Sample records for demonstrate potential energy

  1. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Appliances

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | Department of Energy HVACEnergy Savings

  2. Technology Demonstrations | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Demonstrations Technology Demonstrations Efficient new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the...

  3. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural...

  4. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  5. Demonstration of the potential for energy conservation in two Midwestern pork processing plants. Final report, December 15, 1977-December 31, 1980

    SciTech Connect (OSTI)

    Wilson, P.; Okos, M.

    1981-01-19T23:59:59.000Z

    Two Midwestern pork processing plants were studied to quantify present energy consumption and to determine potential energy savings with modification of existing processing equipment or adoption of alternative equipment. Process energy consumption was measured in each plant at each processing step or at each unit operation and pertinent costs obtained. Energy utilized was categorized by type such as gas, electricity, steam, etc. Process conditions such as temperature, pressure, flow rates, etc., were also measured so that they could be related to energy consumption. Through measurement of operating parameters and the calculation of material and energy balances, patterns of energy loss in the major unit operations were determined. The total yearly steam and gas energy consumed by the processes studied in Plant A amounted to 133.6 billion Btu's and 207.8 billion Btu's in Plant B. Of that total, Plant A uses approximately 15.5% and Plant B uses 7.5% for sanitation and cleaning. The remaining energy is used to operate the various unit operations. The energy used in the major unit operations can be broken down into lost energy and recoverable energy. Lost energy is that energy that will not effect production if eliminated. For the processes studied in Plant A, non-productive energy amounts to 48% of the energy supplied. The nonproductive energy in Plant B amounted to 60.6% of the total process energy. On the other hand, recoverable energy is that energy that was used for some productive purpose but still has value upon completion of the process. For the processes studied in Plant A, a recoverable energy amounts to 40% of the energy supplied. The potentially recoverable energy for Plant B is 35.8% of the process energy supplied.

  6. Energy Research, Development and Demonstration 

    E-Print Network [OSTI]

    Ray, R. R., Jr.

    1980-01-01T23:59:59.000Z

    energy supplies and more efficient energy systems not inconsistent with other laws of the state; 2) administer the Texas Energy Development Fund as directed by the Council; 3) maintain an awareness of all energy-related research of importance...

  7. Students, Professors Demonstrating Virginia's Potential | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -Blueprint | DepartmentExcellence |Science Bowl |Energy does

  8. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model Demonstrates Offshore Wind Industry's Job Growth Potential New Model Demonstrates Offshore Wind Industry's Job Growth Potential May 18, 2015 - 3:11pm Addthis The U.S....

  9. EGS Demonstration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyer County,ECO2 AssetEDPEDI

  10. Energy Department Announces $10 million for Wave Energy Demonstration...

    Energy Savers [EERE]

    10 million for Wave Energy Demonstration at Navy's Hawaii Test Site Energy Department Announces 10 million for Wave Energy Demonstration at Navy's Hawaii Test Site April 28, 2014...

  11. Major Demonstrations | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJunePracticeShippingConformedMajor

  12. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

  13. Energy Department Announces Offshore Wind Demonstration Awardees...

    Broader source: Energy.gov (indexed) [DOE]

    demonstration partnerships with broad consortia that are developing breakthrough offshore wind energy generation projects. The primary goals of these projects are to...

  14. Energy Harvesting Communication Networks: Optimization and Demonstration

    E-Print Network [OSTI]

    Gesbert, David

    ) and the UK (Imperial College London). Index Terms--energy harvesting; energy packet net- works; Markov models harvesting devices. EH capability can scavenge ambient energy, such as vibrations, thermal gradients or solar1 Energy Harvesting Communication Networks: Optimization and Demonstration (The E-CROPS Project

  15. SOLAR ENERGY POTENTIALS

    E-Print Network [OSTI]

    Loreta N. Gashi; Sabedin A. Meha; Besnik A. Duriqi; Fatos S. Haxhimusa

    In recent years solar energy has experienced phenomenal growth due to the technological improvements resulting in cost reductions and also governments policies supportive of renewable energy development and utilization. In this paper we will present possibilities for development and deployment of solar energy. We will use Kosovo to compare the existing power production potential and future possible potential by using solar energy.

  16. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  17. Demonstration of the potential for energy conservation in several food-processing plants. Final report, December 15, 1977-December 31, 1980

    SciTech Connect (OSTI)

    Okos, M.R.; Marks, J.S.; Baker, T.

    1981-10-15T23:59:59.000Z

    A detailed energy audit was performed on an operating fluid milk plant with a 1979 production of 12.33 million gallons. Approximately 52% of the fuel energy was lost to inefficient boiler operation. About 40% of the electrical demand is from refrigeration compressors. A detailed evaluation was made of various energy saving options. The process heat requirements can be economically decreased to 8.4 billion Btu from the present 26.4 billion Btu's. Similarly it was found that 1.15 million kWh of electricity could be saved based on the 1979 consumption load. Using various heat recovery options, it was found, while maintaining the normal investment criterion, the boiler fuel requirement could be decreased to less than 1 billion Btu's per year.

  18. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

    2014-03-01T23:59:59.000Z

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  19. Hampton Roads Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy | OpenHalf HollowRoads Demonstration

  20. Energy Production Demonstrator for Megawatt Proton Beams

    E-Print Network [OSTI]

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01T23:59:59.000Z

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  1. Energy Production Demonstrator for Megawatt Proton Beams

    E-Print Network [OSTI]

    Vitaly S. Pronskikh; Nikolai Mokhov; Igor Novitski; Sergey I. Tyutyunnikov

    2014-07-16T23:59:59.000Z

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  2. Review of potential EGS sites and possible EGS demonstration scenarios

    SciTech Connect (OSTI)

    None

    1999-09-01T23:59:59.000Z

    Review of potential sites for Enhanced Geothermal Systems (EGS) and development of reference scenarios for EGS demonstration projects are two sub-tasks included in the FY 1999 EGS Research and Development (R&D) Management Task (DOE Task Order Number DE-AT07-99ID60365, included in the Appendix of this report). These sub-tasks are consistent with the EGS Strategic Plan, which includes milestones relating to EGS site selection (Milestone 4, to be completed in 2004) and development of a cost-shared, pilot-scale demonstration project (Milestone 5, to be completed in 2008). The purpose of the present work is to provide some reference points for discussing what type of EGS projects might be undertaken, where they might be located, and what the associated benefits are likely to be. The review of potential EGS sites is presented in Chapter 2 of this report. It draws upon site-selection criteria (and potential project sites that were identified using those criteria) developed at a mini-workshop held at the April 1998 DOE Geothermal Program Review to discuss EGS R&D issues. The criteria and the sites were the focus of a paper presented at the 4th International Hot Dry Rock Forum in Strasbourg in September 1998 (Sass and Robertson-Tait, 1998). The selection criteria, project sites and possible EGS developments discussed in the workshop and paper are described in more detail herein. Input from geothermal operators is incorporated, and water availability and transmission-line access are emphasized. The reference scenarios for EGS demonstration projects are presented in Chapter 3. Three alternative scenarios are discussed: (1) a stand-alone demonstration plant in an area with no existing geothermal development; (2) a separate generating facility adjacent to an existing geothermal development; and (3) an EGS project that supplies an existing geothermal power plant with additional generating capacity. Furthermore, information potentially useful to DOE in framing solicitations and selecting projects for funding is discussed objectively. Although defined as separate sub-tasks, the EGS site review and reference scenarios are closely related. The incremental approach to EGS development that has recently been adopted could logically be expected to yield proposals for studies that lead up to and include production-enhancement experiments in producing geothermal fields in the very near future. However, the strategic plan clearly calls for the development of a more comprehensive demonstration project that can generate up to perhaps 10 MW (gross). It is anticipated that a series of small-scale experiments will define what realistically may be achieved in the near future, thus setting the stage for a successful pilot demonstration. This report continues the process of presenting information on EGS sites and experiments, and begins the process of defining what a demonstration project might be.

  3. Demonstration of Promising Energy Storage Technologies

    SciTech Connect (OSTI)

    Bollinger, Benjamin

    2014-12-31T23:59:59.000Z

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components. The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  4. Sandia National Laboratories: molten salt energy storage demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molten salt energy storage demonstration Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

  5. Addendum Added to Innovative Demonstration of Geothermal Energy...

    Office of Environmental Management (EM)

    Addendum Added to Innovative Demonstration of Geothermal Energy Production FOA Addendum Added to Innovative Demonstration of Geothermal Energy Production FOA July 2, 2010 - 2:13pm...

  6. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale Reactors GNEP will provide...

  7. Strategic Energy Planning for Renewable Energy Demonstration Center

    SciTech Connect (OSTI)

    Ross, Becky [Cabazon Band of Mission Indians] [Cabazon Band of Mission Indians; Crandell, George

    2014-04-10T23:59:59.000Z

    The focus of this project is to support the addition of renewable energy technologies to the existing CBMI resource recovery park, known as the Cabazon Resource Recovery Park (CRRP) in Mecca, California. The concept approved for this project was to determine if the resources and the needs existed for the addition of a Renewable Energy Demonstration Center (REDC) at the CRRP. The REDC concept is envisioned to support the need of startup renewable companies for a demonstration site that reduces their development costs.

  8. Demonstration of Energy Savings of Cool Roofs

    E-Print Network [OSTI]

    Konopacki, S.

    2010-01-01T23:59:59.000Z

    7 bikto Percent of Sun's Energy Reflected black asphaltroof reflects only 5% of the sun's energy. Lighter coloredaccount for 20% of the sun s energy. rays, 40% of the sun s

  9. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

  10. Demonstration project in Energy Management programs

    SciTech Connect (OSTI)

    Not Available

    1989-10-01T23:59:59.000Z

    This part of the final report is provided to summarize with more definitive data, the savings realized by the implementation of the Energy Conservation Opportunities (ECOs) identified in the Energy Management Plan (EMP), and for those measures implemented by the Energy Service Company (ESCO).

  11. New Model Demonstrates Offshore Wind Industry's Job Growth Potential...

    Broader source: Energy.gov (indexed) [DOE]

    has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States. The modeling tool, which illustrates the potential...

  12. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    China demonstration energy- efficient commercial building”,China Demonstration Energy Efficient Office Building insideUS-China demonstration energy-efficient office building Peng

  13. Physics 321 Energy Conservation Potential Energy in

    E-Print Network [OSTI]

    Hart, Gus

    is independent of path. If we know we also know . 1 2 y x Potential Energy If T is dependent only on the endPhysics 321 Hour 7 Energy Conservation ­ Potential Energy in One Dimension Work-Energy Theorem = 1 work increases kinetic energy, negative work decreases kinetic energy Gravity Depending on initial

  14. Sandia National Laboratories: Clean Energy Demonstration Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Solar (CES) have signed a five-year cooperative research & development agreement (CRADA) that could make solar energy more affordable and accessible. The CRADA calls for...

  15. Newberry EGS Demonstration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed KhanDepartment of Energy New website will keepNewberry

  16. NREL: Continuum Magazine - Energy Efficient Demonstration Proves...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by 37.5% from 2003 to 2020 and ensure that 50% of Navy and Marine Corps installations are net-zero energy, the Department of Defense (DoD) wanted to quickly reduce electricity use...

  17. Demonstration project in Energy Management Programs

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    The Energy Management Plan of the campuses developed under this project showed that there were a number of low-cost Energy Conservation Opportunities (ECO's) with a payback of under one year, (Short term Opportunities, STO). There were also other ECO's identified that had paybacks of more than one year. By combining these ECO's into one contract with the ESCO and paying for the costs of the ECO's by the savings resulting in the reduced energy bills, the University enhanced it's ability to carry out its mission of providing higher educational opportunities without spending money on non-educational activities. The low cost projects subsidize'' or provide leverage for the capital intensive, longer payback projects, to make an overall package that lends itself to innovative financing. JC Smith's contract also guarantees that the annual energy levels will not be increased.

  18. Demonstration of Energy Savings of Cool Roofs

    E-Print Network [OSTI]

    Konopacki, S.

    2010-01-01T23:59:59.000Z

    Savings of High-Albedo Roofs. Energy and Buildings, vol. 25,Cooling Savings of Light Colored Roof Surfacing in FloridaInfra-red photograph of roof-coating edge at Gilroy. This

  19. Manufacturing Demonstration Facility Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturing

  20. West Valley Demonstration Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe& FederalPleasePhotoWestWest

  1. West Valley Demonstration Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe& FederalPleasePhotoWestWestWest

  2. Grays Harbor Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,II Wind FarmGratiot CountyCounty

  3. GATEWAY Demonstration Indoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTAL POLICYEnergyIndoor

  4. GATEWAY Demonstration Outdoor Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL ENVIRONMENTAL POLICYEnergyIndoorOutdoor

  5. Newberry EGS Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewState EnergyNewark Neighbors

  6. Newberry Volcano EGS Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewState EnergyNewark NeighborsNewberry

  7. Hywind 2 Demonstration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectProgramsAlterationAl.,

  8. Distributed Energy Technology Simulator: Microturbine Demonstration,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004 | Department of EnergyOctober

  9. New Model Demonstrates Offshore Wind Industry's Job Growth Potential |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-Zero Campus atEnergy

  10. Energy Department Announces Offshore Wind Demonstration Awardees |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /of EnergyDepartmentReactorSolutionsAnnouncement

  11. Learning Demonstration Teams | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t|

  12. Innovative DOE Technology Demonstrates Potential for Significant Increases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information forInjuryof Energy 3 DOEin

  13. New Model Demonstrates Offshore Wind Industry's Job Growth Potential |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartment

  14. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

  15. Innovative DOE Technology Demonstrates Potential for Significant Increases

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReformManager (ISSM)Department ofin Safe and

  16. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01T23:59:59.000Z

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  17. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Broader source: Energy.gov (indexed) [DOE]

    the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act....

  18. Energy Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 210Energy Reports

  19. Potential For Energy Conservation

    E-Print Network [OSTI]

    Kumar, A.

    1981-01-01T23:59:59.000Z

    Plants", Chemical Engineering, p. 80 (May 28, 1973). 3. Brown, C. L. and Krauss, M., "Air Pre heaters Cut Costs and Increase Efficiency", Oil and Gas Journal, p. 76 (Oct. 22, 1973). 4. Cherrington, D. C. and Michelson, H. D., "How to Save Refi nery... Engineering, p. 125 (April 11, 1977). 9. Kumar, A., Vasquez, R., &Crump, J. R., "Retrofit Sizing and Economics of Air Preheaters and Economi zers", June 1978, ERDA Report. 10. Hatsopou10s, G. N., et a1; "Capital Invest ment to Save Energy", Harvard...

  20. Habitat for Humanity of Metro Denver Zero Energy Demonstration Home

    SciTech Connect (OSTI)

    Not Available

    2008-04-01T23:59:59.000Z

    This brochure describes the 2005 demonstration home designed by NREL and the Habitat for Humanity of Metro Denver. The completed home produced 24% more energy than it consumed over 12 months.

  1. Demonstrating Innovative Low-Cost Carbon Fiber for Energy and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications Front-end creel for processing precursor in tow format In-line melt spinning for...

  2. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical squestionnairesquestionnaires

  3. Demonstration of Data Center Energy Use Prediction Software

    E-Print Network [OSTI]

    of the data center's cooling and electrical power distribution systems, as well as electrical energy use room air handlers and a compressor-based chilled water system. The data center also utilizedLBNL-6608E Demonstration of Data Center Energy Use Prediction Software Henry Coles, Steve Greenberg

  4. Sapphire Energy, Inc. Demonstration-Scale Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-E Wholesale

  5. Demonstration of Data Center Energy Use Prediction Software

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve; Tschudi, William

    2013-09-30T23:59:59.000Z

    This report documents a demonstration of a software modeling tool from Romonet that was used to predict energy use and forecast energy use improvements in an operating data center. The demonstration was conducted in a conventional data center with a 15,500 square foot raised floor and an IT equipment load of 332 kilowatts. It was cooled using traditional computer room air handlers and a compressor-based chilled water system. The data center also utilized an uninterruptible power supply system for power conditioning and backup. Electrical energy monitoring was available at a number of locations within the data center. The software modeling tool predicted the energy use of the data center?s cooling and electrical power distribution systems, as well as electrical energy use and heat removal for the site. The actual energy used by the computer equipment was recorded from power distribution devices located at each computer equipment row. The model simulated the total energy use in the data center and supporting infrastructure and predicted energy use at energy-consuming points throughout the power distribution system. The initial predicted power levels were compared to actual meter readings and were found to be within approximately 10 percent at a particular measurement point, resulting in a site overall variance of 4.7 percent. Some variances were investigated, and more accurate information was entered into the model. In this case the overall variance was reduced to approximately 1.2 percent. The model was then used to predict energy use for various modification opportunities to the data center in successive iterations. These included increasing the IT equipment load, adding computer room air handler fan speed controls, and adding a water-side economizer. The demonstration showed that the software can be used to simulate data center energy use and create a model that is useful for investigating energy efficiency design changes.

  6. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    analysis of building energy efficiency in China. Tsinghuaand energy efficiency potential in public buildings inraise the energy-efficiency awareness of building owners and

  7. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    an energy-efficient demonstration building and design centerenergy- efficient demonstration office building and designenergy-efficient materials, space-conditioning systems, controls, and design

  8. Mitigating Potential Environmental Impacts of Energy Development...

    Energy Savers [EERE]

    Mitigating Potential Environmental Impacts of Energy Development Mitigating Potential Environmental Impacts of Energy Development April 15, 2013 - 12:00am Addthis Partnering with...

  9. Energy Storage Demonstration Project Locations | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic Law of| DepartmentDepartment of

  10. Energy Storage Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource |  WhyEnergy Storage

  11. Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocation MediaGrantInformation

  12. Energy Department Announces $10 million for Wave Energy Demonstration at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog Energy Blog RSSLightingSystems into

  13. NREL: Energy Analysis - Register for Energy DataBus Demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieter Gagnon PhotoRan

  14. Renewable Energy Technical Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesys HoldingsRenewablePotential: Renewable energy

  15. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-28T23:59:59.000Z

    The U.S. Department of Energy is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr to a much larger figure nationally. Most of the energy savings in this application is attributable to the instant-restrike capability of LED products and to their high tolerance for frequent on/off switching, used here to separately control either end of the tunnel during daytime hours. Some LED luminaires rival or outperform their high-intensity discharge (HID) counterparts in terms of efficacy, but options are limited, and smaller lumen packages preclude true one-for-one equivalence. However, LED products continue to improve in efficacy and affordability at a rate unmatched by other light source technologies; the estimated simple payback period of eight years (excluding installation costs and maintenance savings) can be expected to improve with time. The proposed revisions to the existing high-pressure sodium (HPS) lighting system would require slightly increased controls complexity and significantly increased luminaire types and quantities. In exchange, substantial annual savings (from reduced maintenance and energy use) would be complemented by improved quantity and quality of illumination. Although advanced lighting controls could offer additional savings, it is unclear whether such a system would prove cost-effective; this topic may be explored in future work.

  16. Category:Smart Grid Projects - Regional Demonstrations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation Demonstrations Projects

  17. Demonstration Home Program-San Diego | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinal Report | Department of EnergyDemonstration

  18. Demonstrating Electric Vehicles in Canada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision hasda62829c05b NoCounty,Delaware:DemilecDemonstrating

  19. The potential of renewable energy

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  20. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    SciTech Connect (OSTI)

    Robert C. Beiswanger, Jr.

    2010-05-20T23:59:59.000Z

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings�¢����quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.

  1. Africa - Technical Potential of Solar Energy to Address Energy...

    Open Energy Info (EERE)

    Africa - Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technical Potential of...

  2. United States Department of Energy Biomass Power Demonstration programs

    SciTech Connect (OSTI)

    Bain, R.L.; Craig, K.R.; Overend, R.P.

    1997-06-01T23:59:59.000Z

    The United States Department of Energy`s (DOE) Biomass Power Program includes core activities such as: working with the biomass power industry to overcome problems in using some forms of biomass in existing boilers; evaluating and developing advanced technologies such as gasification and pyrolysis; assessing the characteristics of biogas produced from various gasification technologies; developing clean-up technology for high-temperature biogas; supporting small-system demonstrations; analyzing biomass power systems; and sponsoring cost-shared feasibility studies with industry. The Biomass Power Program is supporting integrated efforts such as the {open_quotes}Energy Partnerships for a Strong Economy{close_quotes} initiative, which includes jointly funded commercial application projects such as the Hawaii Biomass Gasifier Project at the Hawaii Commercial and Sugar Company`s sugar processing plant in Paia, Maui, Hawaii, and the Vermont Biomass Gasifier project at Burlington Electric Department`s 50-megawatt wood-fired McNeil Station in Burlington, Vermont. DOE is also supporting commercialization of integrated production systems through a collaborative effort with the United States Department of Agriculture (USDA) and private industry. The objective of the {open_quotes}Biomass Power for Rural Development{close_quotes} initiative is to successfully demonstrate the integration of biomass feedstock production with high-efficiency power production systems which will produce power at cost-competitive rates. This paper will discuss details of a number of integrated production feasibility studies, technology demonstration projects (the Hawaii and Vermont gasifier projects), and integrated commercialization through the {open_quotes}Biomass Power for Rural Development{close_quotes} initiative; and will show the importance of such projects for future commercialization of biomass-based power generation using advanced technologies.

  3. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready, Set,Buildings EquipmentDemonstration

  4. Demonstration and Deployment Workshop Day 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinal Report | Department ofDEMONSTRATION

  5. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  6. STATEWIDE ENERGY EFFICIENCY POTENTIAL ESTIMATES AND TARGETS

    E-Print Network [OSTI]

    rates of forecasted natural gas consumption, electricity consumption and peak electricity demand potential for electric consumption savings, 85 percent of the economic potential for peak demand savings Energy efficiency, energy savings, demand reduction, electricity consumption, natural gas consumption

  7. Chapter 20: Electric Potential and Electric Potential Energy

    E-Print Network [OSTI]

    Kioussis, Nicholas

    1 Chapter 20: Electric Potential and Electric Potential Energy 2. A 4.5 µC charge moves in a uniform electric field ( )5 ^4.1 10 N/C= ×E x . The change in electric potential energy of a charge that moves against an electric field is given by equation 20-1, 0U q Ed = . If the charge moves in the same

  8. Potential Energy Surfaces Donald G. Truhlar

    E-Print Network [OSTI]

    Truhlar, Donald G

    . Meyers (Academic Press, New York, 2001), Vol. 13, pages 9-17. httpPotential Energy Surfaces Donald G. Truhlar University of Minnesota I. Introduction II. Quantum Mechanical Basis for Adiabatic Potential Energy Surfaces III. Topology of Adiabatic Potential Energy Surfaces

  9. Renewable Energy Potential for Brownfield Redevelopment Strategies

    E-Print Network [OSTI]

    that must be met for a brownfield site to be considered as high potential for wind power redevelopmentRenewable Energy Potential for Brownfield Redevelopment Strategies Renewable energy resources to identify high-potential sites for renewable energy technologies and can help determine those technologies

  10. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn...

  11. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Environmental Management (EM)

    Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)...

  12. State Partnership for Energy Efficient Demonstrations: Market Transformation Partnerships for Crossing the "Valley of Death"

    E-Print Network [OSTI]

    California at Davis, University of

    State Partnership for Energy Efficient Demonstrations: Market Transformation Partnerships of California-Davis ABSTRACT Between the lab and the marketplace, new energy-efficient technologies often. The California Energy Commission created the State Partnership for Energy Efficient Demonstrations (SPEED

  13. Potential of geothermal energy in China

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01T23:59:59.000Z

    This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

  14. Potential Energy Total electric potential energy, U, of a system of

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

  15. Energy Department Announces Funding for Demonstration and Testing...

    Broader source: Energy.gov (indexed) [DOE]

    environmentally responsible marine and hydrokinetic energy devices and components. Wave Energy Converter (WEC) Prize The Energy Department will make 6.5 million available...

  16. Energy dependence of nucleon-nucleon potentials

    E-Print Network [OSTI]

    Sinya Aoki; Janos Balog; Tetsuo Hatsuda; Noriyoshi Ishii; Keiko Murano; Hidekatsu Nemura; Peter Weisz

    2008-12-03T23:59:59.000Z

    We investigate the energy dependence of potentials defined through the Bethe-Salpeter wave functions. We analytically evaluate such a potential in the Ising field theory in 2 dimensions and show that its energy dependence is weak at low energy. We then numerically calculate the nucleon-nucleon potential at non-zero energy using quenched QCD with anti-periodic boundary condition. In this case we also observe that the potentials are almost identical at $E\\simeq 0$ and $E\\simeq 50$ MeV, where $E$ is the center of mass kinetic energy.

  17. The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

    2013-09-30T23:59:59.000Z

    This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

  18. New Technology Demonstration Program FEMPFederal Energy Management Program

    E-Print Network [OSTI]

    Efficiency and Renewable Energy, Federal Energy Management Program, of the U.S. Department of Energy under federal facilities, the fastest growing end-use of electric energy is found in concentrations of computing to their agency mission will present a serious challenge to meeting the aggressive new energy efficiency goals

  19. Advancing Technology Readiness: Wave Energy Testing and Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and...

  20. A Demonstration System for Capturing Geothermal Energy from Mine...

    Open Energy Info (EERE)

    Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by...

  1. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...

    Office of Environmental Management (EM)

    to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

  2. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  3. potential energy Impacts of clean energy

    E-Print Network [OSTI]

    unknown authors

    Amidst rising concerns about energy prices, the availability of reliable energy resources, air quality, and climate change, many states across the country are using clean energy policies to help meet their expanding electricity demand in a clean, low-cost, reliable manner. ??Nearly 40 states are using planning and incentive structures to promote clean energy within their own operations; ??More than 30 states have adopted a number of regulatory and market-based energy efficiency actions that increase investment in cost-effective energy efficiency by consumers, businesses, utilities, and public agencies; and ??More than 40 states have taken energy supply actions to support and encourage continued growth

  4. Wave equations with energy dependent potentials

    E-Print Network [OSTI]

    J. Formanek; R. J. Lombard; J. Mares

    2003-09-22T23:59:59.000Z

    We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.

  5. Public Interest Energy Research Program Research Development and Demonstration Plan

    E-Print Network [OSTI]

    and Demonstration Plan Attachment IV - Carbon Sequestration in California's Terrestrial Ecosystems and Geological ..................................................................................................................................1 3.1 Global Warming and the Need for Carbon Sequestration.....................................................1 3.2 Carbon Sequestration Basics

  6. NREL: Technology Deployment - Field Demonstrations of Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCostBuilding EnergyElectric

  7. Self Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir JumpCalifornia | OpenSelawik| OpenTechnique:

  8. Bill, Waugama, Smart Power Infrastructure Demonstration for Energy...

    Broader source: Energy.gov (indexed) [DOE]

    cost SPIDERS primary objective is mission assurance Page-4 SPIDERS Program Summary CAMP SMITH ENERGY ISLAND * Entire Installation Smart Microgrid * Islanded Installation * High...

  9. Webinar: EISPC Energy Zones Mapping Tool Demonstration | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe& Federal EnergyEnergy 7,

  10. A Demonstration System for Capturing Geothermal Energy from Mine Waters

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe CommissionEnergyEnergySeismicGeothermalResultsbeneath

  11. Solar Energy Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,SmartEnergy OpeningSolar EnergySolar

  12. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2012-10-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

  13. Field Demonstration of High Efficiency Gas Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOnSTATEMENT OF DAVIDTheJune 6,ADVANCED MANUFACTURINGThorium,

  14. Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of a downholeReactors | Department of Energy

  15. Clean Coal Technology Demonstration Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - April 2014ChristopherClassEnergyClean CoalClean

  16. Sandia Energy - Fabrication of AMI Demonstration Blade Begun

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergy CouncilEnergySheddingFabrication

  17. Pecan Street Project, Inc. Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPawPearland, Texas:

  18. Premium Power Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy Efficiency Jump to:Open

  19. MHK Projects/MORILD Demonstration Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| Open Energy InformationKvalsundet

  20. City of Painesville Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona, Mississippi (UtilityCity ofCityCity

  1. The Detroit Edison Company Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCity of Union CityInformation

  2. US Recovery Act Smart Grid Demonstration Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDB SchemaNeal Hot Springs

  3. US Recovery Act Smart Grid Regional Demonstration Projects | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas,UGIURDB SchemaNeal HotOpen

  4. Demonstration project Smart Charging (Smart Grid Project) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: Energy Resources

  5. Solid SCR Demonstration Truck Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycleof EnergyEnergySCR

  6. Amber Kinetics, Inc. Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatechFuels JumpKinetics Jump

  7. Beacon Power Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower

  8. Demonstration Home Program-San Diego | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presents the California Center for Sustainable Energy's communications strategies for, challenges of, and lessons learned from its Home Tour event in San Diego. d3-coleman.pdf More...

  9. Trial Demonstration of Area Lighting Retrofit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenter GetsEnergySpecification:Donofrioof

  10. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    * Tribal electricity and energy usage * Land Ownership Oklahoma Energy Market 11 Oklahoma Wind Potential 12 Oklahoma Community Wind Potential 13 Oklahoma Solar PV Potential 14...

  11. Multivessel Batch Distillation Potential Energy Savings

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Multivessel Batch Distillation ­ Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  12. Multivessel Batch Distillation -Potential Energy Savings

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Multivessel Batch Distillation - Potential Energy Savings Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  13. Energy saving potential of various roof technologies

    E-Print Network [OSTI]

    Ray, Stephen D. (Stephen Douglas)

    2010-01-01T23:59:59.000Z

    Unconventional roof technologies such as cool roofs and green roofs have been shown to reduce building heating and cooling load. Although previous studies suggest potential for energy savings through such technologies, ...

  14. Breakout Group 4: Early Markets and Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximatelyBoostingandDOEBreaking3: Water4: Early

  15. EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011DDelphiFEA-2013.pdfBasedThe U.S.

  16. International Stationary Fuel Cell Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15AmongPartnership for a HydrogenDepartment

  17. NewPage Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewState Energy ResearchFuelingAmonixNewPage

  18. Seeo, Inc Smart Grid Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeeger Engineering AG Jump

  19. Research, Development, Demonstration, and Deployment | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEMSpent NuclearEnergy|Department

  20. AVTA: PHEV Demand and Energy Cost Demonstration Report | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARAManager QualificationIncidents in

  1. Addendum Added to Innovative Demonstration of Geothermal Energy Production

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobat PDFMakerAdam Garber -Sheet,

  2. 44 Tech Inc. Smart Grid Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe Commission | OpenDevelopmentOperating et seq.Tech Inc.

  3. Field Demonstration of High Efficiency Gas Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy June 6-7, 2013 Meeting FederalThorium, and Potassium (June 1994)Gas

  4. Primus Power Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power RentalAreas-|Log JumpNew York,

  5. Sandia Energy - Four-color laser white illuminant demonstrating high

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure Mode andFinance

  6. MHK Projects/Pulse Stream 100 Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway BayInformation Estuary

  7. MHK Projects/Race Rocks Demonstration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <|Galway BayInformationTunica0,

  8. Sole Source Aquifer Demonstration Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jump to: navigation,SolutionsSolasta Jump

  9. NREL: Continuum Magazine - Energy Efficient Demonstration Proves Powerful

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical andWhatTechnologyEnergyTwo menDanin

  10. Tritium Instrument Demonstration Station (TIDS) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTedRegion | Department of Energy

  11. Tritium Instrument Demonstration Station (TIDS) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTedRegion | Department of Energy4th Tritium Focus

  12. NREL-Decision-Support Tools Demonstration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalView thePresentation) Jump

  13. Verenium Pilot- and Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of|Thermoelectrics|

  14. Duke Energy Business Services, LLC Smart Grid Demonstration Project | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:Jump to:Dudleyville, Arizona:

  15. Newberry Volcano EGS Demonstration Geothermal Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information296593°, -122.0402399°

  16. Emerging Technology Retrofit Demonstration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department of EnergyMeckesEmergingEmergingEmerging

  17. The Boeing Company Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to: navigation, searchLook at

  18. Topic Area 1: Technology Demonstration Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldsonInformation 61TokamachiTonglingToolTopic Area 1:

  19. Ktech Corporation Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea Parts and FastenersKowloonKrishna

  20. Long Island Power Authority Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech

  1. Waukesha Electric Systems Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillageGraph HomeWaranaWater Power Forum

  2. US Recovery Act Smart Grid Energy Storage Demonstration Projects | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor Africa |Green6NFCRC

  3. East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Jump to:(RES-AEI)Coast UtilitiesInformation

  4. Decathletes Demonstrate Affordable Solar Housing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.Contamination Control Instructor's|GreenhouseU.S.Secretary Chu, 20111,

  5. MARS15 study of the Energy Production Demonstrator Model for Megawatt

    E-Print Network [OSTI]

    McDonald, Kirk

    MARS15 study of the Energy Production Demonstrator Model for Megawatt proton beams in the 0.5 ­ 120 Targetry Workshop HPT5, Fermilab #12;Energy Production Demonstrator MARS15 Model · Solid targets · R= 60 cm · Energy Production/Materials Testing · LAQGSM/CEM generators were usedU-nat, 3 GeV, Energy deposition, Ge

  6. Energy Department Announces Funding for Demonstration and Testing of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | DepartmentBlog EnergyFuels |Winners | Department

  7. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission

  8. Enhanced Geothermal Systems Demonstration Projects | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014July 7,July 22, 2015JuneA

  9. Geothermal EGS Demonstration Photo Library | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNGGary M.GenaWhere1 of 4

  10. LBNL: NYC Office Demonstration - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM to 2:05PMDOE-STD-1107-97LSEED: WhyGetting|NYC

  11. Oak Ridge Manufacturing Demonstration Facility (MDF) | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment ofDepartment640OrderOREMJanuary 20149 IndustrialOak

  12. Smart Grid Regional and Energy Storage Demonstration Projects: Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public CommentsDepartment of

  13. Sandia Energy - SPIDERS Completed Its Phase 1 Operational Demonstration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQsSPIDERS Home Stationaryin

  14. Global Nuclear Energy Partnership Fact Sheet - Demonstrate More

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FY 2011Talley,GENIIFY14 BudgetHollettGive Us Your

  15. DOE National Hydrogen Learning Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81st LessonsDepartment ofNew Richland

  16. Demonstration and Deployment Workshop - Day 2 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPMMilestone |Procurement of,DepartmentDEMOLITION OFWorkshop -

  17. Demonstration and Deployment Strategy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 ThisFinal Report | Department of

  18. A New Hydrogen Processing Demonstration System | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations | Department ofCouncil OfficialsAA New Hydrogen Processing

  19. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001EnergyNewsletter AdvancedWindow

  20. Engine Waste Heat Recovery Concept Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVACEnforcementEngaging Students in2 DOEEngineWaste Heat

  1. Ground Source Heat Pump Demonstration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity1ChallengesGround

  2. AVTA … PHEV Demonstrations and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 A Strategic26-OPAMATTENDEEES: AshleyManagerDepartment of

  3. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation8 PreparedSmart Grid

  4. Smart Grid Regional and Energy Storage Demonstration Projects: Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmartthe Alliance to Save

  5. RYPOS Trap Field Demonstrations Part 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut Ave NW, SuiteREVEGETATION=1 RYPOS

  6. RYPOS Trap Field Demonstrations Part 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut Ave NW, SuiteREVEGETATION=1 RYPOS2

  7. Applying supersymmetry to energy dependent potentials

    SciTech Connect (OSTI)

    Yekken, R. [Faculté de Physique, USTHB Bab Ezzouar, Alger (Algeria)] [Faculté de Physique, USTHB Bab Ezzouar, Alger (Algeria); Lassaut, M. [Groupe de Physique Théorique, Institut de Physique Nucléaire, IN2P3 - CNRS, Université Paris-Sud 11, 91406 Orsay Cedex (France)] [Groupe de Physique Théorique, Institut de Physique Nucléaire, IN2P3 - CNRS, Université Paris-Sud 11, 91406 Orsay Cedex (France); Lombard, R.J., E-mail: roland.lombard@laposte.net [Groupe de Physique Théorique, Institut de Physique Nucléaire, IN2P3 - CNRS, Université Paris-Sud 11, 91406 Orsay Cedex (France)

    2013-11-15T23:59:59.000Z

    We investigate the supersymmetry properties of energy dependent potentials in the D=1 dimensional space. We show the main aspects of supersymmetry to be preserved, namely the factorization of the Hamiltonian, the connections between eigenvalues and wave functions of the partner Hamiltonians. Two methods are proposed. The first one requires the extension of the usual rules via the concept of local equivalent potential. In this case, the superpotential becomes depending on the state. The second method, applicable when the potential depends linearly on the energy, is similar to what has been already achieved by means of the Darboux transform. -- Highlights: •Supersymmetry extended to energy dependent potentials. •Generalization of the concept of superpotential. •An alternative method used for linear E-dependence leads to the same results as Darboux transform.

  8. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect (OSTI)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04T23:59:59.000Z

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  9. Renewable energy for America's cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    SciTech Connect (OSTI)

    Gleason, T.C.J.

    1993-01-01T23:59:59.000Z

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  10. Lessons Learned from the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects 

    E-Print Network [OSTI]

    Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

    1998-01-01T23:59:59.000Z

    This paper presents a summary of the practical lessons learned to date from the U.S. Department of Energy's (DOE) Showcase Demonstration Projects. These projects are part of the DOE Motor Challenge Program, and are aimed at demonstrating increased...

  11. DEMONSTRATION OF ENERGY STORAGE INTEGRATED WITH A SOLAR DISH FIELD IN WHYALLA

    E-Print Network [OSTI]

    energy storage into the thermal cycle is a key point of differentiation between solar thermalDEMONSTRATION OF ENERGY STORAGE INTEGRATED WITH A SOLAR DISH FIELD IN WHYALLA Joe Coventry 1-of-a-kind demonstration of an integrated solar dish and molten- salt storage system, using the superheated steam energy

  12. Renewable Energy Demonstration Project by the National Renewable Energy Laboratory and the General Services Administration

    SciTech Connect (OSTI)

    Carlisle, N; Hoo, E; Westby, R [National Renewable Energy Lab., Golden, CO (United States); Hancock, E [Ed Hancock and Associates, Boulder, CO (United States); Lu, J [General Services Administration, Washington, DC (United States)

    1994-11-01T23:59:59.000Z

    The Energy Policy Act of 1992 (EPACT) requires the General Services Administration (GSA) to implement a solar energy program to demonstrate and evaluate the performance of available technologies expected to have widespread commercial application. The GSA decided to carry out the project at the Denver Federal Center because of its proximity to the National Renewable Energy Laboratory (NREL). The location was thought to be of mutual benefit to NREL and the GSA: it provides NREL an opportunity to deploy technology and it provides the GSA an opportunity to gain a hands-on learning experience with renewables. The GSA plans to document their experience and use it as a case study in part of a larger training effort on renewable energy. This paper describes the technology selection process and provides an update on the status of the project.

  13. Quantum potential energy as concealed motion

    E-Print Network [OSTI]

    Peter Holland

    2014-11-13T23:59:59.000Z

    It is known that the Schroedinger equation may be derived from a hydrodynamic model in which the Lagrangian position coordinates of a continuum of particles represent the quantum state. Using Routh\\s method of ignorable coordinates it is shown that the quantum potential energy of particle interaction that represents quantum effects in this model may be regarded as the kinetic energy of additional concealed freedoms. The method brings an alternative perspective to Planck\\s constant, which plays the role of a hidden variable, and to the canonical quantization procedure, since what is termed kinetic energy in quantum mechanics may be regarded literally as energy due to motion.

  14. Property:PotentialCSPArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search PropertyPotentialCSPArea Jump to:

  15. Property:PotentialCSPCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search PropertyPotentialCSPArea Jump

  16. Property:PotentialCSPGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search PropertyPotentialCSPArea

  17. LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL

    E-Print Network [OSTI]

    Kissock, Kelly

    and Fuel Cell Technologies Conference, Livonia, MI, Oct 11-13, 2004. 1 #12;For example, the anomaly, and for diagnostic purposes. Case study examples demonstrate the lean energy analysis method and its application

  18. Storing unsteady energy, like photovoltaically generated electric energy, as potential energy

    E-Print Network [OSTI]

    Nadja Kutz

    2012-02-13T23:59:59.000Z

    A proposal to store unsteady energy in potential energy via lifting masses with a rough quantitative overview. Some applications and methods to harvest the potential energy are also given. A focus is put on photovoltaically generated energy.

  19. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  20. An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)

    Broader source: Energy.gov [DOE]

    This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

  1. Energy conservation in Kenya: progress, potentials, problems

    SciTech Connect (OSTI)

    Schipper, L.; Hollander, J.M.; Milukas, M.; Alcamo, J.; Meyers, S.; Noll, S.

    1981-09-01T23:59:59.000Z

    A study was carried out of the flows of commercial energy in the economy of Kenya. Indications were sought of the extent to which energy conservation, (i.e., increase in efficiency of energy use) has reduced the ratio of energy inputs to economic outputs, in the post-1973 years. An assessment was made of the potential for energy conservation to reduce the growth of Kenyan energy use in the future and of significant barriers to increasing energy efficiency. Consideration was given to the role of government policy and of international assistance in fostering energy conservation in Kenya and other developing countries. The study was performed by analyzing available energy data and statistics from the largest oil companies, the Kenyan electric utility, and the government. These sources were supplemented by conducting personal interviews with personnel of nearly 50 commercial firms in Kenya. Direct consumption of fuel accounts for 94% of the commercial energy use in Kenya, while electricity accounts for 6%. The sectoral division of fuel use is: transportation 53%, industry 21%, energy production 11%, agriculture 9%, buildings and residences 5%, and construction 1%. For electricity the division is: buildings and residences 48%, industry 45%, energy production 4%, agriculture 2%, and construction 1%. Recent progress in conservation is reported.

  2. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Energy Savers [EERE]

    Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

  3. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Energy Savers [EERE]

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  4. Energy Department Releases Report, Evaluates Potential for Wind...

    Energy Savers [EERE]

    Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States May...

  5. Meeting Concerning Potential Test Procedures and Energy Conservation...

    Energy Savers [EERE]

    Meeting Concerning Potential Test Procedures and Energy Conservation Standards for Set-Top Boxes and Network Equipment Meeting Concerning Potential Test Procedures and Energy...

  6. POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT ­ A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  7. POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    POTENTIAL ENERGY SAVINGS OF MULTIVESSEL BATCH DISTILLATION Bernd Wittgens and Sigurd Skogestad 1, Norway ABSTRACT - A conventional batch distillation column operated under feedback control applying the proposed policy is compared to the multivessel batch distillation column. In some cases we found

  8. Demonstration of the fuel economy potential associated with M85-fueled vehicles

    SciTech Connect (OSTI)

    Hodgson, J.W.; Huff, S.P. [Tennessee Univ., Knoxville, TN (United States)] [Tennessee Univ., Knoxville, TN (United States)

    1993-12-01T23:59:59.000Z

    A gasoline-fueled 1988 Chevrolet Corsica was converted to operate on M85 to demonstrate that the characteristics of methanol fuels can be exploited to emphasize vehicle fuel economy rather than vehicle performance. The results of the tests performed indicated fuel economy improvements of up to 21% at steady highway speeds, and almost 20% on the US Environmental Protection Agency`s federal test procedure city and highway cycles.

  9. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    New York State Energy Research and Development Authority (of conserved energy values from the CEF and New York stateEnergy Efficiency Resource Development Potential In New York.

  10. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

  11. Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration Project

    E-Print Network [OSTI]

    Diamond, Richard

    Over the Energy Edge: Results from a Seven Year New Commercial Buildings Research and Demonstration is that the actual, installed energy-efficiency measures and building characteristics changed from the design practice rather than assumptions based on the regional building code. For example, the Energy Edge small

  12. Potential for the Use of Energy Savings Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications Potential for the Use of...

  13. Energy-Optimised Building- Experience and Future Perspectives from a Demonstration Programme in Germany 

    E-Print Network [OSTI]

    Hans, O.; Voss, K.; Wagner, A.; Gossner, H.; Grunewald, J.; Petzold, H.; Herkel, S.; Pfafferott, J.; Lehmann, D.; Neumann, C.

    2008-01-01T23:59:59.000Z

    In 1995, the German Federal Ministry of Economics and Technology launched an intensive research and demonstration programme on energy-optimised construction of new buildings as well as retrofitting the building stock. Beside research on materials...

  14. Status of the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects

    E-Print Network [OSTI]

    Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

    Project team consists of a host demonstration site and supporting partners (e.g. utilities, motor and process equipment suppliers, and contractors). Each team is expected to provide DOE with sufficient data to substantiate and document the energy...

  15. Energy-Optimised Building- Experience and Future Perspectives from a Demonstration Programme in Germany

    E-Print Network [OSTI]

    Hans, O.; Voss, K.; Wagner, A.; Gossner, H.; Grunewald, J.; Petzold, H.; Herkel, S.; Pfafferott, J.; Lehmann, D.; Neumann, C.

    In 1995, the German Federal Ministry of Economics and Technology launched an intensive research and demonstration programme on energy-optimised construction of new buildings as well as retrofitting the building stock. Beside research on materials...

  16. Potential Benefits of Manmade Opals Demonstrated for First Time (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    NREL experiments show that disordered inverse opals significantly scatter and trap near-infrared light, with possible impact on optoelectronic materials. Inverse opals, familiar in the form of brilliantly colored opal gemstones, are a class of materials that has astounding optical properties. Scientists have been exploring the ability of inverse opals to manipulate light in the hopes of harnessing this capacity for advanced technologies such as displays, detectors, lasers, and photovoltaics. A research group at the National Renewable Energy Laboratory (NREL) discovered that man-made inverse opal films containing significant morphological disorder exhibit substantial light scattering, consequently trapping wavelengths in the near-infrared (NIR), which is important to a number of technologies. This discovery is the first experimental evidence to validate a 2005 theoretical model predicting the confinement of light in such structures, and it holds great promise for improving the performance of technologies that rely on careful light control. This breakthrough also makes possible optoelectronic technologies that use a range of low-cost molecular and semiconductor species that otherwise absorb light too weakly to be useful. The disordered inverse opal architecture validates the theoretical model that predicts the diffusion and confinement of light in such structures. Electrochemically deposited CdSe inverse opal films containing significant morphological disorder exhibit substantial light scattering and consequent NIR light trapping. This discovery holds promise for NIR light management in optoelectronic technologies, particularly those involving weakly absorbing molecular and semiconductor photomaterials.

  17. Theoretical studies of potential energy surfaces

    SciTech Connect (OSTI)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01T23:59:59.000Z

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  18. The Power and Potential of Geothermal Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001Competitivenessconvened theand Potential

  19. New Technology Demonstration Program

    E-Print Network [OSTI]

    New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

  20. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    good benchmark energy consumption data for buildings, and (total energy consumption Although the measured data arelimited data available for building energy consumption in

  1. Potentials and policy implications of energy and material efficiency improvement

    SciTech Connect (OSTI)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01T23:59:59.000Z

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  2. Solid Waste Energy Conversion Project, Reedy Creek Utilities Demonstration Plant: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The Solid Waste Energy Conversion (SWEC) facility proposed would produce high-temperature hot water from urban refuse and would also provide a demonstration pilot-plant for the proposed Transuranic Waste Treatment Facility (TWTF) in Idaho. The SWEC project would involve the construction of an incinerator facility capable of incinerating an average of 91 metric tons per day of municipal solid waste and generating high-temperature hot water using the off-gas heat. The facility is based on the Andco-Torrax slagging pyrolysis incineration process. The proposed action is described, as well as the existing environment at the site and identified potential environmental impacts. Coordination with federal, state, regional, or local plans and programs was examined, and no conflicts were identified. Programmatic alternatives to the proposed project were identified and their advantages, disadvantages, and environmental impacts were examined. It is found that the proposed action poses no significant environmental impacts, other than the short term effects of construction activities. (LEW)

  3. Energy Savings Potential and RD&D Opportunities for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Refrigration This report documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various...

  4. An ab initio method for locating potential energy minima

    SciTech Connect (OSTI)

    Bock, Nicolas [Los Alamos National Laboratory; Peery, Travis [Los Alamos National Laboratory; Venneri, Giulia [Los Alamos National Laboratory; Chisolm, Eric [Los Alamos National Laboratory; Wallace, Duane [Los Alamos National Laboratory; Lizarraga, Raquel [CHILE; Holmstrom, Erik [CHILE

    2009-01-01T23:59:59.000Z

    We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.

  5. Renewable Energy Potential for Brownfield Redevelopment Strategies (Poster)

    SciTech Connect (OSTI)

    Mosey, G.

    2006-11-01T23:59:59.000Z

    This poster, submitted for the Brownfields 2006 conference, discusses the renewable energy potential for brownfield redevelopment strategies.

  6. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Newmiller, Jeff (Endecon Engineering, San Ramon, CA); Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01T23:59:59.000Z

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  7. Measured energy performance of a US-China demonstration energy-efficient office building

    E-Print Network [OSTI]

    Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

    2006-01-01T23:59:59.000Z

    as well as an ice thermal energy storage (TES) system in thefrom the ice thermal energy storage system. More data on the

  8. Formal definition of POTENTIAL ENERGY (valid for conservative forces only)

    E-Print Network [OSTI]

    page - 16 Formal definition of POTENTIAL ENERGY (valid for conservative forces only) Given one type of conservative force F UB - UA= - = - Definition of 'Potential energy difference" conserv #12;page - 17 the definition of the "potential energy difference UB - UA " as equal to negative value of the work W done

  9. The ACT{sup 2} project: Demonstration of maximum energy efficiency in real buildings

    SciTech Connect (OSTI)

    Crawley, D.B. [Pacific Northwest Lab., Richland, WA (United States); Krieg, B.L. [Pacific Gas and Electric Co., San Ramon, CA (United States)

    1991-11-01T23:59:59.000Z

    A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project`s pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.

  10. The ACT sup 2 project: Demonstration of maximum energy efficiency in real buildings

    SciTech Connect (OSTI)

    Crawley, D.B. (Pacific Northwest Lab., Richland, WA (United States)); Krieg, B.L. (Pacific Gas and Electric Co., San Ramon, CA (United States))

    1991-11-01T23:59:59.000Z

    A large US utility recently began a project to determine whether the use of new energy-efficient end-use technologies and systems would economically achieve substantial energy savings (perhaps as high as 75% over current practice). Using a field-based demonstration approach, the Advanced Customer Technology Test (ACT{sup 2}) for Maximum Energy Efficiency is providing information on the maximum energy savings possible when integrated packages of new high-efficiency end-use technologies are incorporated into commercial and residential buildings and industrial and agricultural processes. This paper details the underlying rationale, approach, results to date, and future plans for ACT{sup 2}. The ultimate goal is energy efficiency (doing more with less energy) rather than energy conservation (freezing in the dark). In this paper, we first explain why a major United States utility is committed to pursuing demand-side management so aggressively. Next, we discuss the approach the utility chose for conducting the ACT{sup 2} project. We then review results obtained to date from the project's pilot demonstration site. Last, we describe other related demonstration projects being proposed by the utility.

  11. The Purpose and Value of Successful Technology Demonstrations … The Energy Independence and Security Act of 2007 Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacility |TheDepartment

  12. The Purpose and Value of Successful Technology Demonstrations … The Energy Independence and Security Act of 2007 Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacility |TheDepartment- Race for

  13. The Purpose and Value of Successful Technology Demonstrations … The Energy Independence and Security Act of 2007 Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacility |TheDepartment- Race forin

  14. The Purpose and Value of Successful Technology Demonstrations … The Energy Independence and Security Act of 2007 Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacility |TheDepartment- Race

  15. Energy conservation potential of the US Department of Energy interim commercial building standards

    SciTech Connect (OSTI)

    Hadley, D.L.; Halverson, M.A.

    1993-12-01T23:59:59.000Z

    This report describes a project conducted to demonstrate the whole-building energy conservation potential achievable from full implementation of the US Department of Energy (DOE) Interim Energy Conservation Performance Standards for New Commercial and Multi-Family High Rise Residential Buildings. DOE`s development and implementation of energy performance standards for commercial buildings were established by the Energy Conservation Standards for New Buildings Act of 1976, as amended, Public Law (PL) 94-385, 42 USC 6831 et seq., hereinafter referred to as the Act. In accordance with the Act, DOE was to establish performance standards for both federal and private sector buildings ``to achieve the maximum practicable improvements in energy efficiency and use of non-depletable resources for all new buildings``.

  16. The Potential for Wind Energy in Atlantic Canada

    E-Print Network [OSTI]

    Hughes, Larry

    The Potential for Wind Energy in Atlantic Canada Larry Hughes and Sandy Scott Whale Lake Research World Renewable Energy Congress, Reading, September 1992. #12;Hughes/Scott: Wind Energy in Atlantic Canada 1 The Potential for Wind Energy in Atlantic Canada Abstract Canadians are among the highest per

  17. The role of potential in the ghost-condensate dark energy model

    E-Print Network [OSTI]

    Gour Bhattacharya; Pradip Mukherjee; Anirban Saha; Amit Singha Roy

    2014-12-15T23:59:59.000Z

    We consider the ghost-condensate model of dark energy with a generic potential term. The inclusion of the potential is shown to give greater freedom in realising the phantom regime. The self-consistency of the analysis is demonstrated using WMAP7+BAO+Hubble data.

  18. Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl-Alanine (GFA) Tripeptide: Experiment and Theory. Potential-Energy and Free-Energy Surfaces of Glycyl-Phenylalanyl-A...

  19. Estimating the Potential Impact of Renewable Energy on the Caribbean

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Estimating the Potential Impact of Renewable Energy on the Caribbean Job Sector Rebekah Shirley renewable energy projects within the Caribbean region. We present a model scenario where together energy

  20. Demonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the sources of consumption. Automated monitoring of the electricity consumption in a house is quite a recent or numbers, but simply alert residents that something relevant to their electricity consumption is chang- ingDemonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses Christophe Gisler1

  1. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  2. Potential Yield Mapping of Dedicated Energy Crops | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartment ofPotentialYield Mapping of

  3. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS

    SciTech Connect (OSTI)

    Lee, A. D.; Baechler, H. C.; Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01T23:59:59.000Z

    In accordance with federal legislation, the U.S. Department of Energy (DOE) has sponsored a study to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration study was conducted by DOE and the Pacific Northwest Laboratory (PNL). The demonstration is the second step in a three-step process: I) development of interim standards, 2) demonstration of the interim standards, and 3) development of final standards. The standards are mandatory for federal agency housing procurements. Nevertheless, PNL found at the start of the demonstration that agency use of the interim standards had been minimal. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. To fulfill this aspect of the legislation, the standards use a computer software program called COSTSAFR which generates a point system that individualizes the standards to specific projects based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects. For the demonstration, PNL and DOE chose five federal agency housing projects which had been built in diverse geographic and climate regions. Participating agencies were the Air Force, the Army (which provided two case studies), the Navy, and the Department of Health and Human Services. PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to the procurement and design of each housing project. The demonstration started at the point in the project where agencies would establish their energyefficiency requirements for the project and followed the procurement process through the designers' use of the point system to develop a design which would comply with the standards. PNL conducted extensive interviews with the federal agencies and design contractors to determine what impacts the standards would have on the existing agency procurement process as well as on designers. Overall, PNL found that the interim standards met the basic intent of the law. Specific actions were identified, however, that DOE could take to improve the standards and encourage the agencies to implement them. Agency personnel found the minimum efficiency levels established by the standards to be lower than expected, and lower than their existing requirements. Generally, this was because the standards factor in fuel costs, as well as energy savings due to various conservation measures such as insulation, when they determine the minimum efficiency levels required. The demonstration showed that federal agencies often pay low prices for heating fuel and electricity; these lower costs "tipped the scales," allowing designers to meet the efficiency target with designs that were relatively inefficient. It appeared, however, that the low prices paid by agencies directly to suppliers did not capture the agencies' full costs of providing energy, such as the costs of distribution and storage. Agency personnel expressed some concern about the standards' ability to incorporate new energy-efficient technologies and renewable resource technologies like solar heating systems. An alternative compliance procedure was developed to incorporate new technologies; however, demonstration participants said the procedure was not well documented and was difficult and time consuming to use. Despite these concerns, most agency personnel thought that the standards would fit into current procurement procedures with no big changes or cost increases. Many said use of the standards would decrease the time and effort they now spend to establish energy-efficiency requirements and to confirm that proposed designs comply. Personnel praised the software and documentation for being easy to use and providing energ

  4. Installation-wide energy-conservation demonstration at Fort McClellan, Alabama. Final report

    SciTech Connect (OSTI)

    Windingland, L.M.; Lilly, B.P.; Shonder, J.A.; Underwood, D.M.; Augustine, L.J.

    1988-11-01T23:59:59.000Z

    The objective of the installation-wide energy conservation demonstration at Fort McClellan, AL, was to evaluate the effectiveness of applying available energy-conservation technologies and techniques to produce significant and predictable reductions in energy use and cost. Five major areas of energy conservation were identified and investigated: (1) pressure reduction in district-steam-heating systems; (2) reduction of outdoor air in heating, ventilation, and air-conditioning (HVAC) systems; (3) replacement of oversized and inefficient motors in HVAC systems; (4) reduction of outdoor air infiltration in family housing; and (5) combustion optimization of gas-fired heating equipment. Other areas of investigation included radio-controlled exterior lighting, and temperature reduction in the high-temperature hot-water system. Each conservation project was evaluated on a small scale to verify energy savings before it was implemented. An energy-information management system was developed to maintain annual consumption data for each building. The system provides immediate feedback on energy use so managers can make correct decisions on conservation measures. The energy conservation programs implemented at Fort McClellan contributed to the 14% reduction in baseline (weather independent) energy consumption from FY84 to FY86. These programs have wide applicability to other U.S. Army installations. This research has also shown the importance of preliminary, small-scale testing of energy-conservation programs before implementation.

  5. QUANTIFYING PAST, PRESENT AND FUTURE ENERGY EFFICIENCY UPTAKE RATES AND POTENTIAL

    E-Print Network [OSTI]

    Pieter Rossouw Dsc; Jonathan Lermit Phd; Barry James Msc(eng

    The importance of energy efficiency as a substitute for energy supply is being increasingly recognised. Its analysis, however, is difficult because of the diffuse nature of the decision making and implementation characteristics. This paper outlines the work of the Energy Efficiency Resource Assessment Project to estimate the technical potential, and to analyse the economic and behavioural factors that affect energy efficiency uptake. The computational framework is demonstrated by application to a practical case study of improving fluorescent lamp performance standards.

  6. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect (OSTI)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01T23:59:59.000Z

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  7. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Saltmilestone,Waste-to-Energy

  8. Energy Department Releases Report, Evaluates Potential for Wind...

    Energy Savers [EERE]

    Releases Report, Evaluates Potential for Wind Power in All 50 States Energy Department Releases Report, Evaluates Potential for Wind Power in All 50 States May 19, 2015 - 11:38am...

  9. Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an

    E-Print Network [OSTI]

    Li, A.; Liu, Y.

    2006-01-01T23:59:59.000Z

    Energiae Solaris Sinica" and the "Solar Energy" journal[6]. It accelerated application of solar energy in the northwest in China. Today, 25 years later, Xi?an is selected to demonstrate the large scale solar energy application in urban residential...

  10. DEMONSTRATION OF THE DOE INTERIM ENERGY CONSERVATION STANDARDS FOR NEW FEDERAL RESIDENTIAL BUILDINGS: EXECUTIVE SUMMARY

    SciTech Connect (OSTI)

    Lee, A. D.; Baechler, M / C.; Di Massa, F. V.; Lucas, R. G.; Shankle, D. L.

    1992-01-01T23:59:59.000Z

    In accordance with federal legislation, the U.S. Department of Energy (DOE) bas conducted a project to demonstrate use of its Interim Energy Conservation Standards for New Federal Residential Buildings. The demonstration is the second step in a three-step process: development of interim standards, demonstration of the interim standards, and development of final standards. Pacific Northwest Laboratory (PNL) collected information from the demonstration project and prepared this report under a contract with DOE. The purpose of the standards is to improve the energy efficiency of federal housing and increase the use of nondepletable energy sources. In accordance with the legislation, the standards were to be performance-based rather than prescribing specific energy conservation measures. The standards use a computer software program called COSTSAFR which individualizes the standards based on climate, housing type, and fuel costs. The standards generate minimum energy-efficiency requirements by applying the life-cycle cost methodology developed for federal projects, For the demonstration, the DOE chose live federal agency housing projects: four military housing projects and one project for the Department of Health and Human Services. DOE and PNL worked with agency housing procurement officials and designers/architects to hypothetically apply the interim standards to each housing project. PNL conducted extensive interviews with the federal agencies and design contractors to determine what impacts the standards would have on the existing agency procurement process as well as on designers. Overall, PNL found that the interim standards met the basic intent of the law. Specific actions were identified, however, that DOE could take to improve the standards and encourage the agencies to implement them. Agency personnel and designers expressed similar concerns about the standards: the minimum efficiency levels established by the standards were lower than expected and the standards did not provide an easy way to incorporate new energy-efficient and renewable resource tec.:hnolog:ies like solar heating systems. Agency personnel said the standards would fit into current procurement procedures with no big changes or cost increases, Many said the standards would decrease the time and effort they now spend to establish energy-efficiency requirements and to confirm that proposed designs comply with those requirements. Agency personnel praised the software and documentation for being easy to use and providing energy-efficiency requirements in energy dollars. Housing designers agreed that the DOE standards were easy to use to determine that their designs meet energy-efficiency goals. Many felt the information provided by the standards could be useful in the design process. Based on the demonstration, PNL recommends establishing task forces that will actively involve agency personnel and others in future revisions and development of the final standards. PNL also recommends that DOE and federal agencies investigate the use of market fuel and energy prices in the standards, rather than the prices paid by the agencies, to better reflect actual costs. A number of recommendations are made for improving communications between DOE and the users of the standards and for enhancing tools to implement the standards. Several recommendations are made for increasing the number of renewable resources that are included in the standards. Finally, PNL recommends ongoing monitoring activities to continue to identify ways in which the standards can be improved.

  11. Potential alternative energy technologies on the Outer Continental Shelf.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Assessment

    2007-04-20T23:59:59.000Z

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  12. MHK Projects/NJBPU 1 5 MW Demonstration Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet <| OpenMarisolNJBPU 1 5 MW Demonstration

  13. Uganda-Demonstrating Wind and Solar Energy on Lake Victoria | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypeforUSDOI -Information on Lake

  14. CALIFORNIA ENERGY Small HVAC Problems and Potential

    E-Print Network [OSTI]

    , it is not individual building components, equipment, or materials that optimize energy efficiency. Instead, energy efficiency is improved through the integrated design, construction, and operation of building systems in Each Building (product 4.5.1) Statewide Energy Impact (product 4.5.3) TECHNICALREPORT October 2003 500

  15. The global optimization of Morse clusters by potential energy ...

    E-Print Network [OSTI]

    Jon P. K. Doye

    2003-07-15T23:59:59.000Z

    Jul 15, 2003 ... The global optimization of Morse clusters by potential energy transformations. Jon P. K. Doye (jpkd1 ***at*** cam.ac.uk) Robert H. Leary (leary ...

  16. Assessment of Energy Production Potential from Tidal Streams...

    Energy Savers [EERE]

    Tidal Streams in the United States Assessment of Energy Production Potential from Tidal Streams in the United States The project documented in this report created a national...

  17. Assessment of Energy Production Potential from Ocean Currents...

    Energy Savers [EERE]

    Ocean Currents along the United States Coastline Assessment of Energy Production Potential from Ocean Currents along the United States Coastline Report summarizing the results of...

  18. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    SciTech Connect (OSTI)

    Jensen, Michael

    2014-04-10T23:59:59.000Z

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  19. Energy Savings Potential and Opportunities for High-Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    sponsored this assignment and provided comments on draft versions of the report. iii Energy Savings Potential and Opportunities for High-Efficiency Electric Motors in Residential...

  20. Energy Savings Potential and R&D Opportunities for Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or any agency thereof. Available electronically at http:www.osti.govhome ii Energy Savings Potential and R&D Opportunities for Commercial Refrigeration Prepared for:...

  1. ARM Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    ARM soundings are used to determine Convective Available Potential Energy (CAPE), Convective Inhibition (CIN) and associated properties, using the following relationships;

  2. Energy Department Report Finds Major Potential to Increase Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a renewable energy resource assessment detailing the potential to develop electric power generation at existing dams across the United States that aren't currently equipped to...

  3. High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting

    SciTech Connect (OSTI)

    Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

    2004-11-30T23:59:59.000Z

    The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

  4. Evaluation of the Energy Saving Potential from Flue Gas Pressurization 

    E-Print Network [OSTI]

    Stanton, E. H.

    1980-01-01T23:59:59.000Z

    The potential for recovering energy from low pressure furnace flue products is limited when standard heat recovery equipment is utilized. Efficient energy recovery can be accomplished by providing a flue gas side pressure drop across a heat...

  5. Evaluation of the Energy Saving Potential from Flue Gas Pressurization

    E-Print Network [OSTI]

    Stanton, E. H.

    1980-01-01T23:59:59.000Z

    The potential for recovering energy from low pressure furnace flue products is limited when standard heat recovery equipment is utilized. Efficient energy recovery can be accomplished by providing a flue gas side pressure drop across a heat...

  6. Quantifying National Energy Savings Potential of Lighting Controls in

    E-Print Network [OSTI]

    Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings Alison of Lighting Controls in Commercial Buildings Alison Williams, Barbara Atkinson, Karina Garbesi and Francis savings. Researchers have been quantifying energy savings from lighting controls in commercial buildings

  7. action potential energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wk old, were prepared as described previously (HoffmanCA1 Johnston, Daniel 7 SOLAR ENERGY POTENTIALS CiteSeer Summary: In recent years solar energy has experienced phenomenal...

  8. EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York

    Broader source: Energy.gov [DOE]

    DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

  9. Calculation of molecular free energies in classical potentials

    E-Print Network [OSTI]

    Farhi, Asaf

    2015-01-01T23:59:59.000Z

    Free energy calculations in molecular simulations are used to predict the strength of molecular processes such as binding and solvation. We present an accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms that depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non interacting systems, the free energy associated with these atoms is analytically or numerically calculated. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.

  10. Biomass energy: the scale of the potential resource

    E-Print Network [OSTI]

    $5% of world primary energy con- sumption in 2006. The global potential for biomass energy production usage. Increasing biomass energy production beyond this level would probably reduce food security that can be used for biomass energy production. The third is alternative uses for the land and water

  11. Recto Running Head 1 Available Potential Energy and Exergy in

    E-Print Network [OSTI]

    Tailleux, Remi

    ) remains the main framework for studying the atmospheric and oceanic energy cycles. Because the APE energy cycle . . . . . . . . . . . . . . . . . . . . 23 Classical view of the ocean energy cycleRecto Running Head 1 Available Potential Energy and Exergy in Stratified Fluids R´emi Tailleux

  12. Ab initio potential energy surfaces for NH,,3 -...NH,,3 -

    E-Print Network [OSTI]

    Ab initio potential energy surfaces for NH,,3 - ...­NH,,3 - ... with analytical long range Liesbeth, Poland Received 16 September 2009; accepted 7 November 2009; published online 10 December 2009; publisher error corrected 15 December 2009 We present four-dimensional ab initio potential energy surfaces

  13. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma

    SciTech Connect (OSTI)

    MacDonald, M. J., E-mail: macdonm@umich.edu; Gamboa, E. J. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Keiter, P. A.; Fein, J. R.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Biener, M. M.; Fournier, K. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Streit, J. [Schafer Corporation, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-? x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  14. Spontaneous Potential (book section) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: Energy ResourcesSpire(book section) Jump

  15. Spontaneous Potential Well Log | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: Energy ResourcesSpire(book section)Well

  16. Potential energy savings on the MIT campus

    E-Print Network [OSTI]

    Amanti, Steven Thomas

    2006-01-01T23:59:59.000Z

    The MIT community and the City of Cambridge embarked on initiatives to reduce energy consumption and Greenhouse Gas emissions in accordance with the Kyoto Protocol which calls for a 20 % reduction in 1990 levels of GHG ...

  17. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect (OSTI)

    Hiester, T.R.

    1980-06-01T23:59:59.000Z

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  18. Renewable energy for America`s cities: Advanced Community Energy Systems Proposed Research, Development and Demonstration Program

    SciTech Connect (OSTI)

    Gleason, T.C.J.

    1993-01-01T23:59:59.000Z

    The first purpose of this paper is to describe ACES technologies and their potential impact on the environment, the US energy supply system and economy. The second purpose is to recommend an R,D&D program to the US Department of Energy which has as its goal the rapid development of the most promising of the new technologies. ACES supply thermal energy to groups of buildings, communities and cities in the form of hot or chilled water for building space heating, domestic hot water or air conditioning. The energy is supplied via a network of insulated, underground pipes linking central sources of supply with buildings. ACES, by definition, employ very high energy efficiency conversion technologies such as cogeneration, heat pumps, and heat activated chillers. These systems also use renewable energy sources such as solar energy, winter cold, wind, and surface and subsurface warm and cold waters. ACES compose a new generation of community-scale building heating and air conditioning supply technologies. These new systems can effect a rapid and economical conversion of existing cities to energy supply by very efficient energy conversion systems and renewable energy systems. ACES technologies are the most promising near term means by which cities can make the transition from our present damaging dependence on fossil fuel supply systems to an economically and environmentally sustainable reliance on very high efficiency and renewable energy supply systems. When fully developed to serve an urban area, ACES will constitute a new utility system which can attain a level of energy efficiency, economy and reliance on renewable energy sources not possible with currently available energy supply systems.

  19. Industrial Energy Conservation Potentials in North Carolina

    E-Print Network [OSTI]

    Barakat, M. G.; Singh, H.; Mallik, A. K.

    potentials, resulting from reducing lighting levels and improving lamps efficiency, exist in most manufactu ring facilities. Turning lights off in unoccupied areas is the most attractive lighting ECO, because the savings are considerable and the pay... and low pressure sodium, and metal halide have a high efficacy (lumen per Watt), and are recommended in places where lighting is needed for long periods of time. These lamps require a relatively long warm-up period before they can produce sufficient...

  20. Category:Self Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.sourceSARSWIRSelf

  1. Identify Potential HITs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOralGovernmentStandardsIdahoby GOURLEY, PAULforIdentify

  2. Global Renewable Resource Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEF Jump to: navigation,GW by 2019Global

  3. Unearthing Geothermal's Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-JapanCatalysts |Development |U U n

  4. Maximizing the Potential of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew Cuneoand Renewable Energy,Naval

  5. Wind Energy Potential in SE New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tiny motionsWEF Work? Inputs

  6. The Potential Impact of Increased Renewable Energy Penetrations on Electricity Bill Savings from Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2013-01-01T23:59:59.000Z

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. THE POTENTIAL IMPACT OF INCREASED RENEWABLE ENERGY

  7. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    SciTech Connect (OSTI)

    CHARLES M. WEBER

    2008-06-24T23:59:59.000Z

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

  8. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Saturation wind power potential and its implications for wind energy Mark Z. Jacobsona,1 at 10 km above ground in the jet streams assuming airborne wind energy devices ("jet stream the theoretical limit of wind energy available at these altitudes, particularly because some recent studies

  9. Comparing energy levels in isotropic and anisotropic potentials

    E-Print Network [OSTI]

    Alexander Pikovski

    2015-06-28T23:59:59.000Z

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states.

  10. Periodic Discrete Energy for Long-Range Potentials

    E-Print Network [OSTI]

    D. P. Hardin; E. B. Saff; Brian Simanek

    2014-12-11T23:59:59.000Z

    We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.

  11. Unearthing Geothermal's Potential | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into FuelDEVELOPMENT ORGANIZATIONS

  12. Maximizing the Potential of Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew Cuneoand Renewable

  13. Mitigating Potential Environmental Impacts of Energy Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriorityof Energy Poneman | Department

  14. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01T23:59:59.000Z

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  15. The U.S. Department of Energy`s integrated gasification combined cycle research, development and demonstration program

    SciTech Connect (OSTI)

    Brdar, R.D.; Cicero, D.C.

    1996-07-01T23:59:59.000Z

    Historically, coal has played a major role as a fuel source for power generation both domestically and abroad. Despite increasingly stringent environmental constraints and affordable natural gas, coal will remain one of the primary fuels for producing electricity. This is due to its abundance throughout the world, low price, ease of transport an export, decreasing capital cost for coal-based systems, and the need to maintain fuel diversity. Recognizing the role coal will continue to play, the US Department of Energy (DOE) is working in partnership with industry to develop ways to use this abundant fuel resource in a manner that is more economical, more efficient and environmentally superior to conventional means to burn coal. The most promising of these technologies is integrated gasification combined cycle (IGCC) systems. Although IGCC systems offer many advantages, there are still several hurdles that must be overcome before the technology achieves widespread commercial acceptance. The major hurdles to commercialization include reducing capital and operating costs, reducing technical risk, demonstrating environmental and technical performance at commercial scale, and demonstrating system reliability and operability. Overcoming these hurdles, as well as continued progress in improving system efficiency, are the goals of the DOE IGCC research, development and demonstrate (RD and D) program. This paper provides an overview of this integrated RD and D program and describes fundamental areas of technology development, key research projects and their related demonstration scale activities.

  16. Energy Savings Potential of Process Control Valve Replacement

    E-Print Network [OSTI]

    Holzenthal, L. Jr.

    A review of current design methods for industrial process control systems that utilize modulated control valves as their final element is presented. The infornUltion that is available is then used to find the theoretic potential for energy savings...

  17. Potential Peak Load Reductions From Residential Energy Efficient Upgrades

    E-Print Network [OSTI]

    Meisegeier, D.; Howes, M.; King, D.; Hall, J.

    2002-01-01T23:59:59.000Z

    the potential peak load reductions from residential energy efficiency upgrades in hot and humid climates. First, a baseline scenario is established. Then, the demand and consumption impacts of individual upgrade measures are assessed. Several of these upgrades...

  18. agricultural energy potential: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    agricultural energy potential First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The economic potential of...

  19. Canadian Wind Energy Atlas Potential Website | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallaway ElectricCambridge FundsCampaWind Energy

  20. Delaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource Standard

    E-Print Network [OSTI]

    Delaware, University of

    , state, federal and international agencies and nonprofit organizations. The Center is composed and development, environmental justice, conservation and renewable energy options, integrated resource planningDelaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource

  1. Scenarios for Benefits Analysis of Energy Research, Development,Demonstration and Deployment

    SciTech Connect (OSTI)

    Gumerman, Etan; Marnay, Chris

    2005-09-07T23:59:59.000Z

    For at least the last decade, evaluation of the benefits of research, development, demonstration, and deployment (RD3) by the U.S. Department of Energy has been conducted using deterministic forecasts that unrealistically presume we can precisely foresee our future 10, 25,or even 50 years hence. This effort tries, in a modest way, to begin a process of recognition that the reality of our energy future is rather one rife with uncertainty. The National Energy Modeling System (NEMS) is used by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EE) and Fossil Energy (FE) for their RD3 benefits evaluation. In order to begin scoping out the uncertainty in these deterministic forecasts, EE and FE designed two futures that differ significantly from the basic NEMS forecast. A High Fuel Price Scenario and a Carbon Cap Scenario were envisioned to forecast alternative futures and the associated benefits. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) implemented these scenarios into its version of NEMS,NEMS-LBNL, in late 2004, and the Energy Information Agency created six scenarios for FE in early 2005. The creation and implementation of the EE-FE scenarios are explained in this report. Both a Carbon Cap Scenario and a High Fuel Price Scenarios were implemented into the NEMS-LBNL. EIA subsequently modeled similar scenarios using NEMS. While the EIA and LBNL implementations were in some ways rather different, their forecasts do not significantly diverge. Compared to the Reference Scenario, the High Fuel Price Scenario reduces energy consumption by 4 percent in 2025, while in the EIA fuel price scenario (known as Scenario 4) reduction from its corresponding reference scenario (known as Scenario 0) in 2025 is marginal. Nonetheless, the 4 percent demand reduction does not lead to other cascading effects that would significantly differentiate the two scenarios. The LBNL and EIA carbon scenarios were mostly identical. The only major difference was that LBNL started working with the AEO 2004NEMS code and EIA was using AEO 2005 NEMS code. Unlike the High Price Scenario the Carbon Cap scenario gives a radically different forecast than the Reference Scenario. NEMS-LBNL proved that it can handle these alternative scenarios. However, results are price inelastic (for both oil and natural gas prices) within the price range evaluated. Perhaps even higher price paths would lead to a distinctly different forecast than the Reference Scenario. On the other hand, the Carbon Cap Scenario behaves more like an alternative future. The future in the Carbon Cap Scenario has higher electricity prices, reduced driving, more renewable capacity, and reduced energy consumption. The next step for this work is to evaluate the EE benefits under each of the three scenarios. Comparing those three sets of predicted benefits will indicate how much uncertainty is inherent within this sort of deterministic forecasting.

  2. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect (OSTI)

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01T23:59:59.000Z

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  3. Property:PotentialRooftopPVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacityPotentialRooftopPVCapacity

  4. Renewable Energy Technical Potential Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energyInformation Renewable Energysource

  5. Renewable Energy Technical Potential Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energyInformation Renewable

  6. Motor Energy Savings Potential Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OFDepartment of EnergyOreilleof Energy

  7. Assess technical potential for energy technologies | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftwareAsian AgeEnergy

  8. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect (OSTI)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01T23:59:59.000Z

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  9. Energy Recovery Potential from Wastewater Utilities through Innovation

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Energy Recovery Potential from Wastewater Utilities through Innovation Lauren Fillmore, Senior Program Director, Water Environment Research Foundation

  10. An assessement of global energy resource economic potentials

    E-Print Network [OSTI]

    Mercure, J F

    2012-01-01T23:59:59.000Z

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary mate...

  11. On the nuclear interaction. Potential, binding energy and fusion reaction

    E-Print Network [OSTI]

    I. Casinos

    2008-05-22T23:59:59.000Z

    The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

  12. A joint U.S.-China demonstration energy efficient office building

    E-Print Network [OSTI]

    Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

    2000-01-01T23:59:59.000Z

    to promote building energy efficiency in a major foreignknown interest in building energy efficiency in China. InSummer Study on Energy Efficiency in Buildings, August 20-

  13. Motor Energy Savings Potential Report | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania |February 2013of EnergyMotor

  14. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect (OSTI)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01T23:59:59.000Z

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  15. Live Webinar on the Marine and Hydrokinetic Demonstrations at The Navy's Wave Energy Test Site Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    On Wednesday, May 7, 2014 from 3:00 PM - 4:30 PM EDT the Water Power Program will hold an informational webinar on the Marine and Hydrokinetic (MHK) Demonstrations at The Navy's Wave Energy Test...

  16. Scenarios for Benefits Analysis of Energy Research, Development, Demonstration and Deployment

    E-Print Network [OSTI]

    Gumerman, Etan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    10. References EIA, 2003. Annual Energy Outlook 2003. EnergyEIA, 2004(b). Annual Energy Outlook 2004: With ProjectionsEIA-0383(2004) EIA, 2005. Annual Energy Outlook 2005: With

  17. Real Options Valuation of U.S. Federal Renewable Energy Research,Development, Demonstration, and Deployment

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2005-03-01T23:59:59.000Z

    Benefits analysis of US Federal government funded research, development, demonstration, and deployment (RD3) programs for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and nonrenewable fuels. The benefits estimate for a program derives from the difference between two forecasts, with and without the RD3 in place. The deficiencies of the current approach are threefold: (1) it does not consider uncertainty in the cost of non-renewable energy (NRE), and the option or insurance value of deploying RE if and when NRE costs rise; (2) it does not consider the ability of the RD3 manager to adjust the RD3 effort to suit the evolving state of the world, and the option value of this flexibility; and (3) it does not consider the underlying technical risk associated with RD3, and the impact of that risk on the programs optimal level of RD3 effort. In this paper, a rudimentary approach to determining the option value of publicly funded RE RD3 is developed. The approach seeks to tackle the first deficiency noted above by providing an estimate of the options benefit of an RE RD3 program in a future with uncertain NRE costs.While limited by severe assumptions, a computable lattice of options values reveals the economic intuition underlying the decision-making process. An illustrative example indicates how options expose both the insurance and timing values inherent in a simplified RE RD3 program that coarsely approximates the aggregation of current Federal RE RD3.This paper also discusses the severe limitations of this initial approach, and identifies needed model improvements before the approach can adequately respond to the RE RD3 analysis challenge.

  18. Demonstration of Energy Efficient Steam Reforming in Microchannels for Automotive Fuel Processing

    SciTech Connect (OSTI)

    Whyatt, Greg A.; TeGrotenhuis, Ward E.; Geeting, John GH; Davis, James M.; Wegeng, Robert S.; Pederson, Larry R.

    2002-01-01T23:59:59.000Z

    A compact, energy efficient microchannel steam reforming system has been demonstrated. The unit generates sufficient reformate to provide H2 to a 10 kWe PEM fuel cell (when coupled with a water-gas shift and CO cleanup reactors). The overall volume of the reactor is 4.9 liters while that of the supporting network of heat exchangers is 1.7 liters . Use of a microchannel configuration in the steam reforming reactor produces rapid heat and mass transport which enables fast kinetics for the highly endothermic reaction. Heat is provided to the reactor by a combustion gas flowing in interleaved microchannels in cross flow with the reaction channels. A network of microchannel heat exchangers allows recovery of heat in the reformate product and combustion exhaust streams for use in vaporizing water and fuel, preheating reactants to reactor temperature and preheating combustion air. The microchannel architecture enables very compact and highly effective heat exchangers to be constructed. As a result of the heat exchange network, the system exhaust temperatures are typically ~50?C for the combustion gas and ~130?C for the reformate product while the reactor is operated at 750?C. While reforming isooctane at a rate sufficient to supply a 13.7 kWe fuel cell the system achieved 98.6% conversion with an estimated overall system efficiency after integration with WGS and PEM fuel cell of 44% (electrical output / LHV fuel). The efficiency estimate assumes integration with a WGS reactor (90% conversion CO to CO2 with 100% selectivity) and a PEM fuel cell (64% power conversion effectiveness with 85% H2 utilization for an overall 54% efficiency) and does not include parasitic losses for compression of combustion air. Acknowledgement The work described here was funded by the U.S. Department of Energy, Office of Transportation Technology as part of the OTT Fuel Cells Program.

  19. A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT

    Broader source: Energy.gov [DOE]

    Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

  20. Survey of Climate Conditions for Demonstration of a Large Scale of Solar Energy Heating in Xi'an 

    E-Print Network [OSTI]

    Li, A.; Liu, Y.

    2006-01-01T23:59:59.000Z

    of Finance, together with the Ministry of Construction P.R.C, is selecting cities with different climates to carry out demonstrations of renewable energy applications in buildings. Xi'an, a representative city in the West, is selected to demonstrate large...

  1. Optimizing potential energy functions for maximal intrinsic hyperpolarizability

    SciTech Connect (OSTI)

    Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Watkins, David S. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Department of Mathematics, Washington State University, Pullman, Washington 99164-3113 (United States)

    2007-11-15T23:59:59.000Z

    We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.

  2. Geothermal energy potential in Chaffee County, Colorado | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell Testing and Evaluation Author

  3. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |Energy Diesel: Theof thePolicy Options

  4. Renewable Energy Technical Potential Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl.,RenGenAmes, IowaRESI

  5. Property:PotentialEGSGeothermalGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, searchPotentialEGSGeothermalGeneration Jump

  6. Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, searchPotentialEGSGeothermalGeneration

  7. Property:PotentialHydropowerCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity Jump to:

  8. Property:PotentialHydropowerGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity Jump

  9. Property:PotentialHydropowerSites | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,PotentialHydropowerCapacity

  10. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to: navigation, search

  11. Property:PotentialOffshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to: navigation,

  12. Property:PotentialOnshoreWindArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump to:

  13. Property:PotentialOnshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity Jump

  14. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:PotentialOffshoreWindCapacity

  15. Property:PotentialRuralUtilityScalePVArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to: navigation, search

  16. Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to: navigation,

  17. Property:PotentialRuralUtilityScalePVGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump to:

  18. Property:PotentialUrbanUtilityScalePVArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea Jump

  19. Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration JumpPotentialRuralUtilityScalePVArea

  20. Conference for Biomass and Energy, Copenhagen, 1996 published by Elsevier BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL

    E-Print Network [OSTI]

    Keeling, Stephen L.

    9th Conference for Biomass and Energy, Copenhagen, 1996 ­ published by Elsevier 1 BIOMASS ENERGY PRODUCTION: THE GLOBAL POTENTIAL AND THE NET INFLUENCE ON THE CO2 CONCENTRATION G. AHAMER Austrian Federal

  1. Property:PotentialBiopowerSolidMass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search Property

  2. Property:PotentialEGSGeothermalCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search

  3. Property:PotentialGeothermalHydrothermalGeneration | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation,

  4. Property:PotentialOffshoreWindArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to:

  5. Property:PotentialRooftopPVGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump

  6. Property:PotentialUrbanUtilityScalePVGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration

  7. Off-Shell NN Potential and Triton Binding Energy

    E-Print Network [OSTI]

    Y. Song; R. Machleidt

    1994-03-31T23:59:59.000Z

    The NONLOCAL Bonn-B potential predicts 8.0 MeV binding energy for the triton (in a charge-dependent 34-channel Faddeev calculation) which is about 0.4 MeV more than the predictions by LOCAL NN potentials. We pin down origin and size of the nonlocality in the Bonn potential, in analytic and numeric form. The nonlocality is due to the use of the correct off-shell Feynman amplitude of one-boson-exchange avoiding the commonly used on-shell approximations which yield the local potentials. We also illustrate how this off-shell behavior leads to more binding energy. We emphasize that the increased binding energy is not due to on-shell differences (differences in the fit of the NN data or phase shifts). In particular, the Bonn-B potential reproduces accurately the $\\epsilon_1$ mixing parameter up to 350 MeV as determined in the recent Nijmegen multi-energy NN phase-shift analysis. Adding the relativistic effect from the relativistic nucleon propagators in the Faddeev equations, brings the Bonn-B result up to 8.2 MeV triton binding. This leaves a difference of only 0.3 MeV to experiment, which may possibly be explained by refinements in the treatment of relativity and the inclusion of other nonlocalities (e.~g., quark-gluon exchange at short range). Thus, it is conceivable that a realistic NN potential which describes the NN data up to 300 MeV correctly may explain the triton binding energy without recourse to 3-N forces; relativity would play a major role for this result.

  8. Alaska Harbors Geothermal Energy Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat Pump Basics Air-Source Heatfor EnergyHarbors

  9. Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy

    E-Print Network [OSTI]

    Delaware, University of

    Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

  10. Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development...

  11. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec Conference

    Broader source: Energy.gov [DOE]

    More than 150 energy sector leaders—including nearly 100 asset owners and operators—gathered at the 2009 EnergySec Annual Summit in Seattle, WA, on Sept. 23-24, where researchers from the...

  12. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)

    Broader source: Energy.gov [DOE]

    East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy...

  13. A joint U.S.-China demonstration energy efficient office building

    E-Print Network [OSTI]

    Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

    2000-01-01T23:59:59.000Z

    design approach is used to identify the most cost-effective energy strategies for this building, including passive solar

  14. A joint U.S.-China demonstration energy efficient office building

    E-Print Network [OSTI]

    Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

    2000-01-01T23:59:59.000Z

    and IAQ comfort increases significantly with properly designed and maintained floor distribution, leading to greater energy effectiveness and enhanced productivity.

  15. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect (OSTI)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15T23:59:59.000Z

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.

  16. Designing Building Systems to Save Energy and Improve Indoor Environments: A Practical Demonstration

    E-Print Network [OSTI]

    Commission through the Public Interest Energy Research (PIER) program as Element 6 consumption from switch to gas heating; 50,931 MBtu source energy reduction; and a combined school district and the building sector continue to seek improvement in energy efficiency. Designs achieving good IEQ can

  17. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect (OSTI)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30T23:59:59.000Z

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  18. Energy Analysis of a Kraft Pulp Mill: Potential for Energy Efficiency and Advanced Biomass Cogeneration

    E-Print Network [OSTI]

    Subbiah, A.; Nilsson, L. J.; Larson, E. D.

    to be energy self-sufficent (with excess energy as a potentially important by-product for export) requires , Permanent address: Departmenl of Environmental and Energy Systems Studies, Lund University, Lund, Sweden. " To whom all correspondence should... identified significant savings potentials. For example, one mill in Sweden uses 13-14 MMBtu per ADST of steam and has a process (;onfiguration similar to the mill studied here (23). Despite the already low steam consumption at the Swedish mill, a pin...

  19. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

  20. Search for dark energy potentials in quintessence theory

    E-Print Network [OSTI]

    Muromachi, Yusuke; Okada, Daiki; Hara, Tetsuya; Itoh, Yutaka

    2015-01-01T23:59:59.000Z

    The time evolution of the equation of state $w$ for quintessence models with a scalar field as dark energy is studied up to the third derivative ($d^3w/da^3$) with respect to scale factor $a$, in order to predict the future observations and specify the scalar potential parameters with the observables. The third derivative of $w$ for general potential $V$ was derived and applied to several types of potential. They are the inverse power-law ($V=M^{4+\\alpha}/Q^{\\alpha}$), exponential ($V=M^4\\exp{(\\beta M/Q)}$), mixed ( $V=M^{4+\\gamma}\\exp{(\\beta M/Q)}/Q^{\\gamma}$), cosine ($V=M^4(\\cos (Q/f)+1)$) and the Gaussian types ($V=M^4\\exp(-Q^2/\\sigma^2)$), which are prototypical potentials for the freezing and thawing models. If the parameter number for a potential form is $ n$, it is necessary to find at least for $n+2$ independent observations to identify the potential form and the evolution of scalar field ($Q$ and $ \\dot{Q} $). Such observations would be the values of $ \\Omega_Q, w, dw/da. \\cdots $, and $ dw^n/da^n$....

  1. DoD Fuel Cell Demonstration Program: Energy Savings and Emissions Reductions to Date

    E-Print Network [OSTI]

    Holcomb, F. H.; Binder, M. J.; Taylor, W. R.

    Under the Department of Defense (DoD) Fuel Cell Demonstration Program managed by the U.S. Army Construction Engineering Research Laboratories (USACERL), 200 kW Phosphoric Acid Fuel Cell (PAFC) power plants have been installed and made operational...

  2. Lessons Learned from the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects

    E-Print Network [OSTI]

    Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

    industrial operations and processes. Each Showcase Project is made up of a team that consists of a host demonstration site and supporting partners (e.g. utilities, motor and process equipment suppliers, and contractors). Each team is expected to provide DOE...

  3. EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey

    Broader source: Energy.gov [DOE]

    DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

  4. Electromagnetic Potentials Basis for Energy Density and Power Flux

    E-Print Network [OSTI]

    H. E. Puthoff

    2010-09-26T23:59:59.000Z

    It is well understood that various alternatives are available within EM theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell's equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an option based on use of the EM potentials alone.

  5. EM Eliminates Potential Safety Hazard at SRS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartmentDepartmentStatementEnergyEliminates Potential Safety

  6. File:CV TidePotential.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,Size of this preview: 463Map.pdfFileTidePotential.pdf Jump

  7. DOE-Evaluating A Potential Microhydro Site | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro Site Jump to: navigation, search Tool Summary LAUNCH

  8. Potential Health Hazards of Radiation | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.WorkEconomic BenefitPotential Health

  9. Property:PotentialBiopowerGaseousGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/RiverlinePotentialBiopowerGaseousGeneration Jump

  10. Property:PotentialBiopowerGaseousMass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkinsInformationInformationMarine/RiverlinePotentialBiopowerGaseousGeneration

  11. Property:PotentialBiopowerSolidGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGeneration Jump to: navigation, search Property Name

  12. Property:UndiscoveredHydrothermalPotential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property isType"USGSMeanCapacity

  13. On the wave energy potential of Western Black Sea shelf

    E-Print Network [OSTI]

    Galabov, Vasko

    2013-01-01T23:59:59.000Z

    In the present study we evaluate the approaches to estimate the wave energy potential of the western Black Sea shelf with numerical models. For the purpose of our evaluation and due to the lack of long time series of measurements in the selected area of the Black Sea, we compare the modeled mean wave power flux output from the SWAN wave model with the only available long term measurements from the buoy of Gelendzhik for the period 1997-2003 (with gaps). The forcing meteorological data for the numerical wave models for the selected years is extracted from the ERA Interim reanalysis of ECMWF (European Centre for Medium range Forecasts). For the year 2003 we also compare the estimated wave power with the modeled by SWAN, using ALADIN regional atmospheric model winds. We try to identify the shortcomings and limitations of the numerical modeling approach to the evaluation of the wave energy potential in Black Sea.

  14. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01T23:59:59.000Z

    heat pump electric and gas heating Approach Energy-saving potential (approximate) (commercial) (residential)

  15. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect (OSTI)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01T23:59:59.000Z

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  16. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20T23:59:59.000Z

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  17. Product Demonstrations

    Broader source: Energy.gov [DOE]

    The Consortium will pursue a number of demonstrations following the general procedure used by DOE's GATEWAY demonstration program. Specific products to be featured in a demonstration may be...

  18. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformation kW grid connected

  19. Solar Energy Research, Development, and Demonstration Act of 1974 in U.S.C.

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepositoryManagement |Solar Energy Development in the

  20. A.O. Smith: Demonstrate Underutilized Micro-CHP | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThisthe National

  1. A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTAP

  2. U.S. Department of Energy Provides Report to Congress on the Demonstration

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident at RatonU.S. -DepartmentInspectorof the Interim

  3. Demonstration of AT&T's U-verse® TV Service | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency,8-9612-985-2007SupplementalDanielDayPresentation

  4. SustainX, Inc. Smart Grid Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseeker Energy Holding AGSuranaSussex Rural

  5. East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |ofM A N A G E M East Penn

  6. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures

    E-Print Network [OSTI]

    Fu, Feichao; Zhu, Pengfei; Zhao, Lingrong; Jiang, Tao; Lu, Chao; Liu, Shengguang; Shi, Libin; Yan, Lixin; Deng, Haixiao; Feng, Chao; Gu, Qiang; Huang, Dazhang; Liu, Bo; Wang, Dong; Wang, Xingtao; Zhang, Meng; Zhao, Zhentang; Stupakov, Gennady; Xiang, Dao; Zhang, Jie

    2015-01-01T23:59:59.000Z

    High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wake fields which otherwise increase beam emittance can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.

  7. EA-1147: Low Energy Demonstration Accelerator Tech Area 53, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts that would be expected to occur if the Department of Energy were to design, build, and test critical prototypical components of the accelerator system...

  8. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04T23:59:59.000Z

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  9. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy AllNNSA Site

  10. Noxtechs PAC System Development and Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovember

  11. MHK Projects/Evopod E1 1 10 scale grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHK ProjectsInformation Evopod E1

  12. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead of Contractingof theResearch&

  13. Sandia Energy - Sandia Demonstrated First-Time, Single-Mode Lasing in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.RohitAwardsGallium-Nitride

  14. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers toHeat Pumps forSmart

  15. Data Network Equipment Energy Use and Savings Potential in Buildings

    SciTech Connect (OSTI)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09T23:59:59.000Z

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  16. Copyright 2014 IEEE. Reprinted, with permission from: CERTS Microgrid Demonstration With Large-Scale Energy

    E-Print Network [OSTI]

    diesel generators. Adding a 2-MW, 4-MWh storage system, a fast static switch, and a power factor cor-Scale Energy Storage and Renewable Generation Eduardo Alegria, Member, IEEE; Tim Brown, Member, IEEE; Erin and Renewable Generation Eduardo Alegria, Member, IEEE, Tim Brown, Member, IEEE, Erin Minear, Member, IEEE

  17. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect (OSTI)

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01T23:59:59.000Z

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

  18. Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model

    SciTech Connect (OSTI)

    Sharma, Chandan; Raustad, Richard

    2013-06-01T23:59:59.000Z

    Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

  19. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    SciTech Connect (OSTI)

    Garbesi, Karina; Desroches, Louis-Benoit; Bolduc, Christopher; Burch, Gabriel; Hosseinzadeh, Griffin; Saltiel, Seth

    2011-05-06T23:59:59.000Z

    This study surveyed the technical potential for efficiency improvements in 150 categories of appliances and equipment representing 33 quads of primary energy use across the US economy in 2010 and (1) documented efficient product designs, (2) identified the most promising cross-cutting strategies, and (3) ranked national energy savings potential by end use. Savings were estimated using a method modeled after US Department of Energy priority-setting reports - simplified versions of the full technical and economic analyses performed for rulemakings. This study demonstrates that large savings are possible by replacing products at the end-of-life with ultra-efficient models that use existing technology. Replacing the 50 top energy-saving end-uses (constituting 30 quads of primary energy consumption in 2010) with today's best-on-market equivalents would save {approx}200 quads of US primary energy over 30 years (25% of consumption anticipated there from). For the 29 products for maximum feasible savings potential could be estimated, the savings were twice as high. These results demonstrate that pushing ultra-efficient products to market could significantly escalate carbon emission reductions and is a viable strategy for sustaining large emissions reductions through standards. The results of this analysis were used by DOE for new coverage prioritization, to identify key opportunities for product prototyping and market development, and will leverage future standards rulemakings by identifying the full scope of maximum feasible technology options. High leverage products include advances lighting systems, HVAC, and televisions. High leverage technologies include electronic lighting, heat pumps, variable speed motors, and a host of controls-related technologies.

  20. Potential impacts of nanotechnology on energy transmission applications and needs.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2007-11-30T23:59:59.000Z

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  1. Theoretical studies of potential energy surfaces and computational methods

    SciTech Connect (OSTI)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01T23:59:59.000Z

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  2. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01T23:59:59.000Z

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  3. The Early U.S. Market for PHEVs: Anticipating Consumer Awareness, Recharge Potential, Design Priorities and Energy Impacts

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S

    2008-01-01T23:59:59.000Z

    Awareness, Recharge Potential, Design Priorities and Energyawareness, recharge potential, design interests, and energyawareness, recharge potential, design priorities, and energy

  4. The Potential Impact of Increased Renewable Energy Penetration Levels on Electricity Bill Savings From Residential Photovoltaic Systems

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01T23:59:59.000Z

    ABORATORY The Potential Impact of Increased Renewable Energyemployer. The Potential Impact of Increased Renewable Energy

  5. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  6. Microscopic positive-energy potential based on Gogny interaction

    E-Print Network [OSTI]

    G. Blanchon; M. Dupuis; H. F. Arellano; N. Vinh Mau

    2014-10-28T23:59:59.000Z

    We present nucleon elastic scattering calculation based on Green's function formalism in the Random-Phase Approximation. For the first time, the Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, non-local and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross section. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schr\\"odinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from $^{40}$Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to much too high volume integral of the real potential for large partial waves. Moreover, this works opens the way for future effective interactions suitable simultaneously for both nuclear structure and reaction.

  7. Assessing geothermal energy potential in upstate New York. Final report

    SciTech Connect (OSTI)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01T23:59:59.000Z

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  8. Reaction dynamics of D+ H, + DH + H: Effects of potential energy surface topography and usefulness of the constant centrifugal potential

    E-Print Network [OSTI]

    Takada, Shoji

    Reaction dynamics of D+ H, + DH + H: Effects of potential energy surface topography and usefulness possibleand enables us to investigate the effects of potential energy surface (PES) topographyon the reaction two findings: ( 1) a large effectof PES topography on the reaction dynamics of D + H, +DH + H and (2

  9. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms TheNaturalemployee

  10. Demonstrating Innovative Low-Cost Carbon Fiber for Energy and National Security Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavid Turner David3 |A Sign InDemolition of

  11. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY Fact Sheet:2012) || Department

  12. Sandia Energy - Sandia-Univ. of Rochester Win Funding to Demonstrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute of Advanced Industrial

  13. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast TenPriceDepartment of

  14. DOE Funds Demonstration of "Ultrasonic Machining" | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOE Fuel CellMillion to

  15. DOE NSTB Researchers Demonstrate R&D Successes to Asset Owners at EnergySec

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartmentContaminated Ground Water

  16. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for an Energy EmergencyRespond

  17. NREL: Continuum Magazine - R&D 100 Awards Demonstrate Clean Energy Legacy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemicalIndustry PhotoPartnering: An

  18. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs Thomas F. Edgar,

  19. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatment andJuneJobs Thomas F.

  20. Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:AnnualDepartment ofPotential Healthon Aquatic

  1. Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighbourhoods in London

    E-Print Network [OSTI]

    Sarralde, Juan José; Quinn, David James; Wiesmann, Daniel; Steemers, Koen

    2014-07-07T23:59:59.000Z

    the consumption and the generation of resources need to be assessed. In terms of urban environmental sustainability, the potential to generate renewable energy within the city boundaries is a research topic of growing interest, being solar energy one of the main...

  2. Demonstration with Energy and Daylighting Assessment of Sunlight Responsive Thermochromic (SRT) Window Systems

    SciTech Connect (OSTI)

    Broekhuis, Michael; Liposcak, Curtis; Witte, Michael; Henninger, Robert; Zhou, Xiaohui; Petzen, George; Buchanan, Michael; Kumar, Sneh

    2012-03-31T23:59:59.000Z

    Pleotint, LLC was able to successfully extrude thermochromic interlayer for use in the fenestration industry. Pleotint has developed a thermochromic sytem that requires two thermochromic colors to make a neutral color when in the tinted state. These two colors were assembled into a single interlayer called a tri-layer prelam by Crown Operations for use in the glass lamination industry. Various locations, orientations, and constructions of thermochromic windows were studied with funds from this contract. Locations included Australia, California, Costa Rica, Indiana, Iowa, Mexico. Installed orientations included vertical and skylight glazing applications. Various constructions included monolithic, double pane, triple pane constructions. A daylighting study was conducted at LinEl Signature. LinEl Signature has a conference room with a sylight roof system that has a west orientation. The existing LinEl Signature conference room had constant tint 40% VLT transparent skylights. Irradiance meters were installed on the interior and exterior sides of a constant tint skylight. After a month and a half of data collection, the irradiance meters were removed and the constant tint skylights were replaced with Pleotint thermochromic skylight windows. The irradiance meters were reinstalled in the same locations and irradiance data was collected. Both data sets were compared. The data showed that there was a linear relationship with exterior and interior irradiance for the existing constant tint skylights. The thermochromic skylights have a non-linear relationship. The thermochromic skylights were able to limit the amount of irradiance that passed through the thermochromic skylight. A second study of the LinEl Signature conference was performed using EnergyPlus to calculate the amount of Illuminance that passed through constant tint skylights as compared to thermochromic skylights. The constant tint skylights transmitted Illuminance is 2.8 times higher than the thermochromic skylights during the months of May, June, July, August and 1.9 times higher than the thermochromic skylight during the months of March, April, September, October. Calculated illuminance levels were much more consistent as compared to the existing constant tint skylights installed at LinEl Signature. This allows for a more comfortable interior space in regard to glare discomfort and interior lighting control. Lawrence Berkeley National Laboratory was contracted to characterize the performance of the thermochromic interlayer and thermochromic window systems. Thermochromic interlayer was characterized with spectrometer equipment. The thermochromic window systems were characterized using LBNL’s Advanced Window Test Facility. A copy of the report can be found in the Appendix. Iowa State University was contracted to compare thermochromic window technology to constant tint technology. Iowa State University conducted the testing at the Energy Resource Station (ERS). The ERS has the ability to simultaneously test side-by-side competing building technologies. The building is equipped with two identical air handling units, each with its own dedicated and identical chiller. One air handling unit supplies the four test rooms designated as the A rooms and the other unit serves the four test rooms designated as the B rooms. There is one A test room and one B test rooms arranged as pairs in a side-by-side design with each pair having a different exposure. There is a pair of test rooms that face the south, an east and west facing pair. Each of the test rooms is a mirror image of its match with identical construction. The rooms are unoccupied; however, the capability to impose false loads on the rooms exists. The false loads and room lighting can be scheduled to simulate various usage patterns. A copy of the report can be found in the Appendix. GARD Analytics was contracted to compare EnergyPlus building simulations to the data recorded at the Iowa ERS. The goal of this research was to validate the building simulation software developed by the US Department of Energy. EnergyPlus is

  3. Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials

    SciTech Connect (OSTI)

    Hassaneen, Kh.S.A., E-mail: khs_94@yahoo.com [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Abo-Elsebaa, H.M.; Sultan, E.A. [Physics Department, Faculty of Science, Sohag University, Sohag (Egypt); Mansour, H.M.M. [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2011-03-15T23:59:59.000Z

    Research Highlights: > The nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach employing the most recent accurate nucleon-nucleon potentials. > The results come out by approximating the single particle self-consistent potential with a parabolic form. > We discuss the current status of the Coester line, i.e., density and energy of the various saturation points being strongly linearly correlated. > The nuclear symmetry energy is calculated as the difference between the binding energy of pure neutron matter and that of symmetric nuclear matter. - Abstract: The binding energy of nuclear matter at zero temperature in the Brueckner-Hartree-Fock approximation with modern nucleon-nucleon potentials is studied. Both the standard and continuous choices of single particle energies are used. These modern nucleon-nucleon potentials fit the deuteron properties and are phase shifts equivalent. Comparison with other calculations is made. In addition we present results for the symmetry energy obtained with different potentials, which is of great importance in astrophysical calculation.

  4. The Potential for Energy Efficiency and Renewable Energy in North Carolina

    SciTech Connect (OSTI)

    Hadley, SW

    2003-08-06T23:59:59.000Z

    As many states have restructured their electric power industry, they have established a ''systems benefit charge'' to help fund those activities that will no longer be funded by utilities in the new structure. Examples include weatherization of low-income housing, efficiency programs, and renewable energy development. Varying amounts have been collected and allocated depending on state needs and abilities. One question that arises is what are the potential results of funding the different types of programs. What is the potential for energy efficiency or for renewable power, and what would be accomplished given the amount of funding that the system benefit charge may provide? The purpose of this project is to provide an initial estimate of the potential for energy efficiency and renewable energy in North Carolina. This potential could be funded by a public benefits fund resulting from a green power program being considered in the state. It concentrates on electric energy savings and production. Savings in buildings can include improvements to space conditioning as well as improvements to lighting or other appliances. Distributed power potential, through use of combined heat and power and renewables such as photovoltaic, wind, and biomass were examined. The goal is to provide information to decision makers who are developing a green power program in North Carolina. It will not be a complete and detailed study of all efficiency potentials but is more of a scoping exercise to determine the relative impacts and begin the process for a more definitive study at a later date. Statewide energy savings potential cannot be directly measured but must be calculated. First, the word ''potential'' means that the savings have not occurred yet. Second, the savings are often only indirectly measured by estimating what energy use there would have been without the changes in technology or behavior. Calculations through sampling and statistical analysis or by simulation are a necessary part of any mechanism to determine energy savings potential. There are currently several methods for calculating savings. Extrapolation of savings achieved from specific programs, surveys of existing building stock or energy-using activities, computer calculations of representative building types, and economic simulations all provide insight into the amount of energy that could be saved.

  5. On the potential energy in a gravitationally bound two-body system with arbitrary mass distribution

    E-Print Network [OSTI]

    K. Wilhelm; B. N. Dwivedi

    2015-02-12T23:59:59.000Z

    The potential energy problem in a gravitationally bound two-body system has recently been studied in the framework of a proposed impact model of gravitation (Wilhelm and Dwivedi 2015). The result was applied to the free fall of the so-called Mintrop--Ball in G\\"ottingen with the implicit assumption that the mass distribution of the system is extremely unbalanced. An attempt to generalize the study to arbitrary mass distributions indicated a conflict with the energy conservation law in a closed system. This necessitated us to reconsider an earlier assumption made in selecting a specific process out of two options (Wilhelm et al. 2013). With the result obtained here we can now make an educated selection and reverse our choice. The consequences are presented and discussed in detail for several processes. Energy and momentum conservation could now be demonstrated in all cases.

  6. On the potential energy in a gravitationally bound two-body system with arbitrary mass distribution

    E-Print Network [OSTI]

    Wilhelm, K

    2015-01-01T23:59:59.000Z

    The potential energy problem in a gravitationally bound two-body system has recently been studied in the framework of a proposed impact model of gravitation (Wilhelm and Dwivedi 2015). The result was applied to the free fall of the so-called Mintrop--Ball in G\\"ottingen with the implicit assumption that the mass distribution of the system is extremely unbalanced. An attempt to generalize the study to arbitrary mass distributions indicated a conflict with the energy conservation law in a closed system. This necessitated us to reconsider an earlier assumption made in selecting a specific process out of two options (Wilhelm et al. 2013). With the result obtained here we can now make an educated selection and reverse our choice. The consequences are presented and discussed in detail for several processes. Energy and momentum conservation could now be demonstrated in all cases.

  7. Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry

    Broader source: Energy.gov [DOE]

    "This report contains information on Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry, prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Weatherization and Intergovernmental Program."

  8. To be presented at the 2007 ASHRAE Winter Meeting, January 27-31, 2007, Dallas, TX. Measured energy performance a US-China demonstration

    E-Print Network [OSTI]

    and construction of an energy- efficient demonstration office building and design center to be located in Beijing. The proposed 13,000 m2 (140,000 ft2 ) nine-story office building would use U.S. energy-efficient materials) to collaborate on the design and construction of an energy-efficient demonstration building and design center

  9. Steam systems in industry: Energy use and energy efficiency improvement potentials

    SciTech Connect (OSTI)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-07-22T23:59:59.000Z

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

  10. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    absence of CCS, there is diminishing potential for process-potential is rapidly declining. Second, carbon capture and storage (CCS)CCS is not taken into consideration. Significant energy savings and CO2 emissions reduction potential

  11. Relation between quark-antiquark potential and quark-antiquark free energy in hadronic matter

    E-Print Network [OSTI]

    Zhen-Yu Shen; Xiao-Ming Xu

    2014-06-19T23:59:59.000Z

    We study the relation between the quark-antiquark potential and the quark-antiquark free energy in hadronic matter. While a temperature is over the critical temperature, the potential of a heavy quark and a heavy antiquark almost equals the free energy, otherwise the quark-antiquark potential is substantially larger than the quark-antiquark free energy. While a temperature is below the critical temperature, the quark-antiquark free energy can be taken as the quark-antiquark potential.

  12. Osmosis, colligative properties, entropy, free energy and the chemical potential

    E-Print Network [OSTI]

    Peter Hugo Nelson

    2014-09-13T23:59:59.000Z

    A diffusive model of osmosis is presented that explains currently available experimental data. It makes predictions that distinguish it from the traditional convective flow model of osmosis, some of which have already been confirmed experimentally and others have yet to be tested. It also provides a simple kinetic explanation of Raoult's law and the colligative properties of dilute aqueous solutions. The diffusive model explains that when a water molecule jumps from low to high osmolarity at equilibrium, the free energy change is zero because the work done pressurizing the water molecule is balanced by the entropy of mixing. It also explains that equal chemical potentials are required for particle exchange equilibrium in analogy with the familiar requirement of equal temperatures at thermal equilibrium.

  13. Transition Path, Quasi-potential Energy Landscape and Stability of Genetic Switches Xiaoguang Li,2

    E-Print Network [OSTI]

    Li, Tiejun

    Transition Path, Quasi-potential Energy Landscape and Stability of Genetic Switches Cheng Lv,1, reconstructing the global quasi-potential energy landscape, analyzing the uphill and downhill transition paths the properties of transition paths, discuss their relation to the quasi-potential energy landscape

  14. Spectroscopic constants and potential energy curves of tungsten carbide

    SciTech Connect (OSTI)

    Balasubramanian, K. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)] [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2000-05-01T23:59:59.000Z

    Spectroscopic constants (R{sub e},{omega}{sub e},T{sub e},{mu}{sub e}) and potential energy curves for 40 low-lying electronic states of the diatomic tungsten carbide (WC) were obtained using the complete active space multiconfiguration self-consistent field followed by the multireference singles+doubles configuration interaction and full first- and second-order configuration interaction calculations that included up to 6.4 mil configurations. Spin-orbit effects were included through the enhanced relativistic configuration interaction method described here for 28 electronic states of WC lying below {approx}20 000 cm-1. The spin-orbit splitting of the ground state of WC was found to be very large (4394 cm-1). The ground and excited electronic states of the W atom were also computed and were found to be in good agreement with the experimental data. The nature of bonding was analyzed through the composition of orbitals, leading configurations, Mulliken populations, and dipole moments. The dissociation energy of WC was computed including spin-orbit and electron correlation effects. The recent photoelectron spectra of WC{sup -} were assigned on the basis of our computed results. (c) 2000 American Institute of Physics.

  15. Potential for supplying solar thermal energy to industrial unit operations

    SciTech Connect (OSTI)

    May, E.K.

    1980-04-01T23:59:59.000Z

    Previous studies have identified major industries deemed most appropriate for the near-term adoption of solar thermal technology to provide process heat; these studies have been based on surveys that followed standard industrial classifications. This paper presents an alternate, perhaps simpler analysis of this potential, considered in terms of the end-use of energy delivered to industrial unit operations. For example, materials, such as animal feed, can be air dried at much lower temperatures than are currently used. This situation is likely to continue while economic supplies of natural gas are readily available. However, restriction of these supplies could lead to the use of low-temperature processes, which are more easily integrated with solar thermal technology. The adoption of solar technology is also favored by other changes, such as the relative rates of increase of the costs of electricity and natural gas, and by energy conservation measures. Thus, the use of low-pressure steam to provide process heat could be replaced economically with high-temperature hot water systems, which are more compatible with solar technology. On the other hand, for certain operations such as high-temperature catalytic and distillation processes employed in petroleum refining, there is no ready alternative to presently employed fluid fuels.

  16. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    Washington, DC: Energy Information Administration, U.S.Washington, DC: Energy Information Administration, U.S.Washington, DC: Energy Information Administration, U.S.

  17. Energy Efficiency Potential for Distribution Transformers in the APEC Economies

    E-Print Network [OSTI]

    Letschert, Virginie

    2014-01-01T23:59:59.000Z

    APERC, 2012. APEC Energy Demand and Supply Outlook 5thand, based on the APERC Energy Demand and Supply Outlook (BUENAS calculates final energy demand according to the UEC

  18. A Potential Path to Emissions-Free Fossil Energy | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A Potential Path to Emissions-Free Fossil

  19. Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA)

    2009-10-01T23:59:59.000Z

    This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

  20. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    Japan EERE (2007). Buildings Energy Data Book Erbs, D. G. ,EERE (2007). Buildings Energy Data Book A-32 EMSD (2007).

  1. Marine renewable energy: potential benefits to biodiversity? An urgent call for research

    E-Print Network [OSTI]

    Exeter, University of

    Marine renewable energy: potential benefits to biodiversity? An urgent call for research Richard 1 Centre for Ecology and Conservation and Peninsula Research Institute for Marine Renewable Energy driver. In response, many governments have initiated programmes of energy production from renewable

  2. Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report

    E-Print Network [OSTI]

    Lipman, Tim; Shah, Nihar

    2007-01-01T23:59:59.000Z

    cost savings from the peak shaving operation of the fuel cellof fuel cell power, per hour) 7. Establish potential cost offuel cell system for With only a 5-15 kW demonstration, the actual cost

  3. On the potential energy in an electrostatically bound two-body system

    E-Print Network [OSTI]

    K. Wilhelm; B. N. Dwivedi

    2014-08-30T23:59:59.000Z

    The potential energy problem in an electrostatically bound two-body system is studied in the framework of a recently proposed impact model of the electrostatic force and in analogy to the potential energy in a gravitationally bound system. The physical processes are described that result in the variation of the potential energy as a function of the distance between the charged bodies. The energy is extracted from distributions of hypothetical interaction entities modified by the charged bodies.

  4. Material and energy recovery in integrated waste management systems: The potential for energy recovery

    SciTech Connect (OSTI)

    Consonni, Stefano [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy); Vigano, Federico, E-mail: federico.vigano@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); LEAP -Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza (Italy)

    2011-09-15T23:59:59.000Z

    Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).

  5. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    2000. “Potentials for Energy Efficiency Improvement in theBenefits of Industrial Energy Efficiency Measures,” EnergyC. , and Price, L. , 2008. Energy Efficiency Improvement

  6. U.S. Building-Sector Energy Efficiency Potential

    E-Print Network [OSTI]

    Brown, Rich

    2008-01-01T23:59:59.000Z

    US DOE. 1998. Annual Energy Outlook 1999, with ProjectionsUS DOE. 2007b. Annual Energy Outlook 2007, with ProjectionsAdministration’s Annual Energy Outlook (AEO) 2007 Reference

  7. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    COPPE (2005). COPPE Brazil Danish Energy Management (2004).lamps in India and Brazil." Energy Policy 19(5): 449-463.EU Brazil* Chile* China Hong Kong* India* Energy Intensity

  8. Zero-energy states for a class of quasi-exactly solvable rational potentials

    E-Print Network [OSTI]

    B. Bagchi; C. Quesne

    1997-03-20T23:59:59.000Z

    Quasi-exactly solvable rational potentials with known zero-energy solutions of the Schro\\" odinger equation are constructed by starting from exactly solvable potentials for which the Schr\\" odinger equation admits an so(2,1) potential algebra. For some of them, the zero-energy wave function is shown to be normalizable and to describe a bound state.

  9. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    Domestic Electric Storage Water Heater (DESWH) Test Methodsand Renewable Energy (2000). Water Heater Energy StandardsAir Conditioners, Water Heaters, Direct Heating Equipment,

  10. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    E-Print Network [OSTI]

    Sathaye, Nakul

    2014-01-01T23:59:59.000Z

    Requirements for air-conditioning appliances and comfortLetschert. 2008. Future Air Conditioning Energy ConsumptionV. , 2007. Future Air Conditioning Energy Consumption in

  11. Energy Dept. Report Finds Major Potential to Grow Clean, Sustainable...

    Energy Savers [EERE]

    "The United States has tremendous untapped clean energy resources and responsible development will help pave the way to a cleaner, more sustainable and diverse energy...

  12. Innovative Nanocoatings Unlock the Potential for Major Energy...

    Broader source: Energy.gov (indexed) [DOE]

    testing has demonstrated that this nanocoating significantly reduces erosion and corrosion, leading to sustained aircraft engine performance and significant reductions in both...

  13. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. DOE FY 2010 Budget Request and Recovery Act Funding for Energy Research, Development, Demonstration, and Deployment: Analysis and Recommendations

    SciTech Connect (OSTI)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Bunn, Matthew

    2009-06-01T23:59:59.000Z

    The combination of the FY 2010 budget request for the Department of Energy (DOE) and the portion of the American Recovery and Reinvestment Act of 2009 (ARRA) funds likely to be available in 2010 would (assuming that they would be split evenly between FY 2010 and FY 2011) result in a doubling in funding available for energy research, development, and deployment (ERD and D) from $3.6 billion in FY 2009 to $7.2 billion in FY 2010. Without the stimulus funds, DOE ERD and D investments in FY 2010 would decrease very slightly when compared to FY 2009. Excluding the $7.5 billion for the Advanced Technology Vehicles Manufacturing Loans in FY 2009, the FY 2010 budget request for deployment represents a 33 percent decrease from the FY 2009 levels from $520 million to $350 million. This decrease is largely due to the large amounts of funds appropriated in ARRA for DOE deployment programs, or $23.6 billion, which are three times greater than those appropriated in the FY 2009 budget. These very substantial funding amounts, coupled with the broad range of institutional innovations the administration is putting in place and movement toward putting a price on carbon emissions, will help accelerate innovation for a broad range of energy technologies. DOE's Advanced Research Projects Agency-Energy (ARPA-E) and the Energy Innovation Hubs are important initiatives that could contribute to two weak points of the government's energy innovation effort, namely funding high-risk projects in transformational technologies and in companies that have not traditionally worked with the government and strengthening the integration of basic and applied research in priority areas. Increasing the funding for different types of energy storage research, providing some support for exploring opportunities in coal-to-liquids with carbon capture and storage (CCS) and coal-and-biomass-to-liquids with CCS, and reducing funding for fission RD and D are other actions that Congress could take in the short-term. Energy storage may play a crucial role in the future of the power and transportation systems, which together consume two thirds of primary energy in the United States. A recent National Academy of Science report recommended carrying out detailed scenario assessments of the penetration of unconventional fuels from coal and coal and biomass with CCS. And the research plan provided for nuclear fission does not justify spending as many funds as were requested. The proposed funding for FY 2010 and the resources from ARRA, however, do not guarantee that the United States will finally enjoy the predictable and consistent publicly-funded energy technology innovation effort that it needs. The Obama administration must put in place a comprehensive energy technology innovation strategy that will ensure that an expanded ERD3 effort is both sustainable and efficient. This commission would be charged with, inter alia, developing a strategy that optimizes the integration of the various stages of innovation (research, development, demonstration, early deployment), as well as integrates efforts across technology areas. The database upon which this analysis is based may be downloaded in Excel format at: http://belfercenter.ksg.harvard.edu/publication/19119/ .

  15. Calculation of free-energy differences and potentials of mean force by a multi-energy gap method

    E-Print Network [OSTI]

    Weston, Ken

    Calculation of free-energy differences and potentials of mean force by a multi-energy gap method the convergence of free-energy calculations. It introduces a bias factor in Monte Carlo simulations or.e., the difference in energy function between two states, and is therefore specifically designed for calculating free-energy

  16. GATEWAY Demonstrations

    Broader source: Energy.gov [DOE]

    DOE GATEWAY demonstrations showcase high-performance LED products for general illumination in a variety of commercial and residential applications. Demonstration results provide real-world experience and data on state-of-the-art solid-state lighting (SSL) product performance and cost effectiveness. These results connect DOE technology procurement efforts with large-volume purchasers and provide buyers with reliable data on product performance.

  17. Potential Global Benefits of Improved Ceiling Fan Energy Efficiency

    E-Print Network [OSTI]

    Sathaye, Nakul

    2014-01-01T23:59:59.000Z

    energy savings forecasts Annual Electricity Savings (TWh) Cumulative Electricity Savings (TWh) Year Australia Brazil Canada China

  18. Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study

    E-Print Network [OSTI]

    Georgiou, Georgios

    Data bank Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year Article history: Received 30 July 2013 Accepted 25 March 2014 Available online Keywords: Wave energy Numerical atmospheric Wave modeling a b s t r a c t The main characteristics of wave energy potential over

  19. Strategie s for Walking on Potential Energy Surfaces Using Local Quadratic Approximations

    E-Print Network [OSTI]

    Simons, Jack

    Strategie s for Walking on Potential Energy Surfaces Using Local Quadratic Approximations JACK on potential energy surfaces is further analyzed. This method utilizes local gradient and Hessian (Le., fust and second energy derivative) information to generate a series of "steps" that are folIowed to the desired

  20. Exploring wind energy potential off the California coast Qingfang Jiang,1

    E-Print Network [OSTI]

    Jacobson, Mark

    ., California offshore wind energy potential, submitted to Wind Energy, 2008]. Com- pared with wind farms over land, offshore wind farms have a number of advantages. Offshore wind turbines pose less threat potential over land around the world, offshore wind energy resources are largely unexplored, in part because

  1. PUBLISHED VERSION Free Energy Generalization of the Peierls Potential in Iron

    E-Print Network [OSTI]

    PUBLISHED VERSION Free Energy Generalization of the Peierls Potential in Iron M. R. Gilbert, P) and may be found at 10.1103/PhysRevLett.111.095502 #12;Free Energy Generalization of the Peierls Potential for bcc Fe. We compute the Peierls free energy path as a function of stress and temperature and show

  2. Potential for the Use of Energy Savings Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The review of potential challenges within this report suggests that, while the same care must be exercised as in every prudent government acquisition, there appear to be no...

  3. Realizing Clean Energy's Potential: Lessons Learned in the U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conventional coal and natural gas generators more frequently to accommodate more variable wind and solar power. NREL investigated the potential wear-and-tear costs and emissions...

  4. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    impact of room air conditioners energy labels in Malaysia."of electric Room Air Conditioner." Energy Economics 20Standard Levels for Room Air Conditioners. McNeil, M. A. ,

  5. Biomass energy in China and its potential Li Jingjing

    E-Print Network [OSTI]

    carriers, including coal briquettes, LPG, and electricity (Table 3). While pri- mary energy use is shifting pollution and associated adverse health impacts. In addition, the time spent collecting biomass fuels to the user, not the primary energy source. If clean, convenient energy carriers (e.g., electricity and liq

  6. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    Clean Energy and Development for South Africa: BackgroundSouth Africa Texas Thailand WN Central WS Central Yixing IEA EnergySouth Africa Thailand United States Uruguay Venezuela IEA Indicators (McNeil 2003) INE Venezuela A-20 Appendix 3 – Unit Energy

  7. Energy Savings Potential of Solid-State Lighting in General Illuminati...

    Broader source: Energy.gov (indexed) [DOE]

    PROGRAM Energy Savings Potential of Solid-State Lighting in General Illumination Applications January 2012 Prepared for: Solid-State Lighting Program Building Technologies Program...

  8. Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards

    E-Print Network [OSTI]

    Garbesi, Karina

    2011-01-01T23:59:59.000Z

    ground source) dryers of CO2 as refrigerant, absorption replace standard cycle use for gas-heat pump electric and gas heating Approach Energy-saving potential (

  9. Energy Savings Potential of Solid-State Lighting in General Illumination Applications- Factsheet

    Broader source: Energy.gov [DOE]

    A U.S. DOE SSL fact sheet on Energy Savings Potential of Solid-State Lighting in General Illumination Applications.

  10. Energy Savings and Comfort Improvements through Plant- and Operating mode Optimisation Demonstrated by Means of Project Examples

    E-Print Network [OSTI]

    Muller, C.

    More than 40 percent of Europe's primary energy is required for conditioning of buildings. By improving energy efficiency, approximately 30 percent of this energy could be saved. Energy counts for 35 percent of the operating cost and put...

  11. Solar energy potential atlas for planning energy system off-grid electrification in the Republic of Djibouti

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Solar energy potential atlas for planning energy system off-grid electrification in the Republic solar resource can therefore be an interesting mean to produce energy where it is consumed. The aimWh/m². Furthermore, the solar radiation reaching Djibouti corresponded to 20 000 times the total yearly energy

  12. The potential and challenges of monitoring-supported energy efficiency improvement strategies in existing buildings 

    E-Print Network [OSTI]

    Schub, M.; Mahdavi, A.; Simonis, H.; Menzel, K.; Browne, D.

    2012-01-01T23:59:59.000Z

    The ongoing EU-supported CAMPUS 21 explores the energy efficiency potential of integrated security, control, and building management software. The main objective of the project is to compare the energy and indoor-environmental performance...

  13. Analysis of the Potential Energy Savings for 14 Office Buildings with VAV Systems

    E-Print Network [OSTI]

    Claridge, D. E.; Liu, J.; Baltazar, J. C.

    2010-01-01T23:59:59.000Z

    At the beginning of an existing building commissioning (EBCx)/energy retrofit project, some form of screening is usually applied to determine whether there is sufficient potential for savings to justify a formal EBCx assessment/energy audit...

  14. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cementenergy savings and CO2 emission reduction potentials are

  15. Free energy computations by minimization of Kullback-Leibler divergence: an efficient adaptive biasing potential method for sparse representations

    E-Print Network [OSTI]

    I. Bilionis; P. S. Koutsourelakis

    2010-11-10T23:59:59.000Z

    The present paper proposes an adaptive biasing potential for the computation of free energy landscapes. It is motivated by statistical learning arguments and unifies the tasks of biasing the molecular dynamics to escape free energy wells and estimating the free energy function, under the same objective. It offers rigorous convergence diagnostics even though history dependent, non-Markovian dynamics are employed. It makes use of a greedy optimization scheme in order to obtain sparse representations of the free energy function which can be particularly useful in multidimensional cases. It employs embarrassingly parallelizable sampling schemes that are based on adaptive Sequential Monte Carlo and can be readily coupled with legacy molecular dynamics simulators. The sequential nature of the learning and sampling scheme enables the efficient calculation of free energy functions parametrized by the temperature. The characteristics and capabilities of the proposed method are demonstrated in three numerical examples.

  16. Energy Recovery Potential from Wastewater Utilities through Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Difference Challenges with SMUD's Community Renewable Energy Project Deployment Biogas Opportunities Roadmap Bioenergy Home About the Bioenergy Technologies Office Research...

  17. Assessment of Achievable Potential from Energy Efficiency and...

    Open Energy Info (EERE)

    This report discusses the 2008 U.S. Energy Information Administration statistic that electricity consumption in the United States is predicted to grow at an annual rate of...

  18. Global Potential of Energy Efficiency Standards and Labeling Programs

    E-Print Network [OSTI]

    McNeil, Michael A

    2008-01-01T23:59:59.000Z

    Administration UTE (1999). UTE Uruguay Consumo de Energía387. McNeil, M. (2003). Uruguay Energy Efficiency Project -Administration UTE (1999). UTE Uruguay Consumo de Energía

  19. Home Energy Score Program: Update and Overview for Potential...

    Energy Savers [EERE]

    Home Energy Score Update Webinar Slides Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos Contact Us...

  20. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Energy Savers [EERE]

    hybrid electric vehicle PTC production tax credit PUC Public Utilities Commission PV photovoltaic QHTB qualified high-tech business RECO Residential Energy Conservation...

  1. Assessment of Energy Production Potential from Ocean Currents along the

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of theArctic Energy Summit26and Spent

  2. Technology Key to Harnessing Natural Gas Potential | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon |1999Energy- FORTechnology Key to

  3. New Reports Highlight Major Potential in Offshore Wind Energy | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartmentCyberof Energy The Energy

  4. Assessment of Achievable Potential from Energy Efficiency and Demand

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide | Open Energy

  5. Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal7 Estimated Award6,

  6. The economic potential of producing energy from agricultural biomass

    E-Print Network [OSTI]

    Jerko, Christine

    1996-01-01T23:59:59.000Z

    production. The model determined the optimal mix of corn and energy crops to meet the biomass feedstock goals for energies. The resultant model appraises the effects of increasing biomass feedstocks for the years 1990, 2000, 2010, and 2020. The results show...

  7. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01T23:59:59.000Z

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  8. Femtosecond Transition-State Dynamics of Dissociating OCS on the Excited 1+ Potential Energy Surface

    E-Print Network [OSTI]

    Liu, Shilin

    Femtosecond Transition-State Dynamics of Dissociating OCS on the Excited 1+ Potential Energy photodissociation dynamics of OCS on the dissociative potential energy surface (PES) of the electronically excited 1 calculations. The high-resolution PHOFEX spectrum of the entire 1+-1+ transition (63 300-69 350 cm-1

  9. Lighting energy savings potential of split-pane electrochromic windows controlled for

    E-Print Network [OSTI]

    LBNL-6152E Lighting energy savings potential of split- pane electrochromic windows controlled potential of split-pane electrochromic windows controlled for daylighting with visual comfort L was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled

  10. Optimization of Parameters in Macromolecular Potential Energy Functions by Conformational Space Annealing

    E-Print Network [OSTI]

    Lee, Jooyoung

    Optimization of Parameters in Macromolecular Potential Energy Functions by Conformational Space´sk, Sobieskiego 18, 80-952 Gdan´sk, Poland ReceiVed: March 22, 2001; In Final Form: June 4, 2001 A general protocol for refining the parameters of macromolecular potential energy functions by optimizing criteria

  11. Calculation of Protein Conformation by Global Optimization of a Potential Energy Function

    E-Print Network [OSTI]

    Lee, Jooyoung

    Calculation of Protein Conformation by Global Optimization of a Potential Energy Function Jooyoung of Gdan´sk, Gdan´sk, Poland 3Cornell Theory Center, Ithaca, New York ABSTRACT A novel hierarchical- vided by CASP3. The approach is based exclusively on the global optimization of a potential energy

  12. Submitted to Renewable Energy, 5 December 2009 The technical potential for off-peak electricity

    E-Print Network [OSTI]

    Hughes, Larry

    October 2009 #12;The technical potential for off-peak electricity to serve as backup in wind. This paper examines the technical potential of off-peak electricity to ensure that wind-charged thermalSubmitted to Renewable Energy, 5 December 2009 ERG/200910 The technical potential for off

  13. High-energy behavior of the nuclear symmetry potential in asymmetric nuclear matter

    E-Print Network [OSTI]

    Lie-Wen Chen; Che Ming Ko; Bao-An Li

    2005-12-07T23:59:59.000Z

    Using the relativistic impulse approximation with empirical NN scattering amplitude and the nuclear scalar and vector densities from the relativistic mean-field theory, we evaluate the Dirac optical potential for neutrons and protons in asymmetric nuclear matter. From the resulting Schr\\"{o}% dinger-equivalent potential, the high energy behavior of the nuclear symmetry potential is studied. We find that the symmetry potential at fixed baryon density is essentially constant once the nucleon kinetic energy is greater than about 500 MeV. Moreover, for such high energy nucleon, the symmetry potential is slightly negative below a baryon density of about $% \\rho =0.22$ fm$^{-3}$ and then increases almost linearly to positive values at high densities. Our results thus provide an important constraint on the energy and density dependence of nuclear symmetry potential in asymmetric nuclear matter.

  14. Unlocking Our Nation's Wind Potential | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|Idahothe New FundingTravelUnlocking Our Nation's

  15. Self Potential At Mokapu Penninsula Area (Thomas, 1986) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,Energy Information Mauna

  16. Self Potential At Steamboat Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,EnergyInformation Roosevelt

  17. Tribal Renewable Energy Development Potential Webinar | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005UNSDepartmentFebruaryPhase 2 FundingSecurity |Summary ofEnergy Learn

  18. Spontaneous Potential At Fort Bidwell Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: Energy ResourcesSpire(book section)

  19. From Laboratory to Industry: Unlocking the Potential of Graphene - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy Forrestal NTFusion Energyof Energy From

  20. Assessment of Energy Production Potential from Ocean Currents along the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department of Energy |Article 29 EmployeeAugust 10, 2011Department ofUnited