National Library of Energy BETA

Sample records for demonstration bulk vitrification

  1. Summary - Demonstration Bulk Vitrification System (DBVS) for...

    Office of Environmental Management (EM)

    of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe...

  2. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  3. A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-09-29

    In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall mission as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other supplemental treatment alternatives as provided in M-62-08.

  4. CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE

    SciTech Connect (OSTI)

    MAY TH

    2008-04-16

    The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.

  5. Waste Form Qualification Compliance Strategy for Bulk Vitrification

    SciTech Connect (OSTI)

    Bagaasen, Larry M.; Westsik, Joseph H.; Brouns, Thomas M.

    2005-01-03

    The Bulk Vitrification System is being pursued to assist in immobilizing the low-activity tank waste from the 53 million gallons of radioactive waste in the 177 underground storage tanks on the Hanford Site. To demonstrate the effectiveness of the bulk vitrification process, a research and development facility known as the Demonstration Bulk Vitrification System (DBVS) is being built to demonstrate the technology. Specific performance requirements for the final packaged bulk vitrification waste form have been identified. In addition to the specific product-performance requirements, performance targets/goals have been identified that are necessary to qualify the waste form but do not lend themselves to specifications that are easily verified through short-term testing. Collectively, these form the product requirements for the DBVS. This waste-form qualification (WFQ) strategy document outlines the general strategies for achieving and demonstrating compliance with the BVS product requirements. The specific objectives of the WFQ activities are discussed, the bulk vitrification process and product control strategy is outlined, and the test strategy to meet the WFQ objectives is described. The DBVS product performance targets/goals and strategies to address those targets/goals are described. The DBVS product-performance requirements are compared to the Waste Treatment and Immobilization Plant immobilized low-activity waste product specifications. The strategies for demonstrating compliance with the bulk vitrification product requirements are presented.

  6. Bulk Vitrification Castable Refractory Block Protection Study

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the penetration of molten salt. Out of several refractory tile candidates, only greystone and fused-cast alumina-zirconia-silica (AZS) refractory remained intact and well bonded to the CRB after firing to 1000 C. The deformation of the refractory-tile composite was avoided by prefiring the greystone tile to 800 C. Condensed vapors did not penetrate the tiles, but Re salts condensed on their surface. Refractory corrosion tests indicated that a 0.25-inch-thick greystone tile would not corrode during a BV melt. Tiles can reduce both vapor penetration and molten salt penetration, but vapor deposition above the melt line will occur even on tiles. The Tc/Re transport scenario was outlined as follows. At temperatures below 700 C, molten ionic salt (MIS) that includes all the Tc/Re penetrates, by capillarity, from the feed into the CRB open porosity. At approximately 750 C, the MIS decomposes through the loss of NOx, leaving mainly sulfate and chloride salts. The Na2O formed in the decomposition of the nitrates reacts with insoluble grains in the feed and with the aluminosilicates in the CRB to form more viscous liquids that reduce further liquid penetration into the CRB. At 800 to 1000 C, a continuous glass phase traps the remains of the MIS in the form of inclusions in the bulk glass melt. At 1000 to 1200 C, the salt inclusions in the glass slowly dissolve but also rise to the surface. The Tc/Re salts also evaporate from the free surface of the glass melt that is rapidly renewed by convective currents. The vapors condense on cooler surfaces in the upper portion of the CRB, the box lid, and the off-gas system.

  7. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |ReferencePowerHaier:Hands-On LessonsSystem (DBVS)

  8. Vitrification facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

  9. Evaluation of Exothermic Reactions from Bulk-Vitrification Melter Feeds Containing Cellulose

    SciTech Connect (OSTI)

    Scheele, Randall D.; McNamara, Bruce K.; Bagaasen, Larry M.; Bos, Stanley J.; Kozelisky, Anne E.; Berry, Pam

    2007-06-25

    PNNL has demonstrated that cellulose effectively reduces the amount of molten ionic salt during Bulk Vitrification of simulated Hanford Low Level Waste (LLW). To address concerns about the potential reactivity of cellulose-LLW, PNNL used thermogravimetric analysis, differential thermal analysis, and accelerating rate calorimetry to determine in these preliminary studies that these mixtures will support a self-sustaining reaction if heated to 110°C at adiabatic conditions. Additional testing is recommended.

  10. Corrosion of Metal Inclusions In Bulk Vitrification Waste Packages

    SciTech Connect (OSTI)

    Bacon, Diana H.; Pierce, Eric M.; Wellman, Dawn M.; Strachan, Denis M.; Josephson, Gary B.

    2006-07-31

    The primary purpose of the work reported here is to analyze the potential effect of the release of technetium (Tc) from metal inclusions in bulk vitrification waste packages once they are placed in the Integrated Disposal Facility (IDF). As part of the strategy for immobilizing waste from the underground tanks at Hanford, selected wastes will be immobilized using bulk vitrification. During analyses of the glass produced in engineering-scale tests, metal inclusions were found in the glass product. This report contains the results from experiments designed to quantify the corrosion rates of metal inclusions found in the glass product from AMEC Test ES-32B and simulations designed to compare the rate of Tc release from the metal inclusions to the release of Tc from glass produced with the bulk vitrification process. In the simulations, the Tc in the metal inclusions was assumed to be released congruently during metal corrosion as soluble TcO4-. The experimental results and modeling calculations show that the metal corrosion rate will, under all conceivable conditions at the IDF, be dominated by the presence of the passivating layer and corrosion products on the metal particles. As a result, the release of Tc from the metal particles at the surfaces of fractures in the glass releases at a rate similar to the Tc present as a soluble salt. The release of the remaining Tc in the metal is controlled by the dissolution of the glass matrix. To summarize, the release of 99Tc from the BV glass within precipitated Fe is directly proportional to the diameter of the Fe particles and to the amount of precipitated Fe. However, the main contribution to the Tc release from the iron particles is over the same time period as the release of the soluble Tc salt. For the base case used in this study (0.48 mass% of 0.5 mm diameter metal particles homogeneously distributed in the BV glass), the release of 99Tc from the metal is approximately the same as the release from 0.3 mass% soluble Tc salt in the castable refractory block and it is released over the same time period as the salt. Therefore, to limit the impact of precipitated Fe on the release of 99Tc, both the amount of precipitated Fe in the BV glass and the diameter of these particles should be minimized.

  11. Analysis of Soluble Re Concentrations in Refractory from Bulk Vitrification Full-Scale Test 38B

    SciTech Connect (OSTI)

    Cooley, Scott K.; Pierce, Eric M.; Bagaasen, Larry M.; Schweiger, Michael J.

    2006-06-30

    The capacity of the waste treatment plant (WTP) being built at the Hanford Site is not sufficient to process all of the tank waste accumulated from more than 40 years of nuclear materials production. Bulk vitrification can accelerate tank waste treatment by providing some supplemental low-activity waste (LAW) treatment capacity. Bulk vitrification combines LAW and glass-forming chemicals in a large metal container and melts the contents using electrical resistance heating. A castable refractory block (CRB) is used along with sand to insulate the container from the heat generated while melting the contents into a glass waste form. This report describes engineering-scale (ES) and full-scale (FS) tests that have been conducted. Several ES tests showed that a small fraction of soluble Tc moves in the CRB and results in a groundwater peak different than WTP glass. The total soluble Tc-99 fraction in the FS CRB is expected to be different than that determined in the ES tests, but until FS test results are available, the best-estimate soluble Tc-99 fraction from the ES tests has been used as a conservative estimate. The first FS test results are from cold simulant tests that have been spiked with Re. An estimated scale-up factor extrapolates the Tc-99 data collected at the ES to the FS bulk vitrification waste package. Test FS-38A tested the refractory design and did not have a Re spike. Samples were taken and analyzed to help determine Re CRB background concentrations using a Re-spiked, six-tank composite simulant mixed with soil and glass formers to produce the waste feed. Although this feed is not physically the same as the Demonstration Bulk Vitrification System feed , the chemical make-up is the same. Extensive sampling of the CRB was planned, but difficulties with the test prevented completion of a full box. An abbreviated plan is described that looks at duplicate samples taken from refractory archive sections, a lower wall sample, and two base samples to gain early information about Re and projected Tc-99 levels in the FS box.

  12. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrificati...

    Office of Environmental Management (EM)

    the container for processing, an electrical "starter path" is laid on the bottom CRB panels. The starter path consists of a conductive graphite-soil mixture to provide a...

  13. DEVELOPMENT OF THE BULK VITRIFICATION TREATMENT PROCESS FOR THE LOW ACTIVITY FRACTION OF HANFORD SINGLE SHELL TANK WASTES

    SciTech Connect (OSTI)

    Thompson, L.E.; Lowery, P.S.; Arrowsmith, H.W.; Snyder, T.; McElroy, J.L.

    2003-02-27

    AMEC Earth & Environmental, Inc. and RWE NUKEM Corporation have teamed to develop and apply a waste pre-treatment and bulk vitrification process for low activity waste (LAW) from Hanford Single Shell Tanks (SSTs). The pretreatment and bulk vitrification process utilizes technologies that have been successfully deployed to remediate both radioactive and chemically hazardous wastes at nuclear power plants, DOE sites, and commercial waste sites in the US and abroad. The process represents an integrated systems approach. The proposed AMEC/NUKEM process follow the extraction and initial segregation activities applied to the tank wastes carried out by others. The first stage of the process will utilize NUKEM's concentrate dryer (CD) system to concentrate the liquid waste stream. The concentrate will then be mixed with soil or glass formers and loaded into refractory-lined steel containers for bulk vitrification treatment using AMEC's In-Container Vitrification (ICV) process. Following the vitrification step, a lid will be placed on the container of cooled, solidified vitrified waste, and the container transported to the disposal site. The container serves as the melter vessel, the transport container and the disposal container. AMEC and NUKEM participated in the Mission Acceleration Initiative Workshop held in Richland, Washington in April 2000 [1]. An objective of the workshop was to identify selected technologies that could be combined into viable treatment options for treatment of the LAW fraction from selected Hanford waste tanks. AMEC's ICV process combined with NUKEM's CD system and other remote operating capabilities were presented as an integrated solution. The Team's proposed process received some of the highest ratings from the Workshop's review panel. The proposed approach compliments the Hanford Waste Treatment Plant (WTP) by reducing the amount of waste that the WTP would have to process. When combined with the capabilities of the WTP, the proposed approach will accelerate the tank waste remediation program plan and facilitate meeting the regulatory requirements for the remediation of the Hanford tank wastes. Consequently, the DOE Office of River Protection and CH2MHill Hanford Group identified bulk vitrification as one of the technologies to be investigated in FY03 through a demonstration program [2]. In October 2002, CH2MHill issued a request for proposal for the process development testing, engineering and data package for a non-radioactive (cold) pilot bulk vitrification process, and pre-conceptual engineering of a production bulk vitrification system. With AMEC in the lead, AMEC and NUKEM responded with a proposal. Pacific Northwest National Laboratory (PNNL) will support the proposed project as a key subcontractor by providing equipment, facilities, and personnel to support small-scale testing, including the testing on samples of actual tank wastes. This paper will provide an overview of the pre-treatment and bulk vitrification process, summarize the technical benefits the approach offers, and describe the demonstration program that has been developed for the project.

  14. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  15. DESIGN OF THE DEMOSNTRATION BULK VITRIFICATION SYSTEM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect (OSTI)

    VAN BEEK JE

    2008-02-14

    In June 2004, the Demonstration Bulk Vitrification System (DBVS) was initiated with the intent to design, construct, and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford Tank 241-S-109. The DBVS facility uses In-Container Vitrification{trademark} (ICV{trademark}) at the core of the treatment process. The basic process steps combine liquid low-activity waste (LAW) and glassformers; dry the mixture; and then vitrify the mixture in a batch feed-while-melt process in a refractory lined steel container. Off-gases are processed through a state-of-the-art air pollution control system including sintered-metal filtration, thermal oxidation, acid gas scrubbing, and high-efficiency particulate air (HEPA) and high-efficiency gas adsorber (HEGA) filtration. Testing has focused on development and validation of the waste dryer, ICV, and sintered-metal filters (SMFs) equipment, operations enhancements, and glass formulation. With a parallel testing and design process, testing has allowed improvements to the DBVS equipment configuration and operating methodology, since its original inception. Design improvements include optimization of refractory panels in the ICV, simplifying glassformer addition equipment, increasing the number of waste feed chutes to the ICV, and adding capability for remote clean-out of piping, In addition, the U.S. Department of Energy (DOE) has provided an independent review of the entire DBVS process. While the review did not find any fatal flaws, some technical issues were identified that required a re-evaluation of the DBVS design and subsequent changes to the design. A 100 percent design package for the pilot plant will be completed and submitted to DOE for review in early 2008 that incorporates process improvements substantiated through testing and reviews. This paper provides a description of the bulk vitrification process and a discussion of major equipment design changes that have occurred based on full-scale testing over the past two years and DOE reviews.

  16. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  17. Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

    2007-08-06

    Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

  18. Progress Report on the Laboratory Testing of the Bulk Vitrification Cast Refractory

    SciTech Connect (OSTI)

    Pierce, Eric M.; McGrail, B PETER.; Bagaasen, Larry M.; Wellman, Dawn M.; Crum, J V.; Geiszler, Keith N.; Baum, Steven R.

    2004-11-15

    The Hanford Site in southeastern Washington State has been used extensively to produce nuclear materials for the U. S. strategic defense arsenal by the U. S. Department of Energy (DOE). A large inventory of radioactive and mixed waste has accumulated in 177 single- and double-shell tanks. Liquid waste recovered from the tanks will be pre-treated to separate the low-activity fraction from the high-level and transuranic wastes. Currently, the DOE Office of River Protection (ORP) is evaluating several options for immobilization of low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. A significant portion of the waste will be converted into immobilized low-activity waste (ILAW) glass with a conventional Joule-heated ceramic melter. In addition to ILAW glass, supplemental treatment technologies are under consideration by the DOE to treat a portion of the low activity waste. The reason for using this alternative treatment technology is to accelerate the overall cleanup mission at the Hanford site. The ORP selected Bulk Vitrification (BV) for further development and testing. Work in FY03 on engineered and large scale tests of the BV process suggested that approximately 0.3 to as much as 3 wt% of the waste stream 99Tc inventory would end up in a soluble form deposited in a vesicular layer located at the top of the BV melt and in the sand used as an insulator after vitrification. In the FY03 risk assessment (RA) (Mann et al., 2003), the soluble Tc salt in the BV waste packages creates a 99Tc concentration peak at early times in the groundwater extracted from a 100-meter down-gradient well. This peak differs from the presently predicted baseline WTP glass performance, which shows an asymptotic rise to a constant release rate. Because of the desire by regulatory agencies to achieve essentially equivalent performance to WTP glass with supplemental treatment technologies, the BV process was modified in FY04 in an attempt to minimize deposition of soluble 99Tc salts by including a castable refractory block (CRB) in place of a portion of the refractory sand layer and using a bottom-up melting technique to eliminate the vesicular glass layer at the top. However, the refractory block is still porous and there is the potential for leachable 99Tc to deposit in the pores of the CRB. The purpose of this progress report is to document the status of a laboratory testing program being conducted at Pacific Northwest National Laboratory (PNNL) for CH2M Hill Hanford Group in support of the LAW Supplemental Treatment Technologies Demonstration project. The objective of these tests was to provide an initial estimate of the leachable fraction of key contaminants of concern (Cs, Re [chemical analogue for 99Tc], and 99Tc) that could condense within the BV CRB. This information will be used to guide development of additional modifications to the BV process to further reduce the soluble 99Tc levels in the BV waste package.

  19. Waste-Incidental-to-Reprocessing Evaluation for the West Valley Demonstration Project Vitrification Melter - 12167

    SciTech Connect (OSTI)

    McNeil, Jim; Kurasch, David; Sullivan, Dan; Crandall, Thomas

    2012-07-01

    The Department of Energy (DOE) has determined that the vitrification melter used in the West Valley Demonstration Project can be disposed of as low-level waste (LLW) after completion of a waste-incidental-to-reprocessing evaluation performed in accordance with the evaluation process of DOE Manual 435.1-1, Radioactive Waste Management Manual. The vitrification melter - which consists of a ceramic lined, electrically heated box structure - was operated for more than 5 years melting and fusing high-level waste (HLW) slurry and glass formers and pouring the molten glass into 275 stainless steel canisters. Prior to shutdown, the melter was decontaminated by processing low-activity decontamination flush solutions and by extracting molten glass from the melter cavity. Because it could not be completely emptied, residual radioactivity conservatively estimated at approximately 170 TBq (4,600 Ci) remained in the vitrification melter. To establish whether the melter was incidental to reprocessing, DOE prepared an evaluation to demonstrate that the vitrification melter: (1) had been processed to remove key radionuclides to the maximum extent technically and economically practical; (2) would be managed to meet safety requirements comparable to the performance objectives for LLW established by the Nuclear Regulatory Commission (NRC); and (3) would be managed by DOE in accordance with DOE's requirements for LLW after it had been incorporated in a solid physical form with radionuclide concentrations that do not exceed the NRC concentration limits for Class C LLW. DOE consulted with the NRC on the draft evaluation and gave other stakeholders an opportunity to submit comments before the determination was made. The NRC submitted a request for additional information in connection with staff review of the draft evaluation; DOE provided the additional information and made improvements to the evaluation, which was issued in January 2012. DOE considered the NRC Technical Evaluation Report as well as comments received from other stakeholders prior to making its determination that the vitrification melter is not HLW, does not require permanent isolation in a geologic repository, and can be disposed of as LLW. (authors)

  20. Transport of Technetium and Rhenium into Refractory Materials during Bulk Vitrification

    SciTech Connect (OSTI)

    Bagaasen, Larry M.; Brouns, Thomas M.; Elliott, Michael L.; Hrma, Pavel R.; Kim, Dong-Sang; Matyas, Josef; Pierce, Eric M.; McGrail, B. Peter; Schweiger, Michael J.; Campbell, Brett E.; Beck, Andrew E.

    2006-02-21

    Bulk vitrification (BV) was selected as a potential supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the U.S. Department of Energy Hanford Site. In the BV process, low-activity waste, soil, and glass forming chemicals are mixed, dried and placed in a metal box lined with a castable refractory block (CRB). Electric current, supplied by two graphite electrodes in the box, melts the waste feed and produces a durable glass waste form. During engineering-scale (ES) tests of BV, a small fraction of radioactive technetium-99 (Tc) (and rhenium [Re], a nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the CRB. Tc is a primary risk driver for long-term performance of immobilized LAW; therefore, even small fractions of Tc present in a readily leachable form rather than immobilized in a glass matrix can impact long-term performance.

  1. Investigation of Tc Migration Mechanism During Bulk Vitrification Process Using Re Surrogate

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Bagaasen, Larry M.; Crum, Jarrod V.; Fluegel, Alex; Gallegos, Autumn B.; Martinez, Baudelio; Matyas, Josef; Meyer, Perry A.; Paulsen, Dan; Riley, Brian J.; Schweiger, Michael J.; Stewart, Charles W.; Swoboda, Robert G.; Yeager, John D.

    2006-12-04

    As a part of Bulk vitrification (BV) performance enhancement tasks, Laboratory scoping tests were performed in FY 2004-2005 to explore possible ways to reduce the amount of soluble Tc in the BV waste package. Theses scoping tests helped identify which mechanisms play an important role in the migration of Tc in the BV process (Hrma et al. 2005 and Kim et al. 2005). Based on the results from these scoping tests, additional tests were identified that will improve the understanding of Tc migration and to clearly identify the dominant mechanisms. The additional activities identified from previous studies were evaluated and prioritized for planning for Tasks 29 and 30 conducted in FY2006. Task 29 focused on the improved understanding of Tc migration mechanisms, and Task 30 focused on identifying the potential process changes that might reduce Tc/Re migration into the castable refractory block (CRB). This report summarizes the results from the laboratory- and crucible-scale tests in the lab for improved Tc migration mechanism understanding utilizing Re as a surrogate performed in Task 29.

  2. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    SciTech Connect (OSTI)

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. (Ebasco Services, Inc., Bellevue, WA (USA))

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  3. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

  4. Environmental Compliance at the West Valley Demonstration Project: The Vitrification Permitting Program

    SciTech Connect (OSTI)

    L. C. Salvatori; C. B. Banzer; W. T. Watters

    1996-05-28

    The major environmental laws that apply to the West Valley Demonstration Project (WVDP) are the: Resource Conservation and Recovery Act (RCRA), Clean Air Act (CAA), Clean Water Act (CWA), Safe Drinking Water Act (SDWA), Toxic Substances Control Act (TSCA), National Environmental Policy Act (NEPA), and Emergency Planning and Community Right-To-Know Act (EPCRA). Regulations developed in accordance with these laws are administered by the New York State Department of Environmental Conservation (NYSDEC) and the U.S. Environmental Protection Agency (EPA) through state and federal programs, and regulatory requirements such as permitting. The Environmental Permits & Reports (EP&R) Group of the Environmental Affairs (EA) Department has the primary responsibility for developing a site-wide permitting program for the WVDP and obtaining the necessary permits. This report discusses the permits and the permitting process associated with the Vitrification Facility (VF).

  5. Method to Reduce Molten Salt Penetration into Bulk Vitrification Refractory Materials

    SciTech Connect (OSTI)

    Bagaasen, L.M.; Hrma, P.R.; Kim, D.S.; Schweiger, M.J.; Matyas, J.; Rodriguez, C.P. [Pacific Northwest National Laboratory, Richland WA (United States); Witwer, K.S. [AMEC Nuclear Holdings Ltd., GeoMelt Division, Richland, WA (United States)

    2008-07-01

    Bulk vitrification (BV) is a process that heats a feed material consisting of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. However, the castable refractory block (CRB) portion of the refractory lining has sufficient porosity to allow the low-viscosity molten ionic salt (MIS), which contains technetium (Tc) in a soluble form, to penetrate the CRB. This limits the effectiveness of the final waste form. This paper describes tests conducted to develop a method aimed at reducing the quantities of soluble Tc in the CRB. Tests showed that MIS formed in significant quantities at temperatures above 300 deg. C, remained stable until roughly 550 deg. C where it began to thermally decompose, and was completely decomposed by 800 deg. C. The estimated volume fraction of MIS in the feed was greater than 40%, and the CRB material contained 11 to 15% open porosity, a combination allowing a large quantity of MIS to migrate through the feed and penetrate the open porosity of the CRB. If the MIS is decomposed at temperatures below 300 deg. C or can be contained in the feed until it fully decomposes by 800 deg. C, MIS migration into the CRB can be avoided. Laboratory and crucible-scale experiments showed that a variety of methods, individually or in combination, can decrease MIS penetration into the CRB. Modifying the CRB to block MIS penetration was not deemed practical as a method to prevent the large quantities of MIS penetration seen in the full-scale tests, but it may be useful to reduce the impacts of lower levels of MIS penetration. Modifying the BV feed materials to better contain the MIS proved to be more successful. A series of qualitative and quantitative crucible tests were developed that allowed screening of feed modifications that might be used to reduce MIS penetration. These tests showed that increasing the specific surface area of the soil (used as the primary glass-forming solid in the baseline process) by grinding stopped MIS penetration nearly entirely for feeds that contained waste simulants with lower quantities of nitrate salts. Grinding soil significantly reduced MIS penetration in feeds with higher nitrate quantities, but it was necessary to add carbohydrates (sucrose or cellulose) to destroy a portion of the nitrate at low temperatures to reach the same low levels of MIS penetration seen for the lower nitrate feeds. Developing feeds to reduce MIS penetration in full-scale BV applications resulted in two additional refinements. Soil-grinding to the necessary levels proved to be difficult and expensive, so the fine soil was replaced with readily available fine-grained glass-forming minerals. Cellulose was shown to have less impact on dryer operation than sucrose and was chosen as the carbohydrate source to use in subsequent engineering- and full-scale tests. (authors)

  6. Vitrification Melter Waste Incidental to Reprocessing Determination...

    Office of Environmental Management (EM)

    DOE Manual 435.1-1 Waste-Incidental-To-Reprocessing Determination for the West Valley Demonstration Project Vitrification Melter Vitrification Melter Waste Incidental to...

  7. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    SciTech Connect (OSTI)

    none,

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  8. Innovative Vitrification for Soil Remediation

    SciTech Connect (OSTI)

    Hnat, James G.; Patten, John S.; Jetta, Norman W.

    1996-12-31

    Vortec has successfully completed Phases 1 and 2 of a technology demonstration program for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation.'' The principal objective of the program is to demonstrate the ability of a Vortec Cyclone Melting System (CMS) to remediate DOE contaminated soils and other waste forms containing TM RCRA hazardous materials, low levels of radionuclides and TSCA (PCB) containing wastes. The demonstration program will verify the ability of this vitrification process to produce a chemically stable glass final waste form which passes both TCLP and PCT quality control requirements, while meeting all federal and state emission control regulations. The demonstration system is designed to process 36 ton/day of as-received drummed or bulk wastes. The processing capacity equates to approximately 160 barrels/day of waste materials containing 30% moisture at an average weight of 450 lbs./barrel.

  9. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    SciTech Connect (OSTI)

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A.; Tixier, J.S.

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997.

  10. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hart, J.G.

    1995-12-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.

  11. Readiness review plan for the in situ vitrification demonstration of Seepage Pit 1 in Waste Area Grouping 7

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    A treatability study is planned that encompasses the application of in situ vitrification (ISV) to at least two segments of the Oak Ridge National Laboratory Seepage Pit I during the third quarter of fiscal year 1995. Before the treatability study can be initiated, the proposed activity must be subjected to an Operational Readiness Review (ORR). ORR is a structured methodology of determining readiness to proceed as outlined in Martin Marietta Energy Systems, Inc. (Energy Systems), Environmental Restoration Waste Management Procedure ER/C-P1610, which provides Energy Systems organizations assurance that the work to be performed is consistent with management`s expectations and that the subject activity is ready to proceed safely. The readiness review plan provides details of the review plan overview and the scope of work to be performed. The plan also identifies individuals and position responsibilities for implementing the activity. The management appointed Readiness Review Board (RRB) has been identified. A Field Readiness Review Team (FRT), a management appointed multidisciplinary group, has been established (1) to evaluate the ISV treatability study, (2) to identify and assemble supporting objective evidences of the readiness to proceed, and (3) to assist the team leader in presenting the evidences to the RRB. A major component of RRB is the formulation of readiness review criteria months before the operation. A comprehensive readiness review tree (a positive logic tree) is included, which identifies the activities required for the development of the readiness criteria. The readiness review tree serves as a tool to prevent the omission of an item that could affect system performance. All deficiencies identified in the review will be determined as prestart findings and must be resolved before the project is permitted to proceed. The final approval of the readiness to proceed will be the decision of RRB.

  12. Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils

    SciTech Connect (OSTI)

    Ludowise, J.D.

    1994-05-01

    The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na{sub 2}O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

  13. Design of Vitrification Machine

    E-Print Network [OSTI]

    McDonald, Todd William

    2009-11-30

    and unreliable process. Moreover, there is a lack of standardization in the methods for preparing cells and biological material for the vitrification process. The purpose of the Vitrification Machine is to greatly simplify the process by making it faster, more...

  14. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-12-31

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1,200 C to 1,400 C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  15. Vitrification of NAC process residue

    SciTech Connect (OSTI)

    Merrill, R.A.; Whittington, K.F.; Peters, R.D.

    1995-09-01

    Vitrification tests have been performed with simulated waste compositions formulated to represent the residue which would be obtained from the treatment of low-level, nitrate wastes from Hanford and Oak Ridge by the nitrate to ammonia and ceramic (NAC) process. The tests were designed to demonstrate the feasibility of vitrifying NAC residue and to quantify the impact of the NAC process on the volume of vitrified waste. The residue from NAC treatment of low-level nitrate wastes consists primarily of oxides of aluminum and sodium. High alumina glasses were formulated to maximize the waste loading of the NAC product. Transparent glasses with up to 35 wt% alumina, and even higher contents in opaque glasses, were obtained at melting temperatures of 1200{degrees}C to 1400{degrees}C. A modified TCLP leach test showed the high alumina glasses to have good chemical durability, leaching significantly less than either the ARM-1 or the DWPF-EA high-level waste reference glasses. A significant increase in the final waste volume would be a major result of the NAC process on LLW vitrification. For Hanford wastes, NAC-treatment of nitrate wastes followed by vitrification of the residue will increase the final volume of vitrified waste by 50% to 90%; for Melton Valley waste from Oak Ridge, the increase in final glass volume will be 260% to 280%. The increase in volume is relative to direct vitrification of the waste in a 20 wt% Na{sub 2}O glass formulation. The increase in waste volume directly affects not only disposal costs, but also operating and/or capital costs. Larger plant size, longer operating time, and additional energy and additive costs are direct results of increases in waste volume. Such increases may be balanced by beneficial impacts on the vitrification process; however, those effects are outside the scope of this report.

  16. Vitrification assistance program: international co-operation on vitrification technology

    SciTech Connect (OSTI)

    Penrice, Ch.; McGowan, B.; Garth, B.; Reed, J.; Prod'homme, A. [Sellafield Ltd, Sellafield, CA20 1PG Seascale (United Kingdom); Sartelet, S.; Guerif, H.N. [AREVA NC, AREVA Group, 50 - Beaumont La Hague (France); Hollebecque, J.F. [CEA Marcoule 30 (France); Flament, T.; Prod'homme, A. [SGN, AREVA Group, 78 - St Quentin Yvelines (France)

    2008-07-01

    With 10 vitrification lines in operation (3 on WVP in Sellafield, 1 on AVM in Marcoule and 6 on AVH in La Hague), Sellafield Ltd and Areva NC benefit from the most in-depth experience worldwide in the vitrification of highly active liquors within a framework of commercial operations. Based on the two-step process design, using a calciner and an induction-heated hot melter, which was initially deployed in Marcoule in 1978, core vitrification equipment has been continuously improved by the independent development programmes of the two companies. In March 2005, Sellafield Ltd and Areva NC signed the Vitrification Assistance Program (hereafter referred to as VAP); a co-operative project lasting 4 years during which Areva NC is to share some areas of their experience and expertise with Sellafield Ltd. Now at the halfway point of this project, this paper summarises the work performed by the VAP team to date, highlighting the early benefits and lessons learned. The following points will be developed: - Equipment delivery and preparation for implementation on WVP - Training organization and dissemination to WVP teams - Lessons learned from the early changes implemented in operations (Calciner, Melter, Dust Scrubber and Primary off gas system), and initial feedback from the first campaign using a VAP equipped line. In conclusion: The vitrification process and technology implemented at Sellafield and at La Hague, based on the two-step process, have proved to be efficient in treating high active liquor of various types. Ten lines based on this principle have been successfully operated for more than 15 years in France and in the UK. The process has also been demonstrated to be sufficiently versatile to benefit from continuous improvement and development programmes. VAP, as a complete package to support vitrification technology and knowledge transfer from AREVA NC to Sellafield Ltd, has provided the framework for fruitful technical exchanges and discussions between the two companies. From equipment delivery to knowledge embedding within the WVP teams, both companies have worked hard together to respect the tight schedule of the contract, despite growing external constraints. This has been closely managed in order to achieve the best results for the VAP without jeopardizing the continuing production operations on both the Sellafield and La Hague sites. For future campaigns, WVP1 will be equipped with an automatic heating control system similar to the one used at La Hague (i.e. based on 4 kHz). This will facilitate the work of the WVP operators and finalise the conversion of WVP melter control systems from manual to automatic, meaning that the melters on all 3 lines will be automatically controlled. Further implementation of VAP equipment is also planned on the other lines. (authors)

  17. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  18. Final Vitrification Melter And Vessels Evaluation Documentation

    Broader source: Energy.gov [DOE]

    DOE has prepared final evaluations and made waste incidental to reprocessing determinations for the vitrification melter and feed vessels (the concentrator feed makeup tank and the melter feed hold tank), used by DOE’s West Valley Demonstration Project as part of the process to vitrify waste from prior commercial reprocessing of spent nuclear fuel.

  19. Vitrification publication bibliography

    SciTech Connect (OSTI)

    Schmieman, E.; Johns, W.E.

    1996-02-01

    This document was compiled by a group of about 12 graduate students in the Department of Mechanical Engineering and Material Science at Washington State University and was funded by the U.S. Department of Energy. The literature search resulting in the compilation of this bibliography was designed to be an exhaustive search for research and development work involving the vitrification of mixed wastes, published by domestic and foreign researchers, primarily during 1989-1994. The search techniques were dominated by electronic methods and this bibliography is also available in electronic format, Windows Reference Manager.

  20. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  1. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  2. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)] [and others

    1996-03-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  3. Innovative vitrification for soil remediation

    SciTech Connect (OSTI)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  4. Hanford low-level vitrification melter testing -- Master list of data submittals

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1995-03-15

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes.

  5. Waste vitrification projects throughout the US initiated by SRS

    SciTech Connect (OSTI)

    Jantzen, C.M.; Whitehouse, J.C.; Smith, M.E.; Ramsey, W.G.; Pickett, J.B.

    1996-05-01

    Technologies are being developed by the US Department of Energy (DOE) Nuclear Facility sites to convert high-level, low-level, and mixed wastes to a solid stabilized waste form for permanent disposal. Vitrification is one of the most important and environmentally safest technologies being developed. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The Defense Waste Processing Facility (DWPF) being tested at Savannah River Site (SRS) will soon begin vitrifying the high-level waste at SRS. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both the current and future regulatory specifications. Vitrification produces durable waste forms at volume reductions up to 97%. Large reductions in volume minimize long-term storage costs making vitrification cost effective on a life cycle basis.

  6. Vitrification development plan for US Department of Energy mixed wastes

    SciTech Connect (OSTI)

    Peters, R.; Lucerna, J.; Plodinec, M.J.

    1993-10-01

    This document is a general plan for conducting vitrification development for application to mixed wastes owned by the US Department of Energy. The emphasis is a description and discussion of the data needs to proceed through various stages of development. These stages are (1) screening at a waste site to determine which streams should be vitrified, (2) waste characterization and analysis, (3) waste form development and treatability studies, (4) process engineering development, (5) flowsheet and technical specifications for treatment processes, and (6) integrated pilot-scale demonstration. Appendices provide sample test plans for various stages of the vitrification development process. This plan is directed at thermal treatments which produce waste glass. However, the study is still applicable to the broader realm of thermal treatment since it deals with issues such as off-gas characterization and waste characterization that are not necessarily specific to vitrification. The purpose is to provide those exploring or considering vitrification with information concerning the kinds of data that are needed, the way the data are obtained, and the way the data are used. This will provide guidance to those who need to prioritize data needs to fit schedules and budgets. Knowledge of data needs also permits managers and planners to estimate resource requirements for vitrification development.

  7. Innovative technology summary report: Transportable vitrification system

    SciTech Connect (OSTI)

    NONE

    1998-09-01

    At the end of the cold war, many of the Department of Energy`s (DOE`s) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned.

  8. Chloride removal from vitrification offgas

    SciTech Connect (OSTI)

    Slaathaug, E.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-01

    This study identified and investigated techniques of selectively purging chlorides from the low-level waste (LLW) vitrification process with the purge stream acceptable for burial on the Hanford Site. Chlorides will be present in high concentration in several individual feeds to the LLW Vitrification Plant. The chlorides are highly volatile in combustion type melters and are readily absorbed by wet scrubbing of the melter offgas. The Tank Waste Remediation System (TWRS) process flow sheets show that the resulting chloride rich scrub solution is recycled back to the melter. The chlorides must be purged from the recycle loop to prevent the buildup of excessively high chloride concentrations.

  9. Hanford’s Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, Keith S.; Dysland, Eric J.; Garfield, J. S.; Beck, T. H.; Matyas, Josef; Bagaasen, Larry M.; Cooley, Scott K.; Pierce, Eric M.; Kim, Dong-Sang; Schweiger, Michael J.

    2008-02-22

    The GeoMelt® In-Container Vitrification™ (ICV™) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford’s low-activity waste (LAW). Also referred to as “bulk vitrification,” this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV™ technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV™ process before operating the Hanford pilot-plant. In 2007, the project’s fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV™ melter with a 10,000-liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV™ melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D.

  10. Hanford's Supplemental Treatment Project: Full-Scale Integrated Testing of In-Container-Vitrification and a 10,000-Liter Dryer

    SciTech Connect (OSTI)

    Witwer, K.S.; Dysland, E.J.; Garfield, J.S.; Beck, T.H.; Matyas, J.; Bagaasen, L.M.; Cooley, S.K.; Pierce, E.; Kim, D.S.; Schweiger, M.J.

    2008-07-01

    The GeoMelt{sup R} In-Container Vitrification{sup TM} (ICV{sup TM}) process was selected by the U.S. Department of Energy (DOE) in 2004 for further evaluation as the supplemental treatment technology for Hanford's low-activity waste (LAW). Also referred to as 'bulk vitrification', this process combines glass forming minerals, LAW, and chemical amendments; dries the mixture; and then vitrifies the material in a refractory-lined steel container. AMEC Nuclear Ltd. (AMEC) is adapting its GeoMelt ICV{sup TM} technology for this application with technical and analytical support from Pacific Northwest National Laboratory (PNNL). The DVBS project is funded by the DOE Office of River Protection and administered by CH2M HILL Hanford Group, Inc. The Demonstration Bulk Vitrification Project (DBVS) was initiated to engineer, construct, and operate a full-scale bulk vitrification pilot-plant to treat up to 750,000 liters of LAW from Waste Tank 241-S-109 at the DOE Hanford Site. Since the beginning of the DBVS project in 2004, testing has used laboratory, crucible-scale, and engineering-scale equipment to help establish process limitations of selected glass formulations and identify operational issues. Full-scale testing has provided critical design verification of the ICV{sup TM} process before operating the Hanford pilot-plant. In 2007, the project's fifth full-scale test, called FS-38D, (also known as the Integrated Dryer Melter Test, or IDMT,) was performed. This test had three primary objectives: 1) Demonstrate the simultaneous and integrated operation of the ICV{sup TM} melter with a 10,000- liter dryer, 2) Demonstrate the effectiveness of a new feed reformulation and change in process methodology towards reducing the production and migration of molten ionic salts (MIS), and, 3) Demonstrate that an acceptable glass product is produced under these conditions. Testing was performed from August 8 to 17, 2007. Process and analytical results demonstrated that the primary test objectives, along with a dozen supporting objectives, were successfully met. Glass performance exceeded all disposal performance criteria. A previous issue with MIS containment was successfully resolved in FS-38D, and the ICV{sup TM} melter was integrated with a full-scale, 10,000-liter dryer. This paper describes the rationale for performing the test, the purpose and outcome of scale-up tests preceding it, and the performance and outcome of FS-38D. (authors)

  11. Selecting a plutonium vitrification process

    SciTech Connect (OSTI)

    Jouan, A. [Centre d`Etudes de la Vallee du Rhone, Bagnols sur Ceze (France)

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  12. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  13. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  14. Responses to Public Comments on Draft Vitrification Melter Evaluation

    Office of Environmental Management (EM)

    of the impacts of transporting for disposal the Vitrification Melter and two other vessels used in vitrification processing. The Supplement Analysis concluded that the impacts...

  15. Vitrification of ion exchange resins

    DOE Patents [OSTI]

    Cicero-Herman, Connie A. (Aiken, SC); Workman, Rhonda Jackson (North Augusta, SC)

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  16. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  17. Evaluation of melter system technologies for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Wilson, C.N.

    1994-03-21

    Westinghouse Hanford Company (WHC) is conducting a two-phased demonstration testing and evaluation of candidate melter system technologies for vitrification of Hanford Site low-level tank wastes. The testing is to be performed by melter equipment and vitrification technology commercial suppliers. This Statement of Work is for Phases 1 and 2 of the demonstration testing program. The primary objective of the demonstration testing is to identify the best available melter system technology for the Hanford Site LLW vitrification facility. Data obtained also will support various WHC engineering studies and conceptual design of the LLW vitrification facility. Multiple technologies will be selected for demonstration and evaluation. Testing will be conducted using non-radioactive LLW simulants in Seller-specified pilot/testing facilities.

  18. ECONOMIC ASSESSMENT ON VITRIFICATION FACILITY OF LOW-AND INTERMEDIATE-LEVEL RADIOACTIVE WASTES IN KOREA

    SciTech Connect (OSTI)

    Kim, Sung Il; Lee, Kun Jai; Ji, Pyung Kook; Park, Jong Kil; Ha, Jong Hyun; Song, Myung Jae

    2003-02-27

    The usefulness of vitrification technology for low-and intermediate-level radioactive wastes was demonstrated with high volume reduction capability and good mechanical and chemical stability of final waste forms, and commercial vitrification facility is expected to be constructed at Ulchin site of Korean Nuclear Power Plant Ulchin Unit 5 and 6. Hence, overall economic assessment was necessary to find out the economic advantage of the vitrification facility and to predict the construction and operation costs of the facility on the preliminary bases. Additionally, the generation characteristics of radioactive wastes were investigated. The results of the cost analysis showed that the disposal cost of radioactive wastes treated by vitrification facility reduced to 85 percent compared with that by current waste treatment system. And the present worth analysis was performed through the cost-benefit analysis method for the commercial vitrification facility. The results showed that the vitrification facility combining cold crucible melter (CCM) for treatment of combustible DAW, spent resin, and borated liquid waste concentrate and plasma torch melter (PTM) for non-combustible DAW and spent filter is more economical than current waste treatment system when the escalation rate of disposal cost of more than 10 percent per year was applied.

  19. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  20. Cold Test Operation of the German VEK Vitrification Plant

    SciTech Connect (OSTI)

    Fleisch, J.; Schwaab, E.; Weishaupt, M. [WAK GmbH, Eggenstein-Leopoldshafen (Germany); Gruenewald, W.; Roth, G.; Tobie, W. [Forschungszentrum Karlsruhe, Institut fur Nukleare Entsorgung, Eggenstein-Leopoldshafen (Germany)

    2008-07-01

    In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow entering the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)

  1. Glass melter system technologies for vitrification of high-sodium-content low-level, radioactive, liquid wastes: Phase 1, SBS demonstration with simulated low-level waste. Final test report

    SciTech Connect (OSTI)

    Holmes, M.J.; Scotto, M.V.; Shiao, S.Y.

    1995-12-31

    The attached vendor report was prepared for Westinghouse Hanford Company by Babcock & Wilcox as documentation of the Phase I Final Test Report, Cyclone Combustion Melter Demonstration.

  2. Hanford waste vitrification systems risk assessment

    SciTech Connect (OSTI)

    Miller, W.C.; Hamilton, D.W.; Holton, L.K.; Bailey, J.W.

    1991-09-01

    A systematic Risk Assessment was performed to identify the technical, regulatory, and programmatic uncertainties and to quantify the risks to the Hanford Site double-shell tank waste vitrification program baseline (as defined in December 1990). Mitigating strategies to reduce the overall program risk were proposed. All major program elements were evaluated, including double-shell tank waste characterization, Tank Farms, retrieval, pretreatment, vitrification, and grouting. Computer-based techniques were used to quantify risks to proceeding with construction of the Hanford Waste Vitrification Plant on the present baseline schedule. Risks to the potential vitrification of single-shell tank wastes and cesium and strontium capsules were also assessed. 62 refs., 38 figs., 26 tabs.

  3. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect (OSTI)

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  4. Sampling and Analysis at the Vortec Vitrification Facility in...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 05 NUCLEAR FUELS; SAMPLING; RADIOACTIVITY; CONTAMINATION; VITRIFICATION; RADIOACTIVE WASTES; HAZARDOUS MATERIALS; RADIOACTIVE WASTE...

  5. In-situ vitrification of waste materials

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  6. Widening the envelope of UK HLW vitrification - Experimental studies with high waste loadings and new product formulations on a full scale non-active vitrification plant

    SciTech Connect (OSTI)

    Short, R.; Gribble, N. [Nexia Solutions, Sellafield, Cumbria, CA20 1PG (United Kingdom); Riley, A. [Sellafield Ltd, Sellafield, Seascale, Cumbria, CA20 1PG, UK (United Kingdom)

    2008-07-01

    The Vitrification Test Rig is a full scale waste vitrification plant that processes non-radioactive liquid HLW simulants based on the active waste streams produced by the reprocessing plants in the UK. Previous work on the rig has primarily concerned increasing the operational envelopes for the active waste vitrification plants at Sellafield to accommodate higher throughputs of Blended waste streams, higher waste oxide incorporation rates in the vitrified products, and the incorporation of legacy waste streams from early reactor commissioning and reprocessing operations at Sellafield. Recent operations have focussed on four main areas; dilute liquid feeds, very high Magnox waste stream incorporation levels, alternative base glass formulations and providing an operational envelope for 28 %w/w Magnox waste vitrification. This paper details the work performed and the major findings of that work. In summary: The VTR has been successfully used to determine operational envelopes and product quality for several HLW feed variations that will allow WVP to increase overall plant throughput via increased waste loading in canisters, increased HLW feed rates or a combination of both. The VTR has also demonstrated the ability to go to waste incorporations, feed rates and glass compositions that are currently beyond WVP specified limits, but that are feasible for future vitrification regimes. In addition, the VTR has trialled dilute feeds similar to those that are likely to be received by WVP in the future and the data obtained from these experiments will allow WVP to prepare adequately for the high throughput challenge of such feeds. Furthermore, new equipment has been trialled on the VTR in water feed mode to determine its suitability and operational limitations for WVP. Future operations will, in the short term, be concerned with increasing the throughput of WVP and are likely to focus on HLW decommissioning operations waste streams in the longer term. (authors)

  7. Applying vitrification to meet customers` values

    SciTech Connect (OSTI)

    Roy, B. [Scientific Ecology Group, Inc., Oak Ridge, TN (United States)

    1996-03-01

    Cost-effective waste management solutions that maximize customer value require a thorough and flexible evaluation and integration of approaches, technology applications, and disposal options. This is particulary true in the application of vitrification to low-level radioactive and mixed waste stabilization. Case-specific evaluations are the required to determine the highest value, most cost-effective approaches.

  8. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2000-04-10

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public.

  9. Vitrification of lead-based paint using thermal spray

    SciTech Connect (OSTI)

    Kumar, A.; Covey, S.W.; Lattimore, J.L.; Boy, J.H.

    1996-12-31

    Lead-based paint (LBP) primers have been used to protect steel structures from corrosion. Abrasive blasting is currently used to remove old LBP. During abrasive blasting a containment structure is required to keep the hazardous lead dust from contaminating air, soil, or water. A thermal spray vitrification (TSV) process to remove LBP was developed. Dried glass powder is melted in the high temperature flame of the thermal spray torch. When the glass strikes the substrate it is molten and reacts with the paint on the substrate. The organic components of the paint are pyrolyzed, while the lead ions are trapped on the surface of glass. The quenching stresses in the glass cause the glass to crack and spall off the substrate. The crumbled glass fragments can be collected and remelted, immobilizing the lead ions within the glass network, thereby preventing leaching. The resulting glass can be disposed of as non-hazardous waste. The process is dust-free, eliminating the need for containment. The volume of residue waste is less than for abrasive blasting and is nonhazardous. The concept and techniques of using the thermal spray vitrification process for the removal and the containment of lead from a section of a bridge containing lead-based paint have been successfully demonstrated.

  10. World first in high level waste vitrification - A review of French vitrification industrial achievements

    SciTech Connect (OSTI)

    Brueziere, J.; Chauvin, E. [AREVA, 1 place Jean Millier, 92084 Paris La Defense (France); Piroux, J.C. [Joint Vitrification Laboratory - LCV, Marcoule, BP171, 30207 Bagnols sur Ceze (France)

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process was implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.

  11. NUCLEAR WASTE VITRIFICATION EFFICIENCY COLD CAP REACTIONS

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR; POKORNY R

    2011-07-29

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  12. Nuclear waste vitrification efficiency: cold cap reactions

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Kruger, Albert A.; Pokorny, Richard

    2012-12-15

    The cost and schedule of nuclear waste treatment and immobilization are greatly affected by the rate of glass production. Various factors influence the performance of a waste-glass melter. One of the most significant, and also one of the least understood, is the process of batch melting. Studies are being conducted to gain fundamental understanding of the batch reactions, particularly those that influence the rate of melting, and models are being developed to link batch makeup and melter operation to the melting rate. Batch melting takes place within the cold cap, i.e., a batch layer floating on the surface of molten glass. The conversion of batch to glass consists of various chemical reactions, phase transitions, and diffusion-controlled processes. These include water evaporation (slurry feed contains as high as 60% water), gas evolution, the melting of salts, the formation of borate melt, reactions of borate melt with molten salts and with amorphous oxides (Fe2O3 and Al2O3), the formation of intermediate crystalline phases, the formation of a continuous glass-forming melt, the growth and collapse of primary foam, and the dissolution of residual solids. To this list we also need to add the formation of secondary foam that originates from molten glass but accumulates on the bottom of the cold cap. This study presents relevant data obtained for a high-level-waste melter feed and introduces a one-dimensional (1D) mathematical model of the cold cap as a step toward an advanced three-dimensional (3D) version for a complete model of the waste glass melter. The 1D model describes the batch-to-glass conversion within the cold cap as it progresses in a vertical direction. With constitutive equations and key parameters based on measured data, and simplified boundary conditions on the cold-cap interfaces with the glass melt and the plenum space of the melter, the model provides sensitivity analysis of the response of the cold cap to the batch makeup and melter conditions. The model demonstrates that batch foaming has a decisive influence on the rate of melting. Understanding the dynamics of the foam layer at the bottom of the cold cap and the heat transfer through it appears crucial for a reliable prediction of the rate of melting as a function of the melter-feed makeup and melter operation parameters. Although the study is focused on a batch for waste vitrification, the authors expect that the outcome will also be relevant for commercial glass melting.

  13. Vitrification technology for Hanford Site tank waste

    SciTech Connect (OSTI)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  14. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August...

  15. Vitrification and solidification remedial treatment and disposal costs

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1992-03-12

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450,000 m{sup 3} of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes a detailed study done to: compare the economics of the solidification and vitrification processes, determine if the stigma assigned to vitrification is warranted and, determine if investing millions of dollars into vitrification development, along with solidification development, at the Fernald is warranted.

  16. Engineering report of plasma vitrification of Hanford tank wastes

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1995-05-12

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System.

  17. Competition between vitrification and crystallization of methanol at high pressure

    E-Print Network [OSTI]

    Vos, Willem L.

    Competition between vitrification and crystallization of methanol at high pressure Marco J. P methanol at high pressure up to 33 GPa at room temperature with x-ray diffraction, optical polarization and vitrification is observed when methanol is superpressed beyond the freezing pressure of 3.5 GPa: between 5

  18. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  19. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  20. Hanford Waste Vitrification Plant foreign alternatives feasibility study

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The impacts and uncertainties of changing from the current Hanford Waste Vitrification Plant technology and plant design based on the liquid-fed ceramic melter to the French Ateliers Vitrification La Hague vitrification technology and plant design for vitrifying high-level defense wastes are considered in this report. An evaluation has been made as to whether the change might be a source of significant cost savings. The French Ateliers Vitrification La Hague technology is the only alternative at a sufficiently advanced stage of development to consider as a replacement for the current Hanford Waste Vitrification Plant technology. This study concludes that a significant cost savings could not be realized by changing to the French Ateliers Vitrification La Hague technology and design for the Hanford Waste Vitrification Plant. The study provides a rough comparison of plant costs based on available information. An improved cost estimate could be developed through more detailed study, but it would be unlikely to change the overall conclusion. 7 figs., 3 tabs.

  1. Hanford Waste Vitrification Systems Risk Assessment action plan

    SciTech Connect (OSTI)

    Miller, W.C.

    1990-11-01

    Recent events in the Hanford waste storage tanks and delays in the startup of US Department of Energy vitrification plans suggest that the schedule for waste vitrification activities at the Hanford Site should be reexamined. As a result, a Hanford Waste Vitrification Systems Risk Assessment will be performed to identify significant risks associated with the vitrification of Hanford high-level and transuranic wastes. This document defines the purpose, scope, plan of execution, responsibilities, reporting requirements, and preliminary schedule and cost estimate to complete this assessment. The study will identify and evaluate uncertainties, quantify potential consequences from these uncertainties, and identify the risks to successful completion of the Hanford vitrification mission. Waste characterization, retrieval, pretreatment, and vitrification will be addressed. Uncertainties associated with the vitrification of double-shell and single-shell tank wastes and cesium and strontium capsules, as well as a limited assessment of the grouting of low-level wastes, will be defined. Technical, regulatory (safety and environmental), and programmatic (cost and schedule) uncertainties will be defined. Recommendations for mitigating strategies and assessments of technical alternatives will be made to reduce substantial risks. 2 refs., 1 fig., 1 tab.

  2. Melter system technology testing for Hanford Site low-level tank waste vitrification

    SciTech Connect (OSTI)

    Wilson, C.N. [Westinghouse Hanford Company, Richland, WA (United States)

    1996-12-31

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for immobilization of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks, commercially available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference technologies for the new LLW vitrification mission. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes were also tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection and recommendations for Phase 2 testing completed. This paper describes the Phase 1 LLW melter vendor testing program and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  3. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    SciTech Connect (OSTI)

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford`s low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations.

  4. Low-level waste vitrification plant environmental permitting plan

    SciTech Connect (OSTI)

    Gretsinger, W.T.; Colby, J.M.

    1994-10-03

    This document presents projected environmental permitting and approval requirements for the treatment and disposal of low-level Hanford tank waste by vitrification. Applicability, current status, and strategy are discussed for each potential environmental permit or approval.

  5. Apparatus for in situ heating and vitrification

    DOE Patents [OSTI]

    Buelt, J.L.; Oma, K.H.; Eschbach, E.A.

    1994-05-31

    An apparatus for decontaminating ground areas where toxic chemicals are buried includes a plurality of spaced electrodes located in the ground and to which a voltage is applied for bringing about current flow. Power delivered to the ground volatilizes the chemicals that are then collected and directed to a gas treatment system. A preferred form of the invention employs high voltage arc discharge between the electrodes for heating a ground region to relatively high temperatures at relatively low power levels. Electrodes according to the present invention are provided with preferentially active lower portions between which current flows for the purpose of soil heating or for soil melting and vitrification. Promoting current flow below ground level avoids predominantly superficial treatment and increases electrode life. 15 figs.

  6. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  7. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, Chia-lin W. (Augusta, GA)

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  8. Process for treating alkaline wastes for vitrification

    DOE Patents [OSTI]

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  9. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect (OSTI)

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  10. Feasibility Study for Vitrification of Sodium-Bearing Waste

    SciTech Connect (OSTI)

    J. J. Quigley; B. D. Raivo; S. O. Bates; S. M. Berry; D. N. Nishioka; P. J. Bunnell

    2000-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated under a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is the complete calcination (i.e., treatment) of all SBW by December 31, 2012. One of the proposed options for treatment of SBW is vitrification. This study will examine the viability of SBW vitrification. This study describes the process and facilities to treat the SBW, from beginning waste input from INTEC Tank Farm to the final waste forms. Schedules and cost estimates for construction and operation of a Vitrification Facility are included. The study includes a facility layout with drawings, process description and flow diagrams, and preliminary equipment requirements and layouts.

  11. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect (OSTI)

    Sheng, Jiawei [Kyoto University (Japan); Choi, Kwansik [Nuclear Environment Technology Institute (Korea, Republic of); Yang, Kyung-Hwa [Nuclear Environment Technology Institute (Korea, Republic of); Lee, Myung-Chan [Nuclear Environment Technology Institute (Korea, Republic of); Song, Myung-Jae [Nuclear Environment Technology Institute (Korea, Republic of)

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  12. Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report

    SciTech Connect (OSTI)

    Wilson, C.N., Westinghouse Hanford

    1996-06-27

    Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

  13. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    SciTech Connect (OSTI)

    Finucane, K.G. [AMEC Nuclear Holdings Ltd., GeoMelt Div., Richland, WA (United States); Thompson, L.E. [Capto Group LLC, Dallas, TX (United States); Abuku, T. [ISV Japan Ltd., Yokohama-city (Japan); Nakauchi, H. [Mie Chuo Kaihatsu Co. Ltd., Hachiya, Iga City (Japan)

    2008-07-01

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements. However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes are outlined. (authors)

  14. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  15. Vitrification of low-level radioactive waste in a slagging combustor

    SciTech Connect (OSTI)

    Holmes, M.J.; Downs, W.; Higley, B.A. [and others

    1995-07-01

    The suitability of a Babcock & Wilcox cyclone furnace to vitrify a low-level radioactive liquid waste was evaluated. The feed stream contained a mixture of simulated radioactive liquid waste and glass formers. The U.S. Department of Energy is testing technologies to vitrify over 60,000,000 gallons of this waste at the Hanford site. The tests reported here demonstrated the technical feasibility of Babcock & Wilcox`s cyclone vitrification technology to produce a glass for near surface disposal. Glass was produced over a period of 24-hours at a rate of 100 to 150 lb/hr. Based on glass analyses performed by an independent laboratory, all of the glass samples had leachabilities at least as low as those of the laboratory glass that the recipe was based upon. This paper presents the results of this demonstration, and includes descriptions of feed preparation, glass properties, system operation, and flue gas composition. The paper also provides discussions on key technical issues required to match cyclone furnace vitrification technology to this U.S. Department of Energy Hanford site application.

  16. Hanford Waste Vitrification Plant technical manual

    SciTech Connect (OSTI)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  17. Low-level waste vitrification contact maintenance viability study

    SciTech Connect (OSTI)

    Leach, C.E., Westinghouse Hanford

    1996-07-12

    This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

  18. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2001-10-05

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  19. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    SciTech Connect (OSTI)

    Finucane, K.G.; Campbell, B.E.

    2006-07-01

    AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  20. Choosing solidification or vitrification for low-level radioactive and mixed waste treatment

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1992-02-14

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450 000m{sup 3} of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes how Fernald is choosing between solidification and vitrification as the primary waste treatment method.

  1. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect (OSTI)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  2. Independent engineering review of the Hanford Waste Vitrification System

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  3. Low-level waste vitrification phase 1 vendor test sample analysis data

    SciTech Connect (OSTI)

    Mast, E.S.

    1995-10-04

    A multi-phase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests was performed in vendor test facilities using simulated LLW and was completed during FY-1995. Test samples taken during Phase 1 testing were analyzed by independent laboratories who reported the analyses results to Westinghouse Hanford Company for integration and evaluation. The reported analytical results were integrated into an electronic data base using Microsoft Excel*5.0. This report documents this data base as of the end of FY-1995, and is supplemental to the Phase 1 LLW melter testing summary report, WHC-SD-WM-ER-498, revision 0.

  4. Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect (OSTI)

    Taylor, Dean Dalton; Barnes, Charles Marshall

    2002-09-01

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  5. Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste

    SciTech Connect (OSTI)

    Barnes, C.M.; Taylor, D.D.

    2002-09-09

    Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

  6. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    SciTech Connect (OSTI)

    Moore, L.

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  7. Method for initiating in-situ vitrification using an impregnated cord

    DOE Patents [OSTI]

    Carter, John G. (Richland, WA)

    1991-01-01

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process.

  8. Method for initiating in-situ vitrification using an impregnated cord

    DOE Patents [OSTI]

    Carter, J.G.

    1991-04-02

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process. 1 figure.

  9. Technical letter report: Submerged bed scrubber sediment resuspension testing for the Hanford Waste Vitrification Plant

    SciTech Connect (OSTI)

    Schmidt, A.J.; Herrington, M.G.

    1996-03-01

    During-vitrification operations in the Hanford Waste Vitrification Plant (HWVP), some feed components will be vented from the melter to the melter offgas cleaning equipment. The current HWVP reference process for melter off.-gas treatment includes a submerged bed scrubber (SBS) to provide the first stage of off-gas scrubbing and quenching. During most melter/off-gas test runs at Pacific Northwest Laboratory (PNL) with the Pilot Scale Ceramic Melter (PSCM) and at the West Valley Demonstration Project (WVDP), no significant quantities of sedimentation were accumulated in the SBS scrub tank. However, during test run SF-12, conducted at West Valley, approximately 6 in. of sedimentation accumulated in the scrub tank. This raised concerns that a similar accumulation could occur with the HWVP SBS, If such an accumulation rate occurred during a sustained melter run, the SBS would soon cease to function. To alleviate the potential for sedimentation buildup, the HWVP SBS design includes a sparge ring at the bottom of the scrub tank. The sparge ring will be operated intermittently to prevent buildup of solids which could interfere with circulation with the SBS Scrub tank. This report presents the results of testing conducted to evaluate the effectiveness of the HWVP sparge ring design. Section 2 contains-the conclusions and recommendations; Section 3 summarizes the objectives; Section 4 describes the equipment and materials used; Section 5 gives the experimental approach; and Section 6 discusses the results. The appendices contain procedures for sediment resuspension testing and particle size distribution data for silica and sediment.

  10. Protection of Operators and Environment - the Safety Concept of the Karlsruhe Vitrification Plant VEK

    SciTech Connect (OSTI)

    Fleisch, J.; Kuttruf, H.; Lumpp, W.; Pfeifer, W.; Roth, G.; Weisenburger, S.

    2002-02-26

    The Karlsruhe Vitrification Plant (VEK) plant is a milestone in decommissioning and complete dismantling of the former Karlsruhe Reprocessing Plant WAK, which is in an advanced stage of disassembly. The VEK is scheduled to vitrify approx. 70 m3 of the highly radioactive liquid waste (HLW) resulting from reprocessing. Site preparation, civil work and component manufacturing began in 1999. The building will be finalized by mid of 2002, hot vitrification operation is currently scheduled for 2004/2005. Provisions against damages arising from construction and operation of the VEK had to be made in accordance with the state of the art as laid down in the German Atomic Law and the Radiation Protection Regulations. For this purpose, the appropriate analysis of accidents and their external and internal impacts were investigated. During the detailed design phase, a failure effects analysis was carried out, in which single events were studied with respect to the objectives of protection and ensuring activity containment, limiting radioactive discharges to the environment and protecting of the staff. Parallel to the planning phase of the VEK plant a cold prototype test facility (PVA) covering the main process steps was constructed and operated at the Institut fuer Nukleare Entsorgung (INE) of FZK. This pilot operation served to demonstrate the process technique and its operation with a simulated waste solution, and to test the main items of equipment, but was conducted also to use the experimental data and experience to back the safety concept of the radioactive VEK plant. This paper describes the basis of the safety concept of the VEK plant and results of the failure effect analysis. The experimental simulation of the failure scenarios, their effect on the process behavior, and the controllability of these events as well as the effect of the results on the safety concept of VEK are discussed. Additionally, an overview of the actual status of civil work and manufacturing of the technical equipment is given.

  11. Chemical durability of soda-lime-aluminosilicate glass for radioactive waste vitrification

    SciTech Connect (OSTI)

    Eppler, F.H.; Yim, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1998-09-01

    Vitrification has been identified as one of the most viable waste treatment alternatives for nuclear waste disposal. Currently, the most popular glass compositions being selected for vitrification are the borosilicate family of glasses. Another popular type that has been around in glass industry is the soda-lime-silicate variety, which has often been characterized as the least durable and a poor candidate for radioactive waste vitrification. By replacing the boron constituent with a cheaper substitute, such as silica, the cost of vitrification processing can be reduced. At the same time, addition of network intermediates such as Al{sub 2}O{sub 3} to the glass composition increases the environmental durability of the glass. The objective of this study is to examine the ability of the soda-lime-aluminosilicate glass as an alternative vitrification tool for the disposal of radioactive waste and to investigate the sensitivity of product chemical durability to variations in composition.

  12. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  13. Extending Fuzzy System Concepts for Control of a Vitrification Melter

    SciTech Connect (OSTI)

    Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.

    1995-08-16

    Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.

  14. Radiological characterization of a vitrification facility for decommissioning

    SciTech Connect (OSTI)

    Asou, M. [CEA/DEN/VALRHO/UMODD, 30207 Bagnols-sur-Ceze Cedex (France); Le Goaller, C. [CEA/DEN/VALRHO/DDCO, 30207 Bagnols-sur-Ceze Cedex (France); Martin, F. [AREVA NC DAP/MOP (France)

    2007-07-01

    Cleanup operations in the Marcoule Vitrification Facility (AVM) will start in 2007. This plant includes 20 highly irradiating storage tanks for high-level liquid waste before vitrification. The objective of the cleanup phase is to significantly decrease the amount of highly radioactive waste resulting from dismantling. A comprehensive radiological survey of the plant was initiated in 2000. Most of the tanks were characterized using advanced technologies: gamma imaging, CdZnTe gamma spectroscopy, dose rate measurements and 3D calculations codes. At the same time, inspections were conducted to develop 3D geometrical models of the tanks. The techniques used and the main results obtained are described as well as lessons learned from these operations. The rinsing program was defined in 2006. Decontamination operations are expected to begin in 2007, and radiological surveys will be followed up to monitor the efficiency of the decontamination process. Specific rinsing of all tanks and equipment will be carried out from 2007 to 2009. Concentrated liquid solutions will be vitrified between 2008 and 2010; the decommissioning of AVM will be delayed until the end of 2010. This strategy aims at producing less than 5% 'B' type (long-lived intermediate-level) waste from the decommissioning operations, as well as reducing the dose rate and risks by simplified remote dismantling. The paper reviews the main options selected for decontamination, as well as the radiological characterization strategy. Some cost-related aspects will also be analyzed. (authors)

  15. Defense waste vitrification studies during FY-1981. Summary report

    SciTech Connect (OSTI)

    Bjorklund, W.J. (comp.)

    1982-09-01

    Both simulated alkaline defense wastes and simulated acidic defense wastes (formed by treating alkaline waste with formic acid) were successfully vitrified in direct liquid-fed melter experiments. The vitrification process was improved while using the formate-treated waste. Leach resistance was essentially the same. Off-gas entrainment was the primary mechanism for material exiting the melter. When formate waste was vitrified, the flow behavior of the off gas from the melter changed dramatically from an erratic surging behavior to a more quiet, even flow. Hydrogen and CO were detectable while processing formate feed; however, levels exceeding the flamability limits in air were never approached. Two types of melter operation were tested during the year, one involving boost power. Several boosting methods located within the melter plenum were tested. When lid heating was being used, water spray cooling in the off gas was required. Countercurrent spray cooling was more effective than cocurrent spray cooling. Materials of construction for the off-gas system were examined. Inconel-690 is preferred in the plenum area. Inspection of the pilot-scale melter found that corrosion of the K-3 refractory and Inconel-690 electrodes was minimal. An overheating incident occurred with the LFCM in which glass temperatures up to 1480/sup 0/C were experienced. Lab-scale vitrification tests to study mercury behavior were also completed this year. 53 figures, 63 tables.

  16. Rotary bulk solids divider

    DOE Patents [OSTI]

    Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  17. Demonstration Scale Projects Michael Cooney

    E-Print Network [OSTI]

    investigated the application of anaerobic digestion to primary clarifier treatment as a means to lower bulk packing material in anaerobic digesters. #12;Demonstration Scale Projects Michael Cooney With a grant from the DOE, a 3,000 gallon anaerobic

  18. Improvement to low-level radioactive-waste vitrification processes. Master's thesis

    SciTech Connect (OSTI)

    Horton, W.S.

    1986-05-01

    Low-level radioactive waste vitrification (LLWV) is a technically feasible and cost-competitive alternative to the traditional immobilization options, i.e., cementation or bituminization. This thesis analyzes cementation, bituminization and vitrification, reviews the impact of the low-level Waste-stream composition on the vitrification process, then proposes and discusses several techniques to control the volatile radionuclides in a Process Improved LLWV system (PILLWV). The techniques that control the volatile radionuclides include chemical precipitation, electrodialysis, and ion exchange. Ion exchange is preferred. A comparison of the technical specifications, of the regulatory compliance, and of the cost considerations shows the PILLWV to be the superior LLW immobilization option.

  19. CFD Modeling of Thermal Effects of Nuclear Waste Vitrification Processes

    SciTech Connect (OSTI)

    Rayner, Chris; Soltani, Mehdi; Barringer, Chris; Knight, Kelly

    2006-07-01

    The Waste Treatment Plant (WTP) at Hanford, WA will vitrify nuclear waste stored at the DOE Hanford facility. The vitrification process will take place in two large concrete buildings where the glass is poured into stainless steel canisters or containers and allowed to cool. Computational Fluid Dynamics (CFD) was used extensively to calculate the effects of the heat released by molten glass as it is poured and cooled, on the HVAC system and the building structure. CFD studies of the glass cooling in these facilities were used to predict canister temperatures, HVAC air temperatures, concrete temperatures and insulation requirements, and design temperatures for canister handling equipment and instrumentation at various stages of the process. These predictions provided critical input in the design of the HVAC system, specification of insulation, the design of canister handling equipment, and the selection of instrumentation. (authors)

  20. Cold cap subsidence for in situ vitrification and electrodes therefor

    DOE Patents [OSTI]

    Buelt, James L. (Richland, WA); Carter, John G. (Richland, WA); Eschbach, Eugene A. (Richland, WA); FitzPatrick, Vincent F. (Richland, WA); Koehmstedt, Paul L. (Richland, WA); Morgan, William C. (Richland, WA); Oma, Kenton H. (Richland, WA); Timmerman, Craig L. (Richland, WA)

    1992-01-01

    An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

  1. Bottoms-Up In-Situ Vitrification Of Hard-to-Treat Buried Mixed Wastes, CRADA Final Report ORNL99-0543

    SciTech Connect (OSTI)

    Spalding, B. P. [ORNL] [ORNL; Farrar, Lawrence [Montec Research] [Montec Research

    2000-01-01

    This Phase I project was designed to demonstrate feasibility of in situ waste destruction and vitrification technology as a means of remediating hard-to-treat buried radioactive and hazardous wastes and focused on proving viability of the concentric graphite arc melter technique as a robust, safe, and economic tool for use as the IWDV process heat source. Oak Ridge National Laboratory provided technical support to Montec Research including the volatile behavior of elements during silicate melting operations and temperature viscosity modeling of silicate melts. Further research will be needed to develop this technology into a competitive remediation technique

  2. System for enhanced destruction of hazardous wastes by in situ vitrification of soil

    DOE Patents [OSTI]

    Timmerman, Craig L. (Richland, WA)

    1991-01-01

    The present invention comprises a system for promoting the destruction of volatile and/or hazardous contaminants present in waste materials during in situ vitrification processes. In accordance with the present invention, a cold cap (46) comprising a cohesive layer of resolidified material is formed over the mass of liquefied soil and waste (40) present between and adjacent to the electrodes (10, 12, 14, 16) during the vitrification process. This layer acts as a barrier to the upward migration of any volatile type materials thereby increasing their residence time in proximity to the heated material. The degree of destruction of volatile and/or hazardous contaminants by pyrolysis is thereby improved during the course of the vitrification procedure.

  3. Evaluation Pilot-Scale Melter Systems for the Direct Vitrification Development Program

    SciTech Connect (OSTI)

    Mc Cray, Casey William; Thomson, Troy David

    2001-09-01

    This report documents the results of an evaluation conducted to identify a joule-heated melter system that could be installed in the Idaho Falls area in support of the Direct Vitrification Development Program. The relocation was to be completed by January 1, 2002, within a total budget of one million dollars. Coordination with the Department of Energy Tanks Focus Area identified five melters or melter systems that could potentially support the Direct Vitrification Development Program. Each unit was inspected and evaluated based on qualitative criteria such as availability, completeness of the system, contamination, scalability, materials of construction, facility requirements, and any unique features.

  4. Melter system technology testing for Hanford Site low-level tankwaste vitrification

    SciTech Connect (OSTI)

    Wilson, C.N.

    1996-05-03

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission.

  5. Flammability Control In A Nuclear Waste Vitrification System

    SciTech Connect (OSTI)

    Zamecnik, John R.; Choi, Alexander S.; Johnson, Fabienne C.; Miller, Donald H.; Lambert, Daniel P.; Stone, Michael E.; Daniel, William E. Jr.

    2013-07-25

    The Defense Waste Processing Facility at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to: 1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; 2) adjust feed rheology; and 3) reduce by steam stripping the amount of mercury that must be processed in the melter. Elimination of formic acid in pretreatment has been studied to eliminate the production of hydrogen in the pretreatment systems, which requires nuclear grade monitoring equipment. An alternative reductant, glycolic acid, has been studied as a substitute for formic acid. However, in the melter, the potential for greater formation of flammable gases exists with glycolic acid. Melter flammability is difficult to control because flammable mixtures can be formed during surges in offgases that both increase the amount of flammable species and decrease the temperature in the vapor space of the melter. A flammable surge can exceed the 60% of the LFL with no way to mitigate it. Therefore, careful control of the melter feed composition based on scaled melter surge testing is required. The results of engineering scale melter tests with the formic-nitric flowsheet and the use of these data in the melter flammability model are presented.

  6. NEXT GENERATION MELTER(S) FOR VITRIFICATION OF HANFORD WASTE STATUS AND DIRECTION

    SciTech Connect (OSTI)

    RAMSEY WG; GRAY MF; CALMUS RB; EDGE JA; GARRETT BG

    2011-01-13

    Vitrification technology has been selected to treat high-level waste (HLW) at the Hanford Site, the West Valley Demonstration Project and the Savannah River Site (SRS), and low activity waste (LAW) at Hanford. In addition, it may potentially be applied to other defense waste streams such as sodium bearing tank waste or calcine. Joule-heated melters (already in service at SRS) will initially be used at the Hanford Site's Waste Treatment and Immobilization Plant (WTP) to vitrify tank waste fractions. The glass waste content and melt/production rates at WTP are limited by the current melter technology. Significant reductions in glass volumes and mission life are only possible with advancements in melter technology coupled with new glass formulations. The Next Generation Melter (NGM) program has been established by the U.S. Department of Energy's (DOE's), Environmental Management Office of Waste Processing (EM-31) to develop melters with greater production capacity (absolute glass throughput rate) and the ability to process melts with higher waste fractions. Advanced systems based on Joule-Heated Ceramic Melter (JHCM) and Cold Crucible Induction Melter (CCIM) technologies will be evaluated for HLW and LAW processing. Washington River Protection Solutions (WRPS), DOE's tank waste contractor, is developing and evaluating these systems in cooperation with EM-31, national and university laboratories, and corporate partners. A primary NGM program goal is to develop the systems (and associated flowsheets) to Technology Readiness Level 6 by 2016. Design and testing are being performed to optimize waste glass process envelopes with melter and balance of plant requirements. A structured decision analysis program will be utilized to assess the performance of the competing melter technologies. Criteria selected for the decision analysis program will include physical process operations, melter performance, system compatibility and other parameters.

  7. Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System

    SciTech Connect (OSTI)

    Marra, J.C.; Kormanyos, K.R.; Overcamp, T.J.

    1996-10-01

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

  8. Bench-scale vitrification studies with Savannah River Site mercury contaminated soil

    SciTech Connect (OSTI)

    Cicero, C.A.; Bickford, D.F.

    1995-12-31

    The Savannah River Technology Center (SRTC) has been charted by the Department of Energy (DOE)--Office of Technology Development (OTD) to investigate vitrification technology for the treatment of Low Level Mixed Wastes (LLMW). In fiscal year 1995, mercury containing LLMW streams were targeted. In order to successfully apply vitrification technology to mercury containing LLMW, the types and quantities of glass forming additives necessary for producing homogeneous glasses from the wastes have to be determined and the treatment for the mercury portion must also be determined. Selected additives should ensure that a durable and leach resistant waste form is produced, while the mercury treatment should ensure that hazardous amounts of mercury are not released into the environment. The mercury containing LLMW selected for vitrification studies at the SRTC was mercury contaminated soil from the TNX pilot-plant facility at the Savannah River Site (SRS). Samples of this soil were obtained so bench-scale vitrification studies could be performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability and leach resistance. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury.

  9. Cryopreservation of carotid artery segments via vitrification subject to marginal thermal conditions: Correlation of freezing visualization

    E-Print Network [OSTI]

    Rabin, Yoed

    Available online 28 March 2008 Keywords: Vitrification Functional recovery Blood vessels Cryomacroscopy is a well-established technique for long-term storage of viable cells and tissues. How- ever, in recent testing on a contractility apparatus by measuring isometric responses to four agonist and antagonists

  10. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    SciTech Connect (OSTI)

    Hamel, W. F. [Office of River Protection, U.S. Department of Energy, 2400 Stevens Drive, Richland, WA 99354 (United States); Gerdes, K. [U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874 (United States); Holton, L. K. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Pegg, I.L. [Vitreous State Laboratory, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Bowan, B.W. [Duratek, Inc., 10100 Old Columbia Road, Columbia, Maryland 21046 (United States)

    2006-07-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  11. Effect of vitrification temperature upon the solar average absorptance properties of Pyromark Series 2500 black paint

    SciTech Connect (OSTI)

    Nelson, C.; Mahoney, A.R.

    1986-06-01

    A significant drop in production efficiency has occurred over time at the Solar One facility at Barstow, California, primarily as a result of the degradation of the Pyromark Series 2500 black paint used as the absorptive coating on the receiver panels. As part of the investigation of the problem, the solar-averaged adsorptance properties of the paint were determined as a function of vitrification temperature, since it is known that a significant amount of the panel surface area at Solar One was vitrified at temperatures below those recommended by the paint manufacturer (540/sup 0/C, 1000/sup 0/F). Painted samples initially vitrified at 230/sup 0/C (450/sup 0/F), 315/sup 0/C (600/sup 0/F), 371/sup 0/C (700/sup 0/F), and 480/sup 0/C (900/sup 0/F) exhibited significantly lower solar-averaged absorptance values (0.02 absorptance units) compared to samples vitrified at 540/sup 0/C (1000/sup 0/F). Thus, Solar One began its service life below optimal levels. After 140 h of thermal aging at 370/sup 0/C (700/sup 0/F) and 540/sup 0/C (1000/sup 0/F), all samples regardless of their initial vitrification temperatures, attained the same solar-averaged absorptance value (..cap alpha../sub s/ = 0.973). Therefore, both the long-term low-temperature vitrification and the short-term high-temperature vitrification can be used to obtain optimal or near-optimal absorptance of solar flux. Futher thermal aging of vitrified samples did not result in paint degradation, clearly indicating that high solar flux is required to produce this phenomenon. The panels at Solar One never achieved optimal absorptance because their exposure to high solar flux negated the effect of long-term low-temperature vitrification during operation. On future central receiver projects, every effort should be made to properly vitrify the Pyromark coating before its exposure to high flux conditions.

  12. Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts

    E-Print Network [OSTI]

    Wang, Zhong L.

    Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts Brent A. Buchine, William L. Hughes, F, a bulk acoustic resonator based on ZnO belts is demonstrated. This device shows a great deal of promise-like geometry, making them ideal candidates as SMR, FBAR, and beam resonators.13 However, handling belts can

  13. R and D Programs and Policy within the CEA-AREVA Joint Vitrification Lab (LCV) - 13592

    SciTech Connect (OSTI)

    Piroux, Jean Christophe [AREVA NC Marcoule LCV (France)] [AREVA NC Marcoule LCV (France); Paradis, Luc; Ladirat, Christian [CEA Marcoule LCV (France)] [CEA Marcoule LCV (France); Brueziere, Jerome; Chauvin, Eric [AREVA NC Paris La Defense (France)] [AREVA NC Paris La Defense (France)

    2013-07-01

    Waste management is a key issue for the reprocessing industry; furthermore, vitrification is considered as the reference for nuclear waste management. In order to further improve and strengthen their historical cooperation in high temperature waste management, the CEA, R and D organization, and AREVA, Industrial Operator, decided, in September 2010, to create a Joint Vitrification Laboratory within the framework of a strategic partnership. The main objectives of the CEA-AREVA Joint Vitrification Laboratory (LCV) are (i) support AREVA's activities, notably in its La Hague plants and for new projects, (ii) strengthen the CEA's lead as a reference laboratory in the field of waste conditioning. The LCV is mandated to provide strong, innovative solutions through the performance of R and D on processes and materials for vitrification, fusion and incineration, for high, intermediate and low level waste. The activities carried out in the LCV include academic research on containment matrices (formulation, long-term behaviour), and the improvement of current technologies/development of new ones in lab-scale to full-scale pilot facilities, in non-radioactive and radioactive conditions, including modelling and experimental tools. This paper focuses on the programs and policy managed within the LCV, as well as the means employed by the CEA and AREVA to meet common short-,mid- and long-term challenges, from a scientific and industrial point of view. Among other things, we discuss the technical support provided for the La Hague vitrification facilities on hot melter and CCIM technologies, the start-up of new processes (decommissioning effluents, UMo FP) with CCIM, the preparation of future processes by means of an assessment of new technologies and containment matrices (improved glasses, ceramics, etc.), as well as incineration/vitrification for organic and metallic mixed waste or metallic fusion. The close relationship between the R and D teams and industrial operators enables the LCV to propose attractive waste management solutions, with appropriate schedules and optimized development costs, making allowance for R and D constraints, engineering requirements and the industrial environment. (authors)

  14. Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification

    SciTech Connect (OSTI)

    Wood, Richard Arthur

    2001-09-01

    Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

  15. Microwave vitrification of Rocky Flats hydroxide precipitation sludge, Building 774. Progress report

    SciTech Connect (OSTI)

    Eschen, V.G.; Sprenger, G.S.; Fenner, G.S.; Corbin, I.E.

    1995-04-01

    This report describes the first set of experiments performed on transuranic (TRU) precipitation sludge produced in Building 774, to determine the operating parameters for the microwave vitrification process. Toxicity Characteristic Leach Procedure (TCLP) results of the raw sludge showed concentrations of lead, silver and cadmium which were in excess of land disposal restrictions (LDR). Crushed, borosilicate glass was used as a frit source to produce a highly desirable, vitrified, product that required less energy to produce. TCLP testing, of microwaved samples, showed favorable results for 40 and 50% waste loading. The results of this study are encouraging and support the development of microwave vitrification technology for the treatment of various mixed waste streams at Rocky Flats Environmental Technology Site. However, additional experiments are required to fully define the operating parameters for a production-scale system.

  16. Preliminary design requirements document for Project W-378, low-level waste vitrification plant

    SciTech Connect (OSTI)

    Swanson, L.M.

    1995-03-31

    The scope of this preliminary Design Requirements Document (DRD) is to identify and define the functions, with associated requirements, which must be performed to accomplish vitrification and disposal of the pretreated low-level waste (LLW) fraction of the Hanford Site tank waste. This document sets forth function requirements, performance requirements and design constraints necessary to begin conceptual design for the Low-Level Waste Vitrification Plant (LLWVP). System and physical interfaces between the LLWVP Project and the Tank Waste Remediation System (TWRS) are identified. The constraints, performance requirements, and transfer of information and data across a technical interface will be documented in an Interface Control Document. The design requirements provided in this document will be augmented by additional detailed design data to be documented by the project.

  17. Hanford tank waste simulants specification and their applicability for the retrieval, pretreatment, and vitrification processes

    SciTech Connect (OSTI)

    GR Golcar; NG Colton; JG Darab; HD Smith

    2000-04-04

    A wide variety of waste simulants were developed over the past few years to test various retrieval, pretreatment and waste immobilization technologies and unit operations. Experiments can be performed cost-effectively using non-radioactive waste simulants in open laboratories. This document reviews the composition of many previously used waste simulants for remediation of tank wastes at the Hanford reservation. In this review, the simulants used in testing for the retrieval, pretreatment, and vitrification processes are compiled, and the representative chemical and physical characteristics of each simulant are specified. The retrieval and transport simulants may be useful for testing in-plant fluidic devices and in some cases for filtration technologies. The pretreatment simulants will be useful for filtration, Sr/TRU removal, and ion exchange testing. The vitrification simulants will be useful for testing melter, melter feed preparation technologies, and for waste form evaluations.

  18. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect (OSTI)

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  19. Thermal spray vitrification process for the removal of lead oxide contained in organic paints

    SciTech Connect (OSTI)

    Karthikeyan, J.; Chen, J.; Bancke, G.A.; Herman, H.; Berndt, C.C.; Breslin, V.T.

    1995-12-31

    The US Environmental Protection Agency (US-EPA) regulations have necessitated the removal and containment of toxic lead from lead oxide containing paints. The Thermal Spray Vitrification Process (TSVP) is a novel technique in which a glass powder of appropriate composition is flame sprayed onto the painted surface to achieve removal and vitrification of the lead. Two different glass systems, i.e., alkali silicate and ferrous silicate, were chosen for detailed study. Appropriate amounts of raw materials were mixed, fused, quenched, ground and sieved to obtain the spray quality powders. Grit blasted mild steel coupons were used as test substrates for the spray parameter optimization studies; while those coupons with lead oxide containing organic paint were used for the lead removal experiments. The powders and deposits were investigated using Microtrac particle size analysis (for powders), optical microscopy, XRD and SEM. The remnant lead in the panel was measured using a specially prepared X-Ray Fluorescence (XRF) system. The lead leach rate was recorded as per US-EPA approved Toxicity Characteristic Leaching Procedure (TCLP). The results of this study have shown that lead oxide can be successfully removed form the paint by flame spraying a maximum of three layers of glass onto the painted surface. It is possible to obtain much higher lead removal rate with ferrous silicate glass as compared to alkali silicate glass is much higher than the ferrous silicate glass. The in situ vitrification has not been completely optimized; however, the lead containing glass coating can be remelted in situ or on site to enhance the vitrification of the lead which had been absorbed in the glass coating.

  20. Identification and summary characterization of materials potentially requiring vitrification: Background information

    SciTech Connect (OSTI)

    Croff, A.G.

    1996-05-13

    This document contains background information for the Workshop in general and the presentation entitled `Identification and Summary Characterization of Materials Potentially Requiring Vitrification` that was given during the first morning of the workshop. summary characteristics of 9 categories of US materials having some potential to be vitrified are given. This is followed by a 1-2 page elaborations for each of these 9 categories. References to more detailed information are included.

  1. Low-level waste vitrification pilot-scale system need report

    SciTech Connect (OSTI)

    Morrissey, M.F.; Whitney, L.D.

    1996-03-01

    This report examines the need for pilot-scale testing in support of the low-level vitrification facility at Hanford. In addition, the report examines the availability of on-site facilities to contain a pilot-plant. It is recommended that a non-radioactive pilot-plant be operated for extended periods. In addition, it is recommended that two small-scale systems, one processing radioactive waste feed and one processing a simulated waste feed be used for validation of waste simulants. The actual scale of the pilot-plant will be determined from the technologies included in conceptual design of the plant. However, for the purposes of this review, a plant of 5 to 10 metric ton/day of glass production was assumed. It is recommended that a detailed data needs package and integrated flowsheet be developed in FY95 to clearly identify data requirements and identify relationships with other TWRS elements. A pilot-plant will contribute to the reduction of uncertainty in the design and initial operation of the vitrification facility to an acceptable level. Prior to pilot-scale testing, the components will not have been operated as an integrated system and will not have been tested for extended operating periods. Testing for extended periods at pilot-scale will allow verification of the flowsheet including the effects of recycle streams. In addition, extended testing will allow evaluation of wear, corrosion and mechanical reality of individual components, potential accumulations within the components, and the sensitivity of the process to operating conditions. Also, the pilot facility will provide evidence that the facility will meet radioactive and nonradioactive environmental release limits, and increase the confidence in scale-up. The pilot-scale testing data and resulting improvements in the vitrification facility design will reduce the time required for cold chemical testing in the vitrification facility.

  2. Development of Vitrification Process and Glass Formulation for Nuclear Waste Conditioning

    SciTech Connect (OSTI)

    Petitjean, V.; Fillet, C.; Boen, R.; Veyer, C.; Flament, T.

    2002-02-26

    The vitrification of high-level waste is the internationally recognized standard to minimize the impact to the environment resulting from waste disposal as well as to minimize the volume of conditioned waste to be disposed of. COGEMA has been vitrifying high-level waste industrially for over 20 years and is currently operating three commercial vitrification facilities based on a hot metal crucible technology, with outstanding records of safety, reliability and product quality. To further increase the performance of vitrification facilities, CEA and COGEMA have been developing the cold crucible melter technology since the beginning of the 1980s. This type of melter is characterized by a virtually unlimited equipment service life and a great flexibility in dealing with various types of waste and allowing development of high temperature matrices. In complement of and in parallel with the vitrification process, a glass formulation methodology has been developed by the CEA in order to tailor matrices for the wastes to be conditioned while providing the best adaptation to the processing technology. The development of a glass formulation is a trade-off between material properties and qualities, technical feasibility, and disposal safety criteria. It involves non-radioactive and radioactive laboratories in order to achieve a comprehensive matrix qualification. Several glasses and glass ceramics have thus been studied by the CEA to be compliant with industrial needs and waste characteristics: glasses or other matrices for a large spectrum of fission products, or for high contents of specifics elements such as sodium, phosphate, iron, molybdenum, or actinides. New glasses or glass-ceramics designed to minimize the final wasteform volume for solutions produced during the reprocessing of high burnup fuels or to treat legacy wastes are now under development and take benefit from the latest CEA hot-laboratories and technology development. The paper presents the CEA state-of-the-art in developing matrices or glasses and provides several examples.

  3. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect (OSTI)

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  4. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect (OSTI)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  5. Vitrification of HLW Produced by Uranium/Molybdenum Fuel Reprocessing in COGEMA's Cold Crucible Melter

    SciTech Connect (OSTI)

    Do Quang, R.; Petitjean, V.; Hollebecque, F.; Pinet, O.; Flament, T.; Prod'homme, A.

    2003-02-25

    The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA's R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a solidified glass layer that protects the melter's inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities : the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12 % in molybdenum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed remotely in one of the R7 vitrification cell. This paper will present the results obtained in the framework of these qualification programs.

  6. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology...

  7. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    E-Print Network [OSTI]

    M. J. Holmes; N. G. Parker; M. J. W. Povey

    2010-02-16

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 degrees Celsius. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  8. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    SciTech Connect (OSTI)

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  9. A COMPLETE HISTORY OF THE HIGH-LEVEL WASTE PLANT AT THE WEST VALLEY DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Petkus, Lawrence L.; Paul, James; Valenti, Paul J.; Houston, Helene; May, Joseph

    2003-02-27

    The West Valley Demonstration Project (WVDP) vitrification melter was shut down in September 2002 after being used to vitrify High Level Waste (HLW) and process system residuals for six years. Processing of the HLW occurred from June 1996 through November 2001, followed by a program to flush the remaining HLW through to the melter. Glass removal and shutdown followed. The facility and process equipment is currently in a standby mode awaiting deactivation. During HLW processing operations, nearly 24 million curies of radioactive material were vitrified into 275 canisters of HLW glass. At least 99.7% of the curies in the HLW tanks at the WVDP were vitrified using the melter. Each canister of HLW holds approximately 2000 kilograms of glass with an average contact dose rate of over 2600 rem per hour. After vitrification processing ended, two more cans were filled using the Evacuated Canister Process to empty the melter at shutdown. This history briefly summarizes the initial stages of process development and earlier WVDP experience in the design and operation of the vitrification systems, followed by a more detailed discussion of equipment availability and failure rates during six years of operation. Lessons learned operating a system that continued to function beyond design expectations also are highlighted.

  10. Enhancement of bulk photovoltaic effect in topological insulators

    E-Print Network [OSTI]

    Tan, Liang Z

    2015-01-01

    We investigate the shift current bulk photovoltaic response of materials close to a band inversion topological phase transition. We find that the bulk photocurrent reverses direction across the band inversion transition, and that its magnitude is enhanced in the vicinity of the phase transition. These results are demonstrated with first principles DFT calculations of BiTeI and CsPbI$_3$ under hydrostatic pressure, and explained with an analytical model, suggesting that this phenomenon remains robust across disparate material systems.

  11. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  12. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    SciTech Connect (OSTI)

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

  13. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect (OSTI)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others] [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  14. Commercial LFCM vitrification technology. Quarterly progress report, October-December 1984

    SciTech Connect (OSTI)

    Burkholder, H.C.; Jarrett, J.H. (comps.)

    1985-07-01

    This report is the first in a series of quarterly reports compiled by the Nuclear Waste Treatment Program Office at Pacific Northwest Laboratory to document progress on commercial liquid-fed ceramic melter (LFCM) vitrification technology. Progress in the following technical subject areas during the first quarter of FY 1985 is discussed: pretreatment systems, melting process chemistry, glass development and characterization, feed preparation and transfer systems, melter systems, canister filling and handling systems, off-gas systems, process/product modeling and control, and supporting studies. 33 figs., 12 tabs.

  15. Phosphate Glasses for Vitrification of Waste with High Sulfur Content

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Vienna, John D.; Hrma, Pavel R.; Cassingham, Nathan J.

    2002-10-31

    The low solubility of sulfate in silicate-based glasses, approximately 1 mass% as SO3, limits the loading of high-level waste (HLW) and low-activity waste (LAW) containing high concentrations of sulfur. Based on crucible melting studies, we have shown that the phosphate glasses may incorporate more than 5 mass% SO3; hence, the waste loading can be increased until another constraint is met, such as glass durability. A high-sulfate HLW glass has been formulated and tested to demonstrate the advantages of phosphate glasses. The effect of waste loading on the chemical durability of quenched and slow-cooled phosphate glasses was determined using the Product Consistency Test.

  16. Modelling of bulk superconductor magnetization

    E-Print Network [OSTI]

    Ainslie, M. D.; Fujishiro, H.

    2015-03-30

    the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards...

  17. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    SciTech Connect (OSTI)

    Oden, L.L.; O`Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-11-19

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.

  18. Operation of a bushing melter system designed for actinide vitrification

    SciTech Connect (OSTI)

    Ramsey, W.G.

    1996-03-01

    The Westinghouse Savannah River Company is developing a melter system to vitrify actinide materials. The melter system will used to vitrify the americium and curium solution which is currently stored in one of the Savannah River Site`s (SRS) processing canyons. This solution is one of the materials designated by the Defense Nuclear Facilities Safety Board (DNFSB) to be dispositioned as part of the DNFSB recommendation 94-1. The Am/Cm solution contains an extremely large fraction (>2 kilograms of Cm and 10 kilograms of Am) of t he United States`s total inventory of both elements. They have an estimated value on the order of one billion dollars - if they are processed through the DOE Isotope Sales program at the Oak Ridge National Laboratory. It is therefore deemed highly desirable to transfer the material to Oak Ridge in a form which can allow for recovery of the material. A commercial glass composition has been demonstrated to be compatible with up to 40 weight percent of the Am/Cm solution contents. This glass is also selectively attacked by nitric acid. This allows the actinide to be recovered by common separation processes.

  19. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    SciTech Connect (OSTI)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  20. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    SciTech Connect (OSTI)

    Doctor, R.; Nunez, L. [Argonne National Lab., IL (US); Cicero-Herman, C.A. [Westinghouse Savannah River Co., Aiken, SC (US). Savannah River Technology Center; Ritter, J.A. [Univ. of South Carolina, Columbia, SC (US). Chemical Engineering Dept.; Landsberger, S. [Univ. of Texas, Austin, TX (US). Nuclear Engineering Dept.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe{sub 3}O{sub 4} and FeCrO{sub 4}, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  1. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by...

  2. INVESTIGATION OF BULK POWER MIDWEST REGION

    E-Print Network [OSTI]

    Laughlin, Robert B.

    INVESTIGATION OF BULK POWER MARKETS MIDWEST REGION November 1, 2000 The analyses and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 1. Bulk Power Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 D. Retail Access

  3. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

  4. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    SciTech Connect (OSTI)

    Nichols, Todd Travis; Taylor, Dean Dalton; Lauerhass, Lance; Barnes, Charles Marshall

    2001-02-01

    The purpose of this document is to provide the technical information to Savannah River Site (SRS) personnel that is required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and nvironmental Laboratory (INEEL). INEEL considers simulation to have an important role in the integration/optimization of treatment process trains for the High Level Waste (HLW) Program. This project involves a joint Technical Task Plan (TTP ID77WT31, Subtask C) between SRS and INEEL. The work scope of simulation is different at the two sites. This document addresses only the treatment of SBW at INEEL. The simulation model(s) is to be built by SRS for INEEL in FY-2001.

  5. Cold Crucible Induction Melting Technology for Vitrification of High Level Waste: Development and Status in India

    SciTech Connect (OSTI)

    Sugilal, G.; Sengar, P.B.S. [Nuclear Recycle Group, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2008-07-01

    Cold crucible induction melting is globally emerging as an alternative technology for the vitrification of high level radioactive waste. The new technology offers several advantages such as high temperature availability with long melter life, high waste loading, high specific capacity etc. Based on the laboratory and bench scale studies, an engineering scale cold crucible induction melter was locally developed in India. The melter was operated continuously to assess its performance. The electrical and thermal efficiencies were found to be in the range of 70-80 % and 10-20 % respectively. Glass melting capacities up to 200 kg m{sup -2} hr{sup -1} were accomplished using the ESCCIM. Industrially adaptable melter operating procedures for start-up, melting and pouring operations were established (author)

  6. INTERNAL ELECTROSTATIC TRANSDUCTION FOR BULK-MODE MEMS RESONATORS

    E-Print Network [OSTI]

    Afshari, Ehsan

    This paper demonstrates a new approach to electrostatic drive and detection of bulk acoustic resonators coupled into the fundamental bending mode. The approach was deemed inefficient because air-gap capacitive by filling the air-gaps with a low Young's modulus, high- dielectric material. A more practical approach

  7. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect (OSTI)

    Higley, B.A.

    1995-03-15

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  8. Holographic vitrification

    E-Print Network [OSTI]

    Anninos, Dionysios

    We establish the existence of stable and metastable stationary black hole bound states at finite temperature and chemical potentials in global and planar four-dimensional asymptotically anti-de Sitter space. We determine ...

  9. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  10. HIGH-ORDER COMPOSITE BULK ACOUSTIC RESONATORS Gavin K. Ho, Reza Abdolvand, and Farrokh Ayazi

    E-Print Network [OSTI]

    Ayazi, Farrokh

    . The term "bulk" is used to signify energy storage in the bulk of the structure, instead of the definition on an underlying silicon layer. The impedance of these devices reduces as mode number increases. This is attributed of capacitively- transduced, silicon micromechanical resonators with high Q have been demonstrated [1,2]. Typical

  11. Plant Decontamination as a Precondition of the Remote Dismantling Concept of the Karlsruhe Vitrification Plant VEK - 12206

    SciTech Connect (OSTI)

    Dux, Joachim; Fleisch, Joachim; Latzko, Bernhard; Rohleder, Norbert

    2012-07-01

    Vitrification of the high-active liquid waste concentrates (HAWC) was a major milestone in the WAK decommissioning project (StiWAK). From September 2009 to June 2010, about 56 m{sup 3} of HAWC were vitrified at the Karlsruhe vitrification facility (VEK) and filled into 123 canisters. HAWC vitrification was followed by an extensive rinsing and shutdown program, in the course of which both the VEK process installations and the facilities for the storage and evaporation of high-active fission product solutions (LAVA) are prepared specifically for dismantling. Finally the rinsing programme leads to an overall reduction of the remaining contamination in the installations by a factor of approx. 5 - 10. The amount of liquids arisen from this program has been vitrified and another 17 canisters have been filled. In total, 140 canisters were packed into 5 CASTOR casks that were already transported to the Zwischenlager Nord (interim store North) of EWN GmbH (ZLN) in the mid of February 2011. The melter of the VEK was already shut down in the late November 2010. (authors)

  12. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  13. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  14. Support for the in situ vitrification treatability study at the Idaho National Engineering Laboratory: FY 1988 summary

    SciTech Connect (OSTI)

    Oma, K.H.; Reimus, M.A.H.; Timmerman, C.L.

    1989-02-01

    The objective of this project is to determine if in situ vitrification (ISV) is a viable, long-term confinement technology for previously buried solid transuranic and mixed waste at the Radioactive Waste Management Complex (RWMC). The RWMC is located at the Idaho National Engineering Laboratory (INEL). In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable glass and crystalline form. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure, and organic constituents are typically destroyed or removed for capture by an off-gas treatment system. The primary FY 1988 activities included engineering-scale feasibility tests on INEL soils containing a high metals loading. Results of engineering-scale testing indicate that wastes with a high metals content can be successfully processed by ISV. The process successfully vitrified soils containing localized metal concentrations as high as 42 wt % without requiring special methods to prevent electrical shorting within the melt zone. Vitrification of this localized concentration resulted in a 15.9 wt % metals content in the entire ISV test block. This ISV metals limit is related to the quantity of metal that accumulates at the bottom of the molten glass zone. Intermediate pilot-scale testing is recommended to determine metals content scale-up parameters in order to project metals content limits for large-scale ISV operation at INEL.

  15. No evidence for bulk velocity from type Ia supernovae

    E-Print Network [OSTI]

    Huterer, Dragan; Schmidt, Fabian

    2015-01-01

    We revisit the effect of peculiar velocities on low-redshift type Ia supernovae. Velocities introduce an additional guaranteed source of correlations between supernova magnitudes that should be considered in all analyses of nearby supernova samples but has largely been neglected in the past. Applying a likelihood analysis to the latest compilation of nearby supernovae, we find no evidence for the presence of these correlations, although, given the significant noise, the data is also consistent with the correlations predicted for the standard LCDM model. We then consider the dipolar component of the velocity correlations - the frequently studied "bulk velocity" - and explicitly demonstrate that including the velocity correlations in the data covariance matrix is crucial for drawing correct and unambiguous conclusions about the bulk flow. In particular, current supernova data is consistent with no excess bulk flow on top of what is expected in LCDM and effectively captured by the covariance. We further clarify ...

  16. INVESTIGATION OF BULK POWER ERCOT (Texas)

    E-Print Network [OSTI]

    Laughlin, Robert B.

    INVESTIGATION OF BULK POWER MARKETS ERCOT (Texas) November 1, 2000 The analyses and conclusions . . . . . . . . . . . . . . . . . . . . . . . . 4-4 D. The New Wholesale Market and the Move Toward Retail Choice . . . . . . . . . . 4-6 3-8 A. The Bulk Power Transmission System

  17. Reaction of Inconel 690 and 693 in Iron Phosphate Melts: Alternative Glasses for Waste Vitrification

    SciTech Connect (OSTI)

    Day, Delbert E.

    2005-09-13

    The corrosion resistance of candidate materials used for the electrodes (Inconel 690 & 693) and the melt contact refractory (Monofrax K-3) in a Joule Heated Melter (JHM) has been investigated at the University of Missouri-Rolla (UMR) during the period from June 1, 2004 to August 31, 2005. This work was supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (DE-FG02-04ER63831). The unusual properties and characteristics of iron phosphate glasses, as viewed from the standpoint of alternative glasses for vitrifying nuclear and hazardous wastes which contain components that make them poorly suited for vitrification in borosilicate glass, were recently discovered at UMR. The expanding national and international interest in iron phosphate glasses for waste vitrification stems from their rapid melting and chemical homogenization which results in higher furnace output, their high waste loading that varies from 32 wt% up to 75 wt% for the Hanford LAW and HLW, respectively, and the outstanding chemical durability of the iron phosphate wasteforms which meets all present DOE requirements (PCT and VHT). The higher waste loading in iron phosphate glasses, compared to the baseline borosilicate glass, can reduce the time and cost of vitrification considerably since a much smaller mass of glass will be produced, for example, about 43% less glass when the LAW at Hanford is vitrified in an iron phosphate glass according to PNNL estimates. In view of the promising performance of iron phosphate glasses, information is needed for how to best melt these glasses on the scale needed for practical use. Melting iron phosphate glasses in a JHM is considered the preferred method at this time because its design could be nearly identical to the JHM now used to melt borosilicate glasses at the Defense Waste Processing Facility (DWPF), Westinghouse Savannah River Co. Therefore, it is important to have information for the corrosion of candidate electrode and refractory materials in iron phosphate melts in a JHM. During the period from June 1, 2004 to August 31, 2005, the corrosion resistance of coupons of Inconel 690 & 693 metals and Monofrax K-3 refractory, partially submerged in several iron phosphate melts at 950-1200?C, has been investigated to determine whether iron phosphate glasses could be melted in a JHM equipped with such electrodes and refractory in the same manner as now being used to melt borosilicate glass. These representative iron phosphate melts, which contained 30 wt% Hanford LAW and 40 wt% Idaho SBW simulants, did not corrode the Inconel 690 to any greater extent than what has been reported for Inconel 690 in the borosilicate melt in the JHM at DWPF. Inconel 693 appeared to be an even better candidate for use in iron phosphate melts since its corrosion rate (1.8 to 25.4 ?m/day) was only about one half that (5.4 to 45.4 ?m/day) of Inconel 690. The dynamic corrosion measured for the candidate refractory, Monofrax K-3, by iron phosphate melts is quite encouraging since the measured corrosion (0.011 to 0.132 mm/day at 9.2 rpm) is less than the corrosion (0.137 mm/day) that has been reported in the JHM used to melt borosilicate glass at DWPF. During the period covered by this final report, the results of the research on iron phosphate glasses have been described in seven technical papers and have been presented at one national meeting. In addition to the principal investigator, one research professor and one undergraduate research aide were supported by this project.

  18. Superconducting Open-Gradient Magnetic Separation for the Pretreatment of Radioactive or Mixed Waste Vitrification Feeds

    SciTech Connect (OSTI)

    Nunez', L.; Kaminsky', M.D.,; Crawford, C.; Ritter, J.A.

    1999-12-31

    An open-gradient magnetic separation (OGMS) process is being considered to separate deleterious elements from radioactive and mixed waste streams prior to vitrification or stabilization. By physically segregating solid wastes and slurries based on the magnetic properties of the solid constituents, this potentially low-cost process may serve the U.S. Department of Energy (DOE) by reducing the large quantities of glass produced from defense-related high-level waste (HLW). Furthermore, the separation of deleterious elements from low-level waste (LLW) also can reduce the total quantity of waste produced in LLW immobilization activities. Many HLW 'and LLW waste' streams at both Hanford and the Savannah River Site (SRS) include constituents deleterious to the durability of borosilicate glass and the melter many of the constituents also possess paramagnetism. For example, Fe, Cr, Ni, and other transition metals may limit the waste loading and affect the durability of the glass by forming spine1 phases at the high operating temperature used in vitrification. Some magnetic spine1 phases observed in glass formation are magnetite (Fe,O,), chromite (FeCrO,), and others [(Fe, Ni, Mg, Zn, Mn)(Al, Fe, Ti, Cr)O,] as described elsewhere [Bates-1994, Wronkiewicz-1994] Stable spine1 phases can cause segregation between the glass and the crystalline phases. As a consequence of the difference in density, the spine1 phases tend to accumulate at the bottom of the glass melter, which decreases the conductivity and melter lifetime [Sproull-1993]. Crystallization also can affect glass durability [Jantzen-1985, Turcotte- 1979, Buechele-1990] by changing the chemical composition of the matrix glass surrounding the crystals or causing stress at the glass/crystal interface. These are some of the effects that can increase leaching [Jantzen-1985]. A SRS glass that was partially crystallized to contain 10% vol. crystals composed of spinels, nepheline, and acmite phases showed minimal changes in short term leachability [Jantzen-1985, Hench-1982]. However, Jantzen et k > al. found that leaching increased preferentially at grain boundary interfaces [Jantzen-1985]. For a SRL 165 glass crystallized up to 30% vol., leachability measured by normalized boron release increased by a factor of three compared to the uncrystallized glass [Kelly-1975, Plodinec-1979]. In general, the magnitude of the crystallization effect depends highly on glass composition and cooling rate.

  19. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    SciTech Connect (OSTI)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  20. Electron-beam-induced deposition of 3-nm-half-pitch patterns on bulk Si

    E-Print Network [OSTI]

    van Oven, J. C.

    This paper demonstrates electron-beam-induced deposition of few-nm-width dense features on bulk samples by using a scanning electron-beam lithography system. To optimize the resultant features, three steps were taken: (1) ...

  1. LIMB Demonstration Project Extension and Coolside Demonstration

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  2. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

    SciTech Connect (OSTI)

    Nichols, T.T.; Taylor, D.D.; Lauerhass, L.; Barnes, C.M.

    2002-02-21

    The technical information required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) is presented. The objective of the modeling effort is to provide the predictive capability required to optimize an entire treatment train and assess system-wide impacts of local changes at individual unit operations, with the aim of reducing the schedule and cost of future process/facility design efforts. All the information required a priori for engineers to construct and link unit operation modules in a commercial software simulator to represent the alternative treatment trains is presented. The information is of a mid- to high-level nature and consists of the following: (1) a description of twenty-four specific unit operations--their operating conditions and constraints, primary species and key outputs, and the initial modeling approaches that will be used in the first year of the simulation's development; (2) three potential configurations of the unit operations (trains) and their interdependencies via stream connections; and (3) representative stream compositional makeups.

  3. Interim data quality objectives for waste pretreatment and vitrification. Revision 1

    SciTech Connect (OSTI)

    Kupfer, M.J.; Conner, J.M.; Kirkbride, R.A.; Mobley, J.R.

    1994-09-15

    The Tank Waste Remediation System (TWRS) is responsible for storing, processing, and immobilizing the Hanford Site tank wastes. Characterization information on the tank wastes is needed so that safety concerns can be addressed, and retrieval, pretreatment, and immobilization processes can be designed, permitted, and implemented. This document describes the near-term tank waste sampling and characterization needs of the Pretreatment, High-Level Waste (HLW) Disposal, and Low-Level Waste (LLW) Disposal Programs to support the TWRS disposal mission. The final DQO (Data Quality Objective) will define specific waste tanks to be sampled, sample timing requirements, an appropriate analytical scheme, and a list of required analytes. This interim DQO, however, focuses primarily on the required analytes since the tanks to be sampled in FY 1994 and early FY 1995 are being driven most heavily by other considerations, particularly safety. The major objective of this Interim DQO is to provide guidance for tank waste characterization requirements for samples taken before completion of the final DQO. The characterization data needs defined herein will support the final DQO to help perform the following: Support the TWRS technical strategy by identification of the chemical and physical composition of the waste in the tanks and Guide development efforts to define waste pretreatment processes, which will in turn define HLW and LLW feed to vitrification processes.

  4. Glass optimization for vitrification of Hanford Site low-level tank waste

    SciTech Connect (OSTI)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  5. In situ vitrification and removal of lead-based paint for steel structures

    SciTech Connect (OSTI)

    Covey, S.; Lattimore, L.; Kumar, A.

    1995-12-31

    The feasibility of in-situ vitrification of lead oxide contained in red lead based organic coatings was investigated. The removal of organic lead-based primers and paints has been achieved by a flame spray process that uses a glass/ceramic compound designed for high lead solubility and resistance to devitrification. The glass/ceramic compounds were prepared by fusing, fritting, and ball milling to produce the desired powder. The result powder was collected and used to flame spray previously prepared samples containing a commonly used red lead primer. Oxyacetylene flame spray technology was used to apply the glass compound to the steel substrate. The resulting glass waste was collected and analyzed for lead content using Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction analysis. The lead cation leachability rates were determined by the US Environmental Protection Agency (EPA) approved Toxicity Characteristic Leaching Procedure (TCLP). The designer glass waste form that exhibited the best results was a borosilicate glass with iron oxide additions. The iron silicate glass waste form leached approximately 1 ppm of lead during the TCLP, far below the current 5 ppm limit for hazardous waste.

  6. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    SciTech Connect (OSTI)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0{sub 2},B{sub 2}O{sub 3},A1{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, ZrO{sub 2}, Na{sub 2}O,Li{sub 2}O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  7. First-order study of property/composition relationships for Hanford Waste Vitrification Plant glasses

    SciTech Connect (OSTI)

    Piepel, G.F.; Hrma, P.R.; Bates, S.O.; Schweiger, M.J.; Smith, D.E.

    1993-01-01

    A first-order composition variability study (CVS-I) was conducted for the Hanford Waste Vitrification Plant (HWVP) program to preliminarily characterize the effects on key glass properties of variations i selected glass (waste and frit) components. The components selected were Si0[sub 2],B[sub 2]O[sub 3],A1[sub 2]O[sub 3], Fe[sub 2]O[sub 3], ZrO[sub 2], Na[sub 2]O,Li[sub 2]O,CaO,MgO, and Others (all remaining waste components). A glass composition region was selected for study based on the expected range of glass compositions and the results of a previous series of scoping and solubility studies. Then, a 23-glass statistically-designed mixture experiment was conducted and data obtained for viscosity, electrical conductivity, glass transition temperature, thermal expansion, crystallinity, and durability [Materials Characterization Center (MCC-1) 28-day leach test and the 7-day Product Consistency Test (PCT)]. These data were modeled using first-order functions of composition, and the models were used to investigate the effects of the components on glass and melt properties. The CVS-I data and models will also be used to support the second-order composition variability study (CVS-II).

  8. Strategy Guideline. Demonstration Home

    SciTech Connect (OSTI)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  9. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  10. LIMB demonstration project extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The purpose of the DOE limestone injection multistage burner (LIMB) Demonstration Project Extension is to extend the data base on LIMB technology and to expand DOE's list of Clean Coal Technologies by demonstrating the Coolside process as part of the project. The main objectives of this project are: to demonstrate the general applicability of LIMB technology by testing 3 coals and 4 sorbents (total of 12 coal/sorbent combinations) at the Ohio Edison Edgewater plant; and to demonstrate that Coolside is a viable technology for improving precipitator performance and reducing sulfur dioxide emissions while acceptable operability is maintained. Progress is reported. 3 figs.

  11. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  12. Radiative cooling of bulk silicon by incoherent light pump

    SciTech Connect (OSTI)

    Malyutenko, V. K. Bogatyrenko, V. V.; Malyutenko, O. Yu.

    2013-12-23

    In contrast to radiative cooling by light up conversion caused exclusively by a low-entropy laser pump and employing thermally assisted fluorescence/luminescence as a power out, we demonstrate light down conversion cooling by incoherent pumps, 0.47–0.94??m light emitting diodes, and employing thermal emission (TE) as a power out. We demonstrate ?3.5?K bulk cooling of Si at 450?K because overall energy of multiple below bandgap TE photons exceeds the energy of a single above bandgap pump photon. We show that using large entropy TE as power out helps avoid careful tuning of an incoherent pump wavelength and cool indirect-bandgap semiconductors.

  13. Li3PX4: Bulk and Surface

    E-Print Network [OSTI]

    Holzwarth, Natalie

    show considerable promise for advancing battery technology · Improved safety characteristics · Allow properties are: · Stability · Inteface stability · Ionic Conductivity Tesla Model S #12;Li3PX4: Bulk

  14. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle caylor.pdf More Documents & Publications Nanostructured High-Temperature Bulk...

  15. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect (OSTI)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2?K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3?T at 20?K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  16. Savannah River Plant defense waste vitrification studies during FY 1982. Summary report

    SciTech Connect (OSTI)

    Ethridge, L.J. (comp.)

    1983-10-01

    Five major melter runs were completed during FY 1982 on the Pilot-Scale Ceramic Melter (PSCM). Over 41,000 L of feed were processed by the PSCM, producing approx. 21,000 kg of glass. The design basis reference capacity of approx. 39 kg/h-m/sup 2/ was met or exceeded in all the melter runs. Off-gas characterization was emphasized during this fiscal year. Entrainment of feed material is the largest contributor to the mass of particulate leaving the melter, averaging 0.2 wt% of the incoming feed on an oxide basis. This is a DF of approx. 500. This mass does show an enrichment of some of the volatile and semivolatile components. Higher losses of cesium, tellurium, and cadmium occurred with formate feed. The Experimental Ceramic Melter (ECM) was used this year to study the application of two techniques to increase melting rates in ceramic melters. The first was the use of an air sparger to forcibly agitate the glass in the melter to improve the heat transfer. The air-sparger agitation increased the throughput capacity of the ECM, but did not seem to affect melting efficiency. The second technique for increasing melter rates tested on the ECM was the use of microwave boosting. While significant improvement was noted in the vitrification rates, two problems were encountered: coating of the isolation window and heating of the refractory lining of the ECM lid. The buildup of fine dust on the window caused arcing between the coating and the waveguide. This arcing damages the window and waveguide and causes instability in the microwave power supply. Four techniques were investigated to solve the problem. These techniques were of limited success and await further testing. 33 figures, 58 tables.

  17. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  18. Premelting at Defects Within Bulk Colloidal Crystals

    E-Print Network [OSTI]

    Collings, Peter

    Premelting at Defects Within Bulk Colloidal Crystals A. M. Alsayed,1 M. F. Islam,1 J. Zhang,1 P. J at grain boundaries and dislocations within bulk colloidal crystals using real- time video microscopy. The crystals are equilibrium close-packed, three- dimensional colloidal structures made from thermally

  19. Bulk equations of motion from CFT correlators

    E-Print Network [OSTI]

    Daniel Kabat; Gilad Lifschytz

    2015-07-27

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  20. Bulk equations of motion from CFT correlators

    E-Print Network [OSTI]

    Kabat, Daniel

    2015-01-01

    To O(1/N) we derive, purely from CFT data, the bulk equations of motion for interacting scalar fields and for scalars coupled to gauge fields and gravity. We first uplift CFT operators to mimic local AdS fields by imposing bulk microcausality. This requires adding an infinite tower of smeared higher-dimension double-trace operators to the CFT definition of a bulk field, with coefficients that we explicitly compute. By summing the contribution of the higher-dimension operators we derive the equations of motion satisfied by these uplifted CFT operators and show that we precisely recover the expected bulk equations of motion. We exhibit the freedom in the CFT construction which corresponds to bulk field redefinitions.

  1. Zinc-bromine batteries for bulk energy storage

    SciTech Connect (OSTI)

    Bellows, R.J.; Einstein, H.; Elspass, C.; Grimes, P.; Katner, E.; Malachesky, P.; Newby, K.

    1983-08-01

    The development of a utility bulk energy market has been severely limited by the lack of better energy storage batteries. Lead acid batteries presently dominate the market. However, lead acid batteries suffer various limitations in the area of cost, maintenance, etc. Design projections for zinc-bromine batteries are attractive for bulk energy storage (BES) and electric vehicle (EV) applications in terms of low manufacturing costs and good performance characteristics. Zinc-bromine battery projections compare favorably with both current lead acid batteries and other advanced battery candidates. In recent years, Exxon's zinc-bromine battery program has shown rapid progress in terms of solving system problems and demonstrating both rapid scale-up of the system and competitively low cost manufacturing techniques.

  2. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  3. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  4. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  5. MAJORANA Demonstrator Motivation

    E-Print Network [OSTI]

    Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

    1 #12;OVERVIEW MAJORANA Demonstrator Motivation Neutrinoless double beta decay Search for axions: MAJORANA Collaboration #12;NEUTRINOLESS DOUBLE BETA DECAY Emission of 2 electrons from Ge-76 and application to neutrinoless double beta decay search in Ge- 76." Journal of Instrumentation 6 (2011).13 #12

  6. January 2008 AND DEMONSTRATION

    E-Print Network [OSTI]

    January 2008 AND DEMONSTRATION Partnership of: Sugar Beet Growers Michigan Sugar Company Michigan, disability, political beliefs, sexual orientation, marital status, family status or veteran status. #12;The involving Michigan State University, Michigan Sugar Company, producers and agri-business. The Sugarbeet

  7. The Bulk Viscosity of a Pion Gas

    E-Print Network [OSTI]

    Egang Lu; Guy D. Moore

    2011-01-31

    We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of pion mass, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity zeta ~ (F_0^8/m_\\pi^5) exp(2m_\\pi/T), where F_0 = 93 MeV is the pion decay constant.

  8. US DOE Initiated Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-activity Waste Vitrification (LAW) System

    SciTech Connect (OSTI)

    Hamel, William F.; Gerdes, Kurt D.; Holton, Langdon K.; Pegg, Ian L.; Bowen, Brad W.

    2006-03-03

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE’s initial assessment, which is based on the work reported in this paper, is that the capacity of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing both processing time and cost.

  9. Nucla CFB Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

  10. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO and NO emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  11. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-06-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  12. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-11-15

    The basic goal of the Limestone Injection Mitigation Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  13. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-12-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  14. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1988-03-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full-scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  15. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1989-03-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

  16. Automatic lighting controls demonstration

    SciTech Connect (OSTI)

    Rubinstein, F.; Verderber, R.

    1990-03-01

    The purpose of this work was to demonstrate, in a real building situation, the energy and peak demand reduction capabilities of an electronically ballasted lighting control system that can utilize all types of control strategies to efficiently manage lighting. The project has demonstrated that a state-of-the-art electronically ballasted dimmable lighting system can reduce energy and lighting demand by as least 50% using various combinations of control strategies. By reducing light levels over circulation areas (tuning) and reducing after hours light levels to accommodate the less stringent lighting demands of the cleaning crew (scheduling), lighting energy consumption on weekdays was reduced an average of 54% relative to the initial condition. 10 refs., 14 figs., 3 tabs.

  17. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1991-09-15

    The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (1) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems; (2) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit; and (3) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater. The demonstration project consists of several distinct phases: a preliminary phase to develop the LIMB process design applicable to the host boiler, a construction and start-up phase, and an operating and evaluation phase. The first major activity, the development of the Edgewater LIMB design, was completed in January 1986 and detailed engineering is now complete. Major boiler-related components were installed during a September 1986 boiler outage. Start-up activities began in March of 1987 with tuning of the low NO{sub x} burners. Sorbent injection activities were underway as of July 1987. 3 figs.

  18. LIMB Demonstration Project Extension

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    The DOE LIMB Demonstration Project Extension is a continuation of the EPA Limestone Injection Multistage Burner (LIMB) Demonstration. EPA ultimately expects to show that LIMB is a low cost control technology capable of producing moderate SO{sub x} and NO{sub x} control (50--60 percent) with applicability for retrofit to the major portion of the existing coal-fired boiler population. The current EPA Wall-Fired LIMB Demonstration is a four-year project that includes design and installation of a LIMB system at the 105-MW Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. LIMB Extension testing continued during the quarter with lignosulfonated hydrated lime, pulverized limestone, and hydrated dolomitic lime while firing 1.8% and 3% sulfur coals. Sulfur dioxide removal efficiencies were equivalent to the results found during EPA, base LIMB testing. Sulfur dioxide removal efficiencies were lower than expected while testing with pulverized limestone without humidification. A slight increase in sulfur capture was noted while injecting pulverized limestone at the 187' elevation and with the humidifier outlet temperature at 145{degree}F.

  19. Bulk elastic fingering instability in Hele-Shaw cells

    E-Print Network [OSTI]

    Baudouin Saintyves; Olivier Dauchot; Elisabeth Bouchaud

    2013-08-17

    We demonstrate experimentally the existence of a purely elastic fingering instability which arises when air penetrates into an elastomer confined in a Hele-Shaw cell. Fingers appear sequentially and propagate within the bulk of the material as soon as a critical strain, independent of the elastic modulus, is exceeded. Their width depends non-linearly on the distance between the confining glass plates. A key element in the driving force of the instability is the adhesion of layers of gels to the plates, which results in a considerable expense of elastic energy during the growth of the air bubble.

  20. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  1. Residential Transactive Control Demonstration

    SciTech Connect (OSTI)

    Widergren, Steven E.; Fuller, Jason C.; Marinovici, Maria C.; Somani, Abhishek

    2014-02-19

    Arguably the most exciting aspect of the smart grid vision is the full participation of end-use resources with all forms of generation and energy storage in the reliable and efficient operation of an electric power system. Engaging all of these resources in a collaborative manner that respects the objectives of each resource, is sensitive to the system and local constraints of electricity flow, and scales to the large number of devices and systems participating is a grand challenge. Distributed decision-making system approaches have been presented and experimentation is underway. This paper reports on the preliminary findings of a residential demand response demonstration that uses the bidding transactions of supply and end-use air conditioning resources communicating with a real-time, 5 minute market to balance the various needs of the participants on a distribution feeder. The nature of the demonstration, the value streams being explored, and the operational scenarios implemented to characterize the system response are summarized along with preliminary findings.

  2. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.

  3. The influence of molecular orientation on organic bulk heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The influence of molecular orientation on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28...

  4. THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY...

    Office of Scientific and Technical Information (OSTI)

    THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY Citation Details In-Document Search Title: THRESHOLD RADIOACTIVITY FOR BULK FOOD SAMPLES BY GAMMA SPECTROSCOPY...

  5. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Presenter: Arpan Chakraborty, Soraa Inc. This...

  6. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  7. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  8. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  9. Theory of anomalous optical properties of bulk Rashba conductor

    E-Print Network [OSTI]

    Shibata, Junya; Kohno, Hiroshi; Tatara, Gen

    2015-01-01

    The Rashba interaction induced when inversion symmetry is broken in solids is a key interaction connecting spin and charge for realizing novel magnetoelectric cross-correlation effects. Here, we theoretically explore the optical properties of a bulk Rashba conductor by calculating the transport coefficients at finite frequencies. It is demonstrated that the combination of direct and inverse Edelstein effects leads to a softening of the plasma frequency for the electric field perpendicular to the Rashba field, resulting in a hyperbolic electromagnetic metamaterial. In the presence of magnetization, a significant enhancement of anisotropic propagation (directional dichroism) is predicted because of interband transition edge singularity.Based on an effective Hamiltonian analysis, the dichroism is demonstrated to be driven by toroidal and quadratic moments of the magnetic Rashba system. The effective theory of the cross-correlation effects has the same mathematical structure as that of insulating multiferroics.

  10. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  11. Thermal relics in cosmology with bulk viscosity

    E-Print Network [OSTI]

    A. Iorio; G. Lambiase

    2014-11-28

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, that cannot be explained by the conventional cosmology and particle physics.

  12. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N.

    1994-10-20

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

  13. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  14. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  15. U.S. Department of Energy (DOE) initiated performance enhancements to the Hanford waste treatment and immobilization plant (WTP) high-level waste vitrification (HLW) system

    SciTech Connect (OSTI)

    Bowan, Bradley [Energy Solutions, LLC (United States); Gerdes, Kurt [United States Department of Energy (United States); Pegg, Ian [Vitreous State Laboratory, Catholic University of America, 400 Hannan Hall 620 Michigan Avenue, NE Washington, DC 20064 (United States); Holton, Langdon [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The U.S Department of Energy is currently constructing, at the Hanford, Washington Site, a Waste Treatment and Immobilization Plant (WTP) for the treatment and immobilization, by vitrification, of stored underground tank wastes. The WTP is comprised of four major facilities: a Pretreatment facility to separate the tank waste into high level waste (HLW) and low activity waste (LAW); a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction and an analytical Laboratory to support the treatment facilities. DOE has strategic objectives to optimize the performance of the WTP facilities, and waste forms, in order to reduce the overall schedule and cost for the treatment of the Hanford tank wastes. One key part of this strategy is to maximize the loading of inorganic waste components in the final glass product (waste loading). For the Hanford tank wastes, this is challenging because of the compositional diversity of the wastes generated over several decades. This paper presents the results of an initial series of HLW waste loading enhancement tests, using diverse HLW compositions that are projected for treatment at the WTP. Specifically, results of glass formulation development and melter testing with simulated Hanford HLW containing high concentrations of troublesome components such as bismuth, aluminum, aluminum-sodium, and chromium will be presented. (authors)

  16. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    SciTech Connect (OSTI)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  17. Decision Models for Bulk Energy Transportation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Decision Models for Bulk Energy Transportation Networks James D. McCalley August 23, 2005 #12, and Electric Transportation Systems (1) What energy flow patterns would yield significantly improved energy (ISU - Randy Larabee) · City of Ames (Ames - Merlin Hove) · MidAmerican Energy (Des Moines - Alan O

  18. Decision Models for Bulk Energy Transportation Networks

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    natural gas pipeline capacity from gulf to NE? Production: How would major investment in a specific/trading restrictions? What would be impacts on fuel and electricity markets? How do high natural gas prices drive1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc

  19. INVESTIGATION OF BULK POWER NORTHEAST REGION

    E-Print Network [OSTI]

    Laughlin, Robert B.

    INVESTIGATION OF BULK POWER MARKETS NORTHEAST REGION November 1, 2000 The analyses and conclusions Activities and Retail Competition . . . . . . . . . . . . . . . . . . 1-49 5. Prices, Market Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 A. Overview of Product Markets, Market Design and Pricing Rules . . . . . . . 1-15 1. Energy

  20. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  1. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  2. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  3. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  4. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  5. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  6. Shubnikov-de Haas Oscillations in the Bulk Rashba Semiconductor BiTeI

    SciTech Connect (OSTI)

    Bell, C.; Bahramy, M.S.; Murakawa, H.; Checkelsky, J.G.; Arita, R.; Kaneko, Y.; Onose, Y.; Nagaosa, N.; Tokura, Y.; Hwang, H.Y.

    2012-07-11

    Bulk magnetoresistance quantum oscillations are observed in high quality single crystal samples of BiTeI. This compound shows an extremely large internal spin-orbit coupling, associated with the polarity of the alternating Bi, Te, and I layers perpendicular to the c-axis. The corresponding areas of the inner and outer Fermi surfaces around the A-point show good agreement with theoretical calculations, demonstrating that the intrinsic bulk Rashba-type splitting is nearly 360 meV, comparable to the largest spin-orbit coupling generated in heterostructures and at surfaces.

  7. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  8. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  9. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  10. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    SciTech Connect (OSTI)

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  11. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report. Revision 3

    SciTech Connect (OSTI)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals.

  12. Ultraviolet laser-induced poling inhibition produces bulk domains in MgO-doped lithium niobate crystals

    SciTech Connect (OSTI)

    Boes, Andreas, E-mail: s3363819@student.rmit.edu.au; Steigerwald, Hendrik; Sivan, Vijay; Mitchell, Arnan [School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001 (Australia); ARC Center for Ultra-high Bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, Victoria 3001 (Australia); Yudistira, Didit [School of Electrical and Computer Engineering, RMIT University, Melbourne, Victoria 3001 (Australia); Wade, Scott [Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Mailis, Sakellaris [Optoelectronics Research Centre, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Soergel, Elisabeth [Institute of Physics, University of Bonn, Wegelerstr. 8, 53115 Bonn (Germany)

    2014-09-01

    We report the realization of high-resolution bulk domains achieved using a shallow, structured, domain inverted surface template obtained by UV laser-induced poling inhibition in MgO-doped lithium niobate. The quality of the obtained bulk domains is compared to those of the template and their application for second harmonic generation is demonstrated. The present method enables domain structures with a period length as small as 3??m to be achieved. Furthermore, we propose a potential physical mechanism that leads to the transformation of the surface template into bulk domains.

  13. A new class of high ZT doped bulk nanothermoelectrics through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new class of high ZT doped bulk nanothermoelectrics through bottom-up synthesis A new class of high ZT doped bulk nanothermoelectrics through bottom-up synthesis Reports on...

  14. Bulk Energy Storage Webinar Rescheduled for February 9, 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Energy Storage Webinar Rescheduled for February 9, 2012 Bulk Energy Storage Webinar Rescheduled for February 9, 2012 February 1, 2012 - 12:48pm Addthis The U.S. Department of...

  15. Composition, structure, and performance of nanocrystal bulk heterojunction photovoltaics

    E-Print Network [OSTI]

    Huang, Kevin J. (Kevin Joon-Ming)

    2015-01-01

    We describe the fabrication and study of bulk heterojunction solar cells composed of PbS quantum dots and TiO2. In particular, we study the effects that bulk heterojunction composition and structure have on resulting device ...

  16. Improving the bulk data transfer experience

    SciTech Connect (OSTI)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  17. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic UtilityQuintasNEPA Timelines <Bulk Transmission

  18. RAPID/BulkTransmission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic UtilityQuintasNEPA Timelines <Bulk

  19. Vitrification and Product Testing of AW-101 and AN-107 Pretreated Waste

    SciTech Connect (OSTI)

    Smith, Gary L.; Greenwood, Lawrence R.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

    2000-10-31

    The primary objective for vitrifying the LAW samples is to generate glass products for subsequent product testing. The work presented in this report is divided into 6 work elements: 1) Glass Fabrication, 2) Chemical Composition, 3) Radiochemical Composition, 4) Crystalline and Non-crystalline Phase Determination, and 5) Release Rate (Modified PCT). These work elements will help demonstrate the RPP-WTP projects ability to satisfy the product requirements concerning, chemical and radionuclide reporting, waste loading, identification and quantification of crystalline and non-crystalline phases, and waste form leachability. VOA, SVOA, dioxins, furans, PCBs, and total cyanide analyses will be reported in as separate document (WTP-RPT-005).

  20. Demonstrating the Greenhouse Effect Demonstrate how the greenhouse effect works.

    E-Print Network [OSTI]

    Johnson, Cari

    Demonstrating the Greenhouse Effect Demonstrate how the greenhouse effect works. Difficulty / Time represents the greenhouse layer, which is composed of such gases as carbon dioxide, water vapor, methane, nitrous oxide, and many others. The temperature was warmer initially for the non-greenhouse effect

  1. The Bulk Channel in Thermal Gauge Theories

    E-Print Network [OSTI]

    Harvey B. Meyer

    2010-02-17

    We investigate the thermal correlator of the trace of the energy-momentum tensor in the SU(3) Yang-Mills theory. Our goal is to constrain the spectral function in that channel, whose low-frequency part determines the bulk viscosity. We focus on the thermal modification of the spectral function, $\\rho(\\omega,T)-\\rho(\\omega,0)$. Using the operator-product expansion we give the high-frequency behavior of this difference in terms of thermodynamic potentials. We take into account the presence of an exact delta function located at the origin, which had been missed in previous analyses. We then combine the bulk sum rule and a Monte-Carlo evaluation of the Euclidean correlator to determine the intervals of frequency where the spectral density is enhanced or depleted by thermal effects. We find evidence that the thermal spectral density is non-zero for frequencies below the scalar glueball mass $m$ and is significantly depleted for $m\\lesssim\\omega\\lesssim 3m$.

  2. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  3. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  4. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  5. Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report

    SciTech Connect (OSTI)

    McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

    1995-01-10

    This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

  6. Bulk chemical and Hfâ??W isotopic consequences of incomplete accretion during planet formation

    E-Print Network [OSTI]

    Dwyer, Christina A; Nimmo, Francis; Chambers, John E

    2015-01-01

    Bulk chemical and Hf–W isotopic consequences of incompletestyle affects the bulk chemical and isotopic outcomes ofto investigate the bulk chemical and isotopic consequences

  7. West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class C low-level waste as set out in 10 CFR 61.55, Waste Classification. Click below to view related documentation Final Vitrification Melter and Vessels Evaluation Documentation...

  8. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2013-04-09

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  9. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI); Yang, Fan (Piscataway, NJ)

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  10. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50-1/2 inches high by 24-1/2 inches in outside diameter. With contents the gross weight of the BTSP is 650 lbs. The BTSP is designed for the safe shipment of 150 grams of tritium in a solid or gaseous state. To comply with the federal regulations that govern Type B shipping packages, the BTSP is designed so that it will not lose tritium at a rate greater than the limits stated in 10CFR 71.51 of 10{sup -6} A2 per hour for the 'Normal Conditions of Transport' (NCT) and an A2 in 1 week under 'Hypothetical Accident Conditions' (HAC). Additionally, since the BTSP design incorporates a valve as part of the tritium containment boundary, secondary containment features are incorporated in the CV Lid to protect against gas leakage past the valve as required by 10CFR71.43(e). This secondary containment boundary is designed to provide the same level of containment as the primary containment boundary when subjected to the HAC and NCT criteria.

  11. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  12. Immobilization of the Radionuclides from Spent Ion-Exchange Resins Using Vitrification

    SciTech Connect (OSTI)

    Hutson, N. D.; Crawford, C. L.; Russo, D. O.; Sterba, M. E.

    2002-02-25

    Approximately 60 g of an iron-enriched borosilicate glass was made in the radiochemical labs of the Savannah River Technology Center (SRTC). The glass was made to demonstrate the immobilization of the radioisotopes contained on representative Argentine ion exchange resins (similar to those used at the Embalse plant). The product was approximately 90% amorphous and was quite durable as measured by the release rates from the Product Consistency Test (PCT). The release rates were considerably better than those of the U. S. High Level Waste (HLW) benchmark DWPF EA glass. The release rate of the Cs-137 was predictably similar to that of Na and Li. No Co-60 or Sr-90 was measured in the PCT leachate. The mass balances for the inactive additives were quite good. Of the radioisotopes, approximately 71% of Cs-137 was accounted for in the glass product. This was similar to the Na mass balance. Approximately 89% of the Co-60 was accounted for in the glass product.

  13. HIGH LEVEL WASTE (HLW) VITRIFICATION EXPERIENCE IN THE US: APPLICATION OF GLASS PRODUCT/PROCESS CONTROL TO OTHERHLW AND HAZARDOUS WASTES

    SciTech Connect (OSTI)

    Jantzen, C; James Marra, J

    2007-09-17

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. At the Savannah River Site (SRS) actual HLW tank waste has successfully been processed to stringent product and process constraints without any rework into a stable borosilicate glass waste since 1996. A unique 'feed forward' statistical process control (SPC) has been used rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. In SQC, the glass product is sampled after it is vitrified. Individual glass property models form the basis for the 'feed forward' SPC. The property models transform constraints on the melt and glass properties into constraints on the feed composition. The property models are mechanistic and depend on glass bonding/structure, thermodynamics, quasicrystalline melt species, and/or electron transfers. The mechanistic models have been validated over composition regions well outside of the regions for which they were developed because they are mechanistic. Mechanistic models allow accurate extension to radioactive and hazardous waste melts well outside the composition boundaries for which they were developed.

  14. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  15. Research, Development, Demonstration, and Deployment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development, Demonstration, and Deployment Research, Development, Demonstration, and Deployment The Bioenergy Technologies Office's research, development, demonstration,...

  16. Macroscopic and direct light propulsion of bulk graphene material

    E-Print Network [OSTI]

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  17. Hyperon bulk viscosity in the presence of antikaon condensate

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2009-10-31

    We investigate the hyperon bulk viscosity due to the non-leptonic process $n + p \\rightleftharpoons p + \\Lambda $ in $K^-$ condensed matter and its effect on the r-mode instability in neutron stars. We find that the hyperon bulk viscosity coefficient in the presence of antikaon condensate is suppressed compared with the case without the condensate. The suppressed hyperon bulk viscosity in the superconducting phase is still an efficient mechanism to damp the r-mode instability in neutron stars.

  18. RAPID/BulkTransmission/General Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ |RAPID/BulkTransmission/General

  19. RAPID/BulkTransmission/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎RAPID/BulkTransmission/Idaho <

  20. RAPID/BulkTransmission/Land Access | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎RAPID/BulkTransmission/Idaho

  1. Jump Chaotic Behaviour of Ultra Low Loss Bulk Acoustic Wave Cavities

    E-Print Network [OSTI]

    Maxim Goryachev; Warrick G. Farr; Serge Galliou; Michael E. Tobar

    2014-06-16

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz Bulk Acoustic Wave cavity ($Q>3\\times10^9$), which only occurs below 20 milli-Kelvin in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lays beyond the standard Duffing model.

  2. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    SciTech Connect (OSTI)

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Farr, Warrick G.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l'Épitaphe 25000 Besançon (France)

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  3. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01

    in bulk thermoelectric materials", M. Mater. Res. Soc.Thermoelectricity", Materials Reserach Society Symposium,Johnson, D. C. , Eds. Materials Research Society: Boston,

  4. Synovial fluid homeostasis : bulk flow, lubricant transport, and biophysical restoration

    E-Print Network [OSTI]

    McCarty, William Joseph

    2012-01-01

    of synovial fluid lubricants hyaluronan and proteoglycan 4HOMEOSTASIS: BULK FLOW, LUBRICANT TRANSPORT, AND BIOPHYSICALmodel of synovial fluid lubricant composition in normal and

  5. Optimizing Morphology of Bulk Heterojunction Polymer Solar Cells

    E-Print Network [OSTI]

    Gao, Jing

    2014-01-01

    Heterojunction Polymer Solar Cells A dissertation submittedBulk Heterojunction Polymer Solar Cells by Jing Gao Doctorheterojunction polymer solar cells is profoundly influenced

  6. Discovery of New Alloys by Bulk Combinatorial Synthesis | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of New Alloys by Bulk Combinatorial Synthesis The Critical Materials Institute (CMI) is developing new capabilities in the search for new materials or substitutions in...

  7. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    Open Energy Info (EERE)

    Regulatory Roadmapping Pgower's picture Submitted by Pgower(50) Contributor 7 August, 2014 - 14:19 One-day workshop to review regulatory roadmaps for bulk transmission. Date:...

  8. Factors influencing photocurrent generation in organic bulk heterojunc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing photocurrent generation in organic bulk heterojunction solar cells: interfacial energetics and blend microstructure April 29, 2009 at 3pm36-428 Jenny Nelson...

  9. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  10. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Citation Details In-Document Search Title: Lithium...

  11. Bulk viscosity of QCD matter near the critical temperature

    E-Print Network [OSTI]

    D. Kharzeev; K. Tuchin

    2007-05-29

    Kubo's formula relates bulk viscosity to the retarded Green's function of the trace of the energy-momentum tensor. Using low energy theorems of QCD for the latter we derive the formula which relates the bulk viscosity to the energy density and pressure of hot matter. We then employ the available lattice QCD data to extract the bulk viscosity as a function of temperature. We find that close to the deconfinement temperature bulk viscosity becomes large, with viscosity-to-entropy ratio zeta/s about 1.

  12. LIMB demonstration project extension and Coolside demonstration: A DOE assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2000-04-30

    The goal of the US Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have already reached the proof-of-concept stage. This document serves as a DOE post-project assessment of the CCT Round 1 project ``LIMB Demonstration Project Extension and Coolside Demonstration'', described in a report to Congress (Babcock and Wilcox 1987), a paper by DePero et al. (1992), and in a report by Goots et al. (1992). The original limestone injection multistage burner (LIMB) demonstration work was conducted by Babcock and Wilcox Company (B and W) beginning in 1984, under the sponsorship of the US Environmental Protection Agency (EPA) and the State of Ohio Coal Development Office (OCDO). In 1987, B and W and the Ohio Edison Company agreed to extend the full-scale demonstration of LIMB technology under the sponsorship of DOE through its CCT Program, and with support from OCDO and Consolidation Coal Company, now known as CONSOL. In a separate effort, CONSOL had been developing another flue gas desulfurization (FGD) technology known as the Coolside process. Both LIMB and Coolside use sorbent injection to remove SO{sub 2}. The LIMB process injects the sorbent into the furnace and the Coolside injects the sorbent into the flue gas duct. In addition, LIMB uses low-NO{sub x} burners to reduce NO{sub x} emissions; hence it is categorized as a combination SO{sub 2}/NO{sub x} control technology. To take advantage of synergism between the two processes, the CCT project was structured to incorporate demonstration of both the LIMB and Coolside processes. Coolside testing was accomplished between July 1989 and February 1990, and the LIMB Extension test program was conducted between April 1990 and August 1991. The host site for both tests was the 105 MWe coal-fired Unit 4 at Ohio Edison's Edgewater Station in Lorain, Ohio. The major performance objectives of this project were successfully achieved, with SO{sub 2} emissions reductions of up to 70% demonstrated in both processes.

  13. Status of the MAJORANA DEMONSTRATOR

    E-Print Network [OSTI]

    Cuesta, C; Arnquist, I J; Avignone, F T; Baldenegro-Barrera, C X; Barabash, A S; Bertrand, F E; Bradley, A W; Brudanin, V; Busch, M; Buuck, M; Byram, D; Caldwell, A S; Chan, Y-D; Christofferson, C D; Chu, P -H; Detwiler, J A; Efremenko, Yu; Ejiri, H; Elliott, S R; Galindo-Uribarri, A; Gilliss, T; Giovanetti, G K; Goett, J; Green, M P; Gruszko, J; Guinn, I S; Guiseppe, V E; Henning, R; Hoppe, E W; Howard, S; Howe, M A; Jasinski, B R; Keeter, K J; Kidd, M F; Konovalov, S I; Kouzes, R T; LaFerriere, B D; Leon, J; MacMullin, J; Martin, R D; Massarczyk, R; Meijer, S J; Mertens, S; Orrell, J L; O'Shaughnessy, C; Poon, A W P; Radford, D C; Rager, J; Rielage, K; Robertson, R G H; Romero-Romero, E; Shanks, B; Shirchenko, M; Snyder, N; Suriano, A M; Tedeschi, D; Trimble, J E; Varner, R L; Vasilyev, S; Vetter, K; Vorren, K; White, B R; Wilkerson, J F; Wiseman, C; Xu, W; Yakushev, E; Yu, C -H; Yumatov, V; Zhitnikov, I

    2015-01-01

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, ...

  14. Status of the MAJORANA DEMONSTRATOR

    E-Print Network [OSTI]

    C. Cuesta; N. Abgrall; I. J. Arnquist; F. T. Avignone III; C. X. Baldenegro-Barrera; A. S. Barabash; F. E. Bertrand; A. W. Bradley; V. Brudanin; M. Busch; M. Buuck; D. Byram; A. S. Caldwell; Y-D. Chan; C. D. Christofferson; P. -H. Chu; J. A. Detwiler; Yu. Efremenko; H. Ejiri; S. R. Elliott; A. Galindo-Uribarri; T. Gilliss; G. K. Giovanetti; J. Goett; M. P. Green; J. Gruszko; I. S. Guinn; V. E. Guiseppe; R. Henning; E. W. Hoppe; S. Howard; M. A. Howe; B. R. Jasinski; K. J. Keeter; M. F. Kidd; S. I. Konovalov; R. T. Kouzes; B. D. LaFerriere; J. Leon; J. MacMullin; R. D. Martin; R. Massarczyk; S. J. Meijer; S. Mertens; J. L. Orrell; C. O'Shaughnessy; A. W. P. Poon; D. C. Radford; J. Rager; K. Rielage; R. G. H. Robertson; E. Romero-Romero; B. Shanks; M. Shirchenko; N. Snyder; A. M. Suriano; D. Tedeschi; J. E. Trimble; R. L. Varner; S. Vasilyev; K. Vetter; K. Vorren; B. R. White; J. F. Wilkerson; C. Wiseman; W. Xu; E. Yakushev; C. -H. Yu; V. Yumatov; I. Zhitnikov

    2015-07-28

    The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76Ge and 15 kg natGe) to search for neutrinoless double beta decay in Ge-76. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.

  15. Alcohol Transportation Fuels Demonstration Program

    SciTech Connect (OSTI)

    Kinoshita, C.M. (ed.)

    1990-01-01

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  16. Buried Waste Integrated Demonstration Plan

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  17. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  18. Thermodynamic properties of bulk and confined water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ? 225 K). The second, T{sup *} ? 315 ± 5 K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient ?{sub P}(T, P) in the P–T plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  19. Excitonic exchange splitting in bulk semiconductors

    SciTech Connect (OSTI)

    Fu, H.; Wang, L.; Zunger, A.

    1999-02-01

    We present an approach to calculate the excitonic fine-structure splittings due to electron-hole short-range exchange interactions using the local-density approximation pseudopotential method, and apply it to bulk semiconductors CdSe, InP, GaAs, and InAs. Comparing with previous theoretical results, the current calculated splittings agree well with experiments. Furthermore, we provide an approximate relationship between the short-range exchange splitting and the exciton Bohr radius, which can be used to estimate the exchange splitting for other materials. The current calculation indicates that a commonly used formula for exchange splitting in quantum dot is not valid. Finally, we find a very large pressure dependence of the exchange splitting: a factor of 4.5 increase as the lattice constant changes by 3.5{percent}. This increase is mainly due to the decrease of the Bohr radius via the change of electron effective mass. {copyright} {ital 1999} {ital The American Physical Society}

  20. Determination of Bulk Dimensional Variation in Castings

    SciTech Connect (OSTI)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  1. Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk-processed photovoltaics. The authors demonstrate quantum size-effect tuning of device band gaps relevant to multijunction solar cells. © 2007 American Institute of Physics. DOI: 10.1063/1.2735674 Low-cost, large-area solar

  2. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect (OSTI)

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

  3. Filter!Demonstration Microwave!Office

    E-Print Network [OSTI]

    Filter!Demonstration in Microwave!Office muse #12;Objectives · Demonstrate!project!setup!in!Microwave

  4. LIMB Demonstration Project Extension and Coolside Demonstration. [Final report

    SciTech Connect (OSTI)

    Goots, T.R.; DePero, M.J.; Nolan, P.S.

    1992-11-10

    This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison`s Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0{sub 2} removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0{sub 2} emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

  5. T-duality trivializes bulk-boundary correspondence

    E-Print Network [OSTI]

    Varghese Mathai; Guo Chuan Thiang

    2015-07-26

    Recently we introduced T-duality in the study of topological insulators. In this paper, we study the bulk-boundary correspondence for three phenomena in condensed matter physics, namely, the quantum Hall effect, the Chern insulator, and time reversal invariant topological insulators. In all of these cases, we show that T-duality trivializes the bulk-boundary correspondence.

  6. MORPHOLOGY DEPENDENT SHORT CIRCUIT CURRENT IN BULK HETEROJUNCTION SOLAR CELL

    E-Print Network [OSTI]

    Alam, Muhammad A.

    MORPHOLOGY DEPENDENT SHORT CIRCUIT CURRENT IN BULK HETEROJUNCTION SOLAR CELL Biswajit Ray, Pradeep, West Lafayette, Indiana, USA ABSTRACT Polymer based bulk heterostructure (BH) solar cell offers a relatively inexpensive option for the future solar cell technology, provided its efficiency increases beyond

  7. New results on water in bulk, nanoconfined, and biological environments

    E-Print Network [OSTI]

    Stanley, H. Eugene

    contract as temperature decreases, liquid bulk water begins to expand when its temperature drops below 4°C remains at 4°C while colder layers of 0°C water "float" on top (cf.. Fig. 1 of Ref. [2]). The mysterious properties of liquid bulk water become more pronounced in the supercooled region below 0°C [3-5]. For example

  8. The Economic Case for Bulk Energy Storage in Transmission Systems

    E-Print Network [OSTI]

    of using energy storage, optimized for multiple objectives, including cost, congestion, and emissions: Optimal Generation Expansion Planning with Integration of Variable Re- newables and Bulk Energy Storage Systems Pumped-hydroelectric energy storage has proven to be valuable as bulk energy storage for energy

  9. Inductively Coupled Plasma Etching of Bulk Titanium for MEMS Applications

    E-Print Network [OSTI]

    MacDonald, Noel C.

    Inductively Coupled Plasma Etching of Bulk Titanium for MEMS Applications E. R. Parker,a, * B. J for the bulk micromachining of microelectromechanical MEMS devices. Titanium- based MEMS have the potential for the microfabrication of titanium-based MEMS devices. © 2005 The Electrochemical Society. DOI: 10.1149/1.2006647 All

  10. Short communication Fractal in fracture of bulk metallic glass

    E-Print Network [OSTI]

    Gao, Jianbo

    Short communication Fractal in fracture of bulk metallic glass M.Q. Jiang a,b , J.X. Meng a , J. Bulk metallic glass B. Dynamic fracture C. Nanoscale periodic corrugation C. Fractal a b s t r a c t We investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical

  11. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  12. Carbon nanotubes grown on bulk materials and methods for fabrication

    SciTech Connect (OSTI)

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  13. Final Vitrification Melter Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,Energy 9,UNIVERSITY OF TEXAS AT||Solar

  14. vitrification.PDF

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherizeeEnergyMonumentWestSUMMARY REPORT

  15. Sandia National Laboratories: Training and Technology Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training and Technology Demonstration Area Training and Technology Demonstration Area Sandia's Training and Technology Demonstration Area (TTD) showcases technologies that can be...

  16. Coherent electron cooling demonstration experiment

    SciTech Connect (OSTI)

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, R.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Hutton, A.; Krafft, G.; Poelker, M.; Rimmer, R.; Bruhwiler, D.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.; Kholopov M.; Shevchenko, O.; McIntosh, P.; Wheelhouse, A.

    2011-09-04

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  17. The Edgewater Coolside process demonstration

    SciTech Connect (OSTI)

    McCoy, D.C.; Scandrol, R.O.; Statnick, R.M.; Stouffer, M.R.; Winschel, R.A.; Withum, J.A.; Wu, M.M.; Yoon, H. (CONSOL, Inc., Pittsburgh, PA (United States))

    1992-02-01

    The Edgewater Coolside process demonstration met the program objectives which were to determine Coolside SO[sub 2] removal performance, establish short-term process operability, and evaluate the economics of the process versus a limestone wet scrubber. On a flue gas produced from the combustion of 3% sulfur coal, the Coolside process achieved 70% SO[sub 2] removal using commercially-available hydrated lime as the sorbent. The operating conditions were Ca/S mol ratio 2.0, Na/Ca mol ratio 0.2, and 20[degree]F approach to adiabatic saturation temperature ([del]T). During tests using fresh plus recycle sorbent, the recycle sorbent exhibited significant capacity for additional SO[sub 2] removal. The longest steady state operation was eleven days at nominally Ca/S = 2, Na/Ca = 0.22, [del]T = 20--22[degree]F, and 70% SO[sub 2] removal. The operability results achieved during the demonstration indicate that with the recommended process modifications, which are discussed in the Coolside process economic analysis, the process could be designed as a reliable system for utility application. Based on the demonstration program, the Coolside process capital cost for a hypothetical commercial installation was minimized. The optimization consisted of a single, large humidifier, no spare air compressor, no isolation dampers, and a 15 day on-site hydrated lime storage. The levelized costs of the Coolside and the wet limestone scrubbing processes were compared. The Coolside process is generally economically competitive with wet scrubbing for coals containing up to 2.5% sulfur and plants under 350 MWe. Site-specific factors such as plant capacity factor, SO[sub 2] emission limit, remaining plant life, retrofit difficulty, and delivered sorbent cost affect the scrubber-Coolside process economic comparison.

  18. The Edgewater Coolside process demonstration

    SciTech Connect (OSTI)

    McCoy, D.C.; Scandrol, R.O.; Statnick, R.M.; Stouffer, M.R.; Winschel, R.A.; Withum, J.A.; Wu, M.M.; Yoon, H. [CONSOL, Inc., Pittsburgh, PA (United States)

    1992-02-01

    The Edgewater Coolside process demonstration met the program objectives which were to determine Coolside SO{sub 2} removal performance, establish short-term process operability, and evaluate the economics of the process versus a limestone wet scrubber. On a flue gas produced from the combustion of 3% sulfur coal, the Coolside process achieved 70% SO{sub 2} removal using commercially-available hydrated lime as the sorbent. The operating conditions were Ca/S mol ratio 2.0, Na/Ca mol ratio 0.2, and 20{degree}F approach to adiabatic saturation temperature ({del}T). During tests using fresh plus recycle sorbent, the recycle sorbent exhibited significant capacity for additional SO{sub 2} removal. The longest steady state operation was eleven days at nominally Ca/S = 2, Na/Ca = 0.22, {del}T = 20--22{degree}F, and 70% SO{sub 2} removal. The operability results achieved during the demonstration indicate that with the recommended process modifications, which are discussed in the Coolside process economic analysis, the process could be designed as a reliable system for utility application. Based on the demonstration program, the Coolside process capital cost for a hypothetical commercial installation was minimized. The optimization consisted of a single, large humidifier, no spare air compressor, no isolation dampers, and a 15 day on-site hydrated lime storage. The levelized costs of the Coolside and the wet limestone scrubbing processes were compared. The Coolside process is generally economically competitive with wet scrubbing for coals containing up to 2.5% sulfur and plants under 350 MWe. Site-specific factors such as plant capacity factor, SO{sub 2} emission limit, remaining plant life, retrofit difficulty, and delivered sorbent cost affect the scrubber-Coolside process economic comparison.

  19. Thermal conductivity of bulk nanostructured lead telluride

    SciTech Connect (OSTI)

    Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-01-13

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

  20. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect (OSTI)

    Collett, Raymond; Howland, James; Venkiteswaran, Prasad

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  1. Brane-Bulk energy exchange and agegraphic dark energy

    E-Print Network [OSTI]

    Ahmad Sheykhi

    2010-02-06

    We consider the agegraphic models of dark energy in a braneworld scenario with brane-bulk energy exchange. We assume that the adiabatic equation for the dark matter is satisfied while it is violated for the agegraphic dark energy due to the energy exchange between the brane and the bulk. Our study shows that with the brane-bulk interaction, the equation of state parameter of agegraphic dark energy on the brane, $w_D$, can have a transition from normal state where $w_D >-1 $ to the phantom regime where $w_D energy always satisfies $w^{\\mathrm{eff}}_D\\geq-1$.

  2. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Energy Savers [EERE]

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  5. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Environmental Management (EM)

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

  6. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  7. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural...

  8. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  9. Demonstration of integrated optimization software

    SciTech Connect (OSTI)

    NONE

    2008-01-01

    NeuCO has designed and demonstrated the integration of five system control modules using its proprietary ProcessLink{reg_sign} technology of neural networks, advanced algorithms and fuzzy logic to maximize performance of coal-fired plants. The separate modules control cyclone combustion, sootblowing, SCR operations, performance and equipment maintenance. ProcessLink{reg_sign} provides overall plant-level integration of controls responsive to plant operator and corporate criteria. Benefits of an integrated approach include NOx reduction improvement in heat rate, availability, efficiency and reliability; extension of SCR catalyst life; and reduced consumption of ammonia. All translate into cost savings. As plant complexity increases through retrofit, repowering or other plant modifications, this integrated process optimization approach will be an important tool for plant operators. 1 fig., 1 photo.

  10. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  11. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect (OSTI)

    Demmer, Rick L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, Don T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Archiblad, Kip E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  12. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  13. UDC Demonstrates Phosphorescent OLED Systems

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC), along with project partners Armstrong World Industries and the universities of Michigan and Southern California, have successfully demonstrated two phosphorescent OLED (PHOLED™) luminaire systems, the first of their kind in the U.S. This achievement marks a critical step in the development of practical OLED lighting in a complete luminaire system, including decorative housing, power supply, mounting, and maintenance provisions. Each luminaire has overall dimensions of approximately 15x60 cm and is comprised of four 15x15 cm phosphorescent OLED panels. With a combined power supply and lamp efficacy of 51 lm/W, the prototype luminaire is about twice as efficient as the market-leading halogen-based systems. In addition, the prototype OLED lighting system snaps into Armstrong's TechZone™ Ceiling System, which is commercially available in the U.S.x

  14. A bulk-flow model of angled injection Lomakin bearings 

    E-Print Network [OSTI]

    Soulas, Thomas Antoine Theo

    2001-01-01

    A bulk-flow model for determination of the leakage and dynamic force characteristics of angled injection Lomakin bearings is presented. Zeroth- and first-order equations describe the equilibrium flow for a centered bearing and the perturbed flow...

  15. Supply chain management in the dry bulk shipping industry

    E-Print Network [OSTI]

    Nicholson, Bryan E. (Bryan Edward)

    2006-01-01

    This paper is intended to show the importance of supply chain management in the dry-bulk shipping industry. A hypothetical company, the Texas Grain and Bakery Corporation, was created. The values and calculations used are ...

  16. Structural and economic analysis of capesize bulk carriers

    E-Print Network [OSTI]

    Hadjiyiannis, Nicholas

    2010-01-01

    Structural failures of bulk carriers continue to account for the loss of many lives every year. Capes are particularly vulnerable to cracking because of their large length, their trade in high density cargos, and the high ...

  17. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01

    developments in bulk thermoelectric materials", M. Mater.and M. D. Drsselhaus, "Thermoelectric figure of merit of aO'Quinn, " Thin-film thermoelectric devices with high room-

  18. Costs, Savings and Financing Bulk Tanks on Texas Dairy Farms. 

    E-Print Network [OSTI]

    Moore, Donald S.; Stelly, Randall; Parker, Cecil A.

    1958-01-01

    ,s - / cwdh\\@ Costs, Savi~gs;.itd Financing Bulk Tanks on Texas Dairy Farms . ?. I I 1 i I I ! ,:ravings in hauling - 10 cents I \\ \\ 1 \\ savings in hauling - 15 cents -----------____--- 'savings in hauling - 20 cents Annual production..., 1,000 pounds Estimated number of years required for savings from a bulk tank to equal additional costs at different levels of production and savings in hauling costs. TEXAS AGRICULTURAL EXPERIMEN'T STATION R. D. LEWIS. DIRECTOR. COLLEGE STATION...

  19. RAPID/BulkTransmission/Environment/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | Environment Jump to: navigation,

  20. RAPID/BulkTransmission/Environment/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | Environment Jump to:

  1. RAPID/BulkTransmission/Environment/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | Environment Jump

  2. RAPID/BulkTransmission/Environment/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | Environment

  3. RAPID/BulkTransmission/Environment/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | EnvironmentPage Edit with form

  4. RAPID/BulkTransmission/Environment/Washington | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | EnvironmentPage Edit with

  5. RAPID/BulkTransmission/Environment/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | EnvironmentPage Edit

  6. RAPID/BulkTransmission/Exploration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ | EnvironmentPage

  7. RAPID/BulkTransmission/Federal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎ |

  8. RAPID/BulkTransmission/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ | BulkTransmission‎

  9. RAPID/BulkTransmission/Montana | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ |RAPID/BulkTransmission/Montana < RAPID‎ |

  10. RAPID/BulkTransmission/Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ |RAPID/BulkTransmission/Montana < RAPID‎

  11. RAPID/BulkTransmission/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ |RAPID/BulkTransmission/Montana <

  12. RAPID/BulkTransmission/Oregon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ |RAPID/BulkTransmission/Montana

  13. RAPID/BulkTransmission/Site Considerations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/Site Considerations < RAPID‎ |

  14. RAPID/BulkTransmission/Texas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/Site Considerations < RAPID‎

  15. RAPID/BulkTransmission/Transmission Siting & Interconnection | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/Site Considerations <

  16. RAPID/BulkTransmission/Utah | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/Site Considerations

  17. RAPID/BulkTransmission/Washington | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/Site

  18. RAPID/BulkTransmission/Water Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/SiteWater Quality < RAPID‎ |

  19. RAPID/BulkTransmission/Water Use | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/SiteWater Quality < RAPID‎

  20. RAPID/BulkTransmission/Wyoming | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/SiteWater Quality <

  1. Environmental management technology demonstration and commercialization: Tasks 2, 3, 4, and 8. Semiannual report, October 1994--March 1995

    SciTech Connect (OSTI)

    Hawthorne, S.B.; Ness, R.O. Jr.; Nowok, J.W.; Pflughoeft-Hassett, D.; Hurley, J.P.; Steadman, E.N.

    1995-05-01

    The objective of the Environmental Management program at the Energy and Environmental Research Center (EERC) is to develop, demonstrate, and commercialize technologies that address the environmental management needs of contaminated sites, including characterization, sensors, and monitoring; low-level mixed waste processing; material disposition technology; improved waste forms; in situ containment and remediation; and efficient separation technologies for radioactive wastes. Task 2 is the extraction and analysis of pollutant organics from contaminated solids using off-line supercritical fluid extraction (SFE) and on-line SFE-infrared spectroscopy. Task 3, pyrolysis of plastics, has as its objectives to develop a commercial process to significantly reduce the volume of mixed-plastics-paper-resin waste contaminated with low-level radioactive material; concentrate contaminants in a collectible form; and determine the distribution and form of contaminants after pyrolysis of the mixed waste. Task 4, stabilization of vitrified wastes, has as its objectives to (1) demonstrate a waste vitrification procedure for enhanced stabilization of waste materials and (2) develop a testing protocol to understand the long-term leaching behavior of the stabilized waste form. The primary objective of Task 8, Management and reporting, is coordination of this project with other programs and opportunities. In addition, management oversight will be maintained to ensure that tasks are completed and coordinated as planned and that deliverables are submitted in a timely manner. Accomplishments to date is each task are described. 62 refs.

  2. Finsler geometric perspective on the bulk flow in the universe

    E-Print Network [OSTI]

    Zhe Chang; Ming-Hua Li; Sai Wang

    2013-05-09

    Astronomical observations showed that there may exist a bulk flow with peculiar velocities in the universe, which contradicts with the (\\Lambda)CDM model. The bulk flow reveals that the observational universe is anisotropic at large scales. In fact, a more reliable observation on the anisotropy of spacetime comes from the CMB power spectra. The WMAP and Planck satellites both show that there is a hemispherical power asymmetry at large-angular scales. In this paper, we propose a "wind" scenario to the bulk flow (or the anisotropy of spacetime). Under the influence of the "wind", the spacetime metric could become a Finsler structure. By resolving the null geodesic equation, we obtain the modified luminosity distance, which has a dipolar form at the leading order. Thus, the "wind" describes well the bulk flow. In addition, we perform a least-(\\chi^2) fit to the data of type Ia supernovae (SNe Ia) in the Union2.1 compilation. The peculiar velocity of the bulk flow has an upper limit (v_{bulk}\\lesssim 4000 \\rm{km/s}), which is compatible with all the existing observational values.

  3. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect (OSTI)

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q?=?2.51?×?10{sup 6}) photonic crystal cavities with low mode volume (V{sub m}?=?1.062?×?(?/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05?dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q?=?3?×?10{sup 3}.

  4. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    SciTech Connect (OSTI)

    Stevenson, T. Bennett, J.; Brown, A. P.; Wines, T.; Bell, A. J.; Comyn, T. P.; Smith, R. I.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm?Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce a reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm?Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 ?{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.

  5. Advance Resource Provisioning in Bulk Data Scheduling

    SciTech Connect (OSTI)

    Balman, Mehmet

    2012-10-01

    Today?s scientific and business applications generate mas- sive data sets that need to be transferred to remote sites for sharing, processing, and long term storage. Because of increasing data volumes and enhancement in current net- work technology that provide on-demand high-speed data access between collaborating institutions, data handling and scheduling problems have reached a new scale. In this paper, we present a new data scheduling model with ad- vance resource provisioning, in which data movement operations are defined with earliest start and latest comple- tion times. We analyze time-dependent resource assign- ment problem, and propose a new methodology to improve the current systems by allowing researchers and higher-level meta-schedulers to use data-placement as-a-service, so they can plan ahead and submit transfer requests in advance. In general, scheduling with time and resource conflicts is NP-hard. We introduce an efficient algorithm to organize multiple requests on the fly, while satisfying users? time and resource constraints. We successfully tested our algorithm in a simple benchmark simulator that we have developed, and demonstrated its performance with initial test results.

  6. Innovative DOE Technology Demonstrates Potential for Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential...

  7. West Valley Demonstration Project Waste Management Environmental...

    Office of Environmental Management (EM)

    3 7-SA-O1 West Valley Demonstration Project Waste Management Environmental Impact Statement Supplement Analysis Revised Final U.S. Department of Energy West Valley Demonstration...

  8. Energy Department Announces Offshore Wind Demonstration Awardees...

    Office of Environmental Management (EM)

    Announces Offshore Wind Demonstration Awardees Energy Department Announces Offshore Wind Demonstration Awardees January 10, 2013 - 1:08pm Addthis This is an excerpt from the Fourth...

  9. Three Offshore Wind Advanced Technology Demonstration Projects...

    Energy Savers [EERE]

    Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding Three Offshore Wind Advanced Technology Demonstration Projects Receive Phase 2 Funding...

  10. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  11. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  12. Independent Activity Report, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Valley Demonstration Project - July 2012 Independent Activity Report, West Valley Demonstration Project - July 2012 July 2012 Operational Awareness Oversight of the West...

  13. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  14. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Office of Environmental Management (EM)

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  15. Dark goo: Bulk viscosity as an alternative to dark energy

    E-Print Network [OSTI]

    Jean-Sebastien Gagnon; Julien Lesgourgues

    2011-09-16

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local equilibrium today for viscous effects to be important.

  16. Dark goo: Bulk viscosity as an alternative to dark energy

    E-Print Network [OSTI]

    Gagnon, Jean-Sebastien

    2011-01-01

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local eq...

  17. Bulk emission of scalars by a rotating black hole

    E-Print Network [OSTI]

    M. Casals; S. R. Dolan; P. Kanti; E. Winstanley

    2008-07-17

    We study in detail the scalar-field Hawking radiation emitted into the bulk by a higher-dimensional, rotating black hole. We numerically compute the angular eigenvalues, and solve the radial equation of motion in order to find transmission factors. The latter are found to be enhanced by the angular momentum of the black hole, and to exhibit the well-known effect of superradiance. The corresponding power spectra for scalar fields show an enhancement with the number of dimensions, as in the non-rotating case. We compute the total mass loss rate of the black hole for a variety of black-hole angular momenta and bulk dimensions, and find that, in all cases, the bulk emission remains significantly smaller than the brane emission. The angular-momentum loss rate is also computed and found to have a smaller value in the bulk than on the brane. We present accurate bulk-to-brane emission ratios for a range of scenarios.

  18. Palladium diffusion into bulk copper via the (100) surface.

    SciTech Connect (OSTI)

    Bussmann, Ezra; Pohl, Karsten; Sun, Jiebing; Kellogg, Gary Lee

    2009-01-01

    Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T > 240 C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 {+-} 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu{sub 3}Pd L 1{sub 2} bulk alloy phase.

  19. Properties of Bulk Sintered Silver As a Function of Porosity

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Vuono, Daniel J; Wang, Hsin; Ferber, Mattison K; Liang, Zhenxian

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity, thermal conductivity, elastic modulus, Poisson's ratio, and yield stress all depended on the porosity content in bulk-sintered silver. The only investigated property that was independent of porosity in that range was coefficient of thermal expansion.

  20. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  1. Stress Tensor and Bulk Viscosity in Relativistic Nuclear Collisions

    E-Print Network [OSTI]

    Rainer J. Fries; Berndt Müller; Andreas Schäfer

    2008-08-30

    We discuss the influence of different initial conditions for the stress tensor and the effect of bulk viscosity on the expansion and cooling of the fireball created in relativistic heavy-ion collisions. In particular, we explore the evolution of longitudinal and transverse components of the pressure and the extent of dissipative entropy production in the one-dimensional, boost-invariant hydrodynamic model. We find that a bulk viscosity consistent with recent estimates from lattice QCD further slows the equilibration of the system, however it does not significantly increase the entropy produced.

  2. Kinetics of Cold-Cap Reactions for Vitrification of Nuclear Waste Glass Based on Simultaneous Differential Scanning Calorimetry - Thermogravimetry (DSC-TGA) and Evolved Gas Analysis (EGA)

    SciTech Connect (OSTI)

    Rodriguez, Carmen P.; Pierce, David A.; Schweiger, Michael J.; Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.

    2013-12-03

    For vitrifying nuclear waste glass, the feed, a mixture of waste with glass-forming and modifying additives, is charged onto the cold cap that covers 90-100% of the melt surface. The cold cap consists of a layer of reacting molten glass floating on the surface of the melt in an all-electric, continuous glass melter. As the feed moves through the cold cap, it undergoes chemical reactions and phase transitions through which it is converted to molten glass that moves from the cold cap into the melt pool. The process involves a series of reactions that generate multiple gases and subsequent mass loss and foaming significantly influence the mass and heat transfers. The rate of glass melting, which is greatly influenced by mass and heat transfers, affects the vitrification process and the efficiency of the immobilization of nuclear waste. We studied the cold-cap reactions of a representative waste glass feed using both the simultaneous differential scanning calorimetry thermogravimetry (DSC-TGA) and the thermogravimetry coupled with gas chromatography-mass spectrometer (TGA-GC-MS) as complementary tools to perform evolved gas analysis (EGA). Analyses from DSC-TGA and EGA on the cold-cap reactions provide a key element for the development of an advanced cold-cap model. It also helps to formulate melter feeds for higher production rate.

  3. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

  4. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    SciTech Connect (OSTI)

    Shade, J.W.

    1996-05-03

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  5. Exposure Based Health Issues Project Report: Phase I of High Level Tank Operations, Retrieval, Pretreatment, and Vitrification Exposure Based Health Issues Analysis

    SciTech Connect (OSTI)

    Stenner, Robert D.; Bowers, Harold N.; Kenoyer, Judson L.; Strenge, Dennis L.; Brady, William H.; Ladue, Buffi; Samuels, Joseph K.

    2001-11-30

    The Department of Energy (DOE) has the responsibility to understand the ''big picture'' of worker health and safety which includes fully recognizing the vulnerabilities and associated programs necessary to protect workers at the various DOE sites across the complex. Exposure analysis and medical surveillance are key aspects for understanding this big picture, as is understanding current health and safety practices and how they may need to change to relate to future health and safety management needs. The exposure-based health issues project was initiated to assemble the components necessary to understand potential exposure situations and their medical surveillance and clinical aspects. Phase I focused only on current Hanford tank farm operations and serves as a starting point for the overall project. It is also anticipated that once the pilot is fully developed for Hanford HLW (i.e., current operations, retrieval, pretreatment, vitrification, and disposal), the process and analysis methods developed will be available and applicable for other DOE operations and sites. The purpose of this Phase I project report is to present the health impact information collected regarding ongoing tank waste maintenance operations, show the various aspects of health and safety involved in protecting workers, introduce the reader to the kinds of information that will need to be analyzed in order to effectively manage worker safety.

  6. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford Site low-level waste

    SciTech Connect (OSTI)

    Whyatt, G.A. [Pacific Northwest National Lab., Richland, WA (United States); Shade, J.W.; Stegen, G.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-12-31

    Commercially available melter technologies were tested for application to vitrification of Hanford Site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW stimulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  7. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  8. NREL Certifies First All-Quantum-Dot Photovoltaic Cell; Demonstrates Stability, Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have certified the first all-quantum-dot photovoltaic cell, which was based on lead sulfide and demonstrated reasonable quantum dot solar cell performance for an initial efficiency measurement along with good stability. The certified open-circuit voltage of the quantum dot cell is greater than that possible from bulk lead sulfide because of quantum confinement.

  9. FINAL REPORT MELTER TESTS WITH AZ-101 HLW SIMULANT USING A DURAMELTER 100 VITRIFICATION SYSTEM VSL-01R10N0-1 REV 1 2/25/02

    SciTech Connect (OSTI)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL

    2011-12-29

    This report provides data, analyses, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic of America (VSL) to determine the processing rates that are achievable with AZ-101 HLW simulants and corresponding melter feeds on a DuraMelter 100 (DM100) vitrification system. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. Tests conducted during Part B1 (VSL-00R2590-2) on the DM1000 vitrification system installed at the Vitreous State Laboratory of The Catholic University of America showed that, without the use of bubblers, glass production rates with AZ-101 and C-106/AY-102 simulants were significantly lower than the Project design basis rate of 0.4 MT/m{sup 2}/d. Conversely, three-fold increases over the design basis rate were demonstrated with the use of bubblers. Furthermore, an un-bubbled control test using a replica of the melter feed used in cold commissioning tests at West Valley reproduced the rates that were observed with that feed on the WVDP production melter. More recent tests conducted on the DM1200 system, which more closely represents the present RPP-WTP design, are in general agreement with these earlier results. Screening tests conducted on the DM10 system have provided good indications of the larger-scale processing rates with bubblers (for both HL W and LAW feeds) but significantly overestimated the DM1000 un-bubbled rate observed for C-106/AY-102 melter feeds. This behavior is believed to be a consequence of the role of heat transfer in rate attainment and the much greater role of wall effects in heat transfer when the melt pool is not agitated. The DM100 melter used for the present tests has a surface area of 0.108 m{sup 2}, which is approximately 5 times larger than that of the DM10 (0.021 m{sup 2}) and approximately 11 times smaller than that of the DM1000 (1.2 m{sup 2}) (the DM1000 has since been replaced by a pilot-scale prototypical HLW melter, designated the DM1200, which has the same surface area as the DM1000). Testing on smaller melters is the most economical method for obtaining data over a wide range of operating conditions (particularly at extremes) and for guiding the more expensive tests that are performed at pilot-scale. Thus, one objective of these tests was to determine whether the DM100 melters are sufficiently large to reproduce the un-bubbled melt rates observed at the DM1000 scale, or to determine the extent of any off-set. DM100-scale tests can then be used to screen feed chemistry variations that may serve to increase the un-bubbled production rates prior to confirmation at pilot scale. Finally, extensive characterization data obtained on simulated HLW melter feeds formed from various glass forming additives indicated that there may be advantages in terms of feed rheology and stability to the replacement of some of the hydroxides by carbonates. A further objective of the present tests was therefore to identify any deleterious processing effects of such a change before adopting the carbonate feed as the baseline. Data from the WVDP melter using acidified (nitrated) feeds, and without bubbling, showed productions rates that are higher than those observed with the alkaline RPP feeds at the VSL. Therefore, the effect of feed acidification on production rate also was investigated. This work was performed under Test Specification, 'TSP-W375-00-00019, Rev 0, 'HLW-DM10 and DM100 Melter Tests' dated November 13, 2000 and the corresponding Test Plan. It should be noted, however, that the RPP-WTP Project directed a series of changes to the Test Plan as the result

  10. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    SciTech Connect (OSTI)

    Patil, S.B.; Srivastava, P.; Mishra, S.K.; Khan, S.S.; Nair, K.N.S.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of its longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)

  11. Kaluza-Klein masses of bulk fields with general boundary conditions in AdS{sub 5} space

    SciTech Connect (OSTI)

    Chang, Sanghyeon; Park, Seong Chan; Song, Jeonghyeon

    2005-05-15

    Recently bulk Randall-Sundrum theories with the gauge group SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} have drawn a lot of interest as an alternative to the electroweak symmetry breaking mechanism. These models are in better agreement with electroweak precision data since custodial isospin symmetry on the IR-brane is protected by the extended bulk gauge symmetry. We comprehensively study, in the S{sup 1}/Z{sub 2}xZ{sub 2}{sup '} orbifold, the bulk gauge and fermion fields with the general boundary conditions as well as the bulk and localized mass terms. Master equations to determine the Kaluza-Klein (KK) mass spectra are derived without any approximation, which is an important basic step for various phenomenologies at high energy colliders. The correspondence between orbifold boundary conditions and localized mass terms is demonstrated not only in the gauge sector but also in the fermion sector. As the localized mass increases, the first KK fermion mass is shown to decrease while the first KK gauge boson mass is shown to increase. The degree of gauge coupling universality violation is computed to be small in most parameter space, and its correlation with the mass difference between the top quark and light quark KK mode is also studied.

  12. Computing hypersurfaces which minimize surface energy plus bulk energy

    E-Print Network [OSTI]

    Sullivan, John M.

    [Page 17] Computing hypersurfaces which minimize surface energy plus bulk energy John M. Sullivan this idea to construct an algorithm to find the minimum-energy surface on any boundary, where the surface energy density can depend on position or normal vector. Here we extend this algorithm to allow not only

  13. A phase space analysis for nonlinear bulk viscous cosmology

    E-Print Network [OSTI]

    Giovanni Acquaviva; Aroonkumar Beesham

    2015-05-08

    We consider a Friedmann-Robertson-Walker spacetime filled with both viscous radiation and nonviscous dust. The former has a bulk viscosity which is proportional to an arbitrary power of the energy density, i.e. $\\zeta \\propto \\rho_v^{\

  14. TECHNICAL POLLUTION PREVENTION GUIDE FOR DRY BULK TERMINALS

    E-Print Network [OSTI]

    #12;TECHNICAL POLLUTION PREVENTION GUIDE FOR DRY BULK TERMINALS IN THE LOWER FRASER BASIN DOE FRAP 1996-19 Prepared for: Enviromnent Canada Environmental Protection Fraser Pollution Abatement North's report was fůnded by Environment Canada under the Fraser River Action Plan through its Fraser Pollution

  15. Synthesis of bulk superhard semiconducting B-C material

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Dubrovinskaia, Natalia A.; Dubrovinsky, Leonid S.

    2004-08-30

    A bulk composite superhard material was synthesized from graphitelike BC{sub 3} at 20 GPa and 2300 K using a multianvil press. The material consists of intergrown boron carbide B{sub 4}C and B-doped diamond with 1.8 at.%B. The material exhibits semiconducting behavior and extreme hardness comparable with that of single-crystal diamond.

  16. Stress tensor and bulk viscosity in relativistic nuclear collisions 

    E-Print Network [OSTI]

    Fries, Rainer J.; Mueller, Berndt; Schaefer, Andreas.

    2008-01-01

    REVIEW C 78, 034913 (2008) Stress tensor and bulk viscosity in relativistic nuclear collisions Rainer J. Fries,1,2,3 Berndt Mu?ller,3,4 and Andreas Scha?fer3,5 1Cyclotron Institute and Department of Physics, Texas A&M University, College Station, Texas...

  17. Stresses resulting from compression of bulk cotton lint fibers 

    E-Print Network [OSTI]

    Chimbombi, Ezekiel Maswe

    1998-01-01

    materials to determine if bale tie breakage would occur. Young's modulus of bulk lint cotton was found to be 9 MPa and the Poisson's ratio was 0. 1, while 12 MPa was recorded for the shear modulus. The FEA analysis showed that round steel ties, at six ties...

  18. Small Molecule Solution-Processed Bulk Heterojunction Solar Cells

    E-Print Network [OSTI]

    Candea, George

    Small Molecule Solution-Processed Bulk Heterojunction Solar Cells Arthur Aebersold Supervisors: J in solution processed BHJ solar cells, which are made from a PCBM Squaraine DyeCyanine Dye Absorber Molecules solar cell performance show a trend for better devices with an intemediate active layer thickness

  19. Belt conveyors for bulk materials. 6th ed.

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    The 16 chapters are entitled: Belt conveyor general applications economics; Design considerations; Characteristics and conveyability of bulk materials; Capacities, belt widths and speeds; Belt conveyor idlers; Belt tension and power engineering; Belt selection; Pulleys and shafts; Curves; Steep angle conveying; Belt cleaners and accessories; Transfer points; Conveyor motor drives and controls; Operation, maintenance and safety; Belt takeups; and Emerging technologies. 6 apps.

  20. 1 MILLION Q-FACTOR DEMONSTRATED ON MICRO-GLASSBLOWN FUSED SILICA WINEGLASS RESONATORS WITH OUT-OF-PLANE

    E-Print Network [OSTI]

    Chen, Zhongping

    expansion (ULE) glass shells deposited on precision ball lenses [3]. Blow molding was used to demonstrate Q in fabrication of MEMS wineglass structures: (1) deposition of thin-films on pre-defined molds, (2) blow molding-factors as high as 7.8k on bulk metallic glass shells [4] and 300k on fused silica shells [5]. In this paper, we

  1. Vendor glass durability study during evaluation of melter system technologies for vitrification of Hanford low-level wastes

    SciTech Connect (OSTI)

    Feng, X.; Kim, D.; Schweiger, M.J. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    The low level radioactive wastes (LLW) separated from the single-shell tanks and double-shell tanks at the Hanford Site will be immobilized into glass. A melter system technology testing, and evaluation program is being conducted to identify the demonstration, best overall melter system technology available to vitrify the Hanford LLW streams. The melter technologies being demonstrated use a variety of heating methods to melt the glass, including plasma torch, fossil-fuel-fired cyclone burner, carbon arc and joule-heating. The Phase I testing is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system technology can process a simulated highly alkaline, high nitrate/nitrite content LLW feed and produce a glass product of consistent quality. Target waste oxide loading of LLW simulant was specified to be about 25 wt%. Pacific Northwest Laboratory (PNL) is providing glass formulation support for this program. The five candidate vendor glasses at 20 wt% Na{sub 2}O level provided by PNL are alumino-borosilicate and aluminosilicate glasses with melting points around 1300{degrees}. Glasses adopted by vendors were tested at PNL to verify the required properties. The testing included durability evaluation through product consistency test, MCC-1 tests, and flow through tests and viscosity measurements.

  2. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy...

  3. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  4. Webinar: National Hydrogen Learning Demonstration Status

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar, "National Hydrogen Learning Demonstration Status," originally presented on February 6, 2012.

  5. Webinar: Hydrogen Storage Materials Database Demonstration

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar, Hydrogen Storage Materials Database Demonstration, originally presented on December 13, 2011.

  6. SSL Demonstration: Central Park, New York City

    SciTech Connect (OSTI)

    2012-11-01

    GATEWAY program report brief summarizing an SSL pathway lighting demonstration in Central Park in New York City.

  7. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart...

  8. High Efficiency m-plane LEDs on Low Defect Density Bulk GaN Substrates

    SciTech Connect (OSTI)

    David, Aurelien

    2012-10-15

    Solid-state lighting is a key technology for reduction of energy consumption in the US and worldwide. In principle, by replacing standard incandescent bulbs and other light sources with sources based on light-emitting diodes (LEDs), ultimate energy efficiency can be achieved. The efficiency of LEDs has improved tremendously over the past two decades, however further progress is required for solid- state lighting to reach its full potential. The ability of an LED at converting electricity to light is quantified by its internal quantum efficiency (IQE). The material of choice for visible LEDs is Gallium Nitride (GaN), which is at the basis of blue-emitting LEDs. A key factor limiting the performance of GaN LEDs is the so-called efficiency droop, whereby the IQE of the LED decreases significantly at high current density. Despite decades of research, efficiency droop remains a major issue. Since high-current operation is necessary for practical lighting applications, reducing droop is a major challenge for the scientific community and the LED industry. Our approach to solving the droop issue is the use of newly available low-defect-density bulk GaN non-polar substrates. In contrast to the standard foreign substrates (sapphire, silicon carbide, silicon) used in the industry, we have employed native bulk GaN substrates with very low defect density, thus ensuring exquisite material quality and high IQE. Whereas all commercial LEDs are grown along the c-plane crystal direction of GaN, we have used m-plane non-polar substrates; these drastically modify the physical properties of the LED and enable a reduction of droop. With this approach, we have demonstrated very high IQE performance and low droop. Our results focused on violet and blue LEDs. For these, we have demonstrated very high peak IQEs and current droops of 6% and 10% respectively (up to a high current density of 200A.cm-2). All these results were obtained under electrical operation. These high IQE and low droop values are in line with the program’s milestones. They demonstrate that bulk non-polar GaN substrates represent a disruptive technology for LED performance. Application of this technology to real-world products is feasible, provided that the cost of GaN substrates is compatible with the market’s requirement.

  9. Bulk crystal growth of antimonide based III-V compounds for thermophotovoltaics applications

    SciTech Connect (OSTI)

    Dutta, P.S.; Ostrogorsky, A.G.; Gutmann, R.J.

    1998-10-01

    In this paper, the bulk growth of crack-free GaInSb and single phase GaInAsSb alloys are presented. A new class of III-V quasi-binary [A{sub III}B{sub V}]{sub 12{minus}x}[C{sub III}D{sub V}]{sub x} semiconductor alloys has been synthesized and bulk crystals grown from the melt for the first time. The present investigation is focused on the quasi-binary alloy (GaSb){sub 1{minus}x}(InAs){sub x} (0 < x < 0.05) due to its importance for thermophotovoltaic applications. The structural properties of this melt-grown quasi-binary alloy are found to be significantly different from the conventional quaternary compound Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} with composition x = y. Synthesis and growth procedures are discussed. For the growth of ternary alloys, it was demonstrated that forced convection or mixing in the melt during directional solidification of In{sub x}Ga{sub 1{minus}x}Sb (0 < x < 0.1) significantly reduces cracks in the crystals.

  10. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cmł that is almost one order ofmore »larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less

  11. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    SciTech Connect (OSTI)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cmł that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  12. Local and bulk 13C hyperpolarization in NV-centered diamonds at variable fields and orientations

    E-Print Network [OSTI]

    Gonzalo A. Alvarez; Christian O. Bretschneider; Ran Fischer; Paz London; Hisao Kanda; Shinobu Onoda; Junichi Isoya; David Gershoni; Lucio Frydman

    2014-12-30

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk, usually demand operation at cryogenic temperatures. Room-temperature approaches targeting diamonds with nitrogen-vacancy (NV) centers could alleviate this need, but hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron->13C spin alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. 13C-detected Nuclear Magnetic Resonance (NMR) experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs, throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond NV centers in NMR, and in quantum information processing.

  13. Compressional Behavior of Bulk and Nanorod LiMn[subscript 2]O[subscript 4] under Nonhydrostatic Stress

    SciTech Connect (OSTI)

    Lin, Yu; Yang, Yuan; Ma, Hongwei; Cui, Yi; Mao, Wendy L. (Stanford); (SLAC)

    2011-09-20

    We studied the effect of pressure on LiMn{sub 2}O{sub 4} commercial powders and well-characterized nanorods using angle-dispersive synchrotron X-ray diffraction (XRD) in diamond anvil cells and found that spinel LiMn{sub 2}O{sub 4} is extremely sensitive to deviatoric stress induced by external applied pressure. Under nonhydrostatic conditions, bulk LiMn{sub 2}O{sub 4} underwent an irreversible phase transformation at pressures as low as 0.4 GPa from a cubic Fd-3m to tetragonal I4{sub 1}/amd structure driven by the Jahn-Teller effect. In contrast, bulk LiMn{sub 2}O{sub 4} under hydrostatic conditions experienced a reversible structural transformation beginning at approximately 11 GPa. Well-characterized LiMn{sub 2}O{sub 4} nanorods with an average diameter of 100-150 nm and an average length of 1-2 {micro}m were investigated under the same experimental conditions and showed a similar structural behavior as the bulk material confirming that LiMn{sub 2}O{sub 4} displays an extremely sensitive structural response to deviatoric stress. Scanning electron microscope (SEM) images of the samples especially the nanorods that were recovered from high pressure demonstrated a link between the changing morphology of the materials and the origin of the phase transition. We also found that nanostructured materials can accommodate more stress compared to their bulk counterparts. Our comparative study of bulk and nanorod LiMn{sub 2}O{sub 4} improves our understanding of their fundamental structural and mechanical properties, which can provide guidance for applied battery technology. In addition, LiMn{sub 2}O{sub 4} represents a strongly correlated system, whose structural, electronic, and magnetic properties at high pressure are of broad interest for fundamental chemistry and condensed matter physics.

  14. Observing bulk diamond spin coherence in high-purity nanodiamonds

    E-Print Network [OSTI]

    Helena S. Knowles; Dhiren M. Kara; Mete Atature

    2013-10-03

    Nitrogen-vacancy centres (NVs) in diamond are attractive for research straddling quantum information science and nanoscale magnetometry and thermometry. While ultrapure bulk diamond NVs sustain the longest spin coherence times among optically accessible spins, nanodiamond NVs display persistently poor spin coherence. Here we introduce high-purity nanodiamonds accommodating record-long NV coherence times, >60 us, observed via universal dynamical decoupling. We show that the main contribution to decoherence comes from nearby nitrogen impurities rather than surface states. We protect the NV spin free precession, essential to DC magnetometry, by driving solely these impurities into the motional narrowing regime. This extends the NV free induction decay time from 440 ns, longer than that in type Ib bulk diamond, to 1.27 us, which is comparable to that in type IIa (impurity-free) diamond. These properties allow the simultaneous exploitation of both high sensitivity and nanometre resolution in diamond-based emergent quantum technologies.

  15. Accelerating cosmological expansion from shear and bulk viscosity

    E-Print Network [OSTI]

    Stefan Floerchinger; Nikolaos Tetradis; Urs Achim Wiedemann

    2015-03-10

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  16. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic UtilityQuintasNEPARAPID/BulkTransmission/Arizona

  17. RAPID/BulkTransmission/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublicBulkTransmission/Colorado < RAPID‎ |

  18. RAPID/BulkTransmission/Environment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublicBulkTransmission/Colorado < RAPID‎

  19. RAPID/BulkTransmission/Environment/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublicBulkTransmission/Colorado <

  20. RAPID/BulkTransmission/Environment/Arizona | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublicBulkTransmission/Colorado

  1. RAPID/BulkTransmission/Environment/Colorado | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGenerationBulkTransmission/Environment/Colorado < RAPID‎ |

  2. RAPID/BulkTransmission/Environment/Federal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGenerationBulkTransmission/Environment/Colorado < RAPID‎

  3. RAPID/BulkTransmission/Environment/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGenerationBulkTransmission/Environment/Colorado <

  4. RAPID/BulkTransmission/Environment/Idaho | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGenerationBulkTransmission/Environment/Colorado

  5. RAPID/BulkTransmission/Land Use | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎ |

  6. RAPID/BulkTransmission/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎

  7. Bulk Hauling Equipment for CHG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of EnergyEmergingEnergyBulk Hauling Equipment

  8. EFFECTIVE POROSITY IMPLIES EFFECTIVE BULK DENSITY IN SORBING SOLUTE TRANSPORT

    SciTech Connect (OSTI)

    Flach, G.

    2012-02-27

    The concept of an effective porosity is widely used in solute transport modeling to account for the presence of a fraction of the medium that effectively does not influence solute migration, apart from taking up space. This non-participating volume or ineffective porosity plays the same role as the gas phase in single-phase liquid unsaturated transport: it increases pore velocity, which is useful towards reproducing observed solute travel times. The prevalent use of the effective porosity concept is reflected by its prominent inclusion in popular texts, e.g., de Marsily (1986), Fetter (1988, 1993) and Zheng and Bennett (2002). The purpose of this commentary is to point out that proper application of the concept for sorbing solutes requires more than simply reducing porosity while leaving other material properties unchanged. More specifically, effective porosity implies the corresponding need for an effective bulk density in a conventional single-porosity model. The reason is that the designated non-participating volume is composed of both solid and fluid phases, both of which must be neglected for consistency. Said another way, if solute does not enter the ineffective porosity then it also cannot contact the adjoining solid. Conceptually neglecting the fluid portion of the non-participating volume leads to a lower (effective) porosity. Likewise, discarding the solid portion of the non-participating volume inherently leads to a lower or effective bulk density. In the author's experience, practitioners virtually never adjust bulk density when adopting the effective porosity approach.

  9. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    E-Print Network [OSTI]

    Krishna Rajagopal; Nilesh Tripuraneni

    2010-02-16

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at the temperatures where hadronization is thought to occur in ultrarelativistic heavy ion collisions.

  10. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    E-Print Network [OSTI]

    Rajagopal, Krishna

    2009-01-01

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at th...

  11. Standard practice for bulk sampling of liquid uranium hexafluoride

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers methods for withdrawing representative samples of liquid uranium hexafluoride (UF6) from bulk quantities of the material. Such samples are used for determining compliance with the applicable commercial specification, for example Specification C787 and Specification C996. 1.2 It is assumed that the bulk liquid UF6 being sampled comprises a single quality and quantity of material. This practice does not address any special additional arrangements that might be required for taking proportional or composite samples, or when the sampled bulk material is being added to UF6 residues already in a container (“heels recycle”). 1.3 The number of samples to be taken, their nominal sample weight, and their disposition shall be agreed upon between the parties. 1.4 The scope of this practice does not include provisions for preventing criticality incidents. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of th...

  12. Dynamics of dendritic polymers in the bulk and under confinement

    SciTech Connect (OSTI)

    Chrissopoulou, K.; Fotiadou, S.; Androulaki, K.; Anastasiadis, S. H.; Tanis, I.; Karatasos, K.; Prevosto, D.; Labardi, M.; Frick, B.

    2014-05-15

    The structure and dynamics of a hyperbranched polyesteramide (Hybrane® S 1200) polymer and its nanocomposites with natural montmorillonite (Na{sup +}-MMT) are investigated by XRD, DSC, QENS, DS and Molecular Dynamics (MD) simulation. In bulk, the energy-resolved elastically scattered intensity from the polymer exhibits two relaxation steps, one attributed to sub-T{sub g} motions and one observed at temperatures above the glass transition, T{sub g}. The QENS spectra measured over the complete temperature range are consistent with the elastic measurements and can be correlated to the results emerging from the detailed description afforded by the atomistic simulations, which predict the existence of three relaxation processes. Moreover, dielectric spectroscopy shows the sub- T{sub g} beta process as well as the segmental relaxation. For the nanocomposites, XRD reveals an intercalated structure for all hybrids with distinct interlayer distances due to polymer chains residing within the galleries of the Na{sup +}-MMT. The polymer chains confined within the galleries show similarities in the behavior with that of the polymer in the bulk for temperatures below the bulk polymer T{sub g}, whereas they exhibit frozen dynamics under confinement at temperatures higher than that.

  13. Extremely Low-Loss Acoustic Phonons in a Quartz Bulk Acoustic Wave Resonator at Millikelvin Temperature

    E-Print Network [OSTI]

    Maxim Goryachev; Daniel L. Creedon; Eugene N. Ivanov; Serge Galliou; Roger Bourquin; Michael E. Tobar

    2012-04-02

    Low-loss, high frequency acoustic resonators cooled to millikelvin temperatures are a topic of great interest for application to hybrid quantum systems. When cooled to 20 mK, we show that resonant acoustic phonon modes in a Bulk Acoustic Wave (BAW) quartz resonator demonstrate exceptionally low loss (with $Q$-factors of order billions) at frequencies of 15.6 and 65.4 MHz, with a maximum $f.Q$ product of 7.8$\\times10^{16}$ Hz. Given this result, we show that the $Q$-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained. Such resonators possess the low losses crucial for electromagnetic cooling to the phonon ground state, and the possibility of long coherence and interaction times of a few seconds, allowing multiple quantum gate operations.

  14. Tensile GaAs(111) quantum dashes with tunable luminescence below the bulk bandgap

    SciTech Connect (OSTI)

    Yerino, Christopher D., E-mail: christopher.yerino@yale.edu; Jung, Daehwan; Lee, Minjoo Larry [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520 (United States); Simmonds, Paul J.; Liang, Baolai [California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Dorogan, Vitaliy G.; Ware, Morgan E.; Mazur, Yuriy I.; Salamo, Gregory J. [Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Huffaker, Diana L. [California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States)

    2014-08-18

    Strain-based band engineering in quantum dots and dashes has been predominantly limited to compressively strained systems. However, tensile strain strongly reduces the bandgaps of nanostructures, enabling nanostructures to emit light at lower energies than they could under compressive strain. We demonstrate the self-assembled growth of dislocation-free GaAs quantum dashes on an InP(111)B substrate, using a 3.8% tensile lattice-mismatch. Due to the high tensile strain, the GaAs quantum dashes luminesce at 110–240?meV below the bandgap of bulk GaAs. The emission energy is readily tuned by adjusting the size of the quantum dashes via deposition thickness. Tensile self-assembly creates new opportunities for engineering the band alignment, band structure, and optical properties of epitaxial nanostructures.

  15. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    SciTech Connect (OSTI)

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.

  16. Thermodynamic Relationships for Bulk Crystalline and Liquid Phases in the Phase-Field Crystal Model

    E-Print Network [OSTI]

    Victor W. L. Chan; Nirand Pisutha-Arnond; Katsuyo Thornton

    2015-02-06

    We present thermodynamic relationships between the free energy of the phase-field crystal (PFC) model and thermodynamic state variables for bulk phases under hydrostatic pressure. This relationship is derived based on the thermodynamic formalism for crystalline solids of Larch\\'e and Cahn [Larch\\'e and Cahn, Acta Metallurgica, Vol. 21, 1051 (1973)]. We apply the relationship to examine the thermodynamic processes associated with varying the input parameters of the PFC model: temperature, lattice spacing, and the average value of the PFC order parameter, $\\bar{n}$. The equilibrium conditions between bulk crystalline solid and liquid phases are imposed on the thermodynamic relationships for the PFC model to obtain a procedure for determining solid-liquid phase coexistence. The resulting procedure is found to be in agreement with the method commonly used in the PFC community, justifying the use of the common-tangent construction to determine solid-liquid phase coexistence in the PFC model. Finally, we apply the procedure to an eighth-order-fit (EOF) PFC model that has been parameterized to body-centered-cubic ($bcc$) Fe [Jaatinen et al., Physical Review E 80, 031602 (2009)] to demonstrate the procedure as well as to develop physical intuition about the PFC input parameters. We demonstrate that the EOF-PFC model parameterization does not predict stable $bcc$ structures with positive vacancy densities. This result suggests an alternative parameterization of the PFC model, which requires the primary peak position of the two-body direct correlation function to shift as a function of $\\bar{n}$.

  17. Demonstration and Deployment Successes: Sapphire Integrated Algal...

    Energy Savers [EERE]

    Sapphire Energy, Inc. Demonstration-Scale Project The Promise and Challenge of Algae as Renewable Sources of Biofuels National Alliance for Advanced Biofuels and...

  18. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked Questions Smart Grid Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked...

  19. Borrego springs microgrid demonstration project (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    demonstration project SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades - beginning with its innovations in automation and...

  20. Technical Demonstration and Economic Validation of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical Demonstration and Economic Validation of...

  1. Next Generation Luminaire (NGL) Downlight Demonstration Project...

    Broader source: Energy.gov (indexed) [DOE]

    lamps in the existing CFL downlights at St. Anthony Hospital in Gig Harbor, WA. Next Generation Luminaire (NGL) Downlight Demonstration Project: St. Anthony Hospital More Documents...

  2. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Citation Details In-Document Search Title: Controlled Hydrogen Fleet and Infrastructure...

  3. Demonstrating and Deploying Integrated Retrofit Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small-...

  4. The Smithsonian American Art Museum GATEWAY Demonstration

    Broader source: Energy.gov [DOE]

    View the video about using LEDs in a GATEWAY demonstration at the Smithsonian American Art Museum in Washington, DC, including an interview with lighting designer Scott Rosenfeld.

  5. Systems Integration Research, Development, and Demonstration

    Broader source: Energy.gov [DOE]

    To achieve the SunShot goals, DOE Systems Integration activities are focused on these key research, development, and demonstration areas:

  6. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security (HSS). This independent review of the emergency management program at the West Valley Demonstration Project (WVDP) was conducted prior to the creation of EA. HSS...

  7. West Valley Demonstration Project Administrative Consent Order...

    Office of Environmental Management (EM)

    West Valley Demonstration Project (WVDP) Adminstrative Consent Order, August 27, 1996 State New York Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Establish...

  8. DOE's Advanced Coal Research, Development, and Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    (DOE's) advanced coal research, development, and demonstration program to develop low-carbon emission coal technologies. Introduction Fossil fuel resources represent a tremendous...

  9. SSL Demonstration: Parking Garage Lighting, Washington, DC

    SciTech Connect (OSTI)

    2013-06-01

    GATEWAY program report brief summarizing an SSL parking garage demonstration at the Dept. of Labor headquarters parking garage in Washington, DC.

  10. Test and Demonstration Assets of New Mexico

    SciTech Connect (OSTI)

    2008-03-31

    This document was developed by the Arrowhead Center of New Mexico State University as part of the National Security Preparedness Project (NSPP), funded by a DOE/NNSA grant. The NSPP has three primary components: business incubation, workforce development, and technology demonstration and validation. The document contains a survey of test and demonstration assets in New Mexico available for external users such as small businesses with security technologies under development. Demonstration and validation of national security technologies created by incubator sources, as well as other sources, are critical phases of technology development. The NSPP will support the utilization of an integrated demonstration and validation environment.

  11. NewPage Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  12. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  13. Cold Crucible Induction Melter (CCIM) Demonstration Using a Representative Savannah River Site Sludge Simulant On the Large-Size Pilot Platform at the CEA-Marcoule

    SciTech Connect (OSTI)

    Girold, C.; Delaunay, M.; Dussossoy, J.L.; Lacombe, J. [CEA Marcoule, CEA/DEN/DTCD/SCDV, 30 (France); Marra, S.; Peeler, D.; Herman, C.; Smith, M.; Edwards, R.; Barnes, A.; Stone, M. [Savannah River National Laboratory (SRNL), Washington Savannah River Company, Savannah River Site, Aiken, SC (United States); Iverson, D. [Liquid Waste Operations, Washington Savannah River Company (WSRC), Aiken, SC (United States); Do Quang, R. [AREVA NC, Tour AREVA, 92 - Paris La Defense (France); Tchemitcheff, E. [AREVA Federal Services LLC, Richland Office, Richland, WA (United States); Veyer, C. [Consultant, 59 - Saint Waast la Vallee (France)

    2008-07-01

    The cold-crucible induction melter technology (CCIM) is considered worldwide for industrial implementation to overcome the current limits of high level waste vitrification technologies and to answer future challenges such as: new or difficult sludge compositions, need for improving waste loading, need for high temperatures, and corrosive effluents. More particularly, this technology is being considered for implementation at the US DOE Savannah River site to increase the rate of waste processing while reducing the number of HLW canisters to be produced through increased waste loading and improved waste throughput. A collaborative program involving AREVA, CEA (French Atomic Energy Commission), SRNL (Savannah River National Laboratory) and WSRC (Washington Savannah River Company) has thus been initiated in 2007 to demonstrate vitrification with waste loadings on the order of 50% (versus the current DWPF waste loading of about 35%) with a PUREX-type waste composition (high Fe{sub 2}O{sub 3} composition), and to perform two pilot-scale runs on the large size platform equipped with a 650 mm diameter CCIM at the CEA Marcoule. The objectives of the demonstrations were 1) to show the feasibility of processing a representative SRS sludge surrogate using continuous slurry feeding, 2) to produce a glass that would meet the acceptance specifications with an increased waste loading when compared to what is presently achieved at the DWPF, and 3) achieve improved waste throughputs. This presentation describes the platform and the very encouraging results obtained from the demonstration performed at temperatures, specific throughputs and waste loadings that overcome current DWPF limits. Results from the initial exploratory run and second demonstration run include 1) production of a glass product that achieved the targeted glass composition that was more durable than the standard Environmental Assessment (EA) glass, 2) successful slurry feeding of the CCIM, and 3) promising waste processing rates (at 1250 deg. C and 1300 deg. C melt pool temperature) that could result in processing of the Savannah River HLW faster than could be currently achieved with the existing Joule Heated melter in DWPF. In conclusion, this joint effort conducted by CEA, AREVA, SRNL and WSRC led to very encouraging results, demonstrating waste throughputs 44 % that of the DWPF ceramic melter throughput in a 650 mm CCIM melter for the same waste type with a Sludge Batch 3 PUREX-type waste feed flux of 150 L/h/m{sup 2} demonstrated at 1250 deg. C. The very high waste loading (above 52%) allows reducing the amount of glass to be produced by about 27% to treat the same amount of waste when compared to previous DWPF operation for this specific type of feed, since 27 % less glass is needed to immobilize the same amount of waste. It was also demonstrated, for this type of feed, an unusual behavior with regard to nepheline formation, which would require further evaluation for future applications. The product from the baseline demonstration run, with a waste loading of at least 52%, displayed a very good quality. Stabilized operation close to the maximum throughput was demonstrated. Cesium volatility was apparently between 7 and 12 % (based on glass analysis); however this value is only preliminary. This demonstration also allowed the CEA to better understand the SRS slurry feed behavior and to propose adaptations to the platform for any future demonstrations using this type of feed. Finally, use of a large diameter CCIM ({approx}1 meter) may allow faster processing of the SRS HLW than can be achieved with the current DWPF melter. (authors)

  14. Analysis and forecast of the capesize bulk carriers shipping market using Artificial Neural Networks

    E-Print Network [OSTI]

    Voudris, Athanasios V

    2006-01-01

    Investing in the bulk carrier market constitutes a rather risky investment due to the volatility of the bulk carrier freight rates. In this study it is attempted to uncover the benefits of using Artificial Neural Networks ...

  15. High-Energy, Low-Frequency Risk to the North American Bulk Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) High-Energy, Low-Frequency Risk to the North American Bulk Power System (June 2010) A...

  16. Notes 10. A thermohydrodynamic bulk-flow model for fluid film bearings 

    E-Print Network [OSTI]

    San Andres, Luis

    2009-01-01

    The complete set of bulk-flow equations for the analysis of turbulent flow fluid film bearings. Importance of thermal effects in process fluid applications. A CFD method for solution of the bulk-flow equations....

  17. In vitro Corrosion and Haemocompatibility of Bulk Nanocrystalline 304 Stainless Steel by Severe Rolling

    E-Print Network [OSTI]

    Zheng, Yufeng

    In vitro Corrosion and Haemocompatibility of Bulk Nanocrystalline 304 Stainless Steel by Severe; haemocompatibility. Abstract. Bulk nanocrystalline 304 stainless steel (nanocrystalline 304ss) discs had been successfully prepared by the commercial microcrystalline 304 stainless steel (microcrystalline 304ss) plate

  18. Risk-based Maintenance Allocation and Scheduling for Bulk Electric Power Transmission System Equipment

    E-Print Network [OSTI]

    risk of wide-area bulk transmission system failures. The work makes use of two previously developed1 Risk-based Maintenance Allocation and Scheduling for Bulk Electric Power Transmission System for bulk transmission equipment that is based on the cumulative long-term risk caused by each piece

  19. Strontium Titanate DC Electric Field Switchable and Tunable Bulk Acoustic Wave Solidly Mounted Resonator

    E-Print Network [OSTI]

    York, Robert A.

    Strontium Titanate DC Electric Field Switchable and Tunable Bulk Acoustic Wave Solidly Mounted.3 0/0. Index Terms - Acoustic resonators, bulk acoustic wave devices, delay filters, ferroelectric,4] that can be exploited to realize voltage-switchable bulk-acoustic wave (BAW) devices for RF applications [5

  20. dc electric field tunable bulk acoustic wave solidly mounted resonator using SrTiO3

    E-Print Network [OSTI]

    York, Robert A.

    dc electric field tunable bulk acoustic wave solidly mounted resonator using SrTiO3 G. N. SaddikTiO3 solidly mounted bulk acoustic wave resonator has been designed, fabricated, and tested of Physics. DOI: 10.1063/1.2759464 Thin film bulk acoustic wave resonators FBARs have been in use by research

  1. Automatic Bulk Weighing Systems EPO ABWS (Rev. 08/14) DRAFT Page 1

    E-Print Network [OSTI]

    A Description of Test Methods The Automatic Bulk Weighing Systems (ABWS) code of NIST Handbook 44 requires/14) DRAFT Page 2 Proper selection of the best method to use for testing is dependent upon the amount of test bulk material entirely or a combination of bulk material and trim weights.1 Thus, the determination

  2. Automatic Bulk Weighing Systems EPO ABWS (Rev. 08/14) DRAFT Page 1

    E-Print Network [OSTI]

    Automatic Bulk Weighing Systems EPO ABWS (Rev. 08/14) DRAFT Page 1 EPO No. 16 Appendix B amount of scale error (high level steps 2 and 3) #12;Automatic Bulk Weighing Systems EPO ABWS (Rev. 08 step 1: Error = - 3 #12;Automatic Bulk Weighing Systems EPO ABWS (Rev. 08/14) DRAFT Page 3 Evaluating

  3. Automatic Bulk Weighing Systems EPO ABWS (Rev. 08/14) DRAFT Page 1

    E-Print Network [OSTI]

    Automatic Bulk Weighing Systems EPO ABWS (Rev. 08/14) DRAFT Page 1 EPO No. 16 Appendix B of the scale; then remove the error weights. #12;Automatic Bulk Weighing Systems EPO ABWS (Rev. 08/14) DRAFT consecutive digital increments not permitted to be greater than 0.3 d Lower Increment #12;Automatic Bulk

  4. Multifunctional bulk plasma source based on discharge with electron injection

    SciTech Connect (OSTI)

    Klimov, A. S.; Medovnik, A. V.; Tyunkov, A. V.; Savkin, K. P.; Shandrikov, M. V.; Vizir, A. V.

    2013-01-15

    A bulk plasma source, based on a high-current dc glow discharge with electron injection, is described. Electron injection and some special design features of the plasma arc emitter provide a plasma source with very long periods between maintenance down-times and a long overall lifetime. The source uses a sectioned sputter-electrode array with six individual sputter targets, each of which can be independently biased. This discharge assembly configuration provides multifunctional operation, including plasma generation from different gases (argon, nitrogen, oxygen, acetylene) and deposition of composite metal nitride and oxide coatings.

  5. Non-Brownian molecular self-diffusion in bulk water

    E-Print Network [OSTI]

    Janez Stepišnik; Aleš Mohori?; Igor Serša

    2010-10-06

    The paper presents the velocity autocorrelation spectrum of bulk water measured by a new technique of NMR modulated gradient spin echo method. This technique is unprecedented for the spectrum measurement in the frequency interval between a few Hz to about 100 kHz with respect to directness and clarity of results and shows that a simple model of Brownian self-diffusion is not applicable to describe the diffusion dynamics of water molecules. The observed temperature dependant spectra of water show the existence of a slow chain-like dynamics in water, which we explain by coupling of diffusing molecule to broken bonds in the hydrogen bond network.

  6. RAPID/BulkTransmission/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration JumpPublic UtilityQuintasNEPA TimelinesBulkTransmission/Air

  7. Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    Vince Maio

    2011-08-01

    This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

  8. Marketing Plan for Demonstration and Validation Assets

    SciTech Connect (OSTI)

    2008-05-30

    The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.

  9. NREL: Continuum Magazine - Energy Efficient Demonstration Proves...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrate substantial savings for the Navy. A photo of a yellow house with a red roof in a tropical climate. A palm tree sits to the right of the house. Enlarge image...

  10. Landfill Gas Fueled HCCI Demonstration System

    E-Print Network [OSTI]

    Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

    2006-01-01

    Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

  11. Demonstration of chalcogenide glass racetrack microresonators

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    We have demonstrated what we believe to be the first chalcogenide glass racetrack microresonator using a complementary metal-oxide semiconductor-compatible lift-off technique with thermally evaporated As[subscript 2]S[subscript ...

  12. Teaching a robot manipulation skills through demonstration

    E-Print Network [OSTI]

    Lieberman, Jeff I. (Jeff Ian), 1978-

    2004-01-01

    An automated software system has been developed to allow robots to learn a generalized motor skill from demonstrations given by a human operator. Data is captured using a teleoperation suit as a task is performed repeatedly ...

  13. Result Demonstration: A Method That Works 

    E-Print Network [OSTI]

    Boleman, Chris; Dromgoole, Darrell A.

    2007-05-24

    The result demonstration is one of the most effective ways to transfer research-based knowledge to agricultural producers or to any audience. This publication explains the factors affecting a learner's decision to adopt an innovation and the five...

  14. Demonstration Assessment of LED Freezer Case Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Host Site: Albertsons Grocery, Eugene, Oregon Final Report prepared in support of the U.S. DOE Solid...

  15. Status of the MAJORANA DEMONSTRATOR experiment

    SciTech Connect (OSTI)

    Martin, R. D.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander S.; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Detwiler, Jason A.; Doe, P. J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Keeter, K.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; Orrell, John L.; O'Shaughnessy, Mark D.; Overman, Nicole R.; Phillips, David; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Suriano, Anne-Marie; Thompson, J.; Timkin, V.; Tornow, W.; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2014-07-08

    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  16. Status of the MAJORANA DEMONSTRATOR experiment

    SciTech Connect (OSTI)

    Martin, R. D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA and Department of Physics, University of South Dakota, Vermillion, SD (United States); Abgrall, N.; Chan, Y-D.; Hegai, A.; Mertens, S.; Poon, A. W. P.; Vetter, K. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.; Overman, N. R.; Soin, A. [Pacific Northwest National Laboratory, Richland, WA (United States); Avignone III, F. T. [Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA and Oak Ridge National Laboratory, Oak Ridge, TN (United States); Barabash, A. S.; Konovalov, S. I.; Yumatov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bertrand, F. E. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-06-24

    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.

  17. Demonstration and Deployment Strategy Workshop: Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  18. Lessons Learned from Microgrid Demonstrations Worldwide

    SciTech Connect (OSTI)

    Marnay, Chris; Zhou, Nan; Qu, Min; Romankiewicz, John

    2012-01-31

    The survey leads to policy recommendations for starting a microgrid demonstration program and overall development of microgrid and distributed energy. Additionally, specific recommendations have been made for China specifically.

  19. Demonstration and Deployment Strategy Workshop: Summary

    SciTech Connect (OSTI)

    none,

    2014-05-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  20. Possible demonstration of ionization cooling using absorbers...

    Office of Scientific and Technical Information (OSTI)

    cooling may play an important role in reducing the phase space volume of muons for a future muon-muon collider. We describe a possible experiment to demonstrate transverse...

  1. Calderon Cokemaking Process/Demonstration Project

    SciTech Connect (OSTI)

    None

    1998-04-08

    This project deals with the demonstration of a coking process using proprietary technology of Calderon with the following objectives in order to enable its commercialization: (i) making coke of such quality as to be suitable for use in high driving (highly productive) blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; and (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process. The activities of the past quarter were entirely focused on operating the Calderon Process Development Unit (PDU-I) in Alliance, Ohio conducting a series of tests under steady state using coal from Bethlehem Steel and U.S. Steel in order to demonstrate the above. The objectives mentioned above were successfully demonstrated.

  2. National Hydrogen Learning Demonstration Status (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-02-01

    This presentation discusses U.S. DOE Learning Demonstration Project goals, fuel cell vehicle and H2 station deployment status, and technical highlights of vehicle and infrastructure analysis results and progress.

  3. Enterprise Assessments Review, West Valley Demonstration Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was conducted during May 19-22 and June...

  4. The Way Ahead - West Valley Demonstration Project

    Office of Environmental Management (EM)

    Project Update Project Update The Way Ahead The Way Ahead West Valley Demonstration Project Not to be Considered as a Regulatory Submittal Pre-decisional Draft 198171 The Way...

  5. 3M's Motor Challenge Showcase Demonstration Project 

    E-Print Network [OSTI]

    Schultz, S. C.

    1996-01-01

    . The Motor Challenge is a U. S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase...

  6. 3M's Motor Challenge Showcase Demonstration Project 

    E-Print Network [OSTI]

    Schultz, S. C.

    1998-01-01

    Challenge is a U.S. Department of Energy initiative to promote the efficient use of energy in electric motor systems. Showcase Demonstration Projects are used to exemplify the benefits that motor system optimization can provide. This Showcase Project...

  7. What is the Federal Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Federal Demonstration Project is a cooperative effort between a number of universities, a private research institute, and several federal agencies to increase research productivity by eliminating unnecessary administrative procedures and by streamlining and standardizing needed controls. The Project aims to locate responsibility for decision-making as close as possible to principal investigators while maintaining necessary institutional and agency oversight to ensure accountability. By freeing researchers from some of their paperwork burden, more efficient research administration systems will enable investigators to spend more of their time doing science and engineering. The Federal Demonstration Project is an outgrowth of an earlier activity sponsored by five major federal R D agencies at the Florida State University System and the University of Miami. In Florida, the focus was on standardizing and streamlining procedures for administering research grants after the grants had been awarded to the universities. (See Attachment 1 for descriptions of the demonstrations carried out under the Florida Demonstration Project). In May 1988, the most successful of the demonstrated procedures were approved by the US Office of Management and Budget for use in grants awarded by any federal agency to any research organization. The new procedures give agencies authority to waive requirements that grantees obtain federal approval prior to taking a number of administrative actions with respect to grant management. The FDP institutions together with the participating federal agencies are designing and demonstrating innovative research administration procedures and are assessing the impact of those new procedures.

  8. Comments on universal properties of entanglement entropy and bulk reconstruction

    E-Print Network [OSTI]

    Haehl, Felix M

    2015-01-01

    Entanglement entropy of holographic CFTs is expected to play a crucial role in the reconstruction of semiclassical bulk gravity. We consider the entanglement entropy of spherical regions of vacuum, which is known to contain universal contributions. After perturbing the CFT with a relevant scalar operator, also the first order change of this quantity gives a universal term which only depends on a discrete set of basic CFT parameters. We show that in gravity this statement corresponds to the uniqueness of the ghost-free graviton propagator on an AdS background geometry. While the gravitational dynamics in this context contains little information about the structure of the bulk theory, there is a discrete set of dimensionless parameters of the theory which determines the entanglement entropy. We argue that for every (not necessarily holographic) CFT, any reasonable gravity model can be used to compute this particular entanglement entropy. We elucidate how this statement is consistent with AdS/CFT and also give v...

  9. Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

    SciTech Connect (OSTI)

    Farbaniec, L.; Dirras, G.; Krawczynska, A.; Mompiou, F.; Couque, H.; Naimi, F.; Bernard, F.; Tingaud, D.

    2014-08-15

    Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ? 135 ?m) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ? 1.5 ?m) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ? 470 MPa that was accompanied by limited ductility (? 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indicating local ductile events in the shell. Dislocation emission and annihilation at grain boundaries and twinning at crack tip were the main deformation mechanisms taking place within the fine-grained matrix as revealed by in-situ transmission electron microscopy. Estimation of the stress from loop's curvature and dislocation pile-up indicates that dislocation emission from grain boundaries and grain boundary overcoming largely contributes to the flow stress. - Highlights: • Bulk multi-modal Ni was processed by SPS from a powder blend. • Ultrafine-grained matrix or rim observed around spherical microcrystalline entities • Yield strength (470 MPa) and ductility (2.8% plastic strain) were measured. • Debonding was found at the matrix/microcrystalline entity interfaces. • In-situ TEM showed twinning, dislocation emission and annihilation at grain boundaries.

  10. SLUDGE WASHING AND DEMONSTRATION OF THE DWPF FLOWSHEET IN THE SRNL SHIELDED CELLS FOR SLUDGE BATCH 7A QUALIFICATION

    SciTech Connect (OSTI)

    Pareizs, J.; Billings, A.; Click, D.

    2011-07-08

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 7a*) be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). Sludge Batch 7a (SB7a) is composed of portions of Tanks 4, 7, and 12; the Sludge Batch 6 heel in Tank 51; and a plutonium stream from H Canyon. SRNL received the Tank 51 qualification sample (sample ID HTF-51-10-125) following sludge additions to Tank 51. This report documents: (1) The washing (addition of water to dilute the sludge supernate) and concentration (decanting of supernate) of the SB7a - Tank 51 qualification sample to adjust sodium content and weight percent insoluble solids to Tank Farm projections. (2) The performance of a DWPF Chemical Process Cell (CPC) simulation using the washed Tank 51 sample. The simulation included a Sludge Receipt and Adjustment Tank (SRAT) cycle, where acid was added to the sludge to destroy nitrite and reduce mercury, and a Slurry Mix Evaporator (SME) cycle, where glass frit was added to the sludge in preparation for vitrification. The SME cycle also included replication of five canister decontamination additions and concentrations. Processing parameters were based on work with a non-radioactive simulant. (3) Vitrification of a portion of the SME product and characterization and durability testing (as measured by the Product Consistency Test (PCT)) of the resulting glass. (4) Rheology measurements of the initial slurry samples and samples after each phase of CPC processing. This program was controlled by a Task Technical and Quality Assurance Plan (TTQAP), and analyses were guided by an Analytical Study Plan. This work is Technical Baseline Research and Development (R&D) for the DWPF. It should be noted that much of the data in this document has been published in interoffice memoranda. The intent of this technical report is bring all of the SB7a related data together in a single permanent record and to discuss the overall aspects of SB7a processing.

  11. Alcohol Transportation Fuels Demonstration Program. Phase 1

    SciTech Connect (OSTI)

    Kinoshita, C.M. [ed.

    1990-12-31

    Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

  12. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  13. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  14. Background model for the Majorana Demonstrator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cuesta, C.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Oak Ridge National Lab.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; et al

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example usingmore »powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.« less

  15. Background model for the Majorana Demonstrator

    SciTech Connect (OSTI)

    Cuesta, C. [Univ. of Washington, Seattle, WA (United States); Abgrall, N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Aguayo, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Avignone, F. T. [Univ. of South Carolina, Columbia, SC (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barabash, A. S. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Bertrand, F. E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boswell, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brudanin, V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Busch, M. [Duke Univ., Durham, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Byram, D. [Univ. of South Dakota, Vermillion, SD (United States); Caldwell, A. S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Chan, Y -D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Christofferson, C. D. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Combs, D. C. [North Carolina State Univ., Raleigh, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Detwiler, J. A. [Univ. of Washington, Seattle, WA (United States); Doe, P. J. [Univ. of Washington, Seattle, WA (United States); Efremenko, Yu. [Univ. of Tennessee, Knoxville, TN (United States); Egorov, V. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Ejiri, H. [Osaka Univ. (Japan). Research Center for Nuclear Physics and Dept. of Physics; Elliott, S. R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fast, J. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Finnerty, P. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Fraenkle, F. M. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giovanetti, G. K. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Goett, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gruszko, J. [Univ. of Washington, Seattle, WA (United States); Guiseppe, V. [Univ. of South Carolina, Columbia, SC (United States); Gusev, K. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Hallin, A. [Univ. of Alberta, Edmonton, AB (Canada); Hazama, R. [Osaka Univ. (Japan). Research Center for Nuclear Physics and Dept. of Physics; Hegai, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Henning, R. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Hoppe, E. W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Howard, S. [South Dakota School of Mines and Technology, Rapid City, SD (United States); Howe, M. A. [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Keeter, K. J. [Black Hills State Univ., Spearfish, SD (United States); Kidd, M. F. [Tennessee Technological Univ., Cookeville, TN (United States); Kochetov, O. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Konovalov, S. I. [Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kouzes, R. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); LaFerriere, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leon, J. [Univ. of Washington, Seattle, WA (United States); Leviner, L. E. [North Carolina State Univ., Raleigh, NC (United States); Triangle Universities Nuclear Lab., Durham, NC (United States); Loach, J. C. [Shanghai Jiao Tong Univ. (China)

    2015-01-01

    The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.

  16. THE MAJORANA DEMONSTRATOR: OVERVIEW AND STATUS UPDATE

    SciTech Connect (OSTI)

    Keeter, K.; Abgrall, N.; Aguayo, Estanislao; Avignone, F. T.; Barabash, Alexander; Bertrand, F.; Boswell, M.; Brudanin, V.; Busch, Matthew; Caldwell, A. S.; Chan, Yuen-Dat; Christofferson, Cabot-Ann; Combs, Dustin C.; Cuesta, C.; Detwiler, Jason A.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, S.; Esterline, James H.; Fast, James E.; Finnerty, P.; Fraenkle, Florian; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, Matthew P.; Gruszko, J.; Guiseppe, Vincente; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, Reyco; Hoppe, Eric W.; Howard, Stanley; Howe, M. A.; Kidd, M. F.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; LaFerriere, Brian D.; Leon, Jonathan D.; Leviner, L.; Loach, J. C.; MacMullin, S.; Martin, R. D.; Mertens, S.; Mizouni, Leila; Nomachi, Masaharu; O'Shaughnessy, Mark D.; Orrell, John L.; Overman, Nicole R.; Phillips, D.; Poon, Alan; Pushkin, K.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Ronquest, M. C.; Schubert, Alexis G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, Kyle J.; Snyder, N.; Soin, Aleksandr; Strain, J.; Suriano, Anne-Marie; Swift, Gary; Thompson, J.; Timkin, V.; Tornow, Werner; Varner, R. L.; Vasilyev, Sergey; Vetter, Kai; Vorren, Kris R.; White, Brandon R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir

    2013-04-12

    The MAJORANA DEMONSTRATOR is being constructed at the Sanford Underground Research Facility (SURF) in Lead, SD by the MAJORANA Collaboration to demonstrate the feasibility of a tonne-scale neutrinoless double beta decay experiment based on 76Ge. The observation of neutrinoless double beta decay would indicate that neutrinos can serve as their own antiparticles, thus proving neutrinos to be Majorana particles, and would give information on neutrino masses. Attaining sensitivities for neutrino masses in the inverted hierarchy region requires large tonne-scale detectors with extremely low backgrounds. The DEMONSTRATOR project will show that sufficiently low backgrounds are achievable. A brief description of the detector and a status update on the construction will be given, including the work done at BHSU on acid-etching of Pb shielding bricks.

  17. Operational results of National Solar Demonstration Projects

    SciTech Connect (OSTI)

    Waite, E.V.

    1981-01-01

    Included in the National Solar Demonstration Program are examples of earth-sheltered, passive solar designs. The data obtained from these sites presents an interesting look at what is both technically and economically feasible. Data from four demonstration sites that are members of the National Solar Data Network are utilized to present an economic and technical analyses of a group of four sites. Three of these sites are earth sheltered residential structures, the fourth is a commercial passive structure. This sample of four demonstration sites is not intended to provide a statistical representation of passive earth sheltered structures, but rather, an example of the type of information available through the National Solar Data Program and how this information may be utilized.

  18. Final report for the cryogenic retrieval demonstration

    SciTech Connect (OSTI)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft[sup 3] of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a cold test pit'' that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 [times] 9 [times] 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub's proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  19. Final report for the cryogenic retrieval demonstration

    SciTech Connect (OSTI)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft{sup 3} of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a ``cold test pit`` that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 {times} 9 {times} 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub`s proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  20. Test Plan for the overburden removal demonstration

    SciTech Connect (OSTI)

    Rice, P.; Thompson, D.; Winberg, M.; Skaggs, J.

    1993-06-01

    The removal of soil overburdens from contaminated pits and trenches involves using equipment that will remove a small layer of soil from 3 to 6 in. at any time. As a layer of soil is removed, overburden characterization techniques perform surveys to a depth that exceeds each overburden removal layer to ensure that the removed soil will be free of contamination. It is generally expected that no contamination will be found in the soil overburden, which was brought in after the waste was put in place. It is anticipated that some containers in the waste zone have lost their integrity, and the waste leakage from those containers has migrated by gravity downward into the waste zone. To maintain a safe work environment, this method of overburden removal should allow safe preparation of a pit or trench for final remediation. To demonstrate the soil overburden techniques, the Buried Waste Integrated Demonstration Program has contracted vendor services to provide equipment and techniques demonstrating soil overburden removal technology. The demonstration will include tests that will evaluate equipment performance and techniques for removal of overburden soil, control of contamination spread, and dust control. To evaluate the performance of these techniques, air particulate samples, physical measurements of the excavation soil cuts, maneuverability measurements, and time versus volume (rate) of soil removal data will be collected during removal operations. To provide a medium for sample evaluation, the overburden will be spiked at specific locations and depths with rare earth tracers. This test plan will be describe the objectives of the demonstration, data quality objectives, methods to be used to operate the equipment and use the techniques in the test area, and methods to be used in collecting data during the demonstration.