preoperative and intraoperative stages of the methodology. For this purpose, a manually actuated, MR-compatible robotic manipulation system was used to accurately acquire a prescribed target through alternative approaching paths. Conclusions: The methodology presented and experimentally examined allows the effective performance of MR-guided interventions. It is suitable for, but not restricted to, needle-targeting applications assisted by a robotic manipulation system, which can be deployed inside a cylindrical scanner to provide the required access to the patient facilitating real-time guidance and monitoring.

Seimenis, Ioannis [Medical Diagnostic Center 'Ayios Therissos' (Cyprus); Tsekos, Nikolaos V. [University of Huston, Medical Robotics Lab, Department of Computer Science (United States); Keroglou, Christoforos [University of Cyprus, Department of Electrical and Computer Engineering (Cyprus); Eracleous, Eleni [Medical Diagnostic Center 'Ayios Therissos' (Cyprus); Pitris, Constantinos [University of Cyprus, Department of Electrical and Computer Engineering (Cyprus); Christoforou, Eftychios G., E-mail: e.christoforou@ucy.ac.cy [University of Cyprus, KIOS Research Center (Cyprus)

2012-04-15T23:59:59.000Z

404

Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994  

SciTech Connect (OSTI)

The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

NONE

1995-11-01T23:59:59.000Z

405

Research, Development, Demonstration, and Deployment  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office's research, development, demonstration, and deployment (RDD&D) efforts are organized around five key technical and three cross-cutting elements. The first two...

406

Wireless Transmission of Monitoring Data out of an Underground Repository: Results of Field Demonstrations Performed at the HADES Underground Laboratory - 13589  

SciTech Connect (OSTI)

As part of the European 7. framework project MoDeRn, Nuclear Research and Consultancy Group (NRG) performed experiments in order to demonstrate the feasibility of wireless data transmission through the subsurface over large distances by low frequency magnetic fields in the framework of the geological disposal of radioactive waste. The main objective of NRG's contribution is to characterize and optimize the energy use of this technique within the specific context of post-closure monitoring of a repository. For that, measurements have been performed in the HADES Underground Research Laboratory (URL) located at Mol, Belgium, at 225 m depth. The experimental set-up utilizes a loop antenna for the transmitter that has been matched to the existing infrastructure of the HADES. Between 2010 and 2012 NRG carried out several experiments at the HADES URL in order to test the technical set-up and to characterize the propagation behavior of the geological medium and the local background noise pattern. Transmission channels have been identified and data transmission has been demonstrated at several frequencies, with data rates up to 10 bit/s and bit error rates <1%. A mathematical model description that includes the most relevant characteristics of the transmitter, transmission path, and receiver has been developed and applied to analyze possible options to optimize the set-up. With respect to the energy-efficiency, results so far have shown that data transmission over larger distances through the subsurface is a feasible option. To support the conclusions on the energy need per bit of transmitted data, additional experiments are foreseen. (authors)

Schroeder, T.J.; Rosca-Bocancea, E.; Hart, J. [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)] [Nuclear Research and Consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

2013-07-01T23:59:59.000Z

407

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network [OSTI]

energy systems, markets, and behavior; education and training Electric vehicle-to-grid capability demonstration with 30 EV cars

Ghatikar, Girish

2014-01-01T23:59:59.000Z

408

successfully demonstrated the separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

successfully demonstrated the separation and capture of 90 percent successfully demonstrated the separation and capture of 90 percent of the c arbon dioxide (CO 2 ) from a pulve rized coal plant. In t he ARRA-funded project, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris(tm) membrane system, which uses a CO 2 -selective polymeric membrane material and module to capture CO 2 from a plant's flue gas. Since the Polaris(tm) membranes

409

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

410

LIMB Demonstration Project Extension and Coolside Demonstration  

SciTech Connect (OSTI)

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

411

Coal-Fueled Diesel Technology Assessment Study: systems performance and cost comparisons  

SciTech Connect (OSTI)

This report examines the performance of diesel engines operating on coal-based fuels and compares their power generation costs with those of corresponding oil-burning prime movers. Similar performance and cost comparisons are also presented for an alternative prime mover, the direct-fired gas turbine in both a simple-cycle and a regenerative-cycle configuration. The coal-based fuels under consideration include micronized coal, coal slurries, and coal-derived gaseous fuels. The study focuses on medium-speed diesel engines for locomotive, marine, small stationary power, and industrial cogeneration applications in the 1000 to 10,000 kW size range. This report reviews the domestic industrial and transportation markets for medium-speed engines currently using oil or gas. The major problem areas involving the operation of these engines on coal-based fuels are summarized. The characteristics of available coal-based fuels are discussed and the costs of various fuels are compared. Based on performance data from the literature, as well as updated cost estimates originally developed for the Total Energy Technology Alternatives Studies program, power generation costs are determined for both oil-fueled and coal-fueled diesel engines. Similar calculations are also performed for direct-fired gas turbines. The calculations illustrate the sensitivity of the power generation cost to the associated fuel cost for these prime movers. The results also show the importance of reducing the cost of available coal-based fuels, in order to improve the economic competitiveness of coal-fueled prime movers relative to engines operating on oil or gas. 50 refs., 9 figs., 11 tabs.

Holtz, R.E.; Krazinski, J.L.

1985-12-01T23:59:59.000Z

412

Demonstration of integrated optimization software  

SciTech Connect (OSTI)

NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

NONE

2008-01-01T23:59:59.000Z

413

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect (OSTI)

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

414

Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I Demonstruation Plant, Newman, Kentucky. Appendix B. Best available control technology (BACT) proposals. [Demonstration plant at Newman, KY  

SciTech Connect (OSTI)

The best available control technology (BACT) proposals for the following areas of the SRC-I demonstration plant are described: coal preparation and handling, SRC process and deashing, coke and liquid fuels (control of particles and hydrocarbon vapors), cryogenic systems and fuel gas purification (including sulfur recovery system and venting of gaseous wastes). (LTN)

Not Available

1980-11-21T23:59:59.000Z

415

Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at St. Bliss, Texas. Interim report, October 1992--May 1994  

SciTech Connect (OSTI)

Results are presented from a demonstration program conducted on the comparative evaluations of the combustion of compressed natural gas as an alternative fuel for gasoline. General Motors pick-up trucks were utilized in the study.

Alvarez, R.A.; Yost, D.M.

1995-11-01T23:59:59.000Z

416

Holographic television : measuring visual performance with holographic and other 3D television technologies  

E-Print Network [OSTI]

We are surrounded by visual reproductions: computer screens, photographs, televisions, and countless other technologies allow us to perceive objects and scenes that are not physically in-front of us. All existing technologies ...

Barabas, James

2014-01-01T23:59:59.000Z

417

CLTC is a not-for-profit research, development and demonstration facility leading innovations in energy-efficient lighting and daylighting technologies.  

E-Print Network [OSTI]

in energy-efficient lighting and daylighting technologies. Collaborating with partners in government and staff also work with legislative leaders and regulatory agencies on energy policy, lighting codes and building standards. CLTC AffiLiATe gifT progrAm Supporting innovations in energy-efficient lighting cltc

California at Davis, University of

418

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

419

Major Demonstrations | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Major Demonstrations Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen For...

420

Newberry EGS Demonstration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production: Evaluation of Stimulation at the Newberry Volcano EGS Demonstration Site Microearthquake Technology for EGS Fracture Characterization Newberry Volcano EGS Demonstration...

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

422

Performance of reimbursement schemes in valuation of technologies: The example of Magnetic Resonance Imaging  

Science Journals Connector (OSTI)

Different reimbursement schemes for health care providers have been developed worldwide. They have evolved over time and have been influenced by politics, costs, patient needs and technological progress. Different methods in the valuation of technologies ... Keywords: Magnetic Resonance Imaging, Valuation, payment, reimbursement schemes, technologies

R. Blankart; J. Schreyögg; R. Busse

2008-08-01T23:59:59.000Z

423

The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools  

Science Journals Connector (OSTI)

An autonomous wind/hydrogen energy demonstration system located at the island of Utsira in Norway was officially launched by Norsk Hydro (now StatoilHydro) and Enercon in July 2004. The main components in the system installed are a wind turbine (600 kW), water electrolyzer (10 Nm3/h), hydrogen gas storage (2400 Nm3, 200 bar), hydrogen engine (55 kW), and a PEM fuel cell (10 kW). The system gives 2–3 days of full energy autonomy for 10 households on the island, and is the first of its kind in the world. A significant amount of operational experience and data has been collected over the past 4 years. The main objective with this study was to evaluate the operation of the Utsira plant using a set of updated hydrogen energy system modeling tools (HYDROGEMS). Operational data (10-min data) was used to calibrate the model parameters and fine-tune the set-up of a system simulation. The hourly operation of the plant was simulated for a representative month (March 2007), using only measured wind speed (m/s) and average power demand (kW) as the input variables, and the results compared well to measured data. The operation for a specific year (2005) was also simulated, and the performance of several alternative system designs was evaluated. A thorough discussion on issues related to the design and operation of wind/hydrogen energy systems is also provided, including specific recommendations for improvements to the Utsira plant. This paper shows how important it is to improve the hydrogen system efficiency in order to achieve a fully (100%) autonomous wind/hydrogen power system.

Øystein Ulleberg; Torgeir Nakken; Arnaud Eté

2010-01-01T23:59:59.000Z

424

Foster Wheeler’s Solutions for Large Scale CFB Boiler Technology: Features and Operational Performance of ?agisza 460 MWe CFB Boiler  

Science Journals Connector (OSTI)

During recent years, once-through supercritical (OTSC) CFB technology has been developed, enabling the CFB technology to proceed to medium-scale (500 ... very good performance and confirms, that the CFB process h...

Arto Hotta

2010-01-01T23:59:59.000Z

425

The dynamics of information technology investment and the financial performance of the banking sector in Jordan.  

E-Print Network [OSTI]

??This thesis studies the fundamental factors that shape and propel financial developments in Jordan - mainly in the specific context of investment in information technology… (more)

Arabyat, Yaser A. A.

2012-01-01T23:59:59.000Z

426

Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

427

Vehicle Technologies Office Merit Review 2014: Design of High Performance, High Energy Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

428

Vehicle Technologies Office Merit Review 2014: Predicting Microstructure and Performance for Optimal Cell Fabrication  

Broader source: Energy.gov [DOE]

Presentation given by Brigham Young University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about predicting...

429

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

SciTech Connect (OSTI)

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

430

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Lab All 1952 MANIAC-I supercomputer 100 supercomputers later, Los Alamos high-performance computing still supports national security mission Los Alamos National Laboratory has...

431

Bulk Electricity Generating Technologies This appendix describes the technical characteristics and cost and performance  

E-Print Network [OSTI]

and technologies expected to be available to meet bulk power generation needs during the period of the power plan PRICES The price forecasts for coal, fuel oil and natural gas are described in Appendix B. COAL-FIRED STEAM-ELECTRIC PLANTS Coal-fired steam-electric power plants are a mature technology, in use for over

432

Fulfilment of the performance contract between the Ministry of Science, Technology and Innovation  

E-Print Network [OSTI]

environmentally benign technologies that create value in the areas of energy, industrial technology and bio-production in the pursuit of eleven major research objectives ( average efforts in my/y): Energy - New basis for optimising properties of crops and of plant generation of specific products (80 my/y) - Optimisation and risk assessment

433

An Update of the U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SCR Holds Promise for Effective NO, Control SCR Holds Promise for Effective NO, Control CCT Projects Address Higher Costs, Limited U.S. Experience Clean Coal Briefs This quarter saw several major projects in the Clelm Coal Technology Program complete construction activi- ties and move into initial opcretions, bringing to 17 the total number of operatingf~cilitiesin theprogram Data generated from these projects will help utilities form their stratcgics for corn- pliance with the IYYO Clean Air Act Amendmxlts. Pure Air began running its first advanced flue gas desulfurization unit on June 2. The scrubber is running well, capturing more than YO percent of the SO, emissions from two units at Northern Indiana Public Service k's Bailly Station Construction of the 528 MW scrubber was completed

434

First-of-its-Kind Carbon Capture and Conversion Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas...

435

DOE Announces Restructured FutureGen Approach to Demonstrate...  

Broader source: Energy.gov (indexed) [DOE]

Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple...

436

Integrated powerhead demonstration full flow cycle development  

Science Journals Connector (OSTI)

The Integrated Powerhead Demonstration (IPD) is a 1 112 000 N (250 000? lb f ) thrust (at sea level) LOX/LH2 demonstration of a full flow cycle in an integrated system configuration. Aerojet and Rocketdyne are on contract to the Air Force Research Laboratory to design develop and deliver the required components and to provide test support to accomplish the demonstration. Rocketdyne is on contract to provide a fuel and oxygen turbopump a gas-gas injector and system engineering and integration. Aerojet is on contract to provide a fuel and oxygen preburner a main combustion chamber and a nozzle. The IPD components are being designed with Military Spaceplane (MSP) performance and operability requirements in mind. These requirements include: lifetime ?200 missions mean time between overhauls ?100 cycles and a capability to throttle from 20% to 100% of full power. These requirements bring new challenges both in designing and testing the components. This paper will provide some insight into these issues. Lessons learned from operating and supporting the space shuttle main engine (SSME) have been reviewed and incorporated where applicable. The IPD program will demonstrate phase I goals of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program while demonstrating key propulsion technologies that will be available for MSP concepts. The demonstration will take place on Test Stand 2A at the Air Force Research Laboratory at Edwards AFB. The component tests will begin in 1999 and the integrated system tests will be completed in 2002.

J. Mathew Jones; James T. Nichols; William F. Sack; William D. Boyce; William A. Hayes

1998-01-01T23:59:59.000Z

437

High Density Hydrogen Storage System Demonstration Using NaAlH4  

E-Print Network [OSTI]

Liner Carbon Fiber / Epoxy Overwrap Finned Tube Heat Exchanger 5' x Media Kinetic Characterization & Modeling Heat/Mass Transfer Analysis High Temp. Composite Tank unique supporting hardware to reasonable size and cost. Ability to demonstrate technologies and perform

438

Optimisation of gasoline engine performance and fuel consumption through combination of technologies  

Science Journals Connector (OSTI)

The gasoline engine has undergone intensive development in recent history ... introduction of technologies such as turbocharging and direct fuel injection. In addition to the reduction of part load fuel consumption

Dr.-Ing. Peter Wieske; Bernhardt Lüddecke; Sebastian Ewert…

2009-11-01T23:59:59.000Z

439

Next Generation Safety Performance Monitoring at Signalized Intersections Using Connected Vehicle Technology  

E-Print Network [OSTI]

and prone to human errors. The advent of connected vehicle technology allows vehicles to communicate with each other as well as infrastructure wirelessly. Through this platform, vehicle movements and signal status at the facilities can be automatically...

Zha, Liteng

2014-04-28T23:59:59.000Z

440

Spent fuel pyroprocessing demonstration  

SciTech Connect (OSTI)

A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option.

McFarlane, L.F.; Lineberry, M.J.

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstrations technology performance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report  

SciTech Connect (OSTI)

This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

1995-01-10T23:59:59.000Z

442

An Update of the U.S. Clean Coal Technology Demonstration Program Office of Fossil Energy, U.S. Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Power Generation Future Bright Advanced Power Generation Future Bright With Coal Gasification-Combined Cycle Clean Coal Briefs Six Major Projects in DOE's CCT Program American Electric Power's (AEP) Tidd plant continues to break new ground in its performance as the Nation's first operating pressurized lluidized hcd combustion (PFBC) power plant. In rcccnt operations at Ohio Power Company's Brilliant, Ohio plant site, the unit reached a gross electric power output of 71 megawatts--its full power capacity. Two other milestones--a maximum bed height of 140 inches and a nrar- maximum bed temperature of I575 degrees F-were also attained during the tests. Power production in the U.S. is expected to increase rapidly during the next 20 years. Totalconsumption ofelectricity isexpectedtoriscfrom 2.7 trillionkilnvett-

443

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-06-15T23:59:59.000Z

444

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-03-15T23:59:59.000Z

445

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-11-15T23:59:59.000Z

446

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-12-15T23:59:59.000Z

447

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-09-15T23:59:59.000Z

448

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-03-15T23:59:59.000Z

449

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Broader source: Energy.gov (indexed) [DOE]

by by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz, Heidi Steward and Oak Ridge National Laboratory, a DOE national laboratory Pat M. Love June 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty,

450

A collaborative technology roadmap for R&D prioritisation in high-performance computing  

Science Journals Connector (OSTI)

While appraising the current technological scenario in HPC R&D in India, this study seeks to map the trends in HPC. As premier institutes are regarded as the harbingers of pioneering technological solutions, a systematic interaction with key professors and researchers would throw light on pivotal issues germane to this study. A number of research groups and projects were identified across the Indian Institutes of Technology and Science, University of Hyderabad and Pune University. In view of various qualitative and subjective issues involved, an eclectic approach comprising Delphi, ethnographic methodologies and scenario planning is adopted. A blend of purposive and snowball sampling was done and 30 professors were interviewed. Their responses were elicited and an attempt was made to explore the possibility of striking alliances between industry and academic institutes, thus implicitly depicts a wealth and intellectual property creation model for the R&D function. Finally, abridged information on grids is presented.

Hema Prem; N.R.S. Raghavan

2005-01-01T23:59:59.000Z

451

PILOT DEMONSTRATION OF TECHNOLOGY FOR THE PRODUCTION OF HIGH VALUE MATERIALS FROM THE ULTRA-FINE (PM 2.5) FRACTION OF COAL COMBUSTION ASH  

SciTech Connect (OSTI)

Broad range dispersants, including naphthalene sulfonate-formaldehyde condensates (NSF) and polycarboxylate based products, were tested on both wet and dry fly ash samples from the LG&E Energy Corp. plants in th