Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

West Valley Demonstration Project High-Level Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT_19507_1 DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed. To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed.

2

West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project Waste Incidental to Reprocessing Evaluation for the Concentrator Feed Makeup Tank and the Melter Feed Hold Tank February 2013 Prepared by the U.S. Department of Energy West Valley, New York This page is intentionally blank. WASTE-INCIDENTAL-TO-REPROCESSING EVALUATION FOR THE WVDP CFMT AND MFHT CONTENTS Revision 0 i NOTATION (Acronyms, Abbreviations, and Units).................................................. v 1.0 INTRODUCTION ...................................................................................................... 1 1.1 Purpose. ................................................................................................................. 2

3

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations West Valley Demonstration Project DOE Manual 435.1-1 Waste...

4

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

5

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WVDP Waste Management EIS WVDP Waste Management EIS S-3 Figure S-1. Location of the West Valley Demonstration Project Not to scale Final WVDP Waste Management EIS S-23 Table S-2. Summary of Normal Operational Impacts at West Valley Impact Area Unit of Measure No Action Alternative Alternative A - Preferred Alternative B Human Health Impacts a Public Impacts from Ongoing Operations MEI LCF 3.7 × 10 -7 3.7 × 10 -7 3.7 × 10 -7 Population LCF 1.5 × 10 -3 1.5 × 10 -3 1.5 × 10 -3 Worker Impacts Involved worker MEI LCF 3.4 × 10 -4 1.3 × 10 -3 1.3 × 10 -3 Noninvolved worker MEI LCF 3.0 × 10 -4 3.0 × 10 -4 3.0 × 10 -4 Involved worker population LCF 2.1 × 10 -3 0.031 0.031 Noninvolved worker population LCF 0.075 0.075 0.075 Total worker population LCF 0.077 0.11 0.11

6

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

7

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

8

West Valley Demonstration Project Prepares to Relocate High-Level Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Prepares to Relocate High-Level West Valley Demonstration Project Prepares to Relocate High-Level Waste West Valley Demonstration Project Prepares to Relocate High-Level Waste December 24, 2013 - 12:00pm Addthis The West Valley Demonstration Project’s high-level waste canisters will be relocated to interim onsite storage. The West Valley Demonstration Project's high-level waste canisters will be relocated to interim onsite storage. The first group of eight concrete storage casks for the West Valley Demonstration Project’s high-level waste. The first group of eight concrete storage casks for the West Valley Demonstration Project's high-level waste. Site subcontractor American DND completed demolition of the contaminated 01-14 Building in 2013. Site subcontractor American DND completed demolition of the contaminated

9

West Valley Demonstration Project Prepares to Relocate High-Level Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Prepares to Relocate High-Level West Valley Demonstration Project Prepares to Relocate High-Level Waste West Valley Demonstration Project Prepares to Relocate High-Level Waste December 24, 2013 - 12:00pm Addthis The West Valley Demonstration Project’s high-level waste canisters will be relocated to interim onsite storage. The West Valley Demonstration Project's high-level waste canisters will be relocated to interim onsite storage. The first group of eight concrete storage casks for the West Valley Demonstration Project’s high-level waste. The first group of eight concrete storage casks for the West Valley Demonstration Project's high-level waste. Site subcontractor American DND completed demolition of the contaminated 01-14 Building in 2013. Site subcontractor American DND completed demolition of the contaminated

10

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project DOE Manual 435.1-1 Waste West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental to Reprocessing Evaluations and Determinations The U.S. Department of Energy (DOE) Manual 435.1-1, Radioactive Waste Management Manual, which accompanies DOE Order 435.1, provides that the DOE may determine that certain waste from reprocessing spent nuclear fuel is waste incidental to reprocessing, is not high-level waste and may be managed and disposed of as low-level waste if the waste meets the criteria in DOE Manual 435.1-1, Chapter II, Section B. To determine that waste is incidental to reprocessing using the evaluation process from the Manual, and shall be managed as low level waste, DOE must demonstrate three

11

West Valley demonstration project: alternative processes for solidifying the high-level wastes  

SciTech Connect

In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

1981-10-01T23:59:59.000Z

12

Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect

The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented.

Vance, R.F.; Brill, B.A.; Carl, D.E. [and others

1997-06-01T23:59:59.000Z

13

Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact  

SciTech Connect

The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

1992-12-31T23:59:59.000Z

14

Operating experience during high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect

This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

Valenti, P.J.; Elliott, D.I.

1999-01-01T23:59:59.000Z

15

A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site  

SciTech Connect

The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.

Jackson, J. P.; Pastor, R. S.

2002-02-28T23:59:59.000Z

16

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

Science Conference Proceedings (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

17

A COMPLETE HISTORY OF THE HIGH-LEVEL WASTE PLANT AT THE WEST VALLEY DEMONSTRATION PROJECT  

SciTech Connect

The West Valley Demonstration Project (WVDP) vitrification melter was shut down in September 2002 after being used to vitrify High Level Waste (HLW) and process system residuals for six years. Processing of the HLW occurred from June 1996 through November 2001, followed by a program to flush the remaining HLW through to the melter. Glass removal and shutdown followed. The facility and process equipment is currently in a standby mode awaiting deactivation. During HLW processing operations, nearly 24 million curies of radioactive material were vitrified into 275 canisters of HLW glass. At least 99.7% of the curies in the HLW tanks at the WVDP were vitrified using the melter. Each canister of HLW holds approximately 2000 kilograms of glass with an average contact dose rate of over 2600 rem per hour. After vitrification processing ended, two more cans were filled using the Evacuated Canister Process to empty the melter at shutdown. This history briefly summarizes the initial stages of process development and earlier WVDP experience in the design and operation of the vitrification systems, followed by a more detailed discussion of equipment availability and failure rates during six years of operation. Lessons learned operating a system that continued to function beyond design expectations also are highlighted.

Petkus, Lawrence L.; Paul, James; Valenti, Paul J.; Houston, Helene; May, Joseph

2003-02-27T23:59:59.000Z

18

Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project  

SciTech Connect

A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

1992-05-01T23:59:59.000Z

19

NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT  

SciTech Connect

The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

Terry W. Battiest

2008-06-11T23:59:59.000Z

20

Nucla CFB Demonstration Project  

SciTech Connect

This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

Not Available

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

West Valley Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

the high-level waste, disposing of waste created by the solidification, and decommissioning the facilities used in the process. The land and facilities are not owned by the...

22

PFBC Utility Demonstration Project  

Science Conference Proceedings (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

23

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

Science Conference Proceedings (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

24

Solar energy demonstration project  

SciTech Connect

The solar heating demonstration system at the DOE cafeteria at Grand Junction, Colorado, is briefly described. The system will supply an estimated 40 percent of the energy required for domestic hot water and building heat. (WHK)

1978-01-01T23:59:59.000Z

25

LIMB Demonstration Project Extension  

Science Conference Proceedings (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-12-15T23:59:59.000Z

26

LIMB Demonstration Project Extension  

Science Conference Proceedings (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1988-09-15T23:59:59.000Z

27

Solar Thermal Demonstration Project  

SciTech Connect

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with ??Kalwall?? building panels. An added feature of the ??Kalwall? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

28

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

29

LIMB Demonstration Project Extension and Coolside Demonstration  

SciTech Connect

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

30

INEL Operable Unit 7-13 Retrieval/Ex Situ Thermal Treatment configuration options: INEL Buried Waste Integrated Demonstration Systems Analysis project  

SciTech Connect

The mission of the Buried Waste Integrated Demonstration (BWID) Systems Analysis project is to identify and evaluate cradle-to-grave systems for the remediation of Transuranic (TRU)Contaminated Waste Pits and Trenches within the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The BWID program will use the results of the BWID Systems Analysis in conjunction with identified Department of Energy (DOE) Complex buried waste needs to develop a long-term strategy for improving buried waste remediation capabilities throughout the DOE system. This report presents Buried Waste Retrieval/Ex Situ Thermal Treatment configuration option concepts in the form of block diagrams. These configuration options are: Retrieval/Melter Treatment; Retrieval/Metal Sort/Thermal Treatment; Retrieval/No Sort/Incineration/Melter Treatment; Retrieval/Interim Storage/Melter Treatment; Retrieval/Interim Storage/Metal Sort/Thermal Treatment; and Retrieval/Interim Storage/No Sort/Incineration/Melter Treatment. Each option is presented as a complete end-to-end system.

Richardson, J.G.; Rudin, M.J.; O' Brien, M.C.; Morrison, J.L.; Raivo, B.

1992-07-01T23:59:59.000Z

31

Operational Waste Volume Projection  

SciTech Connect

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

STRODE, J.N.

2000-08-28T23:59:59.000Z

32

Preconceptual design study for solidifying high-level waste: Appendices A, B and C West Valley Demonstration Project  

SciTech Connect

This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass.

Hill, O.F. (comp.)

1981-04-01T23:59:59.000Z

33

West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis (DOE/EIS-0337-SA-01) (06/07/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration Project West Valley, New York June 7, 2006 WVDP Waste Management US - Supplement Analysis Table of Contents 1.0 PURPOSE AND NEED FOR AGENCY ACTION 1 2.0 PROPOSED ACTIONS 1 3.0 WASTE TYPE DEFINITIONS 2 4.0 EXISTING NEPA ANALYSIS 3 5.0 NEW INFORMATION 3 6.0 IS A SUPPLEMENTAL EIS NEEDED~ 5 6.1 Glass Melter, CFMT, and MFHT 5 6.2 Increased LLW Volumes 11 7.0 CONCLUSION 17 8.0 DETERMINATION 177 9.0 REFERENCES 17 List of Tables Table 1. Radiation Doses for Involved and Noninvolved Workers Under Alternative A, Including the Glass Melter, CFMT, and MFHT 8 Table 2. Radiological Consequences of Accidents Using 50-Percent Atmospheric Conditions ...9 Table 3. Radiological Consequences of Accidents Using 95-Percent

34

The Southern California Conversion Technology Demonstration Project | Open  

Open Energy Info (EERE)

The Southern California Conversion Technology Demonstration Project The Southern California Conversion Technology Demonstration Project Jump to: navigation, search Tool Summary Name: The Southern California Conversion Technology Demonstration Project Agency/Company /Organization: The Southern California Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website Website: www.socalconversion.org/resources.html Cost: Free The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L. A. County. Overview The Southern California Conversion Technology Demonstration Project website is focused on a specific conversion technology demonstration project in L.

35

Shallow Carbon Sequestration Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Shallow Carbon SequeStration Shallow Carbon SequeStration DemonStration ProjeCt Background The Shallow Carbon Sequestration Pilot Demonstration Project is a cooperative effort involving City Utilities of Springfield (CU); Missouri Department of Natural Resources (MDNR); Missouri State University (MSU); Missouri University of Science & Technology (MS&T); AmerenUE; Aquila, Inc.; Associated Electric Cooperative, Inc.; Empire District Electric Company; and Kansas City Power & Light. The purpose of this project is to assess the feasibility of carbon sequestration at Missouri power plant sites. The six electric utilities involved in the project account for approximately 90 percent of the electric generating capacity in Missouri. Description The pilot demonstration will evaluate the feasibility of utilizing the Lamotte and

36

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

37

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

38

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with...

39

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

40

Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter  

SciTech Connect

The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility that houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was deployed at the West Valley Demonstration Project to remove this radioactively dilute, residual molten material from the melter before Vit system operations were brought to a formal end. The ECS consists of a stainless steel canister of the same size and dimensions as a standard HLW canister that is equipped with a special L-shaped snorkel assembly made of 304L stainless steel. Both the canister and snorkel assembly fit into a stainless steel cage that allows the entire canister assembly to be positioned over the melter as molten glass is drawn out by a vacuum applied to the canister. This paper describes the process used to prepare and apply the ECS to complete molten glass removal before declaring a formal end to Vit system operations and placing the Vit Facility into a safe standby mode awaiting potential deactivation.

May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.; Houston, Helene M.

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Independent Oversight Review, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

42

Western Greenbrier Co-Production Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov nelson Rekos Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4066 nelson.rekos@netl.doe.gov PaRtIcIPant Western Greenbrier Co-Generation, LLC Lewisburg, WV Western Greenbrier Co-ProduCtion demonstration ProjeCt (disContinued) Project Description The Western Greenbrier Co-Production (WGC) project will generate about 100 megawatts of electricity and commercial quantities of salable ash by-products by burning waste coal presently contained in numerous coal refuse dumps in the vicinity of the plant. These refuse dumps, created by coal cleaning operations over

43

Vitrification facility at the West Valley Demonstration Project  

SciTech Connect

This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

DesCamp, V.A.; McMahon, C.L.

1996-07-01T23:59:59.000Z

44

Transportable Combustion Turbine Demonstration Project  

Science Conference Proceedings (OSTI)

New York State Electric and Gas Corporation (NYSEG) installed a 7.15-MW Solar Taurus 70 (nominal 7 MW) gas combustion turbine (CT) at its State Street substation in Auburn, New York. As a demonstration project supported through EPRI's Tailored Collaboration (TC) program, it is intended to aid in better understanding the "complete picture" for siting this particular technology as a distributed resource (DR).

2001-12-14T23:59:59.000Z

45

Clean Coal Diesel Demonstration Project  

DOE Green Energy (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

46

Brown Grease to Biodiesel Demonstration Project Report  

Science Conference Proceedings (OSTI)

Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a good example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas. The research goals are given below: ?¢???¢ To validate technology performance; ?¢???¢ To determine the costs and benefits [including economic, socioeconomic, and GHG emissions reduction] associated with co-locating this type of operation at a municipal wastewater treatment plant (WWTP); ?¢???¢ To develop a business case or model for replication of the program by other municipal agencies (as applicable). In order to accomplish the goals of the project, the following steps were performed: 1. Operation of a demonstration facility designed to receive 10,000 to 12,000 gallons of raw Trap Waste each day from private Trap Waste hauling companies. The demonstration facility was designed and built by Pacific Biodiesel Technologies (PBTech). The demonstration facility would also recover 300 gallons of Brown Grease per day from the raw Trap Waste. The recovered Brown Grease was expected to contain no more than 2% Moisture, Insolubles, and Unsaponifiables (MIU) combined. 2. Co-digestion of the side streams (generated during the recovery of 300 gallons of Brown Grease from the raw Trap Waste) with wastewater sludge in the WWTP?¢????s anaerobic digesters. The effects of the side streams on anaerobic digestion were quantified by comparison with baseline data. 3. Production of 240 gallons per day of ASTM D6751-S15 grade Biodiesel fuel via a Biodiesel conversion demonstration facility, with the use of recovered Brown Grease as a feedstock. The demonstration facility was designed and built by Blackgold Biofuels (BGB). Side streams from this process were also co-digested with wastewater sludge. Bench-scale anaerobic digestion testing was conducted on side streams from both demonstration facilities to determine potential toxicity and/or changes in biogas production in the WWTP anaerobic digester. While there is a lot of theoretical data available on the lab-scale production of Biodiesel from grease Trap Waste, this full-scale demonstration project was one of the first of its kind in the United States. The project?¢????s environmental impacts were expected to include: ?¢???¢ Reduction of greenhouse gas emissions by prevention of the release of methane at landfills. Although the combustion product of Biod

San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold; Carollo Engineers

2013-01-30T23:59:59.000Z

47

The ITER Project: International Collaboration to Demonstrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

ITER Project: International Collaboration to Demonstrate Nuclear Fusion American Fusion News Category: U.S. ITER Link: The ITER Project: International Collaboration to Demonstrate...

48

Automated Demand Response Technology Demonstration Project for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings...

49

High-Temperature Superconductivity Cable Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into...

50

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

Science Conference Proceedings (OSTI)

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z

51

VERIFICATION SURVEY REPORT OF THE SOUTH WASTE TANK FARM TRAINING/TEST TOWER AND HAZARDOUS WASTE STORAGE LOCKERS AT THE WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY, NEW YORK  

SciTech Connect

A team from ORAUs Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the sites conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Phyllis C. Weaver

2012-08-29T23:59:59.000Z

52

Mixed Waste Landfill Integrated Demonstration; Technology summary  

SciTech Connect

The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

NONE

1994-02-01T23:59:59.000Z

53

Landfill Gas-to-Electricity Demonstration Project  

DOE Green Energy (OSTI)

Medium Btu methane gas is a naturally occurring byproduct of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10% of the natural gas used annually in the state. The 18-month Landfill Gas-to-Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

Not Available

1982-10-01T23:59:59.000Z

54

Demonstration Project 111 ITS/CVO Technology Truck Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

1277 Demonstration Project 111 ITSCVO Technology Truck Final Project Report December 2001 Prepared by G. J. Capps, ORNL Project Manager K. P. Gambrell, Technical Associate K. L....

55

Buried waste integrated demonstration FY 94 deployment plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is a program funded by the U.S. Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The fiscal year (FY) 1994 effort will fund thirty-eight technologies in five areas of buried waste site remediation: site characterization, waste characterization, retrieval, treatment, and containment/stabilization. This document is the basic operational planning document for deployment of all BWID projects. Discussed in this document are the BWID preparations for INEL field demonstrations, INEL laboratory demonstrations, non-INEL demonstrations, and paper studies. Each technology performing tests will prepare a test plan to detail the specific procedures, objectives, and tasks of each test. Therefore, information specific to testing each technology is intentionally omitted from this document.

Hyde, R.A.; Walker, S.; Garcia, M.M.

1994-05-01T23:59:59.000Z

56

Buried Waste Integrated Demonstration Strategy Plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology`s threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

Kostelnik, K.M.

1993-02-01T23:59:59.000Z

57

Buried Waste Integrated Demonstration Strategy Plan  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that form a comprehensive remediation system for the effective and efficient remediation of buried waste. These efforts are identified and coordinated in support of the US Department of Energy (DOE), Environmental Restoration and Waste Management (ERWM) needs and objectives. The present focus of BWID is to support retrieval and ex situ treatment configuration options. Future activities will explore and support containment and stabilization efforts in addition to the retrieval/ex situ treatment options. Long and short term strategies of the BWID are provided. Processes for identifying technological needs, screening candidate technologies for BWID applicability, researching technical issues, field demonstrating technologies, evaluating demonstration results to determine each technology's threshold of capability, and commercializing successfully demonstrated technologies for implementation for environmental restoration also are presented in this report.

Kostelnik, K.M.

1993-02-01T23:59:59.000Z

58

West Valley Demonstration Project Transportation Emergency Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance...

59

Demonstration of Mixed Waste Debris Macroencapsulation Using Sulfur Polymer Cement  

SciTech Connect

This report covers work performed during FY 1997 as part of the Evaluation of Sulfur Polymer Cement Fast-Track System Project. The project is in support of the ``Mercury Working Group/Mercury Treatment Demonstrations - Oak Ridge`` and is described in technical task plan (TTP) OR-16MW-61. Macroencapsulation is the treatment technology required for debris by the U.S. Environmental Protection Agency Land Disposal Restrictions (LDR) under the Resource Conservation and Recovery Act. Based upon the results of previous work performed at Oak Ridge, the concept of using sulfur polymer cement (SPC) for this purpose was submitted to the Mixed Waste Focus Area (MWFA). Because of the promising properties of the material, the MWFA accepted this Quick Win project, which was to demonstrate the feasibility of macroencapsulation of actual mixed waste debris stored on the Oak Ridge Reservation. The waste acceptance criteria from Envirocare, Utah, were chosen as a standard for the determination of the final waste form produced. During this demonstration, it was shown that SPC was a good candidate for macroencapsulation of mixed waste debris, especially when the debris pieces were dry. The matrix was found to be quite easy to use and, once the optimum operating conditions were identified, very straightforward to replicate for batch treatment. The demonstration was able to render LDR compliant more than 400 kg of mixed wastes stored at the Oak Ridge National Laboratory.

Mattus, C.H.

1998-07-01T23:59:59.000Z

60

Vehicle to Grid Demonstration Project  

SciTech Connect

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Independent Oversight Review, West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review, West Valley Demonstration Project Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000 Transportation Emergency Management Review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) The U.S. Department of Energy (DOE) Office of Emergency Management Oversight, within the Secretary of Energy's Office of Independent Oversight and Performance Assurance, conducted a transportation emergency management review of the West Valley Demonstration Project (WVDP) and National Transportation Program (NTP)/Transportation Compliance Evaluation/Assistance Program (TCEAP) in September 2000.

62

LADWP FUEL CELL DEMONSTRATION PROJECT  

SciTech Connect

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

63

LADWP FUEL CELL DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

64

Buried Waste Integrated Demonstration stakeholder involvement model  

Science Conference Proceedings (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94.

Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

1994-04-01T23:59:59.000Z

65

Navy fuel cell demonstration project.  

DOE Green Energy (OSTI)

This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

Black, Billy D.; Akhil, Abbas Ali

2008-08-01T23:59:59.000Z

66

Independent Activity Report, West Valley Demonstration Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - July 2012 Independent Activity Report, New Brunswick Laboratory - November 2011 Orientation Visit to the Paducah Gaseous Diffusion Plant,...

67

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG&G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG&G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

68

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

69

Independent Activity Report, West Valley Demonstration Project - July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project - West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West Valley Demonstration Project [HIAR WVDP-2012-07-30] The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). In the fall of 2011, a new contractor, CH2M Hill-B&W West Valley (CHBWV), was selected to perform site operations for Phase 1 decommissioning and facility disposition, including the Main Plant Process Building, the Low-Level Waste Treatment Facility, and other facilities.

70

Categorical Exclusion Determinations: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Valley Demonstration Valley Demonstration Project Categorical Exclusion Determinations: West Valley Demonstration Project Categorical Exclusion Determinations issued by West Valley Demonstration Project. DOCUMENTS AVAILABLE FOR DOWNLOAD July 11, 2013 CX-010718: Categorical Exclusion Determination Replacement Ventilation System for the Main Plant Process Building CX(s) Applied: B6.3 Date: 07/11/2013 Location(s): New York Offices(s): West Valley Demonstration Project December 20, 2012 CX-009527: Categorical Exclusion Determination WVDP-2012-02 Routine Maintenance CX(s) Applied: B1.3 Date: 12/20/2012 Location(s): New York Offices(s): West Valley Demonstration Project August 2, 2012 CX-009528: Categorical Exclusion Determination WVDP-2012-01 WVDP Reservoir Interconnecting Canal Maintenance Activities

71

Milestone Project Demonstrates Innovative Mercury Emissions Reduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milestone Project Demonstrates Innovative Mercury Emissions Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology Milestone Project Demonstrates Innovative Mercury Emissions Reduction Technology January 12, 2010 - 12:00pm Addthis Washington, DC - An innovative technology that could potentially help some coal-based power generation facilities comply with anticipated new mercury emissions standards was successfully demonstrated in a recently concluded milestone project at a Michigan power plant. Under a cooperative agreement with the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a $52.9million project at the Presque Isle Power Plant in Marquette, Mich. TOXECON is a relatively cost-effective option for achieving significant reductions in mercury emissions and increasing the

72

Waste Management Process Improvement Project  

SciTech Connect

The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

Atwood, J.; Borden, G.; Rangel, G. R.

2002-02-25T23:59:59.000Z

73

Power Plant Optimization Demonstration Projects Cover Photos:  

NLE Websites -- All DOE Office Websites (Extended Search)

5 SEPTEMBER 2007 5 SEPTEMBER 2007 Power Plant Optimization Demonstration Projects Cover Photos: * Top left: Coal Creek Station * Top right: Big Bend Power Station * Bottom left: Baldwin Energy Complex * Bottom right: Limestone Power Plant A report on four projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * Tampa Electric Company * Pegasus Technologies * NeuCo. , Inc.  Power Plant Optimization Demonstration Projects Executive Summary .......................................................................................4 Background: Power Plant Optimization ......................................................5 Lignite Fuel Enhancement Project ...............................................................8

74

Tidd PFBC Demonstration Project, A DOE Assessment  

Science Conference Proceedings (OSTI)

The Clean Coal Technology (CCT) Demonstration Program is a government and industry co-funded technology development effort to demonstrate a new generation of innovative coal utilization processes. One goal of the program is to furnish the energy marketplace with a variety of energy efficient, environmentally superior coal-based technologies. Demonstration projects seek to establish the commercial feasibility of the most promising coal technologies that have proceeded beyond the proof-of-concept stage. This report is a post-project assessment of the DOE CCT Demonstration Program, the Tidd PFBC Demonstration Project. A major objective of the CCT Program is to provide the technical data necessary for the private sector to proceed confidently with the commercial replication of the demonstrated technologies. An essential element of meeting this goal is the dissemination of results from the demonstration projects. This post-project assessment (PPA) report is an independent DOE appraisal of the successes that the completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology, as well as an analysis of the commercial market.

National Energy Technology Laboratory

2001-08-31T23:59:59.000Z

75

Hampton Roads Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Roads Demonstration Project Roads Demonstration Project Jump to: navigation, search Name Hampton Roads Demonstration Project Facility Hampton Roads Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Virginia State Government Location Chesapeake Bay VA Coordinates 36.965°, -76.289° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.965,"lon":-76.289,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

NETL: News Release - Milestone Project Demonstrates Innovative...  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), WE Energies demonstrated the TOXECON(TM) process in a 52.9million project at the Presque...

77

Grays Harbor Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Name Grays Harbor Demonstration Project Facility Grays Harbor Demonstration Project Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Grays Harbor Ocean Energy Company LLC Developer Grays Harbor Ocean Energy Company LLC Location Pacific Ocean Coordinates 46.858°, -124.187° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.858,"lon":-124.187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

LIMB Demonstration Project Extension and Coolside Demonstration. [Final report  

SciTech Connect

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison`s Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0{sub 2} removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0{sub 2} emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

79

Smart Grid Demonstration Project Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Demonstration Project Locations Smart Grid Demonstration Project Locations Map of the United States showing the location of Smart Grid Demonstration projects created...

80

3M's Motor Challenge Showcase Demonstration Project  

E-Print Network (OSTI)

In January 1994, 3M began the task of optimizing the electric motor systems at 3M Center, a 26 building, 7 million square foot corporate campus. A cross-functional, cross-company team was established which included four 3M employees representing two different departments within 3M, an engineer specializing in demand side management programs from Northern States Power Company, and a sales engineer from General Electric Supply Company. The team was later joined by an engineering specialist from Landis & Staefa, Inc., a building automation controls supplier. The team began the task of identifying the projects that could save energy and provide a reasonable return on 3M's investment on a building by building approach. As surveys were completed, proposals were prepared and presented to management requesting funding. The team continued the process of identifying projects in remaining buildings and took on the responsibility of designing, contracting and implementing projects as funding was approved for those already studied. Follow-up measurements to ascertain that the savings predicted was actually achieved are done before project close-out. This project was submitted and accepted as a Motor Challenge Showcase Demonstration Project. The Motor Challenge is a U.S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase Project is different from most as it emphasizes the process that was developed to carry out a project of this magnitude rather than any single specific technologies or applications. The team has completed the project at 3M Center. Measured savings are $823,000 per year. This paper will discuss the Motor Challenge Showcase Demonstration project that was completed at 3M Center, the motor systems survey methodology the team developed, analysis tools and techniques and the results that have been attained.

Schultz, S. C.

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

3M's Motor Challenge Showcase Demonstration Project  

E-Print Network (OSTI)

In January 1994, 3M began the task of optimizing the electric motor systems at 3M Center, a 26 building, 7 million square foot corporate campus. A cross-functional, cross-company team was established which included four 3M employees representing two different departments within 3M, an engineer specializing in demand side management programs from Northern States Power Company, and a sales engineer from General Electric Supply Company. The team was later joined by an engineering specialist from Landis & Gyr, Inc., a building automation controls supplier. The team began the task of identifying the projects that could save energy and provide a reasonable return on 3M's investment on a building by building approach. As surveys were completed, proposals were prepared and presented to management requesting funding. The team continued the process of identifying projects in remaining buildings and took on the responsibility of designing, contracting and implementing projects as funding was approved for those already studied. Follow-up measurements to ascertain that the savings predicted was actually achieved are done before project close-out. This project was submitted and has been accepted as a Motor Challenge Showcase Demonstration Project. The Motor Challenge is a U. S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase Project is different from most as it emphasizes the process that was developed to carry out a project of this magnitude rather than any single specific technologies or applications. The team has nearly completed the studies at 3M Center and is well into the implementation phase with six buildings being complete. Savings identified to date are approximately $810,000 per year. This paper will discuss the Motor Challenge Showcase Demonstration project currently underway at 3M Center, the motor systems survey methodology the team developed, analysis tools and techniques and the results that have been attained.

Schultz, S. C.

1996-04-01T23:59:59.000Z

82

Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste  

SciTech Connect

The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

2012-07-10T23:59:59.000Z

83

Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste  

SciTech Connect

The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

2011-09-01T23:59:59.000Z

84

Pecan Street Project, Inc. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Project, Inc. Smart Grid Demonstration Project Project, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead Pecan Street Project, Inc. Country United States Headquarters Location Austin, Texas Recovery Act Funding $10,403,570.00 Total Project Value $24,656,485.00 Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

85

Advanced Coal Conversion Process Demonstration (Project)  

DOE Green Energy (OSTI)

This report contains a description of technical progress made on the Advanced Coal Conversion Process Demonstration Project (ACCP). The project is a US Department of Energy Innovative Clean Coal Technology Project. The cooperative agreement defining the project is between DOE and the Rosebud SynCoal Partnership RSCP. The RSCP is a partnership between Western Energy Company (WECo), a subsidiary of Entech, Montana Power's non-utility group, and NRG, a subsidiary of Northern States Power. The ACCP is a method of upgrading low ranked coals by reducing the moisture and sulfur content and increasing the heating value. The facility is being constructed at WECo's Rosebud No. 6 coal mine, west of Colstrip, Montana. This report contains both a history of the process development and a report of technical progress made since the beginning of the Clean Coal 1 cooperative agreement.

Not Available

1991-07-01T23:59:59.000Z

86

Poland petroleum refinery sludge lagoon demonstration project  

SciTech Connect

The US Department of Energy and the Institute for Ecology of Industrial Area have been working together to develop mutually beneficial, cost-effective environmental remediation technologies such as the demonstration of bioremediation techniques for the clean up of acidic petroleum sludge impacted soils at an oil refinery in southern Poland. After an expedited site characterization, treatability study, and a risk assessment study, a remediation strategy was devised. The waste material was composed primarily of high molecular weight paraffinic and polynuclear aromatic hydrocarbons. A biopile design which employed a combination of passive and active aeration in conjunction with nutrient and surfactant application as used to increase the biodegradation of the contaminants of concern.

Altman, D.J.

2000-05-05T23:59:59.000Z

87

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

Science Conference Proceedings (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Detailed studies of LTV's site for the installation of the commercial Demonstration Unit with site specific layouts; Environmental Work; Firm commitments for funding from the private sector; and Federal funding to complement the private contribution.

Albert Calderon

1999-06-23T23:59:59.000Z

88

Demonstrating Reliable High Level Waste Slurry Sampling Techniques to Support Hanford Waste Processing - 14194  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HL W) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOC must demonstrate the ability to adequately mix and sample high-level waste feed to meet the WTP Waste Acceptance Criteria and Data Quality Objectives. The sampling method employed must support both TOC and WTP requirements. To facilitate information transfer between the two facilities the mixing and sampling demonstrations are led by the One System Integrated Project Team. The One System team, Waste Feed Delivery Mixing and Sampling Program, has developed a full scale sampling loop to demonstrate sampler capability. This paper discusses the full scale sampling loops ability to meet precision and accuracy requirements, including lessons learned during testing. Results of the testing showed that the Isolok(R) sampler chosen for implementation provides precise, repeatable results. The Isolok(R) sampler accuracy as tested did not meet test success criteria. Review of test data and the test platform following testing by a sampling expert identified several issues regarding the sampler used to provide reference material used to judge the Isolok?'s accuracy. Recommendations were made to obtain new data to evaluate the sampler's accuracy utilizing a reference sampler that follows good sampling protocol.

Kelly, Steven E.

2013-11-11T23:59:59.000Z

89

Demonstration Development Project: Large-Scale Post-Combustion CO2 Capture Retrofit Demonstration Project Review  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has reviewed proposed demonstration sites for retrofitting post-combustion CO2 capture onto an existing coal-fired plant. This report discusses and reviews this set of demonstration projects to provide background information and the rationale for EPRI to pursue being involved in one or more of these projects.

2010-12-17T23:59:59.000Z

90

Category:Smart Grid Projects - Regional Demonstrations | Open Energy  

Open Energy Info (EERE)

Demonstrations Demonstrations Jump to: navigation, search Smart Grid Regional Demonstrations Projects category. Pages in category "Smart Grid Projects - Regional Demonstrations" The following 16 pages are in this category, out of 16 total. B Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project C Center for the Commercialization of Electric Technologies Smart Grid Demonstration Project Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid Demonstration Project Consolidated Edison Company of New York, Inc. Smart Grid Demonstration Project K Kansas City Power & Light Company Smart Grid Demonstration Project L Long Island Power Authority Smart Grid Demonstration Project L cont. Los Angeles Department of Water and Power Smart Grid Demonstration Project

91

Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste  

Science Conference Proceedings (OSTI)

'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

2011-08-15T23:59:59.000Z

92

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

93

Duke Energy Notrees Wind Storage Demonstration Project  

Science Conference Proceedings (OSTI)

This EPRI technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the 152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple ...

2012-12-12T23:59:59.000Z

94

All-Electric Wendy's Restaurant Demonstration Project  

Science Conference Proceedings (OSTI)

How well can the power needs of a small restaurant be met by an all-electric solution? This demonstration project at a fast-food restaurant investigated the energy and economic performance of a suite of high-efficiency electro-technologies including an all-electric cookline; high efficiency lighting; and heat pumps for water heating, space heating, and cooling. The all-electric concept proved to be competitive with the more conventional gas/electric model.

1999-09-16T23:59:59.000Z

95

Session 9: Heber Geothermal Binary Demonstration Project  

DOE Green Energy (OSTI)

The Heber Binary Project had its beginning in studies performed for the Electric Power Research Institute (EPRI), which identified the need for commercial scale (50 Mw or larger) demonstration of the binary cycle technology. In late 1980, SDG&E and the Department of Energy (DOE) signed a Cooperative Agreement calling for DOE to share in 50 percent of the Project costs. Similarly, SDG&E signed Project participation agreements with EPRI, the Imperial Irrigation District, California Department of Water Resources, and Southern California Edison Company, which provided the remaining 50 percent of the required funding. In 1982, the State of California also joined the Project. The objectives of the Heber Binary Project are to demonstrate the potential of moderate-temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology, and to establish schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants. The plant will be the first large-scale power generating facility in the world utilizing the binary conversion process, and it is expected that information resulting from this Project will be applicable to a wide range of moderate-temperature hydrothermal reservoirs, which represent 80 percent of geothermal resources in the United States. To accomplish the plant engineering, design, and equipment procurement, SDG&E has hired Fluor Engineers, Inc., Power Division, of Irvine, California. In early 1982, SDG&E contracted for construction management services with Dravo Constructors, Inc. (DCI) of New York. DCI is responsible for casting the Fluor design into construction packages, letting the construction contracts, and overseeing the construction in the field.

Allen, Richard F.; Nelson, Tiffany T.

1983-12-01T23:59:59.000Z

96

Demonstration project Smart Charging (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

project Smart Charging (Smart Grid Project) project Smart Charging (Smart Grid Project) Jump to: navigation, search Project Name Demonstration project Smart Charging Country Netherlands Headquarters Location Noord-Brabant, Netherlands Coordinates 51.482655°, 5.232169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.482655,"lon":5.232169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

West Valley Demonstration Project Administrative Consent Order, August 27, 1996  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project (WVDP) Adminstrative Consent Order, August 27, 1.. Page 1 of 15 Project (WVDP) Adminstrative Consent Order, August 27, 1.. Page 1 of 15 EM Home | Regulatory Compliance | Environmental Compliance Agreements West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION AND THE UNITED STATES DEPARTMENT OF ENERGY EPA ID NUMBER NYD980779540 In the Matter of | | UNITED STATES | ORDER DEPARTMENT OF ENERGY, | Docket No. __________ | RESPONDENT | ___________________________| Table of Contents Parties Jurisdiction Purpose and Scope Statement of Facts & Conclusions of Law I. Implementation of the STP II Annual Updates III. Establishing Milestones and Planning Schedule Activity IV. Covered Matters V. Inclusion of New Waste Streams VI. Amendments VII. Project Managers

98

Heat Pump Water Heaters Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump Water Heaters Heat Pump Water Heaters Demonstration Project Building America Stakeholder Meeting Ron Domitrovic Ammi Amarnath 3/1/2012 Austin, TX 2 © 2011 Electric Power Research Institute, Inc. All rights reserved. HPWH Field Demonstration: Research Objectives * Assess heat pump water heater technology by measuring efficiency. * Provide credible data on the performance and reliability of heat pump water heaters. * Assess user satisfaction in a residential setting. 3 © 2011 Electric Power Research Institute, Inc. All rights reserved. Demonstration Host Utilities Target: 40 Units per Utility Installed and Potential Sites by Climate Zone Source: Department of Energy (DOE), Building America climate regions 4 © 2011 Electric Power Research Institute, Inc. All rights reserved. Installation Locations-Southern Company Region

99

Savannah River Site Waste Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terrel J. Spears Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate Volume Curies 397 Million Curies (MCi) 212 MCi (54%) 185 MCi (46%) Gallons (Mgal) 36.5 Million 33.5 Mgal (92%) 3.0 Mgal (8%) Liquid Waste Background Liquid Waste Background * 2 tanks closed * 49 tanks remaining to close - aging, carbon steel - 27 compliant, 22 non-compliant - 12 have known leak sites

100

Newberry EGS Demonstration Project Environmental Analysis (EA)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newberry Volcano Enhanced Geothermal System (EGS) Demonstration Project UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT (BLM) DOI-BLM-OR-P000-2011-0003-EA DOE/EA-1897 ENVIRONMENTAL ASSESSMENT DECEMBER 2011 Location: Federal Geothermal Leases on the West Flank of Newberry Volcano, Deschutes County, 22 miles south of Bend, Oregon Applicant: Davenport Newberry Holdings LLC and AltaRock Energy, Inc. 225 NW Franklin Avenue, Suite 1 Bend, OR 97701 Tel: 541-323-1190 Lead Agency: U.S. Department of the Interior,

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

Science Conference Proceedings (OSTI)

This project deals with the demonstration of a coking reactor (Process Development Unit-- PDU-11) using Calderon's proprietary technology for making commercially acceptable coke. The activities of the past quarter were focused on the following: 1. Testing and Designing of the Submerged Quenching Closed System for the Process; 2. Usage of the Cracked Desulfurized Gas as a Reducing Gas to Make Directly Reduced Iron (DRI) in Order to Make the Process Economics Viable; 3. Changes in the Ceramic Liners for Supporting Them in the Coking Reactor; 4. Work Towards Testing of U.S. Steel's Coal in the Existing Process Development Unit in Alliance (PDU-1); 5. Permitting.

Albert Calderon

1998-04-08T23:59:59.000Z

102

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

103

MHK Projects/Pulse Stream 100 Demonstration Project | Open Energy  

Open Energy Info (EERE)

Pulse Stream 100 Demonstration Project Pulse Stream 100 Demonstration Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.6405,"lon":-0.16257,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

104

Alaska village demonstration projects. Report to the Congress  

SciTech Connect

The Alaska Village Demonstration Projects (AVDP) were authorized by Section 113, P.L. 92-500 (86 STAT 816), for the purpose of demonstrating methods to improve sanitary conditions in native villages of Alaska. Central community facilities have been constructed in the native villages of Emmonak and Wainwright to provide a safe water supply; toilets, bathing, and laundry facilities; and sewage and solid waste disposal. Although there has not been enough time to allow full operation and evaluation of these facilities, it is apparent that the technology is available to provide these basic utility services to the demonstration villages. A major issue still to be addressed is the lack of clear responsibility for the operation and maintenance of the facilities after the Environmental Protection Agency demonstration program is completed. Adequate local resources to operate the installations are lacking. Continued experience with the AVDP is needed to complete evaluation and develop recommendations in relation to the establishment of a statewide program.

1973-07-01T23:59:59.000Z

105

Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy  

Open Energy Info (EERE)

Energy Storage Demonstrations Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects - Energy Storage Demonstrations" The following 16 pages are in this category, out of 16 total. 4 44 Tech Inc. Smart Grid Demonstration Project A Amber Kinetics, Inc. Smart Grid Demonstration Project B Beacon Power Corporation Smart Grid Demonstration Project C City of Painesville Smart Grid Demonstration Project D Duke Energy Business Services, LLC Smart Grid Demonstration Project E East Penn Manufacturing Co. Smart Grid Demonstration Project K Ktech Corporation Smart Grid Demonstration Project N New York State Electric & Gas Corporation Smart Grid Demonstration Project P Pacific Gas & Electric Company Smart Grid Demonstration Project

106

Property:Did The Test Results Demonstrate Projected Performance...  

Open Energy Info (EERE)

Did The Test Results Demonstrate Projected Performance? Jump to: navigation, search Property Name Did The Test Results Demonstrate Projected Performance? Property Type Text...

107

DOE Funds 21 Research, Development and Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems DOE Funds 21 Research, Development and Demonstration Projects for up to 78...

108

Smart Grid Regional and Energy Storage Demonstration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional and Energy Storage Demonstration Projects: Awards Smart Grid Regional and Energy Storage Demonstration Projects: Awards List of Smart Grid Regional and Energy Storage...

109

LIMB Demonstraton Project Extension and Coolside Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

- giving rise to the acronym LIMB. The solid waste products are removed in an existing electrostatic precipitator (ESP) or baghouse. Although studied previously, furnace sorbent...

110

High-Temperature Superconductivity Cable Demonstration Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Temperature Temperature Superconductivity Cable Demonstration Projects Superconductivity Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585. Plugging America Into the Future of Power "A National Effort to Introduce New Technology into the Power Delivery Infrastructure" "In order to meet President Obama's ambitious energy goals, we must modernize the nation's electrical grid to improve the transmission, storage and reliability of clean energy across the country and help to move renewable energy from the places it can be produced to the places it can be used. The Department of Energy is working with industry partners to develop the

111

Controlled Hydrogen Fleet and Infrastructure Demonstration Project  

DOE Green Energy (OSTI)

This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

Dr. Scott Staley

2010-03-31T23:59:59.000Z

112

Controlled Hydrogen Fleet and Infrastructure Demonstration Project  

SciTech Connect

This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

Dr. Scott Staley

2010-03-31T23:59:59.000Z

113

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

114

PFBC Utility Demonstration Project. Annual report, 1991  

Science Conference Proceedings (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 & 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP`s proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

115

The Way Ahead - West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 19817_1 The Way Ahead The Way Ahead Bryan Bower, DOE Director HLW Corporate Board October 6, 2008 FY 2008 Accomplishments Safety Performance Planned vs Actual 2.1 2.3 2 2 2.3 1.9 1.9 1.5 2 2.5 Actual Performance 1 Million Hours (9/3/08) 2007 DOE complex avg. TRC Safety Performance Planned vs Actual 2.1 2.3 2 2 2.3 1.9 1.9 1.5 2 2.5 Actual Performance 1 Million Hours (9/3/08) 2007 DOE complex avg. TRC One Million One Million Safe Work Hours! Safe Work Hours! TRC 0.5 DART 0.0 No lost-time injuries in FY 2008 Not to be Considered as a Regulatory Submittal Pre-decisional Draft 19817_2 0 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.4 1.4 0.8 0.3 0.3 0.3 1.2 1.2 1.3 1.3 1.0 0.8 0.8 0.3 0.3 0.3 0.3 0 0.5 1 Sep -07 O ct-07 Nov-07 Dec-07 Jan-08 Feb-08 Mar-08 Apr-08 May-08 Ju n-08

116

Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management`s technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies` effectiveness over the complete range of expected wastestream compositions.

Bates, S.O.

1993-06-01T23:59:59.000Z

117

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

118

ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

ADVANCED MIXED WASTE TREATMENT PROJECT Idaho Treatment Group, LLC (ITG) Contract No. DE-EM0001467 You are here: DOE-ID Home > Contracts, Financial Assistance & Solicitations >...

119

WSF Biodiesel Demonstration Project Final Report  

Science Conference Proceedings (OSTI)

In 2004, WSF canceled a biodiesel fuel test because of product quality issues that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and engines. Each test vessel did experience a microbial growth bloom that produced a build up of material in the fuel purifiers similar to material witnessed in the 2004 fuel test. A biocide was added with each fuel shipment and the problem subsided. In January of 2009, the WSF successfully completed an eleven month biodiesel fuel test using approximately 1,395,000 gallons of biodiesel blended fuels. The project demonstrated that biodiesel can be used successfully in marine vessels and that current ASTM specifications are satisfactory for marine vessels. Microbial growth in biodiesel diesel interface should be monitored. An inspection of the engines showed no signs of being negatively impacted by the test.

Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

2009-04-30T23:59:59.000Z

120

Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan  

SciTech Connect

The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

Randklev, E.H.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transmutation of Nuclear Waste and the future MYRRHA Demonstrator  

E-Print Network (OSTI)

While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at a short introduction into the field that has been characterized by a high collaborative activity during the last decade in Europe, in order to focus, in its later part, on the MYRRHA project as the European ADS technology demonstrator.

Alex C. Mueller

2012-10-16T23:59:59.000Z

122

Small-Scale Hydroelectric Power Demonstration Project  

DOE Green Energy (OSTI)

The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

Gleeson, L.

1991-12-01T23:59:59.000Z

123

Fuel cycle and waste management demonstration in the IFR Program  

Science Conference Proceedings (OSTI)

Argonne's National Laboratory's Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. (Argonne National Lab., Idaho Falls, ID (United States)); Laidler, J.J.; Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

124

Fuel cycle and waste management demonstration in the IFR Program  

SciTech Connect

Argonne`s National Laboratory`s Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States); Laidler, J.J.; Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States)

1992-09-01T23:59:59.000Z

125

Water and Wastewater Technology Demonstration Projects  

Science Conference Proceedings (OSTI)

This project was funded jointly by the Electric Power Research Institute (EPRI), Southern California Edison (SCE), and the California Energy Commission (CEC), with project management by SCE. The primary objective was to identify and develop technologies that could help California's water/wastewater industry reduce the cost of water and wastewater treatment and improve the overall operation at treatment facilities. Metropolitan Water District (MWD) and Orange County Water District (OCWD) were commissioned...

2002-07-15T23:59:59.000Z

126

NETL: Clean Coal Demonstrations - Project Performance Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification...

127

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

DOE Green Energy (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2010.

Wipke, K.; Spirk, S.; Kurtz, J.; Ramsden, T.

2010-09-01T23:59:59.000Z

128

Uranium soils integrated demonstration: Soil characterization project report  

Science Conference Proceedings (OSTI)

An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

129

Project Green Thumb: A Demonstration in Wisconsin  

Science Conference Proceedings (OSTI)

A prototype of NOAA's proposed Green Thumb agricultural information dissemination system was demonstrated at five different sites across Wisconsin during the period JulyOctober 1979. Those viewing the system were asked to complete questionnaires ...

David Suchman

1980-04-01T23:59:59.000Z

130

Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project

131

Utility Scale Wind turbine Demonstration Project  

SciTech Connect

The purpose of the Three Affiliated Tribes proposing to Department of Energy was nothing new to Denmark. National Meteorological Studies have proved that North Dakota has some of the most consistence wind resources in the world. The Three Affiliated Tribes wanted to assess their potential and become knowledgeable to developing this new and upcoming resource now valuable. By the Tribe implementing the Utility-scale Wind Turbine Project on Fort Berthold, the tribe has proven the ability to complete a project, and has already proceeded in a feasibility studies to developing a large-scale wind farm on the reservation due to tribal knowledge learned, public awareness, and growing support of a Nation wanting clean renewable energy. The tribe is working through the various measures and regulations with the want to be self-sufficient, independent, and marketable with 17,000 times the wind energy needed to service Fort Berthold alone.

Terry Fredericks

2006-03-31T23:59:59.000Z

132

West Valley Demonstration Project Phase I Decommissioning - Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Phase I Decommissioning - Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement The Department of Energy, West Valley Demonstration Project (DOE-WVDP) and CH2M Hill B&W West Valley (CHBWV) are committed to continuous improvement and will utilize principles of the DOE Environmental Management (DOE-EM) Partnering Policy to create and foster a team environment to successfully complete the West Valley Demonstration Project (WVDP) Phase I Decommissioning - Faciltiy Disposition. West Valley Demonstration Project Phase I Decommissioning - Facility Disposition Partnering Performance Agreement More Documents & Publications CX-009527: Categorical Exclusion Determination

133

An overview of the Mixed Waste Landfill Integrated Demonstration  

SciTech Connect

The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ``in-situ`` characterization, monitoring, remediation, and containment of landfills in and environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies. Key goals of the MWLID are routine use of these technologies by Environmental Restoration Groups throughout the DOE complex and commercialization of these technologies to the private sector. The MWLID is demonstrating technologies at hazardous waste landfills located at Sandia National Laboratories and on Kirtland Air Force Base. These landfills have been selected because they are representative of many sites throughout the Southwest and in other and climates.

Williams, C.V.; Burford, T.D.; Betsill, J.D.

1994-07-01T23:59:59.000Z

134

Operational results of National Solar Demonstration Projects  

Science Conference Proceedings (OSTI)

Included in the National Solar Demonstration Program are examples of earth-sheltered, passive solar designs. The data obtained from these sites presents an interesting look at what is both technically and economically feasible. Data from four demonstration sites that are members of the National Solar Data Network are utilized to present an economic and technical analyses of a group of four sites. Three of these sites are earth sheltered residential structures, the fourth is a commercial passive structure. This sample of four demonstration sites is not intended to provide a statistical representation of passive earth sheltered structures, but rather, an example of the type of information available through the National Solar Data Program and how this information may be utilized.

Waite, E.V.

1981-01-01T23:59:59.000Z

135

East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Manufacturing Co. Smart Grid Demonstration Project Manufacturing Co. Smart Grid Demonstration Project Jump to: navigation, search Project Lead East Penn Manufacturing Co. Country United States Headquarters Location Lyon Station, Pennsylvania Recovery Act Funding $2,245,523.00 Total Project Value $4,491,046.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The East Penn Manufacturing Co. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in Lyon Station, Pennsylvania. Overview Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and manage energy demand. This project

136

Newberry Volcano EGS Demonstration Geothermal Project | Open Energy  

Open Energy Info (EERE)

Volcano EGS Demonstration Geothermal Project Volcano EGS Demonstration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Newberry Volcano EGS Demonstration Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The project will demonstrate EGS power generation from the Newberry Known Geothermal Resource Area ("Newberry"). Four deep, high temperature, very low permeability, production-size wells have been completed at Newberry, including two currently owned by Davenport. The Newberry project site exemplifies unparalleled EGS potential in the United States, with a large, high-temperature, conductive thermal anomaly yielding wells with permeability orders of magnitude less than conventional hydrothermal wells.

137

Innovative Manufactured Housing Urban Design Demonstration Project  

Science Conference Proceedings (OSTI)

One quarter of the new houses sold in the United States in 1999 were manufactured homes, and manufactured housing represents an important and growing market for power producers. One niche market opportunity for manufactured homes is in urban areas. EPRI facilitated the completion of two limited demonstrations of energy efficient manufactured homes designed specifically for urban neighborhoods.

2000-10-05T23:59:59.000Z

138

Newberry EGS Demonstration Project Environmental Analysis (EA...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

compl ex pathw ays, i s hi ghl y unl i kel y tracers w i l l be one of the onl y def i ni ti ve w ays to demonstrate communi cati on. 4 Suggested tracer analysis is...

139

Advanced Mixed Waste Treatment Project Achieves Impressive Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

140

Hanford Tank Waste Treatment and Immobilization Plan Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations Office Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations...

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nucla circulating atmospheric fluidized bed demonstration project  

Science Conference Proceedings (OSTI)

During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

Not Available

1991-01-31T23:59:59.000Z

142

Calderon Cokemaking Process/Demonstration Project  

Science Conference Proceedings (OSTI)

During this reporting period an agreement was entered into with Bechtel Corporation for design and construction of Calderon cokemaking facilities (see enclosed letter of February 28, 1997). A second agreement with Bechtel Enterprises to commercialize the Calderon technology as a worldwide business has progressed; during the forthcoming quarter, it is expected to have in place an agreement with Bechtel Enterprises (see attached letter of February 20, 1997). Thyssen Still Otto Anlagentechnik (TSOA), the world's largest builder of conventional cokemaking facilities indicated that it would be please to join Bechtel and Calderon in the demonstration and implementation of Calderon's cokemaking technology (see attached letter of January, 1997).

None

1998-04-08T23:59:59.000Z

143

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

Science Conference Proceedings (OSTI)

This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

144

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

SciTech Connect

The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

Not Available

1992-02-01T23:59:59.000Z

145

SRC-I Project Baseline. [SRC-I demonstration project near Owensboro, Kentucky  

SciTech Connect

The Process Design Criteria Specification forms the basis for process design for the 6000-TPSD SRC-I Demonstration Plant. It sets forth: basic engineering data, e.g., type and size of plant, feedstocks, product specifications, and atmospheric emission and waste disposal limits; utility conditions; equipment design criteria and sparing philosophy; and estimating criteria for economic considerations. Previously the formal ICRC Document No. 0001-01-002 has been submitted to DOE and revised, as necessary, to be consistent with the SRC-I Project Baseline. Revision 6, dated 19 March 1982, 51 pages, was forwarded to DOE on 19 March 1982.

None

1982-03-01T23:59:59.000Z

146

Site Programs & Cooperative Agreements: West Valley Demonstration Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration West Valley Demonstration Project Site Programs & Cooperative Agreements: West Valley Demonstration Project West Valley Demonstration Project The Seneca Nation of Indians has interests and concerns regarding the West Valley Demonstration Project Site. Like at Hanford, DOE environmental cleanup activities have the potential to impact natural and cultural resources and to interfere with American Indian religious practices. Through a cooperative agreement, tribal staff is engaged on a frequent basis with DOE and its contractors. The principle activities engaged by tribes include reviewing and commenting on plans and documents, participating in meetings at the request of DOE, monitoring cultural resource sites, participating in site surveys, and identifying issues that

147

Implementation of a Demonstration EGS Project at Naknek, Alaska...  

Open Energy Info (EERE)

Project Type Topic 2 EGS Demonstration Project Description NEA is about to begin drilling a deep, full-diameter well (Naknek-G 1, or simply G-1) that will be spudded in...

148

NETL: Clean Coal Demonstrations - Post-Project (DOE) Assessments  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Assessments DOE Assessments Clean Coal Demonstrations DOE Post-Project Assessments DOE Assessment of the Clean Coal Diesel Demonstration Project [PDF-590KB] DOE Assessment of the JEA Large-Scale CFB Combustion Demonstration Project [PDF-177KB] DOE Assessment of the Advanced Coal Conversion Process Demonstration [PDF-649KB] DOE Assessment of the Tampa Electric Integrated Gasification Combined-Cycle Demonstration Project [PDF-550KB] 500-MW Demonstration of Advanced Wall-Fired Combustion Techniques for the Reduction of Nitrogen Oxide (NOx) Emissions from Coal- Fired Boilers: A DOE Assessment [PDF-921KB] Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH™) Process [PDF-382KB] Healy Clean Coal Project: A DOE Assessment [PDF-713KB] Pulse Combustor Design: A DOE Assessment [PDF-569KB]

149

300kW Energy Storage Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kW Energy Storage Demonstration Project Technical Overview Presented at: Annual Doe Peer Review Meeting 2008 DOE Energy Storage & Power Electronics Research Programs By Ib I....

150

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project (Presentation)  

DOE Green Energy (OSTI)

This presentation, which provides information on the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project, was given at the Fuel Cell Seminar in November 2004.

Garbak, J.; Gronich, S.; Wipke, K.; Welch, C.

2004-11-01T23:59:59.000Z

151

Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Responses to Public Comments on the Draft Waste- Responses to Public Comments on the Draft Waste- Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Concentrator Feed Makeup Tank and Melter Feed Hold Tank 1 Introduction The U.S. Department of Energy (DOE) is providing responses to the comments received from the public and from state and county agencies on the West Valley Demonstration Project (WVDP) Draft Waste-Incidental-to-Reprocessing (WIR) Evaluation for the Concentrator Feed Makeup Tank (CFMT) and the Melter Feed Hold Tank (MFHT), referred to hereafter as the Draft Evaluation. As a matter of policy and to provide greater transparency in its efforts to cleanup waste at the WVDP, DOE made the Draft Evaluation available for public and state review and comment, as

152

Development of the Decontamination Approach for the West Valley Demonstration Project Decontamination Project Plan  

SciTech Connect

This paper details the development of a decontamination approach for the West Valley Demonstration Project (WVDP), Decontamination Project Plan (Plan). The WVDP is operated by West Valley Nuclear Services Company (WVNSCO), a subsidiary of Westinghouse Government and Environmental Services, and its parent companies Washington Group International and British Nuclear Fuels Limited (BNFL). The WVDP is a waste management effort being conducted by the United States Department of Energy (DOE) at the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States. This facility is part of the Western New York Nuclear Service Center (WNYNSC), which is owned by the New York State Energy Research and Development Authority (NYSERDA). As authorized by Congress in 1980 through the West Valley Demonstration Project Act (WVDP Act, Public Law 96-368), the DOE's primary mission at the WVDP is to solidify high-level liquid nuclear waste safely; transport the high-level waste (HLW) to a federal repository; and decontaminate and decommission the facilities and hardware used to solidify the HLW and conduct the WVDP. This includes a provision for the disposal of low-level waste (LLW) and transuranic waste (TRU) produced during processing of the HLW. Continuation of the effort to reduce the hazard and risk associated with historic operations to the extent needed to ensure the health and safety of the public and the environment will see a change in focus from stabilization of liquid HLW to stabilization of former plutonium and uranium extraction (PUREX) reprocessing plant facilities. This will be achieved through the activities of in-cell component removal and packaging, and preparation for long-term disposal of the long- lived radionuclides. These radionuclides are associated with the former PUREX facility operations, including, and upstream from, facilities utilized in the primary separation and first plutonium/uranium split cycles. The closure strategy for the WVDP is subject to ongoing evaluation and decision-making involving DOE and NYSERDA. Implementation will be subject to a future Record of Decision (ROD) and an Environmental Impact Statement (EIS).

Milner, T. N.; Watters, W. T.

2002-02-25T23:59:59.000Z

153

DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE  

DOE Green Energy (OSTI)

The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah River Site to demonstrate the processing of genuine plutonium contaminated wastes.

Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

2002-08-01T23:59:59.000Z

154

Waste management project technical baseline description  

SciTech Connect

A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

Sederburg, J.P.

1997-08-13T23:59:59.000Z

155

The integrated melter off-gas treatment systems at the West Valley Demonstration Project  

SciTech Connect

The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

Vance, R.F.

1991-12-01T23:59:59.000Z

156

West Valley Demonstration Project Administrative Consent Order, August 27, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project (WVDP) West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish commitments regarding compliance with the approved Site Treatment Plan (STP) regarding mixed waste stored and generated at the WVDP Parties DOE; New York State Department of Environmental Conservation (NYSDEC) Date 8/27/1996 SCOPE * Establish commitments regarding compliance with the approved Site Treatment Plan (STP) regarding mixed waste stored and generated at the WVDP. * Establish an enforceable framework in which DOE will develop and apply treatment or otherwise meet Land Disposal Restriction (LDR) requirements. * Provide for storage of current and projected LDR mixed wastes at the WVDP pending

157

Project W-236A multi-function waste tank facility waste feed projections  

SciTech Connect

A review of Hanford Underground Waste Storage Tank Chemistry, coupled with planned remediation actions and retrieval sequences was conducted in order to predict the chemistry of the waste to be stored in the MWTF tanks. All projected waste solutions to be transferred to the MWTF tanks were found to be in compliance with current tank chemistry specifications; therefore, the waste and the tank materials of construction are expected to be compatible.

Larrick, A.P.

1994-12-22T23:59:59.000Z

158

Independent Activity Report, West Valley Demonstration Project - November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, West Valley Demonstration Project - Activity Report, West Valley Demonstration Project - November 2011 Independent Activity Report, West Valley Demonstration Project - November 2011 November 2011 West Valley Demonstration Project Orientation Visit [HIAR-WVDP-2011-11-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE West Valley Demonstration Project (WVDP) Office and the nuclear facility at West Valley, NY, on November 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its independent oversight

159

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need November 26, 2013 - 12:00pm Addthis Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteers from West Valley Demonstration Project gather before distributing items collected in an annual food drive. Volunteer John Schelble helps unload a delivery truck at a food pantry. Volunteer John Schelble helps unload a delivery truck at a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry. John Rizzo passes canned food to John Rendall to deliver to a food pantry.

160

Con Edison Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the Con Edison Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 19 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and distributed renewable...

2009-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ESB Networks Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the ESB Networks Smart Grid Demonstration Host-Site Project as part of EPRIs five-year Smart Grid demonstration initiative. The EPRI initiative includes core Smart Grid research and a number of large scale Smart Grid projects with 18 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER) including demand response, storage, distributed generation, and distributed renewable generation into a virtual power plant to ...

2010-03-15T23:59:59.000Z

162

Exelon Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the Exelon Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 18 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER) including demand response, storage, distributed generation, and distributed renewable gene...

2010-04-05T23:59:59.000Z

163

Duke Energy Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the Duke Energy Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) multi-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects currently with 18 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER)including demand response, storage, distributed generation, and distributed...

2010-07-27T23:59:59.000Z

164

Southern Company Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the Southern Company Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) multi-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects currently with 18 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER)including demand response, storage, distributed generation, and distri...

2010-07-27T23:59:59.000Z

165

PNM Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the PNM Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 19 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and distributed renewable genera...

2009-09-16T23:59:59.000Z

166

Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report  

SciTech Connect

The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

NONE

1996-04-30T23:59:59.000Z

167

DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE  

DOE Green Energy (OSTI)

General Atomics (GA) has recently completed a Phase I program for the development of a two-step alternative to incineration for the destruction of organics in transuranic wastes at the Savannah River Site. This process is known as thermal desorption-supercritical water oxidation, or TD-SCWO. The GA TD process uses heat to volatilize and transport organics from the waste material for subsequent treatment by SCWO. SCWO oxidizes organics in a steam medium at elevated temperatures and pressures in a manner that achieves excellent destruction efficiencies and compliance with all environmental requirements without the need for complex pollution-abatement equipment. This application of TD-SCWO is focused on a full-scale batch process for 55-gallon drums of mixed transuranic waste at the Savannah River Site. The Phase I reduced-scale test results show that the process operates as intended on surrogate waste matrices chosen to be representative of Savannah River Site transuranic mixed wastes. It provides a high degree of hydrogen removal and full containment of the radionuclide surrogate, with minimal requirements for pre-treatment and post-treatment. Other test objectives were to verify that the process produces no dioxins or furans, and meets all applicable regulatory criteria for retention of toxic metals, particulate, and criteria pollutants, while meeting WIPP/WAC and TRUPACT-II requirements. Thermal desorption of surrogate SRS mixed wastes at 500 psi and 1000 F met all tested requirements for WIPP/WAC and TRUPACT-II. SCWO of the desorbed surrogate organic materials at 500 psi and 1500 F also appears to meet all requirements for a nonincineration alternative, although >99.99% DRE for chlorinated solvents has not yet been demonstrated.

Mike Spritzer

2003-02-01T23:59:59.000Z

168

Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

6 FEBRUARY 2008 6 FEBRUARY 2008 Mercury Control Demonstration Projects Cover Photos: * Top: Limestone Power Plant * Bottom left: AES Greenidge Power Plant * Bottom right: Presque Isle Power Plant A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Consol Energy * Pegasus Technologies * We Energies  Mercury Control Demonstration Projects Executive Summary ............................................................................ 4 Background ......................................................................................... 5 Mercury Removal Projects ................................................................ 7 TOXECON(tm) Retrofit For Mercury and Multi-Pollutant Control on Three 90-MW Coal-Fired Boilers ........................................7

169

Sustainable waste management in Africa through CDM projects  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

Couth, R. [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

2012-11-15T23:59:59.000Z

170

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada

171

Sydney 2000 Forecast Demonstration Project: Convective Storm Nowcasting  

Science Conference Proceedings (OSTI)

Five of the nowcasting systems that were available during the Sydney 2000 Forecast Demonstration Project (FDP) were selected for evaluation. These systems, from the United States, the United Kingdom, and Australia, had the capability to nowcast ...

James W. Wilson; Elizabeth E. Ebert; Thomas R. Saxen; Rita D. Roberts; Cynthia K. Mueller; Michael Sleigh; Clive E. Pierce; Alan Seed

2004-02-01T23:59:59.000Z

172

Radioactive waste disposal characteristics of candidate tokamak demonstration reactors  

SciTech Connect

Results from the current physics, materials and blanket R and D programs are combined with physics and engineering design constraints to characterize candidate tokamak demonstration plant (DEMO) designs. Blanket designs based on the principal structural materials, breeding materials and coolants being developed for the DEMO were adapted from the literature. Neutron flux and activation calculations were performed, and several radioactive waste disposal indices were evaluated, for each design. Of the primary low-activation structural materials under development in the US, it appears that vanadium and ferritic steel alloys, and possibly silicon carbide, could lead to DEMO designs which could satisfy realistic low-level waste (LLW) criteria, provided that impurities can be controlled within plausible limits. Allowable LLW concentrations are established for the limiting alloying and impurity elements. All breeding materials and neutron multipliers considered meet the LLW criterion.

Hoffman, E.A.; Stacey, W.M.; Hertel, N.E.

1998-08-01T23:59:59.000Z

173

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

174

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

175

Hawaiian Electric Company (HECO) Smart Grid (SG) Demonstration Project Description  

Science Conference Proceedings (OSTI)

This report describes one smart grid demonstration host-site project. The Hawaiian Electric Company (HECO) host site is part of the Electric Power Research Institute's (EPRI's) seven-year Smart Grid Demonstration Initiative. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and distributed renewable generation, into a "virtual power plant" to advance the widespread, efficient, and cost-effective deployment of ...

2012-08-13T23:59:59.000Z

176

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

177

Tank Waste System Integrated Project Team  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

178

Coolside waste management demonstration OCDO grant agreement No. CDO/D-902-9. Final report  

Science Conference Proceedings (OSTI)

The objectives of this project were to evaluate the potential utilization in road construction of wastes produced from the Coolside, LIMB (limestone injection multi-stage burner) and FBC (fluidized-bed combustion) processes, and to specify criteria for landfill disposal of waste from the Coolside process. These three processes are considered to be clean coal technologies. The Coolside process involves injecting an aqueous slurry of hydrated lime into the ductwork downstream of the air preheater in a coal-fired boiler. The hydrated lime captures sulfur dioxide from the flue gas producing anhydrous calcium sulfite and calcium sulfate, which are collected along with the unused hydrated lime and fly ash. The LIMB process involves injection of lime or hydrated lime directly into the furnace to capture sulfur dioxide. The waste consists principally of anhydrous calcium sulfate, lime, and fly ash. Both processes were demonstrated successfully at the Edgewater Station of Ohio Edison in Lorrain, OH, from 1989 to 1992. Circulating fluidized-bed combustion (FBC) is a commercial technology which combines steam generation with SO{sub 2} control by burning coal in a circulating bed of limestone. The waste, chemically similar to LIMB waste, is produced by bleed-off of the bed material and by collection of the flue dust. All three processes produce a dry solid waste, which must either be used or disposed of and managed to ensure environmental compliance and economic feasibility. The project was completed in June 1996.

Wu, M.; Winschel, R.A. [CONSOL Inc., Library, PA (United States). Research & Development

1997-10-01T23:59:59.000Z

179

ATTACHMENT O RECENT DEMONSTRATION PROJECTS FUNDED BY THE IAW PROGRAM  

E-Print Network (OSTI)

Generation in Parabolic Trough Solar Collectors This project is to demonstrate on a pilot scale the ability and demonstrate the direct steam generation (DSG) technology in the #12;receiver tube of a line focus parabolic trough collector, first in a single row, and then to simulate operations in multiple rows. From

180

Topic Area 1: Technology Demonstration Projects | Open Energy Information  

Open Energy Info (EERE)

1: Technology Demonstration Projects 1: Technology Demonstration Projects Jump to: navigation, search Geothermal ARRA Funded Projects for Topic Area 1: Technology Demonstration Projects Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Begins Demonstrating CCUS Technology in Project Begins Demonstrating CCUS Technology in Alabama DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama August 22, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide (CO2) injection has begun at the world's first fully integrated coal power and geologic storage project in southwest Alabama, with the goals of assessing integration of the technologies involved and laying the foundation for future use of CO2 for enhanced oil recovery (EOR). The "Anthropogenic Test"--conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven partnerships in DOE's Regional Carbon Sequestration Partnerships program--uses CO2 from a newly constructed post-combustion CO2-capture facility at Alabama Power's 2,657-megawatt Barry Electric Generating Plant (Plant Barry). It will help

182

Technical Services Contract Awarded for West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Services Contract Awarded for West Valley Demonstration Technical Services Contract Awarded for West Valley Demonstration Project Support Services Technical Services Contract Awarded for West Valley Demonstration Project Support Services February 21, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value. The task order will be issued from the Indefinite Delivery/Indefinite Quantity (ID/IQ) master contract, firm-fixed-price and time and materials. Under the task order, Safety and Ecology Corporation will perform technical

183

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

DOE Green Energy (OSTI)

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

184

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

185

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

186

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program  

SciTech Connect

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

Carlsbad Field Office

2005-08-03T23:59:59.000Z

187

Waste immobilization demonstration program for the Hanford Site`s Mixed Waste Facility  

Science Conference Proceedings (OSTI)

This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation.

Burbank, D.A.; Weingardt, K.M.

1994-05-01T23:59:59.000Z

188

Southern California Edison Company Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Company Smart Grid Demonstration Project (2) Company Smart Grid Demonstration Project (2) Jump to: navigation, search Project Lead Southern California Edison Company Country United States Headquarters Location Rosemead, California Recovery Act Funding $24,978,264.00 Total Project Value $53,510,209.00 Coordinates 34.0805651°, -118.072846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

Public Service Company of New Mexico Smart Grid Demonstration Project |  

Open Energy Info (EERE)

of New Mexico Smart Grid Demonstration Project of New Mexico Smart Grid Demonstration Project Jump to: navigation, search Project Lead Public Service Company of New Mexico Country United States Headquarters Location Albuquerque, New Mexico Recovery Act Funding $1,755,931.00 Total Project Value $5,851,303.00 Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

190

Waukesha Electric Systems Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Electric Systems Smart Grid Demonstration Project Electric Systems Smart Grid Demonstration Project Jump to: navigation, search Project Lead Waukesha Electric Systems Country United States Headquarters Location Waukesha, Wisconsin Recovery Act Funding $10,744,409.00 Total Project Value $21,548,821.00 Coordinates 43.0116784°, -88.2314813° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

191

Long Island Power Authority Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Long Island Power Authority Country United States Headquarters Location Uniondale, New York Recovery Act Funding $12,496,047.00 Total Project Value $25,293,735.00 Coordinates 40.7003793°, -73.5929056° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

192

City of Painesville Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Painesville Smart Grid Demonstration Project Painesville Smart Grid Demonstration Project Jump to: navigation, search Project Lead City of Painesville Country United States Headquarters Location Painesville, Ohio Recovery Act Funding $3,743,570.00 Total Project Value $7,487,153.00 Coordinates 41.7244885°, -81.245657° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

193

Primus Power Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Smart Grid Demonstration Project Smart Grid Demonstration Project Jump to: navigation, search Project Lead Primus Power Corporation Country United States Headquarters Location Alameda, California Recovery Act Funding $14,000,000.00 Total Project Value $46,700,000.00 Coordinates 37.7652065°, -122.2416355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

194

Duke Energy Business Services, LLC Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Duke Energy Business Services, LLC Country United States Headquarters Location Charlotte, North Carolina Recovery Act Funding $21,806,232.00 Total Project Value $43,612,464.00 Coordinates 35.2270869°, -80.8431267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

195

Seeo, Inc Smart Grid Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Seeo, Inc Smart Grid Demonstration Project Seeo, Inc Smart Grid Demonstration Project Jump to: navigation, search Project Lead Seeo, Inc Country United States Headquarters Location Berkeley, California Recovery Act Funding $6,196,060.00 Total Project Value $12,392,120.00 Coordinates 37.8715926°, -122.272747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

196

Ktech Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Ktech Corporation Smart Grid Demonstration Project Ktech Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead Ktech Corporation Country United States Headquarters Location Albuquerque, New Mexico Recovery Act Funding $4,764,284.00 Total Project Value $9,528,567.00 Coordinates 35.0844909°, -106.6511367° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

197

Premium Power Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Corporation Smart Grid Demonstration Project Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead Premium Power Corporation Country United States Headquarters Location North Reading, Massachusetts Recovery Act Funding $7,320,000.00 Total Project Value $16,080,554.00 Coordinates 42.5750939°, -71.0786653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

198

Amber Kinetics, Inc. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Kinetics, Inc. Smart Grid Demonstration Project Kinetics, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead Amber Kinetics, Inc. Country United States Headquarters Location Fremont, California Recovery Act Funding $4,000,000.00 Total Project Value $10,000,000.00 Coordinates 37.5482697°, -121.9885719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

199

The Boeing Company Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

The Boeing Company Smart Grid Demonstration Project The Boeing Company Smart Grid Demonstration Project Jump to: navigation, search Project Lead The Boeing Company Country United States Headquarters Location St. Louis, Missouri Recovery Act Funding $8,561,396.00 Total Project Value $17,172,844.00 Coordinates 38.646991°, -90.224967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

200

44 Tech Inc. Smart Grid Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

Inc. Smart Grid Demonstration Project Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead 44 Tech Inc. Country United States Headquarters Location Pittsburgh, Pennsylvania Recovery Act Funding $5,000,000.00 Total Project Value $10,000,000.00 Coordinates 40.4406248°, -79.9958864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project |  

Open Energy Info (EERE)

Company, LLC Smart Grid Demonstration Project Company, LLC Smart Grid Demonstration Project Jump to: navigation, search Project Lead Oncor Electric Delivery Company, LLC Country United States Headquarters Location Dallas, Texas Recovery Act Funding $3,471,681.00 Total Project Value $7,279,166.00 Coordinates 32.802955°, -96.769923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

202

West Valley Demonstration Project 10282 Rock Springs Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

203

DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Demonstrates Benefits of Constructed Wetlands Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources March 10, 2009 - 1:00pm Addthis Washington, DC -- In a pilot-scale test supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, Clemson University researchers have shown that manmade or "constructed" wetlands can be used to treat non-traditional water sources which could then be used in power plants or for other purposes. The successful test, which was managed by DOE's National Energy Technology Laboratory (NETL), could help power plants economically meet criteria for water reuse or discharge established by the National Pollution Discharge Elimination System and the Clean Water Act.

204

Nome, Alaska, Wind Turbine Demonstration Project Final Environmental Assessment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment and Final Environmental Assessment and Finding of No Significant Impact November 2000 Prepared for: U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 Prepared by: Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 Nome, Alaska, Wind Turbine Demonstration Project Finding of No Significant Impact Nome, Alaska, Wind Turbine Demonstration Project FINDING OF NO SIGNIFICANT IMPACT S U M M A R Y The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to provide DOE and other public agency decision makers witb tbe environmental documentation required to take informed discretionary action on the proposed Nome, Alaska, Wind Turbine Demonstration Project (DOE/EA-1280). The EA assesses the potential environmental impacts and cumulative i

205

Integrated monitoring and surveillance system demonstration project: Phase I accomplishments  

Science Conference Proceedings (OSTI)

The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

Aumeier, S.E.; Walters, B.G.; Crawford, D.C. [and others

1997-01-15T23:59:59.000Z

206

Final Report - Navajo Electrification Demonstration Project - FY2004  

SciTech Connect

The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

Kenneth L. Craig, Interim General Manager

2007-03-31T23:59:59.000Z

207

King County Carbonate Fuel Cell Demonstration Project: 2005 Update  

Science Conference Proceedings (OSTI)

This case study documents the ongoing demonstration experiences of a 1-MW carbonate fuel cell system operating on anaerobic digester gas at a wastewater treatment plant in King County, Washington. This is a follow-up to a previous EPRI report on the same project, 1011472, and summarizes operational experience and performance data obtained in 2005. The case study is one of several fuel cell project case studies under research by the EPRI Distributed Energy Resources Program. This case study is designed to...

2006-03-07T23:59:59.000Z

208

Cool water demonstration project and its industrial applications  

SciTech Connect

This paper discusses the 100 MW coal gasification combined cycle demonstration project underway at the ''Cool Water'' site of Southern California Edison Company, including the technology, project participants, schedule and opportunities for future industrial users. Industrial applications with multiple product outputs, termed ''polygeneration'', are illustrated with examples for cogeneration and trigeneration. Finally, actions required for planning large-sized gas turbine installations are suggested for today in order to hold open the future options in coal gasification.

Alger, J.; Ahner, D.J.

1982-08-01T23:59:59.000Z

209

Final Report - Navajo Electrification Demonstration Project - FY2004  

SciTech Connect

The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

Kenneth L. Craig, Interim General Manager

2007-03-31T23:59:59.000Z

210

US Recovery Act Smart Grid Energy Storage Demonstration Projects | Open  

Open Energy Info (EERE)

Storage Demonstration Projects Storage Demonstration Projects Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

211

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop: Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 11, 2009 John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National Renewable Energy Laboratory 2 Innovation for Our Energy Future Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets * Objectives - Validate H 2 FC Vehicles and Infrastructure in Parallel - Identify Current Status and Evolution of the Technology - Objectively Assess Progress Toward Technology Readiness - Provide Feedback to H 2 Research and Development Photo: NREL Solar Electrolysis Station, Sacramento, CA Performance Measure

212

2012 Annual Workforce Analysis and Staffing Plan Report - West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATTACHMENT ATTACHMENT 1 Annual Workforce Analysis and Staffing Plan Report As ofDecember 31, 2012 Reporting Office: West Valley Demonstration Project Section 1: Current Mission(s) of the Organization and Potential Changes The mission of the WVDP as defined by the West Valley Demonstration Project Act (Public Law 96-368) is to accomplish five activities: 1) solidify high-level radioactive waste (HLW), 2) develop containers suitable for permanent disposal of the HLW, 3) transport the HLW to a Federal repository for permanent disposal, 4) dispose of low-level and transuranic waste produced by the solidification of the HLW, and 5) decontaminate and decommission the HLW tanks and facilities, materials and hardware used to solidify the HLW. DOE expects to accomplish these WVDP activities through proactive leadership, management, and implementation of safe and environmentally sound operations.

213

West Valley Demonstration Project Transportation Emergency Management Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance September 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 7 Hazards Survey and Hazards Assessment .................................... 7 Program Plans and Procedures ..................................................... 8 Emergency Responder Performance .......................................... 10 Feedback and Continuous Improvement....................................

214

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Project Overview and Fall 2006 Results (Presentation)  

DOE Green Energy (OSTI)

This presentation on NREL's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project was given by Keith Wipke at the ZEV Technology Symposium on September 15, 2006.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.; Hooker, D.

2006-09-01T23:59:59.000Z

215

Solar Two: A successful power tower demonstration project  

DOE Green Energy (OSTI)

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

REILLY,HUGH E.; PACHECO,JAMES E.

2000-03-02T23:59:59.000Z

216

Report: Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMAB Tank Waste Subcommittee Summary Report 1 EMAB Tank Waste Subcommittee Summary Report 1 Report of Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project (WTP) at Hanford Submitted by the Environmental Management Advisory Board Tank Waste Subcommittee September 15, 2010 Introduction In May 2010, the Department of Energy established the Environmental Management Tank Waste Subcommittee (EM-TWS). The EM-TWS was charged with conducting an independent technical review of liquid waste capital and operations projects related to the Office of Environmental Management (EM) tank waste cleanup programs at Hanford, Washington; the Savannah River Site in South Carolina; the Idaho National Laboratory; and the West Valley Demonstration Project in New York. The EM-TWS's review focused on the facilities being

217

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

Science Conference Proceedings (OSTI)

In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

218

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

219

Integrated DWPF Melter System (IDMS) campaign report: Hanford Waste Vitrification Plan (HWVP) process demonstration  

Science Conference Proceedings (OSTI)

Vitrification facilities are being developed worldwide to convert high-level nuclear waste to a durable glass form for permanent disposal. Facilities in the United States include the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the West Valley Demonstration Project (WVDP) at West Valley, NY. At each of these sites, highly radioactive defense waste will be vitrified to a stable borosilicate glass. The DWPF and WVDP are near physical completion while the HWVP is in the design phase. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. Because of the similarities of the DWPF and HWVP processes, the IDMS facility has also been used to characterize the processing behavior of a reference NCAW simulant. The demonstration was undertaken specifically to determine material balances, to characterize the evolution of offgas products (especially hydrogen), to determine the effects of noble metals, and to obtain general HWVP design data. The campaign was conducted from November, 1991 to February, 1992.

Hutson, N.D.

1992-08-10T23:59:59.000Z

220

Expedited Technology Demonstration Project Baseline Revision 3.0  

SciTech Connect

The Expedited Technology Demonstration Project Plan, MWNT Revised Baseline 3.0, replaces and significantly modifies the current baseline. The revised plan will focus efforts specifically on the demonstration of an integrated Molten Salt Oxidation (MSO) system. In addition to the MSO primary unit, offgas, and salt recycle subsystems, the demonstrations will include the generation of robust final forms from process mineral residues. A simplified process flow chart for the expedited demonstration is shown. To minimize costs and to accelerate the schedule for deployment, the integrated system will be staged in an existing facility at LLNL equipped to handle hazardous and radioactive materials. The MSO systems will be activated in FY97, followed by the activation of final forms in FY98.

Adamson, M.G.; Densley, P.J.

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

Stephen P. Bergin

2003-04-23T23:59:59.000Z

222

NETL: News Release - DOE-Supported Project Demonstrates Benefits of  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources DOE-Supported Project Demonstrates Benefits of Constructed Wetlands to Treat Non-Traditional Water Sources Flue gas desulfurization water was treated in a constructed wetlands system consisting of five reactors planted with vegetation found in natural wetlands. The water to be treated was received from an operating coal-fired power plant in the south-eastern United States. Flue gas desulfurization water was treated in a constructed wetlands system consisting of five "reactors" planted with vegetation found in natural wetlands. The water to be treated was received from an operating coal-fired power plant in the south-eastern United States. Washington, DC - In a pilot-scale test supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, Clemson University researchers

223

300kW Energy Storage Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kW Energy Storage Demonstration kW Energy Storage Demonstration Project Technical Overview Presented at: Annual Doe Peer Review Meeting ─ 2008 DOE Energy Storage & Power Electronics Research Programs By Ib I. Olsen September 29, 2008 116 John Street - Suite 2320 New York, New York 10038 (p) 1.212.732.5507 (f) 1.212.732.5597 www.gaiapowertech.com This project is part of the Joint Energy Storage Initiative between the New York State Energy Research and Development Authority (NYSERDA) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS), and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000

224

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report  

Science Conference Proceedings (OSTI)

The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

Not Available

1992-02-01T23:59:59.000Z

225

Duke Energy Notrees Wind Storage Demonstration Project: 2013 Interim Report  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update is an interim report summarizing the status of Duke Energys Notrees Wind Storage Demonstration Project, which involves integrating a 36-MW battery energy storage system (BESS) from Xtreme Power with the152.6-MW Notrees Wind Farm. Xtreme Powers solid lead-acid battery represents one of an emerging number of energy storage devices endowed with the potential to serve multiple value-added utility applications. ...

2013-12-19T23:59:59.000Z

226

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

DOE Green Energy (OSTI)

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

227

Distributed Energy Resources Integration in the Smart Grid Demonstration Project  

Science Conference Proceedings (OSTI)

In an effort to answer some of the basic system architecture questions posed by members, EPRI undertook a survey to find, among members that have smart grid demonstration projects, what the basic system architecture strategy was and basic concerns that may have architectural implications for their Distributed Energy Resource (DER) deployments. To that end, a longitudinal survey was designed to determine the basic demographics of the community, e.g. number of DER devices being deployed, the basic ...

2012-11-14T23:59:59.000Z

228

Idaho's Advanced Mixed Waste Treatment Project Details 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Advanced Mixed Waste Treatment Project Details 2013 Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments December 24, 2013 - 12:00pm Addthis IDAHO FALLS, Idaho - EM and its contractor, Idaho Treatment Group (ITG), safely and compliantly met all of their production and shipping targets in the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site in 2013. AMWTP's purpose is to safely process and dispose of transuranic (TRU) and mixed low-level waste (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the largest shipper of contact-handled TRU waste to WIPP. In 2013, AMWTP sent 2,444.69 cubic

229

Idaho's Advanced Mixed Waste Treatment Project Details 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho's Advanced Mixed Waste Treatment Project Details 2013 Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments Idaho's Advanced Mixed Waste Treatment Project Details 2013 Accomplishments December 24, 2013 - 12:00pm Addthis IDAHO FALLS, Idaho - EM and its contractor, Idaho Treatment Group (ITG), safely and compliantly met all of their production and shipping targets in the Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho site in 2013. AMWTP's purpose is to safely process and dispose of transuranic (TRU) and mixed low-level waste (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the largest shipper of contact-handled TRU waste to WIPP. In 2013, AMWTP sent 2,444.69 cubic

230

Separation projects within the US Department of Energy`s Underground Storage Tank: Integrated Demonstration  

SciTech Connect

The greatest challenge facing the US Department of Energy is the remediation of the 1 {times} 10{sup 8} gal of high-level and low-level radioactive waste in the underground storage tanks (USTs) at its Hanford, Savannah River, Oak Ridge, Idaho, and Fernald sites. With current technologies, this remediation will cost at least 100 billion dollars. In an effort to reduce costs, improve safety, and minimize delays, the Underground Storage Tank--Integrated Demonstration was created for demonstration, testing, and evaluation (DT&E) of promising new technologies that can be used for UST remediation. These demonstrations, which are typically at the pilot-plant scale, will determine which processes will be used in the full-scale remediation of the USTs. These DT&E studies are performed by the Characterization and Waste Retrieval Program or by the Waste Processing and Disposal Program (WPDP). This paper presents the technical progress and future plans of the WPDP projects. The 11 WPDP programs in FY 1993 focused on three problem areas, which involve the treatment of supernate, the treatment of sludge, and nitrate destruction and subsequent waste forms. In addition, a planned Request for Expression of Interest on organic destruction techniques from private industries and universities and the WPDP`s future direction and programmatic issues are discussed.

McGinnis, C.P.; Hunt, R.D. [Oak Ridge National Lab., TN (United States); Gibson, S.M. [USDOE, Germantown, MD (United States); Gilchrist, R.L. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-01T23:59:59.000Z

231

Automated Demand Response Technology Demonstration Project for Small and  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Demonstration Project for Small and Technology Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings Publication Type Report LBNL Report Number LBNL-4982E Year of Publication 2011 Authors Page, Janie, Sila Kiliccote, Junqiao Han Dudley, Mary Ann Piette, Albert K. Chiu, Bashar Kellow, Edward Koch, and Paul Lipkin Date Published 07/2011 Publisher CEC/LBNL Keywords demand response, emerging technologies, market sectors, medium commercial business, openadr, small commercial, small commercial business, technologies Abstract Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

232

Independent Oversight Assessment, Salt Waste Processing Facility Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salt Waste Processing Facility Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the Salt Waste Processing Facility (SWPF) Project. The primary objective of the evaluation was to provide information regarding the status of the safety culture at the SWPF Project. The data collection phase of the assessment occurred during August - September 2012. Independent Oversight Assessment, Salt Waste Processing Facility Project -

233

DOE intends to extend the Advanced Mixed Waste Treatment Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE intends to extend the Advanced Mixed Waste Treatment Project contract for four months as competition for long-term contract continues. Scene from inside the Advanced Mixed...

234

Sodium Bearing Waste Treatment Project ? Countdown to Startup  

NLE Websites -- All DOE Office Websites (Extended Search)

Date: March 19, 2012 Media Contact: Natalie Packer, 208-533-0253 Sodium Bearing Waste Treatment Project Countdown to Startup Marking completion of another major...

235

Department of Energy Idaho - Advanced Mixed Waste Treatment Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

> AMWTP Contract Idaho Treatment Group, LLC (ITG) Advanced Mixed Waste Treatment Project Contract Basic Contract Contract Modifications Documents Related to the AMWTP Contract Last...

236

Engineering design and test plan for demonstrating DETOX treatment of mixed wastes  

SciTech Connect

DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit, and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).

Goldblatt, S.; Dhooge, P.

1995-03-01T23:59:59.000Z

237

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Federal - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Federal - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) DOE (Federal) Operational Readiness Review (D-ORR). The review was performed by the HSS Office of Safety and Emergency Management Evaluations and was intended to assess the effectiveness of the CORR process as implemented for

238

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

239

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Contractor - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) contractor Operational Readiness Review (C-ORR). The review was conducted at the Idaho Site from February 27 to March 6, 2012. This report discusses the background, scope, results, and conclusions of the review, as well as

240

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

York County Energy Partners DOE CCI ACFB demonstration project  

Science Conference Proceedings (OSTI)

The York County Energy Partners (YCEP) project, to be located in York County, Pennsylvania, will demonstrate the world`s largest atmospheric circulating fluidized bed boiler under sponsorship of the US Department of Energy`s Clean Coal Technology I Program. The single ACFB boiler, designed by Foster Wheeler Energy Corporation, will produce 227 MWe of net electrical power and export approximately 50,000 lb/hr of steam. This paper explains how the technical challenges to the design of a utility-scale ACFB boiler were met and presents the innovative features of this design.

Wang, S. [Air Products and Chemicals, Inc., Allentown, PA (United States); Cox, J.; Parham, D. [Foster Wheeler Energy Corp., Clinton, NJ (United States)

1992-09-01T23:59:59.000Z

242

York County Energy Partners DOE CCI ACFB demonstration project  

Science Conference Proceedings (OSTI)

The York County Energy Partners (YCEP) project, to be located in York County, Pennsylvania, will demonstrate the world's largest atmospheric circulating fluidized bed boiler under sponsorship of the US Department of Energy's Clean Coal Technology I Program. The single ACFB boiler, designed by Foster Wheeler Energy Corporation, will produce 227 MWe of net electrical power and export approximately 50,000 lb/hr of steam. This paper explains how the technical challenges to the design of a utility-scale ACFB boiler were met and presents the innovative features of this design.

Wang, S. (Air Products and Chemicals, Inc., Allentown, PA (United States)); Cox, J.; Parham, D. (Foster Wheeler Energy Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

243

NETL: Development and Demonstration of Waste Heat Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

performance of the integrated PC plant and CO2 capture process. The HES system is a heat exchanger that extracts waste heat from flue gas exiting the power plant's...

244

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

245

MHK Projects/MORILD Demonstration Plant | Open Energy Information  

Open Energy Info (EERE)

MORILD Demonstration Plant MORILD Demonstration Plant < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.8079,"lon":18.6795,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

246

MHK Projects/Race Rocks Demonstration | Open Energy Information  

Open Energy Info (EERE)

Race Rocks Demonstration Race Rocks Demonstration < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.2844,"lon":-123.531,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

247

LIMB Demonstraton Project Extension and Coolside Demonstration: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 LIMB Demonstration Project Extension and Coolside Demonstration: A DOE Assessment April 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial

248

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

Science Conference Proceedings (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

249

Advanced Mixed Waste Treatment Project Achieves Impressive Safety and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Mixed Waste Treatment Project Achieves Impressive Safety Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June 26, 2013 - 12:00pm Addthis Only the 620 employees at EM’s Advanced Mixed Waste Treatment Project earned the right to this vanity plate after working more than 14 million hours without a lost-time injury and safely and compliantly shipping more than 50,000 cubic meters of transuranic and mixed low-level radioactive waste for disposal. Only the 620 employees at EM's Advanced Mixed Waste Treatment Project earned the right to this vanity plate after working more than 14 million hours without a lost-time injury and safely and compliantly shipping more than 50,000 cubic meters of transuranic and mixed low-level radioactive

250

GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208  

SciTech Connect

Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

2008-08-27T23:59:59.000Z

251

DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY  

SciTech Connect

In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was reduced to 5 gpm (14 ft/s nozzle velocity, U{sub o}D = 0.315 ft{sup 2}/s) to each pump, dead zones formed in the tank, resulting in fewer solids being transferred in each batch to the Receipt Tanks. The larger, denser particles were displaced (preferentially to the smaller particles) to one of the two dead zones and not re-suspended for the duration of the test. As the liquid level dropped in the MDT, re-suspending the particles became less effective (6th batch). The poor consistency of the solids transferred in the 6th batch was due to low liquid level in the MDT, thus poor mixing by the MJPs. Of the twelve tests conducted the best transfer of solids occurred during Test 6 and 8 where the MJP rotation was reduced to 1.0 rpm.

Adamson, D.; Poirier, M.; Steeper, T.

2009-12-03T23:59:59.000Z

252

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

253

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comments Comments Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement Clark County Public Library Winchester, KY Page 1 of 5 D-1 Comment No. 1 Issue Code: 11 Gasification is different from incineration. It is a better, more environmentally responsible approach to generating energy from the use of fossil fuels and refuse derived fuel (RDF). Incineration produces criteria pollutants, semi-volatile and volatile organic compounds and dioxin/furan compounds. Ash from hazardous waste incinerators is considered a hazardous waste under the Resource Conservation and Recovery Act (RCRA). In contrast, gasification, which occurs at high temperatures and pressures, produces no air emissions, only small amounts of wastewater containing salts. Synthesis gas (syngas)

254

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

SciTech Connect

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

1976-04-01T23:59:59.000Z

255

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

DOE Green Energy (OSTI)

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

Not Available

1976-04-01T23:59:59.000Z

256

LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

41 41 LIFAC Sorbent Injection Desulfurization Demonstration Project: A DOE Assessment January 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov Disclaimer 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

257

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Advanced Flue Gas Desulfurization (AFGD) Demonstration Project A DOE Assessment August 2001 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 website: www.netl.doe.gov 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

258

Electric G-Van demonstration and commercial assessment project  

DOE Green Energy (OSTI)

The Electric Power Research Institute was awarded this grant to continue the joint effort initiated by EPRI, and VE International to proceed beyond the prototype phase of the electric G-Van development. The goal of EPRI and VEHMA was to develop a market for the electric G-Van, and to distribute them to commercial fleet operators. The objective of this project was to produce G-Vans in a production facility that would be comparable to the GMC Truck internal combustion engine Vandura Van produced by General Motors in quality, reliability, durability and safety. An initial market assessment/demonstration phase of sixty (60) vehicles was to be undertaken, with the ability to expand production volume quickly to meet market demands. Brief description of each task of this grant is given and the actions taken by EPRI to complete them.

Braga, B.D. (Electric Power Research Inst., Palo Alto, CA (United States))

1992-12-01T23:59:59.000Z

259

Construction Cost Analysis : Residential Construction Demonstration Project Cycle II.  

SciTech Connect

The Residential Construction Demonstration Project (RCDP) is designed to demonstrate new residential building techniques and product innovations which advance the stage-of-the-art in constructing energy-efficient electrically heated residences. A secondary purpose is to obtain documented cost and energy savings data from which to make accurate assessments of the cost-effectiveness of various conservation innovations. The project solicits participation of regional homebuilders by offering them financial incentives for constructing homes to the Model Conservation Standards (MCS) and including at least one innovation.'' The innovations are determined by BPA and the States prior to construction and represent construction techniques or energy saving products that might reduce the cost of building MCS homes, or expand the options available to builders in achieving MCS levels of energy efficiency in homes. Besides covering some of the additional risk for employing the innovation, the incentive payment guarantees that builders will provide certain amounts of information regarding the cost and acceptability of building the homes. In addition, an incentive is paid to homeowners for their participation in data collection efforts following construction. Several one-time'' tests were performed on the houses and homeowners were required to report energy consumption and temperature data on a weekly basis for approximately 18 months. BPA and the States compile the information obtained from the builders and homeowners. Access to this data is provided for the purpose of analyzing the cost and performance of the RCDP homes, as well as understanding the value of the various innovations that are tested. 25 tabs., 4 figs.

Barnett, Cole; Thor, Philip W.

1990-06-01T23:59:59.000Z

260

New Mexico State University Campus geothermal demonstration project  

DOE Green Energy (OSTI)

This report presents the design, construction highlights, and performance of the New Mexico State University Campus Geothermal Demonstration Project at Las Cruces, New Mexico. Construction started in July 1981, first system use was January 1982, and the system was dedicated on April 21, 1982. Included herein are summary observations after two years of use. The geothermal hot water from New Mexico State University wells is used to heat potable water, which in turn provides 83 percent of the domestic hot water on the New Mexico State University campus, as well as space heat to two buildings, and for two heated swimming pools. The original system is providing service to 30 total buildings, with two additional buildings (150,000 square feet) in process of geothermal conversion.) The system overall performance has been excellent, except for geothermal well pump problems. In terms of operating efficiency, the system has exceeded the design parameters. In spite of abnormally high costs for well and pump repairs, the system has shown a positive cost avoidance of more than $118,000 for the first year of operation. For the first two full years of operation, the system has produced a net positive cost avoidance of more than $200,000. Payback on the total investment of $1,670,000 is projected to be 6 to 10 years, depending on the future prices of natural gas and electricity.

Cuniff, R.A.; Fisher, K.P.; Chintawongvanich, P.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms  

Science Conference Proceedings (OSTI)

To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

2011-09-23T23:59:59.000Z

262

Locomotive Emission and Engine Idle Reduction Technology Demonstration Project  

DOE Green Energy (OSTI)

In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.

John R. Archer

2005-03-14T23:59:59.000Z

263

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

264

DEMONSTRATION OF THE GLYCOLIC-FORMIC FLOWSHEET IN THE SRNL SHIELDED CELLS USING ACTUAL WASTE  

SciTech Connect

Glycolic acid was effective at dissolving many metals, including iron, during processing with simulants. Criticality constraints take credit for the insolubility of iron during processing to prevent criticality of fissile materials. Testing with actual waste was needed to determine the extent of iron and fissile isotope dissolution during Chemical Process Cell (CPC) processing. The Alternate Reductant Project was initiated by the Savannah River Remediation (SRR) Company to explore options for the replacement of the nitric-formic flowsheet used for the CPC at the Defense Waste Processing Facility (DWPF). The goals of the Alternate Reductant Project are to reduce CPC cycle time, increase mass throughput of the facility, and reduce operational hazards. In order to achieve these goals, several different reductants were considered during initial evaluations conducted by Savannah River National Laboratory (SRNL). After review of the reductants by SRR, SRNL, and Energy Solutions (ES) Vitreous State Laboratory (VSL), two flowsheets were further developed in parallel. The two flowsheet options included a nitric-formic-glycolic flowsheet, and a nitric-formic-sugar flowsheet. As of July 2011, SRNL and ES/VSL have completed the initial flowsheet development work for the nitric-formic-glycolic flowsheet and nitric-formic-sugar flowsheet, respectively. On July 12th and July 13th, SRR conducted a Systems Engineering Evaluation (SEE) to down select the alternate reductant flowsheet. The SEE team selected the Formic-Glycolic Flowsheet for further development. Two risks were identified in SEE for expedited research. The first risk is related to iron and plutonium solubility during the CPC process with respect to criticality. Currently, DWPF credits iron as a poison for the fissile components of the sludge. Due to the high iron solubility observed during the flowsheet demonstrations with simulants, it was necessary to determine if the plutonium in the radioactive sludge slurry demonstrated the same behavior. The second risk is related to potential downstream impacts of glycolate on Tank Farm processes. The downstream impacts will be evaluated by a separate research team. Waste Solidification Engineering (WSE) has requested a radioactive demonstration of the Glycolic-Formic Flowsheet with radioactive sludge slurry be completed in the Shielded Cells Facility of the SRNL. The Shielded Cells demonstration only included a Sludge Receipt and Adjustment Tank (SRAT) cycle, and not a Slurry Mix Evaporator (SME) cycle or the co-processing of salt products. Sludge Batch 5 (SB5) slurry was used for the demonstration since it was readily available, had been previously characterized, and was generally representative of sludges being processing in DWPF. This sample was never used in the planned Shielded Cells Run 7 (SC-7).

Lambert, D.; Pareizs, J.; Click, D.

2011-11-07T23:59:59.000Z

265

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

266

DEMONSTRATiON OF A SUBSURFACE CONTAINMENT SYSTEM FOR INSTALLATION AT DOE WASTE SITES  

SciTech Connect

Between 1952 and 1970, DOE buried mixed waste in pits and trenches that now have special cleanup needs. The disposal practices used decades ago left these landfills and other trenches, pits, and disposal sites filled with three million cubic meters of buried waste. This waste is becoming harmful to human safety and health. Today's cleanup and waste removal is time-consuming and expensive with some sites scheduled to complete cleanup by 2006 or later. An interim solution to the DOE buried waste problem is to encapsulate and hydraulically isolate the waste with a geomembrane barrier and monitor the performance of the barrier over its 50-yr lifetime. The installed containment barriers would isolate the buried waste and protect groundwater from pollutants until final remediations are completed. The DOE has awarded a contract to RAHCO International, Inc.; of Spokane, Washington; to design, develop, and test a novel subsurface barrier installation system, referred to as a Subsurface Containment System (SCS). The installed containment barrier consists of commercially available geomembrane materials that isolates the underground waste, similar to the way a swimming pools hold water, without disrupting hazardous material that was buried decades ago. The barrier protects soil and groundwater from contamination and effectively meets environmental cleanup standards while reducing risks, schedules, and costs. Constructing the subsurface containment barrier uses a combination of conventional and specialized equipment and a unique continuous construction process. This innovative equipment and construction method can construct a 1000-ft-long X 34-ft-wide X 30-ft-deep barrier at construction rates to 12 Wday (8 hr/day operation). Life cycle costs including RCRA cover and long-term monitoring range from approximately $380 to $590/cu yd of waste contained or $100 to $160/sq ft of placed barrier based upon the subsurface geology surrounding the waste. Project objectives for Phase I were to validate the SCS construction equipment and process, evaluate the system performance, validate the barrier constructability, and assess the barrier effectiveness. The objectives for Phase 11, which is a full-scale demonstration at a DOE site, are to perform an extensive characterization of the test site, to demonstrate the equipment and the installation process under site-specific performance and regulatory requirements, to validate the operational performance of the equipment, and to perform long-term verification of the barrier using monitoring wells. To date, significant progress has been made to establish the technical and economical feasibility of the SCS. This report describes the SCS conventional and specialized equipment, barrier materials, and construction process. It presents results of the specialized equipment Factory Test, the SCS Control Test and the SCS Advance Control Test at the RAHCO facility. Provided herein are the system performance capabilities and an estimated construction cost and schedule for a 1000-ft-long X 34-ft-wide X 29-ft-deep containment barrier at the DOE Oak Ridge Bear Creek Burial Grounds are also provided.

Thomas J. Crocker; Verna M. Carpenter

2003-05-21T23:59:59.000Z

267

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

268

Independent Oversight Review, Advanced Mixed Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Advanced Mixed Waste Treatment Review, Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site This report documents an independent review of activity-level radiation protection program (RPP) implementation at the Advanced Mixed Waste Treatment Project (AMWTP) of the Idaho Site, as conducted by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS). The review was performed by the HSS Office of Safety and Emergency Management Evaluations. The purpose of this Independent Oversight targeted review

269

Independent Oversight Review, Advanced Mixed Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Mixed Waste Treatment Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of the Idaho Site This report documents an independent review of activity-level radiation protection program (RPP) implementation at the Advanced Mixed Waste Treatment Project (AMWTP) of the Idaho Site, as conducted by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS). The review was performed by the HSS Office of Safety and Emergency Management Evaluations. The purpose of this Independent Oversight targeted review

270

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

2003-04-01T23:59:59.000Z

271

Transmutation of Nuclear Waste and the future MYRRHA Demonstrator  

E-Print Network (OSTI)

While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven syste...

Mueller, Alex C

2012-01-01T23:59:59.000Z

272

Flowsheets and source terms for radioactive waste projections  

Science Conference Proceedings (OSTI)

Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

Forsberg, C.W. (comp.)

1985-03-01T23:59:59.000Z

273

Geothermal project summaries. Geothermal energy research, development and demonstration program  

DOE Green Energy (OSTI)

Summaries of all Division of Geothermal Energy supported projects for which contracts have been executed are compiled. Each summary includes pertinent statistical data for that project and an abstract summarizing the project plans and accomplishments. The projects summarized fall into six categories: engineering research and development, resource exploration and assessment, hydrothermal technology applications, advanced technology applications, utilization experiments, and environmental control and institutional studies. (MHR)

Not Available

1976-09-01T23:59:59.000Z

274

Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report  

DOE Green Energy (OSTI)

In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

Gambrell, KP

2002-01-11T23:59:59.000Z

275

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

276

EA-1860: Richland Renewable Energy Waste-to-Energy Project, Richland...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Richland Renewable Energy Waste-to-Energy Project, Richland, Wisconsin EA-1860: Richland Renewable Energy Waste-to-Energy Project, Richland, Wisconsin Summary This EA evaluates...

277

Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report  

SciTech Connect

Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

1997-12-01T23:59:59.000Z

278

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

279

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal - June 2012 Federal - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Federal - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) DOE (Federal) Operational Readiness Review (D-ORR). The review was performed by the HSS Office of Safety and Emergency Management Evaluations and was intended to assess the effectiveness of the CORR process as implemented for the SBWTP-IWTU. This review also provides additional data regarding

280

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor - June 2012 Contractor - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) contractor Operational Readiness Review (C-ORR). The review was conducted at the Idaho Site from February 27 to March 6, 2012. This report discusses the background, scope, results, and conclusions of the review, as well as opportunities for improvement (OFIs) and items identified for further

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING (FBSR) WITH HANFORD LOW ACTIVITY WASTES  

SciTech Connect

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-10-22T23:59:59.000Z

282

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

Science Conference Proceedings (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

283

Buried waste integrated demonstration human engineered control station. Final report  

SciTech Connect

This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

Not Available

1994-09-01T23:59:59.000Z

284

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27T23:59:59.000Z

285

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect

Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was conducted using three different baseline models for estimation peak load reductions. One was three-in-ten baseline, which is based on the site electricity consumption from 7 am to 10 am for the three days with the highest consumption of the previous ten business days. The second model, the LBNL outside air temperature (OAT) regression baseline model, is based on OAT data and site electricity consumption from the previous ten days, adjusted using weather regressions from the fifteen-minute electric load data during each DR test event for each site. A third baseline that simply averages the available load data was used for sites less with less than 10 days of historical meter data. The evaluation also included surveying sites regarding any problems or issues that arose during the DR test events. Question covered occupant comfort, control issues and other potential problems.

Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

2009-08-01T23:59:59.000Z

286

FCV Learning Demonstration: Project Midpoint Status and Fall 2007 Results  

DOE Green Energy (OSTI)

Status reoprt on NREL's fuel cell vehicle learning demonstration presented at the 2007 EVS-23 meeting in Anaheim, CA.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-12-01T23:59:59.000Z

287

Next Steps for the FCEV Learning Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes project goals; vehicle and H2 station deployment status, critical performance compared to targets; highlights of latest vehicle and infrastructure analysis results and progress; learning demo next steps; highlights of partner activities and summary.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2011-02-01T23:59:59.000Z

288

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004  

SciTech Connect

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2005-09-30T23:59:59.000Z

289

The Sydney 2000 Olympic Games Forecast Demonstration Project: Forecasting, Observing Network Infrastructure, and Data Processing Issues  

Science Conference Proceedings (OSTI)

The Sydney 2000 Olympic Games World Weather Research Programme Forecast Demonstration Project (WWRP FDP) aimed to demonstrate the utility and impact of modern nowcast systems. The project focused on the use of radar processing systems and ...

Peter T. May; Thomas D. Keenan; Rod Potts; James W. Wilson; Rob Webb; Andrew Treloar; Elly Spark; Sue Lawrence; Elizabeth Ebert; John Bally; Paul Joe

2004-02-01T23:59:59.000Z

290

Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2011-03-01T23:59:59.000Z

291

Mixed and Low-Level Waste Treatment Facility Project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

292

West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)  

Science Conference Proceedings (OSTI)

The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation.

Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

1990-09-30T23:59:59.000Z

293

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008  

DOE Green Energy (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2008-10-01T23:59:59.000Z

294

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Progress Update; Preprint  

DOE Green Energy (OSTI)

Summary of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project from initiation through January 2006.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.; Hooker, D.

2006-03-01T23:59:59.000Z

295

US Recovery Act Smart Grid Demonstration Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search CSV Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

296

Use of Coal Ash in Highway Construction: Michigan Demonstration Project  

Science Conference Proceedings (OSTI)

This report documents the construction and performance testing of a 3000-ft length of fly ash base under a highway shoulder. Following three years of service, the road shoulder shows no signs of premature deterioration. This report should aid utilities seeking to increase ash-use rates in highway-related projects, as well as state highway design engineers responsible for preparing construction specifications.

1991-03-05T23:59:59.000Z

297

Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units  

SciTech Connect

This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

None

1994-05-01T23:59:59.000Z

298

Use of Coal Ash in Highway Construction: Michigan Demonstration Project  

Science Conference Proceedings (OSTI)

A 3000-ft-length fly ash base under a highway shoulder will help demonstrate the impact of reused ash on structural integrity and groundwater. This report provides valuable design details for utilities seeking to increase ash reuse and for state highway design engineers responsible for preparing construction specifications.

1989-01-10T23:59:59.000Z

299

Baca geothermal demonstration project. Power plant detail design document  

DOE Green Energy (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

300

Solar demonstration project in a fast-food restaurant  

Science Conference Proceedings (OSTI)

Results are given of a two-phase program in which the first phase included the successful use of heat reclamation equipment and energy conservation techniques at a typical fast-food restaurant. The project's second phase involved the engineering, designing, installation and interfacing of a solar collector system at the facility. The report will help to serve as a guide for other restaurants around the state, and possibly the nation, which wish to install energy saving systems, or adopt energy-saving techniques, geared to their special needs and equipment.

McClenahan, D.

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lied Animal Shelter Animal campus Renewable Energy Demonstration Project  

DOE Green Energy (OSTI)

The Animal Shelter campus plan includes a new adoption center coupled with a dog adoption park, a wellness/veterinary technician education center, a show arena, and an addition to the existing shelter that will accommodate all animal control and sheltering for the Las Vegas Valley. The new facility will provide a sophisticated and innovative presentation of the animals to be adopted in an attempt to improve the public's perception of shelter animals. Additionally, the Regional Animal Campus will be a ''green building'', embodying a design intent on balancing environmental responsiveness, resource efficiency and cultural and community sensitivity. Designing an energy-efficient building helps reduce pollution from burning fossil fuels, reduce disturbance of natural habitats for the harvesting of resources and minimizes global warming. The project will be a leader in the use of renewable energy by relying on photovoltaic panels, wind turbines, and solar collectors to produce a portion of the project's energy needs The building will operate more efficiently in comparison to a typical shelter through the use of monitoring and specialized cooling/heating equipment. Windows bringing in natural daylight will reduce the center's demand for electricity.

Randy Spitzmesser, AIA

2005-11-22T23:59:59.000Z

302

Lied Animal Shelter Animal campus Renewable Energy Demonstration Project  

SciTech Connect

The Animal Shelter campus plan includes a new adoption center coupled with a dog adoption park, a wellness/veterinary technician education center, a show arena, and an addition to the existing shelter that will accommodate all animal control and sheltering for the Las Vegas Valley. The new facility will provide a sophisticated and innovative presentation of the animals to be adopted in an attempt to improve the public's perception of shelter animals. Additionally, the Regional Animal Campus will be a ''green building'', embodying a design intent on balancing environmental responsiveness, resource efficiency and cultural and community sensitivity. Designing an energy-efficient building helps reduce pollution from burning fossil fuels, reduce disturbance of natural habitats for the harvesting of resources and minimizes global warming. The project will be a leader in the use of renewable energy by relying on photovoltaic panels, wind turbines, and solar collectors to produce a portion of the project's energy needs The building will operate more efficiently in comparison to a typical shelter through the use of monitoring and specialized cooling/heating equipment. Windows bringing in natural daylight will reduce the center's demand for electricity.

Randy Spitzmesser, AIA

2005-11-22T23:59:59.000Z

303

International Smart Grid Demonstration Project Case Studies and Survey Analysis  

Science Conference Proceedings (OSTI)

Electric utilities around the world are assessing the technical issues and the prospective benefits and costs of modernizing the electric grid. This report summarizes research conducted on international smart grid demonstrations that were tasked with communicating results and lessons learned, and it highlightsthree case studies where this information has been conveyed. The research involved a literature review of publicly available information and a smart grid international survey answered by ...

2013-03-27T23:59:59.000Z

304

Optimization of the Waste Management for Construction Projects Using Simulation  

E-Print Network (OSTI)

Growth in construction activities increases the amount of construction waste generated. Recycling of construction waste is an important component of environmentally responsible construction, as it reduces the amount of waste directed to landfills. In addition, it enhances the resource recovery for future construction work. A model is presented in this paper to predict waste generation rates, as well as to determine the economic advantages of recycling at construction sites. A future advanced version of the model can be applied to any construction site to: determine the amount of daily waste generation, resource and time requirement for sorting and transporting of recyclables. The model, therefore, is a valuable tool for construction managers interested in asserting the viability of recycling projects.

E. Ycesan; C. -h. Chen; J. L. Snowdon; J. M. Charnes; Mala Chandrakanthi; Patrick Hettiaratchi

2002-01-01T23:59:59.000Z

305

Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document  

DOE Green Energy (OSTI)

The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.

Luey, J.; Brouns, T.M.; Elliott, M.L.

1990-11-01T23:59:59.000Z

306

Southern California Edison Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Company Company Country United States Headquarters Location Rosemead, California Recovery Act Funding $40,134,700.00 Total Project Value $80,269,400.00 Coordinates 34.0805651°, -118.072846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

307

Beacon Power Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Beacon Power Corporation Beacon Power Corporation Country United States Headquarters Location Tyngsboro, Massachusetts Recovery Act Funding $24,063,978.00 Total Project Value $48,127,957.00 Coordinates 42.6767568°, -71.4245085° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

308

The Detroit Edison Company Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

The Detroit Edison Company The Detroit Edison Company Country United States Headquarters Location Detroit, Michigan Recovery Act Funding $4,995,271.00 Total Project Value $10,877,258.00 Coordinates 42.331427°, -83.0457538° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

309

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

NSTAR Electric & Gas Corporation NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $2,362,000.00 Total Project Value $4,724,000.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

310

Pacific Gas & Electric Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Pacific Gas & Electric Company Pacific Gas & Electric Company Country United States Headquarters Location San Francisco, California Recovery Act Funding $25,000,000.00 Total Project Value $355,938,600.00 Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

311

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project (2) |  

Open Energy Info (EERE)

Lead NSTAR Electric & Gas Corporation Lead NSTAR Electric & Gas Corporation Country United States Headquarters Location Westwood, Massachusetts Recovery Act Funding $5,267,592.00 Total Project Value $10,535,184.00 Coordinates 42.2139873°, -71.2244987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

312

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

313

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Tank 48H Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry D. Harmon Joan B. Berkowitz John C. DeVine, Jr. Herbert G. Sutter Joan K. Young SPD-07-195 July 31, 2007 Prepared by the U.S. Department of Energy Aiken, South Carolina SRS Tank 48H Waste Treatment Project SPD-07-195 Technology Readiness Assessment July 31, 2007 Signature Page 7/31/07 ___________________________ _________________________ John C. DeVine, Jr., Team Member Date SRS Tank 48H Waste Treatment Project SPD-07-195 Technology Readiness Assessment July 31, 2007 Executive Summary The purpose of this assessment was to determine the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's

314

Solid waste integrated cost analysis model: 1991 project year report  

SciTech Connect

The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

Not Available

1991-01-01T23:59:59.000Z

315

Development and demonstration of treatment technologies for the processing of US Department of Energy mixed waste  

SciTech Connect

Mixed waste is defined as waste contaminated with chemically hazardous (governed by the Resource Conservation and Recovery Act) and radioactive species [governed by US Department of Energy (DOE) orders]. The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. The Program also provides a forum for stakeholder and customer involvement in the technology development process. MWIP is composed of six technical areas that support a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas is described in this paper.

Berry, J.B.; Bloom, G.A. [Oak Ridge National Lab., TN (United States); Kuchynka, D.J. [Science Applications International Corp., Gaithersburg, MD (United States)

1994-06-01T23:59:59.000Z

316

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988  

Science Conference Proceedings (OSTI)

This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

317

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

318

Expedited demonstration of molten salt mixed waste treatment technology. Final report  

Science Conference Proceedings (OSTI)

This final report discusses the molten salt mixed waste project in terms of the various subtasks established. Subtask 1: Carbon monoxide emissions; Establish a salt recycle schedule and/or a strategy for off-gas control for MWMF that keeps carbon monoxide emission below 100 ppm on an hourly averaged basis. Subtask 2: Salt melt viscosity; Experiments are conducted to determine salt viscosity as a function of ash composition, ash concentration, temperature, and time. Subtask 3: Determine that the amount of sodium carbonate entrained in the off-gas is minimal, and that any deposited salt can easily be removed form the piping using a soot blower or other means. Subtask 4: The provision of at least one final waste form that meets the waste acceptance criteria of a landfill that will take the waste. This report discusses the progress made in each of these areas.

NONE

1995-02-02T23:59:59.000Z

319

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-?based energy recovery and storage system. This technology is being developed at TDIs facilities to capture and reuse the energy necessary for the companys core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

320

BACA Project: geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

Not Available

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heber geothermal binary demonstration project: Unavailability distributions for principal pumps  

DOE Green Energy (OSTI)

The purpose of this study has been to review data sources relevant to the failure rate and mean time to repair for the principal pumps of the Heber geothermal project. Based upon that review the distributions of failure rates, repair times and pump unavailability were established. A total of 16 pumps are represented in this study. The method used to develop data distributions has been to first review as many sources of pump data as are currently available. This review was followed by a study of the features of the pumps specified for the Heber installation and the effects of operation and the environment on those features as they relate to anticipated failure rates and repair times. From this, determinations were made for mean failure rate and repair time values appropriate to specific Heber pumps. Range factors are then selected and used to establish the expected variability of the data. Failure rates and repair times were then combined to obtain the unavailability distribution of each type of pump.

Mulvihill, Robert J.; Cleveland, Edward B.

1982-04-01T23:59:59.000Z

322

Waste Vitrification Projects Throughout the US Initiated by SRS  

Science Conference Proceedings (OSTI)

Technologies are being developed by the U. S. Department of Energy`s (DOE) Nuclear Facility sites to convert high-level, low-level, and mixed wastes to a solid stabilized waste form for permanent disposal. Vitrification is one of the most important and environmentally safest technologies being developed. The Environmental Protection Agency (EPA) has declared vitrification the best demonstrated available technology for high-level radioactive waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The Defense Waste Processing Facility being tested at will soon start vitrifying the high-level waste at. The DOE Office of Technology Development has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Vitrification produces durable waste forms at volume reductions up to 97%. Large reductions in volume minimize long-term storage costs making vitrification cost effective on a life cycle basis.

Jantzen, C.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Whitehouse, J.C.; Smith, M.E.; Pickett, J.B.; Peeler, D.K.

1998-05-01T23:59:59.000Z

323

Integrated passive-solar demonstration project. Final report  

Science Conference Proceedings (OSTI)

The objectives of the study reported were to collect data on a combination of several passive solar heating and cooling systems. A passive solar test structure was constructed and monitored and the demonstration of passive systems designed into the structure was evaluated. Passive solar cooling principles include: shading all mass walls and windows from direct solar gain, maintaining cool attic and ceiling temperatures using solar induced ventilation, maintaining cool mean radiant wall temperatures, recirculating internal air, and using natural cross-ventilation through the conditioned space in spring and fall. Passive solar heating principles include: orientation of windows and sunspaces towards the south, providing double pane south windows, providing a double pane solar sunspace, using night insulation over glazing, extended thermal storage mass, and using a fan-forced rock/earth/air storage system. (LEW)

Garrison, M.L.

1982-09-01T23:59:59.000Z

324

RADIOACTIVE DEMONSTRATION OF MINERALIZED WASTE FORMS MADE FROM HANFORD LOW ACTIVITY WASTE (TANK FARM BLEND) BY FLUIDIZED BED STEAM REFORMATION (FBSR)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanfords tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTPs LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at 6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanfords blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a tie back between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for to

Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

2013-08-21T23:59:59.000Z

325

Status of the Integral Fast Reactor fuel cycle demonstration and waste management practices  

SciTech Connect

Over the past few years, Argonne National Laboratory has been preparing for the demonstration of the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety and operations, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle, which will be demonstrated at Argonne-West in Idaho, employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The required facility modifications and process equipment for the demonstration are nearing completion. Their status and the results from initial fuel fabrication work, including the waste management aspects, are presented. Additionally, estimated compositions of the various process waste streams have been made, and characterization and treatment methods are being developed. The status of advanced waste processing equipment being designed and fabricated is described.

Benedict, R.W.; Goff, K.M.; McFarlane, H.F.

1994-07-01T23:59:59.000Z

326

BACA Project: geothermal demonstration power plant. Final report  

SciTech Connect

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

1982-12-01T23:59:59.000Z

327

Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Ashadi, Henki, E-mail: henki@eng.ui.ac.id [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Brenner, Werner, E-mail: werner.brenner@gmx.at [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Kueper, David, E-mail: dkuper@indo.net.id [Yayasan Pemilahan Sampah Temesi, Temsi-Gianyar, Bali (Indonesia)

2012-11-15T23:59:59.000Z

328

Tidd PFBC demonstration project. Quarterly report, October--December 1993  

SciTech Connect

This is the 27th Technical Progress Report submitted to the Department of Energy in connection with the Cooperative Agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from October 1, 1993 to December 31, 1993. Major activities during this period involve: (1) The unit operated for 720 hours on coal. (2) There were five gas turbine starts, five bed preheater starts, and three operating periods on coal fire. (3) During the quarter, total gross generation was 36,672 MWH, the peak unit output for one hour was 64 MWH, and the coal consumption was 17,251 tons. (4) Six performance tests were run during this quarter. (5) The unit was tested with four sorbent feed points. (6) The gas turbine low pressure compressor was disassembled to repair cracks in the stationary guide vanes; and (7) a request was sent to the DOE requesting funding for an additional year of operation. Major items planned for the next period include: (a) Continuation of sorbent utilization tests at various bed levels and sulfur retention values and with different coals and adsorbents; and (b) operation at full load.

Not Available

1994-01-01T23:59:59.000Z

329

Buried waste integrated demonstration fiscal year 1992 close-out report  

SciTech Connect

The mission of the Buried Waste Integrated Demonstration Program (BWID) is to support the development and demonstration of a suite of technologies that when integrated with commercially-available baseline technologies form a comprehensive remediation system for the effective and efficient remediation of buried waste disposed of throughout the US Department of Energy complex. To accomplish this mission of identifying technological solutions for remediation deficiencies, the Office of Technology Development initiated the BWID at the Idaho National Engineering Laboratory in fiscal year (FY)-91. This report summarizes the activities of the BWID Program during FY-92.

Cannon, P.G.; Kostelnik, K.M.; Owens, K.J.

1993-02-01T23:59:59.000Z

330

SustainX, Inc. Smart Grid Demonstration Project | Open Energy Information  

Open Energy Info (EERE)

SustainX, Inc. Smart Grid Demonstration Project SustainX, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead SustainX, Inc. Country United States Headquarters Location West Lebanon, New Hampshire Recovery Act Funding $5,396,023.00 Total Project Value $10,792,045.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The SustainX, Inc. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in West Lebanon, New Hampshire. Overview Design, build, and deploy a utility-scale, low-cost compressed air energy storage system to support the integration of renewable energy sources onto the grid. The 1 MW/4hr system will store potential energy in the form of compressed air in above-ground industrial pressure facilities. The

331

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

332

Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1  

SciTech Connect

The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

2001-05-21T23:59:59.000Z

333

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

334

Summary - Demonstration Bulk Vitrification System (DBVS) for Low-Actvity Waste at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DBVS DBVS ETR Report Date: September 2006 ETR-3 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe retrieval, treatment and disposal of 53 million gallons of Hanford radioactive waste. The Waste Treatment Plant (WTP) is being designed to treat and vitrify the High Level Waste (HLW) fraction in 20-25 years. The WTP is undersized for vitrifying the LAW fraction over the same time frame. The DOE is evaluating Bulk Vitrification as an alternative to increasing the size of the WTP LAW treatment process. Bulk vitrification is an in-container melting

335

Waste management project fiscal year 1998 multi-year work plan WBS 1.2  

SciTech Connect

The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

Slaybaugh, R.R.

1997-08-29T23:59:59.000Z

336

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project - Technology Demonstration of Fixatives Applied Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms More Documents & Publications Demonstration of Fixatives to Control Contamination and Accelerate D&D Demonstration of DeconGel (TM) at the Oak Ridge National Laboratory Building 2026 D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

337

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2006 Progress Update (Presentation)  

DOE Green Energy (OSTI)

This presentation, given by NREL's Keith Wipke at EVS-22, provides an update on the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.

2006-10-26T23:59:59.000Z

338

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Data Analysis Overview; Preprint  

DOE Green Energy (OSTI)

Paper for the 2005 National Hydrogen Association conference provides an overview of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

Welch, C.; Wipke, K.; Gronich, S.; Garbak, J.

2005-03-01T23:59:59.000Z

339

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Progress Update (Presentation)  

DOE Green Energy (OSTI)

Presentation outlining the progress of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project, prepared for the 2006 National Hydrogen Association Meeting.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak. J.; Hooker, D.

2006-03-13T23:59:59.000Z

340

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Progress Update (Presentation)  

DOE Green Energy (OSTI)

Presentation outlining the progress of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project, prepared for the 2006 National Hydrogen Association Meeting.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak. J.; Hooker, D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes  

Science Conference Proceedings (OSTI)

The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single- blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

Carlsbad Field Office

2006-09-21T23:59:59.000Z

342

Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2  

SciTech Connect

The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

Jacobsen, P.H.

1997-09-23T23:59:59.000Z

343

Solid Waste Projection Model: Database (Version 1. 3)  

SciTech Connect

The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement.

Blackburn, C.L.

1991-11-01T23:59:59.000Z

344

Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste  

Science Conference Proceedings (OSTI)

This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included caustic leaching for Al removal solids crossflow filtration through the cell unit filter (CUF) stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF oxidative leaching using sodium permanganate for removing Cr solids filtration with the CUF follow-on solids washing and filtration through the CUF ion exchange processing for Cs removal evaporation processing of waste stream recycle for volume reduction combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

2009-01-01T23:59:59.000Z

345

Waste Isolation Pilot Plant, Former Construction Worker Screening Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Worker Screening Construction Worker Screening Projects Waste Isolation Pilot Plant, Former Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: WIPP Worker Population Served: Construction Workers Principal Investigator: Knut Ringen, DrPh, MHA, MPH Toll-free Telephone: (800) 866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by CPWR - The Center for Construction Research and Training, an applied

346

Southern California Edison (SCE) Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the Southern California Edison (SCE) Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) multi-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects currently with 18 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER)including demand response, storage, distributed genera...

2010-07-27T23:59:59.000Z

347

Sacramento Municipal Utility District Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the Sacramento Municipal Utility District Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institutes (EPRIs) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 21 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, ...

2011-08-05T23:59:59.000Z

348

Electricite' de France (EDF) Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the Electricit de France (EDF) Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institutes (EPRIs) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 19 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and dist...

2009-09-16T23:59:59.000Z

349

KCP&L Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report describes the Kansas City Power and Light (KCP&L) Smart Grid demonstration host-site project as part of the Electric Power Research Institutes (EPRIs) five-year Smart Grid demonstration initiative. The EPRI initiative includes core Smart Grid research and several large-scale Smart Grid projects with 18 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER)including demand response, storage, distributed generation, and distributed renewab...

2010-04-01T23:59:59.000Z

350

FirstEnergy Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the FirstEnergy Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institutes (EPRIs) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 19 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and distributed renewabl...

2009-09-24T23:59:59.000Z

351

American Electric Power (AEP) Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the American Electric Power (AEP) Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 19 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and di...

2009-09-16T23:59:59.000Z

352

Hydro-Quebec Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report describes the Hydro Qubec Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and several large-scale smart grid projects with 21 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and distributed renewable generation, into a...

2011-08-08T23:59:59.000Z

353

Demonstration Results on the Effects of Mercury Speciation on the Stabilization of Wastes  

Science Conference Proceedings (OSTI)

Mercury-contaminated wastes are currently being stored at approximately 19 Department of Energy sites, the volume of which is estimated to be about 16m(sup)3. These wastes exist in various forms including soil, sludges, and debris, which present a particular challenge regarding possible mercury stabilization methods. This reports provides the test results of three vendors, Allied Technology Group, IT Corporation, and Nuclear Fuel Services, Inc., that demonstrate the effects of mercury speciation on the stabilization of the mercury wastes. Mercury present in concentrations that exceed 260 parts per million must be removed by extraction methods and requires stabilization to ensure that the final wasteforms leach less than 0.2mg/L of mercury by the Toxicity Characteristic Leaching Procedure or 0.025 mg/L using the Universal Treatment Standard.

Conley, T.B.; Hulet, G.A.; Morris, M.I.; Osborne-Lee, I.W.

1999-06-01T23:59:59.000Z

354

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

Science Conference Proceedings (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energys mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

355

River Protection Project (RPP) Dangerous Waste Training Plan  

Science Conference Proceedings (OSTI)

This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

POHTO, R.E.

2000-03-09T23:59:59.000Z

356

SRS Waste Solidification Building Project Peer Review, July 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRS-2011-07-15 SRS-2011-07-15 Site: Savannah River Site, NA-26 Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Waste Solidification Building Project Peer Review Dates of Activity : 07/12/2011 - 07/15/2011 Report Preparer: James Lockridge Activity Description/Purpose: At the request of the National Nuclear Security Administration (NNSA) Office of Enterprise Project Management (NA- APM-20), the Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), provided an expert to review the Waste Solidification Building (WSB) startup programs and procedures associated with worker safety and health, environment, and security. Criteria for the review was detailed in the Criteria,

357

Environment, Safety, Health, and Quality Plan for the Buried Waste Integrated Demonstration Program  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy Office of Technology Development. BWID supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. This document describes the Environment, Safety, Health, and Quality requirements for conducting BWID activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to BWID operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program Plans, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and System and Performance audits as they apply to the BWID Program.

Walker, S.

1994-05-01T23:59:59.000Z

358

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2

359

Five kW Solid Oxide Fuel Cell Demonstration Project: Case Study: Exit Glacier Nature Center Acumentrics Demonstration  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from a 5 kW solid oxide fuel cell system operating on propane at the Kenai Fiords National Park at the Exit Glacier Visitor Center, Seward, Alaska. The case study is one of several fuel cell project case studies under research by EPRI's Distributed Energy Resources Program. This case study is designed to help utilities and other interested parties understand the early applications of fuel cell systems to help them in their resour...

2005-02-17T23:59:59.000Z

360

Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2  

SciTech Connect

This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

Hall, L.R.

1995-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project characteristics monitoring report: BWIP (Basalt Waste Isolation Program) repository project  

Science Conference Proceedings (OSTI)

This monitoring report has been prepared to show compliance with provisions of the Nuclear Waste Policy Act of 1982 (NWPA) and to provide local and state government agencies with information concerning the Basalt Waste Isolation Program (BWIP). This report contains data for the time period May 26, 1986 to February 1988. The data include employment figures, salaries, project purchases, taxes and fees paid, worker survey results, and project closedown personal interview summaries. This information has become particularly important since the decision in December 1987 to stop all BWIP activities except those for site reclamation. The Nuclear Waste Policy Amendments Act of 1987 requires nonreclamation work at the Hanford Site to stop as of March 22, 1988. 7 refs., 6 figs., 28 tabs.

Friedli, E.A.; Herborn, D.I.; Taylor, C.D.; Tomlinson, K.M.

1988-03-01T23:59:59.000Z

362

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A-1 A-1 APPENDIX A CONSULTATION LETTERS This appendix includes consultation/approval letters between the U.S. Department of Energy and the U.S. Fish and Wildlife Service regarding threatened and endangered species, and between other state and Federal agencies as needed. Consultation Letters A-2 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-3 Consultation Letters A-4 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-5 Consultation Letters A-6 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement A-7 Consultation Letters A-8 Kentucky Pioneer IGCC Demonstration Project Final Environmental Impact Statement B-1 APPENDIX B NOTICE OF INTENT TO PREPARE AN ENVIRONMENTAL IMPACT STATEMENT FOR THE

363

The Sydney 2000 World Weather Research Programme Forecast Demonstration Project: Overview and Current Status  

Science Conference Proceedings (OSTI)

The first World Weather Research Programme (WWRP) Forecast Demonstration Project (FDP), with a focus on nowcasting, was conducted in Sydney, Australia, from 4 September to 21 November 2000 during a period associated with the Sydney 2000 Olympic ...

T. Keenan; P. Joe; J. Wilson; C. Collier; B. Golding; D. Burgess; P. May; C. Pierce; J. Bally; A. Crook; A. Seed; D. Sills; L. Berry; R. Potts; I. Bell; N. Fox; E. Ebert; M. Eilts; K. O'Loughlin; R. Webb; R. Carbone; K. Browning; R. Roberts; C. Mueller

2003-08-01T23:59:59.000Z

364

Verification of Nowcasts from the WWRP Sydney 2000 Forecast Demonstration Project  

Science Conference Proceedings (OSTI)

The verification phase of the World Weather Research Programme (WWRP) Sydney 2000 Forecast Demonstration Project (FDP) was intended to measure the skill of the participating nowcast algorithms in predicting the location of convection, rainfall ...

Elizabeth E. Ebert; Laurence J. Wilson; Barbara G. Brown; Pertti Nurmi; Harold E. Brooks; John Bally; Matthias Jaeneke

2004-02-01T23:59:59.000Z

365

FCV Learning Demonstration: Project Midpoint Status and First-Generation Vehicle Results; Preprint  

DOE Green Energy (OSTI)

This paper covers the progress accomplished by the U.S. DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project since inception, including results from analysis of six months of new data.

Wipke, K.; Sprik, S.; Kurtz, J.; Thomas, H.; Garbak, J.

2007-12-01T23:59:59.000Z

366

Hydrogen Learning Demonstration Project: Fuel Cell Efficiency and Initial Durability (Presentation)  

Science Conference Proceedings (OSTI)

This presentation by NREL's Keith Wipke at the 2006 Fuel Cell Seminar provides information about the Hydrogen Learning Demonstration Project, with a focus on fuel cell efficiency and durability.

Wipke, K.; Welch, C.; Thomas, H.; Sprik, S.; Gronich, S.; Garbak, J.

2006-11-15T23:59:59.000Z

367

Technical report for a fluidless directional drilling system demonstrated at Solid Waste Storage Area 6 shallow buried waste sites  

Science Conference Proceedings (OSTI)

The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release to the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.

NONE

1995-09-01T23:59:59.000Z

368

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project. Technical progress report No. 15, July 1, 1993--September 30, 1993  

Science Conference Proceedings (OSTI)

The goal of this project is to demonstrate that, by combining state-of-the-art technology, highly efficient plant operation and maintenance capabilities and by-product gypsum sales, significant reductions of SO{sub 2} emissions can be achieved at approximately one-half the life cycle cost of a conventional Flue Gas Desulfurization (FGD) system. Further, this emission reduction is achieved without generating solid waste and while minimizing liquid wastewater effluent. Basically, this project entails the design, construction and operation of a nominal 600 MWe AFGD facility to remove SO{sub 2} from coal-fired power plant flue gas at the Northern Indiana Public Service Company`s Bailly Generating Station.

Not Available

1994-08-01T23:59:59.000Z

369

Guidebook for Cost/Benefit Analysis of Smart Grid Demonstration Projects  

Science Conference Proceedings (OSTI)

This report presents a step-by-step process for estimating the costs and benefits associated with smart grid demonstration projects. The entire guidebook is meant to function as a stand-alone users manual for the analysis process, from the initial step of describing the project to the final step of communicating the results to all stakeholders. This version of the guidebook presents detailed instructions for describing the project objectives, the research plan, and the technologies deployed; ...

2013-12-16T23:59:59.000Z

370

Baca geothermal demonstration project. Quarterly technical progress report, October 1-December 31, 1980  

SciTech Connect

Work completed on the Baca 50 Megawatt (MWe) Geothermal Demonstration Power Plant Project, Baca Location No. 1, New Mexico is reported. Topics covered in this quarterly report include progress made in the well and steam production systems, the power plant and transmission systems, and in the project data management program.

1981-03-01T23:59:59.000Z

371

Phase 1 Characterization sampling and analysis plan West Valley demonstration project.  

SciTech Connect

The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

Johnson, R. L. (Environmental Science Division)

2011-06-30T23:59:59.000Z

372

STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138  

SciTech Connect

This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

Burket, P

2009-02-24T23:59:59.000Z

373

DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIFUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT  

Science Conference Proceedings (OSTI)

Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing {sup 137}Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution ({approx}34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for {approx}25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is {approx}388,000. At 95% stage efficiency, the DF in MCU would be {approx}3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as {approx}140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of {approx}81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of {approx}60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as {approx}3.5-5.0 for the first scrub stage and {approx}1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was {approx}7. It is expected that the pH of the second scrub stage would be {approx}12-13. Batch ESS tests measured D(Cs) values for the strip stages to be {approx}0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the

Pierce, R.; Peters, T.; Crowder, M.; Caldwell, T.; Pak, D; Fink, S.; Blessing, R.; Washington, A.

2011-09-27T23:59:59.000Z

374

Heber Geothermal Binary Demonstration Project. Quarterly technical progress report, September 15, 1980-March 31, 1981  

DOE Green Energy (OSTI)

Work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of September 15, 1980, through March 31, 1981 is documented. Topics covered in this quarterly report include progress made in the areas of Wells and Fluids Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

Hanenburg, W.H.; Lacy, R.G.; Van De Mark, G.D.

1981-06-01T23:59:59.000Z

375

Heber geothermal binary demonstration project. Quarterly technical progress report, April 1, 1981-June 30, 1981  

SciTech Connect

Work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of April 1, 1981, through June 30, 1981 is documented. Topics covered include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

Van De Mark, G.D.

1981-09-01T23:59:59.000Z

376

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

377

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Drilling Projects Demonstrate Significant CO2 Storage Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

378

Reasons for the termination of, and DOE losses in, a geothermal demonstration powerplant project  

DOE Green Energy (OSTI)

The 50-megawatt Baca geothermal demonstration powerplant project, located in northern New Mexico, was the Department of Energy's (DOE's) initial effort to demonstrate geothermal powerplant technology. The project, started in 1978, was believed to have a high probability of success, and its cost was to be shared equally with the industry participants. GAO's review showed that the project was terminated in January 1982 because sufficient geothermal steam to operate the powerplant could not be obtained. The early termination resulted in DOE paying a disproportionate share - $45 million, or 64% - of the $70 million spent on the project because it had paid the majority of the powerplant-related costs at that time. However, a portion of these costs may be recovered through the sale of powerplant equipment. DOE indicated that it learned lessons from this experience and will act to prevent these problems from occurring on other projects.

Not Available

1983-09-29T23:59:59.000Z

379

Shared savings and low income homeowners: Results of a demonstration project in Hennepin County  

SciTech Connect

In 1984 Hennepin County, with financial support from the US Department of Energy and as part of the Year Five energy program of the Urban Consortium's Energy Task Force, initiated a Residential Shared Savings Demonstration Project (RSSDP) for single family homeowners. Shared savings, or performance contracting, occurs when an energy service company (ESCo) finances and installs energy improvements in a customer's property and receives a share of the savings that result over time as their compensation. Chapter 1 of this report provides general background on the project, including a brief description of Hennepin County, the energy environment within which the project was conducted, and the Residential Shared Savings Demonstration Project. Chapter 2 describes the efforts to market the RSSDP to low income homeowners, the results of those efforts and the findings from an extensive market assessment effort. Chapter 3 summarizes the significant lessons learned during the project. 4 figs., 3 tabs.

Miller, R.D.; Ford, J.M.

1986-04-01T23:59:59.000Z

380

The Nucla Circulating Fluidized-Bed Demonstration Project: A U.S. DOE post-project assessment  

Science Conference Proceedings (OSTI)

This report is a post-project assessment of the Nucla Circulating Fluidized-Bed (CFB) Demonstration Project, the second project to be completed in the DOE Clean Coal Technology Program. Nucla was the first successful utility repowering project in the US, increasing the capacity of the original power station from 36 MW(e) to 110 MW(e) and extending its life by 30 years. In the CFB boiler, combustion and desulfurization both take place in the fluidized bed. Calcium in the sorbent captures sulfur dioxide and the relatively low combustion temperatures limit NOx formation. Hot cyclones separate the larger particles from the gas and recirculates them to the lower zones of the combustion chambers. This continuous circulation of coal char and sorbent particles is the novel feature of CFB technology. This demonstration project significantly advanced the environmental, operational, and economic potential of atmospheric CFB technology, precipitating a large number of orders for atmospheric CFB equipment. By 1994, more than 200 atmospheric CFB boilers have been constructed worldwide. Although at least six CFB units have been operated, the Nucla project`s CFB database continues to be an important and unique resource for the design of yet larger atmospheric CFB systems. The post-project assessment report is an independent DOE appraisal of the success a completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology as well as an analysis of the commercial market.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

7 JUNE 2012 7 JUNE 2012 Clean Coal Power Initiative Round 1 Demonstration Projects Applying Advanced Technologies to Lower Emissions and Improve Efficiency 2 Cover Photos: * Top left: Great River Energy's Coal Creek Station * Top right: We Energy's Presque Isle Power Plant * Bottom: Dynegy's Baldwin Energy Complex A report on three projects conducted under separate cooperative agreements between the U.S. Department of Energy and: * Great River Energy * NeuCo. , Inc. * WeEnergies 3 Executive Summary 4 Clean Coal Technology Demonstration Program 5 CCPI Program 6 Demonstration of Integrated Optimization Software at

382

DOE Funds 21 Research, Development and Demonstration Projects for up to $78  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds 21 Research, Development and Demonstration Projects for Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems October 6, 2008 - 4:14pm Addthis RENO, Nev. - Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a Funding Opportunity Announcement (FOA) for research, development and demonstration of Enhanced Geothermal Systems (EGS) for next-generation geothermal energy technologies. Subject to annual appropriations, the Department will provide up to $43.1 million over four years to 21 awardees, including a

383

Phase 1 Final status survey plan for the West Valley demonstration project.  

SciTech Connect

This plan provides the technical basis and associated protocols to support Phase 1 final status survey (FSS) data collection and interpretation as part of the West Valley Demonstration Project Phase 1 Decommissioning Plan process. This plan is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). The Phase 1 Decommissioning Plan provides the relevant derived concentration guideline levels (DCGLs) for the Phase 1 radionuclides of interest. This plan includes protocols that will be applied to the deep excavations planned for Waste Management Area (WMA) 1 and WMA 2, for surface soils outside the WMA 1 and WMA 2 excavations that do not have contamination impacts at depths greater than one meter, and for areas that are used for Phase 1 contaminated soil lay-down purposes. All excavated and lay-down areas will be classified as MARSSIM Class 1 areas. Surface soils that have not been excavated, are not expected to exceed DCGLs, and do not have contamination impacts at depths greater than one meter will be divided into either Class 1 or Class 2 areas depending on the expected potential for surface soil contamination in those areas. The plan uses gamma scans combined with biased soil samples to address DCGLemc concerns. The plan uses systematic soil sampling combined with area factors to address DCGLw and DCGLemc concerns. The Sign test will be used to statistically evaluate DCGLw compliance. If the results from the characterization sampling and analysis plan (CSAP) data collection indicate that background may be a significant issue for Sign test implementation, the Wilcoxon rank sum (WRS) test will be used instead to demonstrate DCGLw compliance. A reference area will be selected on the basis of CSAP data results if the WRS test becomes a necessity. The WMA 1 excavation footprint includes approximately 476 foundation pilings that will be trimmed and left in place. Piling-specific systematic and biased sampling will be conducted to address concerns that these pilings may have served as preferential flow pathways into the underlying Lavery till. Phase 1 FSS data collection results will be summarized, presented, and interpreted in one or more FSS reports.

Johnson, R. L. (Environmental Science Division)

2011-05-31T23:59:59.000Z

384

RADIOACTIVE DEMONSTRATION OF MINERALIZED WASTE FORMS MADE FROM HANFORD LOW ACTIVITY WASTE (TANK FARM BLEND) BY FLUIDIZED BED STEAM REFORMATION (FBSR)  

SciTech Connect

The U.S. Department of Energys Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanfords tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTPs LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanfords blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a tie back between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for to

Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

2013-08-21T23:59:59.000Z

385

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

386

Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration  

Science Conference Proceedings (OSTI)

This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

1990-10-01T23:59:59.000Z

387

Pacific Northwest GridWise Testbed Demonstration Projects; Part I. Olympic Peninsula Project  

Science Conference Proceedings (OSTI)

This report describes the implementation and results of a field demonstration wherein residential electric water heaters and thermostats, commercial building space conditioning, municipal water pump loads, and several distributed generators were coordinated to manage constrained feeder electrical distribution through the two-way communication of load status and electric price signals. The field demonstration took place in Washington and Oregon and was paid for by the U.S. Department of Energy and several northwest utilities. Price is found to be an effective control signal for managing transmission or distribution congestion. Real-time signals at 5-minute intervals are shown to shift controlled load in time. The behaviors of customers and their responses under fixed, time-of-use, and real-time price contracts are compared. Peak loads are effectively reduced on the experimental feeder. A novel application of portfolio theory is applied to the selection of an optimal mix of customer contract types.

Hammerstrom, Donald J.; Ambrosio, Ron; Carlon, Teresa A.; DeSteese, John G.; Horst, Gale R.; Kajfasz, Robert; Kiesling, Laura L.; Michie, Preston; Pratt, Robert G.; Yao, Mark; Brous, Jerry; Chassin, David P.; Guttromson, Ross T.; Jarvegren, Olof M.; Katipamula, Srinivas; Le, N. T.; Oliver, Terry V.; Thompson, Sandra E.

2008-01-09T23:59:59.000Z

388

Design requirements document for project W-465, immobilized low activity waste interim storage  

SciTech Connect

The scope of this design requirements document is to identify the functions and associated requirements that must be performed to accept, transport, handle, and store immobilized low-activity waste produced by the privatized Tank Waste Remediation System treatment contractors. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized low-activity waste interim storage facility project and provides traceability from the program level requirements to the project design activity.

Burbank, D.A.

1997-01-27T23:59:59.000Z

389

Los Angeles Department of Water and Power Smart Grid Demonstration Project  

Open Energy Info (EERE)

Angeles Department of Water and Power Smart Grid Demonstration Project Angeles Department of Water and Power Smart Grid Demonstration Project Jump to: navigation, search Project Lead Los Angeles Department of Water and Power Country United States Headquarters Location Los Angeles, California Recovery Act Funding $60,280,000.00 Total Project Value $120,560,000.00 Coordinates 34.0522342°, -118.2436849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

390

Power Authority of the State of New York Smart Grid Demonstration Project |  

Open Energy Info (EERE)

of the State of New York Smart Grid Demonstration Project of the State of New York Smart Grid Demonstration Project Jump to: navigation, search Project Lead Power Authority of the State of New York Country United States Headquarters Location White Plains, New York Recovery Act Funding $720,000.00 Total Project Value $1,440,000.00 Coordinates 41.0339862°, -73.7629097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

391

New York State Electric & Gas Corporation Smart Grid Demonstration Project  

Open Energy Info (EERE)

New York State Electric & Gas Corporation Smart Grid Demonstration Project New York State Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters Location Binghamton, New York Recovery Act Funding $29,561,142.00 Total Project Value $125,006,103.00 Coordinates 42.0986867°, -75.9179738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

392

Kansas City Power & Light Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Kansas City Power & Light Company Country United States Headquarters Location Kansas City, Missouri Recovery Act Funding $23,940,112.00 Total Project Value $48,125,315.00 Coordinates 39.0997265°, -94.5785667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

393

Performance Demonstration Program Plan for Nondestructive Assay for the TRU Waste Characterization Program. Revision 1  

Science Conference Proceedings (OSTI)

The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) consists of a series of tests conducted on a regular frequency to evaluate the capability for nondestructive assay of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed with TRU waste characterization systems. Measurement facility performance will be demonstrated by the successful analysis of blind audit samples according to the criteria set by this Program Plan. Intercomparison between measurement groups of the DOE complex will be achieved by comparing the results of measurements on similar or identical blind samples reported by the different measurement facilities. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess the performance of measurement groups regarding compliance with established Quality Assurance Objectives (QAOs). As defined for this program, a PDP sample consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components, once manufactured, will be secured and stored at each participating measurement facility designated and authorized by Carlsbad Area Office (CAO) under secure conditions to protect them from loss, tampering, or accidental damage.

None

1997-05-01T23:59:59.000Z

394

Operational Awareness Oversight of the West Valley Demonstration Project, July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WVDP-2012-07-30 WVDP-2012-07-30 Site: West Valley Demonstration Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the West Valley Demonstration Project Dates of Activity : 07/30/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). Major decommissioning activities underway include removal of asbestos-containing materials, disassembly of the dissolver,

395

Operational Awareness Oversight of the West Valley Demonstration Project, July 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

WVDP-2012-07-30 WVDP-2012-07-30 Site: West Valley Demonstration Project Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the West Valley Demonstration Project Dates of Activity : 07/30/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was for the HS-45 Site Lead to meet with Department of Energy (DOE) site personnel, tour the facilities, and obtain a status report on the upcoming activities at the West Valley Demonstration Project (WVDP). Major decommissioning activities underway include removal of asbestos-containing materials, disassembly of the dissolver,

396

Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project  

DOE Green Energy (OSTI)

Executive summaries have been written for 61 reports and compilations of data which in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

1980-05-01T23:59:59.000Z

397

Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project  

DOE Green Energy (OSTI)

Executive summaries have been written for 61 reports and compilations of data which, in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

1980-05-01T23:59:59.000Z

398

Guidebook for Cost/Benefit Analysis of Smart Grid Demonstration Projects  

Science Conference Proceedings (OSTI)

This report presents a step-by-step process for estimating the costs and benefits associated with Smart Grid demonstration projects. In its entirety, the guidebook is meant to function as a standalone users manual for the analysis process, from the initial step of describing the project to the final step of communicating the results to all stakeholders. This revision of the Guidebook updates and supersedes the material in the original Volume 1, published in 2011, but goes further by adding ...

2012-12-12T23:59:59.000Z

399

Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project  

SciTech Connect

The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

Tuenge, Jason R.

2011-06-01T23:59:59.000Z

400

Final Report on the PREMIO Experimental Results: EDF Smart Grid Demonstration Project  

Science Conference Proceedings (OSTI)

PREMIO is a French acronym for Production Rpartie, Enr et MDE, Intgres et Optimises or in English, Integration and Optimization of DG, DSM & Renewable Energies. The term PREMIO is used in this document in reference to the project and the working consortium, as well as the Virtual Power Plant. Electricit de France (EDF) supports the PREMIO demonstration project in the south of France. PREMIO combines the control of installed ...

2013-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "demonstration project waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project  

Science Conference Proceedings (OSTI)

This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

2002-02-26T23:59:59.000Z

402

Liquid low-level waste generation projections for ORNL in 1993  

SciTech Connect

Liquid low-level waste (LLLW) is generated by various programs and projects throughout Oak Ridge National Laboratory (ORNL). These wastes are collected in underground collection tanks, bottles, and trucks; they are then neutralized with sodium hydroxide and treated for volume reduction at the ORNL evaporator facility. This report presents historical and projected data concerning the volume and characterization of LLLW, prior to and after evaporation. Storage space for projected waste generation is also discussed.

DePaoli, S.M.

1994-04-01T23:59:59.000Z

403

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

404

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

405

Western Greenbrier Co-Production Demonstration Project Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WESTERN WESTERN GREENBRIER CO-PRODUCTION DEMONSTRATION PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT VOLUME 1 OF 3 DOE / EIS-0361 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory NOVEMBER 2007 COVER SHEET Responsible Agency: U.S. Department of Energy Title: Western Greenbrier Co-Production Demonstration Project, Final Environmental Impact Statement (DOE/EIS-0361) Location: Rainelle, West Virginia Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Roy Spears, Document Manager National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road

406

Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 U.S. Department of Energy Kentucky Pioneer Integrated Gasification Combined Cycle Demonstration Project Final Environmental Impact Statement November 2002 U.S. Department of Energy National Energy Technology Laboratory COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project Final Environmental Impact Statement (EIS) (DOE/EIS-0318) Location: Clark County, Kentucky Contacts: For further information on this environmental For further information on the DOE National impact statement (EIS), call: Environmental Policy Act (NEPA) process, call: 1-800-432-8330 ext. 5460 1-800-472-2756 or contact: or contact: Mr. Roy Spears Ms. Carol Borgstrom

407

Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project  

SciTech Connect

Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

1995-07-01T23:59:59.000Z

408

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

DOE Green Energy (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

409

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2009; Composite Data Products, Final Version March 19, 2009  

DOE Green Energy (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-03-01T23:59:59.000Z

410

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project; Spring 2008 Composite Data Products, Final Version: February 29, 2008  

DOE Green Energy (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through February 2008.

Wipke, K.; Sprik, S.; Kurtz J.

2008-04-01T23:59:59.000Z

411

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

412

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009  

DOE Green Energy (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-09-01T23:59:59.000Z

413

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010  

SciTech Connect

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-05-01T23:59:59.000Z

414

HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)  

Science Conference Proceedings (OSTI)

This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste