Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Y-12 demos former utilities and maintenance facility | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demos former utilities and maintenance facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

2

Demo 2: Integrated Communications for Underwater Operations By Dale Green  

E-Print Network [OSTI]

Demo 2: Integrated Communications for Underwater Operations By Dale Green Teledyne Benthos Inc. New forms of navigation aids for underwater vehicles are enabled through the use of acoustic communications for accomplishing these navigation functions simultaneously with a variety of communications functions. Each

Zhou, Shengli

3

Electrolysis-Utility Integration Workshop  

E-Print Network [OSTI]

-spread deployment of electrolysis based hydrogen production in the U.S. #12;Key Drivers ! Water electrolysis Is hydrogen production via water electrolysis a viable option for the transition? Key Needs: · Low-cost, lowElectrolysis-Utility Integration Workshop September 22-23, 2004 Broomfield, CO Shawna McQueen #12

4

Optimized Utility Systems and Furnace Integration  

E-Print Network [OSTI]

OPTIMIZED UTILITY SYSTEMS AND FURNACE INTEGRATION A. S. McMullan and H. D. Spriggs, Linnhoff March, Inc., Leesburg, Va. ABSTRACT Conventional process design philosophy usually results in utility systems being designed after process design... defines the Process/Utility interface. Clearly, changing the process design can result in different utility demands and possibly in different utility system designs. This paper presents a procedure, using Pinch Technology, for the simultaneous design...

McMullan, A. S.; Spriggs, H. D.

6

NREL: Wind Research - Utility Grid Integration Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Grid Integration Assessment Utility Grid Integration Assessment Photo of large power transmission towers set against a sunset. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources such as wind. For wind energy to play a larger role in supplying the nation's energy needs, integrating wind energy into the power grid of the United States is an important challenge to address. NREL's transmission grid integration staff collaborates with utility industry partners and provides data, analysis, and techniques to increase utility understanding of integration issues and confidence in the reliability of new wind turbines. For more information, contact Brian Parsons at 303-384-6958. Printable Version Wind Research Home Capabilities

7

National Geothermal Data System Demo 01-28-14 | Department of...  

Energy Savers [EERE]

National Geothermal Data System Demo 01-28-14 National Geothermal Data System Demo 01-28-14 ngds-webinar-azgs.pdf More Documents & Publications How to Utilize the National...

8

NREL: Wind Research - Utility Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Grid Integration Utility Grid Integration Photo of a wind farm in Lawton, Oklahoma where NREL researchers studied the impact of wind energy on farming system operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. NREL researchers analyzed research data collected from this wind farm in Lawton, Oklahoma, to determine the impacts of wind energy on systems operations. The integration of wind energy into the electric generation industry's supply mix is one of the issues industry grapples with. The natural variability of the wind resource raises concerns about how wind can be integrated into routine grid operations, particularly with regard to the effects of wind on regulation, load following, scheduling, line voltage,

9

DOE Electrolysis-Utility Integration Workshop Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTROLYSIS-UTILITY ELECTROLYSIS-UTILITY INTEGRATION WORKSHOP Renaissance Suites at Flatirons, Broomfield, CO September 22-23, 2004 September 22, 2004 7:30 am Registration and Continental Breakfast 8:30 am Welcome and Overview of Workshop Goals, Pete Devlin, DOE/OHFCIT 8:45 am Review Agenda and Objectives, Shawna McQueen, Energetics 9:00 am Electrolysis Hydrogen Generation, Steve Cohen, Teledyne Energy Systems 9:20 am Electrolyzers Operating in Real-World Conditions, Rob Regan, DTE Energy Systems 9:40 am Break 10:00 am Technology Advancements and New Concepts, Dan Smith, GE Global Research 10:20 am DG and Renewable Energy in the Electric Cooperative Sector, Ed Torerro, National Rural Electric Cooperative Association 10:40 am Electrolytic Hydrogen from a Blend of Nuclear- and Wind-Produced Electricity,

10

Window Daylighting Demo  

Broader source: Energy.gov (indexed) [DOE]

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

11

Window Daylighting Demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Daylighting Demo: Window Daylighting Demo: Accelerated Deployment of Daylighting and Shading Systems Stephen Selkowitz Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510-486-5064 April 4, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Façade has large energy impacts. Cooling and lighting average ~ 40% of energy use in commercial buildings and often >50% in peak electric demand. * Many glazing/shading/daylighting options exist, but selecting the "best" solution is

12

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

PV into Utility System Operations System Scheduling APSSolar PV into Utility System Operations and occurs at 5 p.m.Solar PV in Utility System Operations A. Mills 1 , A.

Mills, A.

2014-01-01T23:59:59.000Z

13

An integrated optimal design method for utility power distribution systems.  

E-Print Network [OSTI]

??This dissertation presents a comprehensive and integrated design methodology to optimize both the electrical and the economic performance of a utility power distribution system. The (more)

Fehr, Ralph E

2005-01-01T23:59:59.000Z

14

Integrating Solar PV in Utility System Operations  

SciTech Connect (OSTI)

This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with realistic PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with well behaved PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

2013-10-31T23:59:59.000Z

15

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

Fuel Prices .24 Generator Capacity and Fuel Price byIntegration Costs in Fuel Price Sensitivity Cases of the

Mills, A.

2014-01-01T23:59:59.000Z

16

Security demo at Sunport October 13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security demo at Sunport Security demo at Sunport October 13 The tool distinguishes potential-threat liquids from the harmless shampoos and sodas a regular traveler might take...

17

DOE Electrolysis-Utility Integration Workshop  

E-Print Network [OSTI]

·Solutions ­ Live with it and bear cost increases ­ Storage · Compressed Air · Pumped Storage · Positive cost Planning Xcel Energy #12;September 22, 2004 Xcel Energy 2 Xcel Energy and Wind ·Who we are? ·Amount of wind? ·Issues and Experiences #12;September 22, 2004 Xcel Energy 3 Xcel Energy Utilities ·Northern States Power

18

Utility Wind Integration Group Distributed Wind/Solar Interconnection  

Broader source: Energy.gov (indexed) [DOE]

Utility Wind Integration Group Distributed Wind/Solar Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop May 21, 2013 8:00AM MDT to May 22, 2013 5:00PM MDT Golden, Colorado This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight on integrating large-scale renewable generation into the transmission system. Held at the National Renewable Energy Laboratory's (NREL) state-of-the-art Energy Systems Integration Facility (ESIF) on the first day and at the Western Area Power Administration's Electric Power Training Center (EPTC) on the second day, the workshop will provide an overview of wind and solar interconnection

19

Proactive Renewables Integration for Utility Distribution Planning and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proactive Renewables Integration for Utility Distribution Planning and Proactive Renewables Integration for Utility Distribution Planning and Operations Speaker(s): Emma Stewart Date: March 5, 2013 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Sila Kiliccote The interconnection process can be a laborious and expensive process for both utilities and developers. High PV penetration levels create a number of challenges for the management and operation of the utility grid. This study presents work being completed in Hawaii to improve and innovate the interconnect process, separating perceived issues from real technical concerns. Existing interconnection methods and standards such as IEEE 1547, Hawaii Rule 14H and California Rule 21 are evaluated in emerging high penetration scenarios. These rules define a 15% DG penetration level as a

20

Integrated Baseline System (IBS) Version 2.0: Utilities Guide  

SciTech Connect (OSTI)

The Integrated Baseline System (IBS) is an emergency management planning and analysis tool being developed under the direction of the US Army Nuclear and Chemical Agency. This Utilities Guide explains how you can use the IBS utility programs to manage and manipulate various kinds of IBS data. These programs include utilities for creating, editing, and displaying maps and other data that are referenced to geographic location. The intended audience for this document are chiefly data managers but also system managers and some emergency management planners and analysts.

Burford, M.J.; Downing, T.R.; Williams, J.R. [Pacific Northwest Lab., Richland, WA (United States); Bower, J.C. [Bower Software Services, Kennewick, WA (United States)

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel Cell Technologies Office: DOE Electrolysis-Utility Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrolysis-Utility Integration Workshop Electrolysis-Utility Integration Workshop The U.S. Department of Energy sponsored an Electrolysis-Utility Integration Workshop in Broomfield, Colorado September 22-23, 2004. Attendees included representatives from utilities and energy companies, researchers, and government officials. Water electrolysis is a leading candidate for hydrogen production as the U.S. begins the transition to a hydrogen economy. Ideally, electrolysis will be able to provide hydrogen fuel for at least 20% of our light duty fleet; at prices competitive with traditional fuels and other hydrogen production pathways, using domestically available resources; and without adverse impacts to the environment. To be successful, the utility sector must play a vital role in identifying opportunities to diversify electricity generation and markets and begin to look at transportation fuel as a high priority business opportunity for the future. This workshop was held to identify the opportunities and challenges facing the widespread deployment of electrolysis based hydrogen production in the U.S.

22

Integration of coal utilization and environmental control in integrated gasification combined cycle systems  

Science Journals Connector (OSTI)

Integration of coal utilization and environmental control in integrated gasification combined cycle systems ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ... The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants ...

H. Christopher Frey; Edward S. Rubin

1992-10-01T23:59:59.000Z

23

Window Daylighting Demo  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

24

Energy Expenditure Estimation DEMO Application  

E-Print Network [OSTI]

of accelerometry. An average smart phone contains an inertial sensor and today we hardly leave our home without itEnergy Expenditure Estimation DEMO Application Bozidara Cvetkovi´c1,2 , Simon Kozina1,2 , Bostjan://www.mps.si Abstract. The paper presents two prototypes for the estimation of hu- man energy expenditure during normal

Lu?trek, Mitja

25

Mobile integrated temporary utility system. Innovative technology summary report  

SciTech Connect (OSTI)

The Mobile Integrated Temporary Utility System (MITUS) integrates portable electrical power along with communications and emergency alarm and lighting capabilities to provide safe, centralized power to work areas that need to be de-energized for decommissioning work. MITUS consists of a portable unit substation; up to twenty portable kiosks that house the power receptacles, communications, and emergency alarm and lighting systems; and a central communications unit. This system makes sequential decommissioning efforts efficient and cost-effective by allowing the integrated system to remain intact while being moved to subsequent work sites. Use of the MITUS also eliminates the need to conduct zero-energy tests and implement associated lock-out/tag-out procedures at partially de-energized facilities. Since the MITUS is a designed system, it can be customized to accommodate unique facility conditions simply by varying kiosks and transformer configurations. The MITUS is an attractive alternate to the use of portable generators with stand-alone communications and emergency system. It is more cost-effective than upgrading or reconfiguring existing power distribution systems.

NONE

1998-12-01T23:59:59.000Z

26

EV Project: Solar-Assisted Charging Demo  

Broader source: Energy.gov (indexed) [DOE]

Melissa Lapsa 2014 DOE Vehicle Technologies Office Review Presentation EV Project - Solar- Assisted Charging Demo VSS138 2014 U.S. DOE Hydrogen Program and Vehicle Technologies...

27

Integrated Renewable Hydrogen Utility System (IRHUS) business plan  

SciTech Connect (OSTI)

This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

NONE

1999-03-01T23:59:59.000Z

28

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

29

DEMO Project Goals | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

DEMO Project Goals | National Nuclear Security Administration DEMO Project Goals | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog DEMO Project Goals Home > About Us > Our Operations > Management and Budget > Human Resources > Pay-banding > DEMO Project Goals DEMO Project Goals The goals of this demonstration project are to Improve hiring by allowing NNSA to compete more effectively for high

30

Demo Links | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Demo Links | National Nuclear Security Administration Demo Links | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Demo Links Home > About Us > Our Operations > Management and Budget > Human Resources > Pay-banding > Demo Links Demo Links Federal Register Notices July 31, 2008: Federal Register Notice This is a link to a PDF document.

31

Utility Variable Generation Integration Group Fall O&M User Group...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

O&M User Group Meeting Utility Variable Generation Integration Group Fall O&M User Group Meeting October 1, 2014 7:00AM CDT to October 2, 2014 3:00PM CDT The Utility Variable...

32

Utility system integration and optimization models for nuclear power management  

E-Print Network [OSTI]

A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

Deaton, Paul Ferris

1973-01-01T23:59:59.000Z

33

Beyond ITER: Neutral beams for DEMO  

E-Print Network [OSTI]

In the development of magnetically confined fusion as an economically sustainable power source, ITER is currently under construction. Beyond ITER is the DEMO programme in which the physics and engineering aspects of a future fusion power plant will be demonstrated. DEMO will produce net electrical power. The DEMO programme will be outlined and the role of neutral beams for heating and current drive will be described. In particular, the importance of the efficiency of neutral beam systems in terms of injected neutral beam power compared to wallplug power will be discussed. Options for improving this efficiency including advanced neutralisers and energy recovery are discussed.

McAdams, R

2013-01-01T23:59:59.000Z

34

Utility Scale Renewables: Renewable and Efficiency Technology Integration (Presentation)  

SciTech Connect (OSTI)

PowerPoint presentation given by Dave Mooney at the NREL Industry Forum on renewable and efficiency technology integration.

Mooney, D.

2009-11-04T23:59:59.000Z

35

Integration of alternative feedstreams for biomass treatment and utilization  

DOE Patents [OSTI]

The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

Hennessey, Susan Marie (Avondale, PA); Friend, Julie (Claymont, DE); Dunson, Jr., James B. (Newark, DE); Tucker, III, Melvin P. (Lakewood, CO); Elander, Richard T. (Evergreen, CO); Hames, Bonnie (Westminster, CO)

2011-03-22T23:59:59.000Z

36

Integrated Design of Chemical Processes and Utility Systems  

E-Print Network [OSTI]

The pinch concept for integrated heat recovery networks has recently become established in chemical process design. This paper presents an overview of the concept and shows how it has now been extended to total process design (reactors, separators...

Linnhoff, B.

37

New Report: Integrating More Wind and Solar Reduces Utilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Emissions and Fuel Costs October 1, 2013 - 3:51pm Addthis The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study...

38

Kauai Island Utility Co-op (KIUC) PV integration study.  

SciTech Connect (OSTI)

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

39

COMPARATIVE ASSESSMENT OF MATERIAL PERFORMANCE IN DEMO  

E-Print Network [OSTI]

for sufficient time. Reliable estimates of component lifetimes are an important part of power plant design The basic DEMO design used in the present study is a 1.8 GW device (2.2 GW total thermal power ­ including simulation models and capabilities to assess material performance under the neutron irradiation conditions

40

"MBUF Demo" "Mn Road Fee Test"  

E-Print Network [OSTI]

(40 mpg) Electric Vehicle (non-gas powered) State Tax * Federal Tax ** State Tax * Federal Tax"MBUF Demo" "Mn Road Fee Test" "IntelliDrive Connected Vehicles for Safety, Mobility and User Fee Overview Six Months In-Vehicle Data Collection Participant Recruited Equipment Deployed First Odometer

Minnesota, University of

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerk , S.E. Johnson , P University Multimedia Document Retrieval Demo System is a web based application that allows the user to query on text documents of various formats (e.g. html). Since there is an increasing amount of audio data

Drummond, Tom

42

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerk y , S.E. Johnson y , P Multimedia Document Retrieval Demo System is a web based application that allows the user to query a database documents of various formats (e.g. html). Since there is an increasing amount of audio data containing

Drummond, Tom

43

Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report  

SciTech Connect (OSTI)

To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

2012-07-15T23:59:59.000Z

44

Fast wave current drive in DEMO  

SciTech Connect (OSTI)

The ability to non-inductively drive a large fraction of the toroidal plasma current in magnetically confined plasmas is an essential requirement for steady state fusion reactors such as DEMO. Besides neutral beam injection (NBI), electron-cyclotron resonance heating (ECRH) and lower hybrid wave heating (LH), ion-cyclotron resonance heating (ICRH) is a promising candidate to drive current, in particular at the high temperatures expected in fusion plasmas. In this paper, the current drive (CD) efficiencies calculated with coupled ICRF wave / CD numerical codes for the DEMO-1 design case (R{sub 0}=9m, B{sub 0}=6.8T, a{sub p}=2.25m) [1] are presented. It will be shown that although promising CD efficiencies can be obtained in the usual ICRF frequency domain (20-100MHz) by shifting the dominant ion-cyclotron absorption layers to the high-field side, operation at higher frequencies (100-300MHz) has a stronger CD potential, provided the parasitic RF power absorption of the alpha particles can be minimized.

Lerche, E.; Van Eestera, D.; Messiaen, A. [Association EURATOM-Belgian State, LPP-ERM/KMS, TEC partner, Brussels (Belgium); Franke, T. [Max-Planck-Institut fr Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Collaboration: EFDA-PPPT Contributors

2014-02-12T23:59:59.000Z

45

Development of an object-oriented dynamics simulator for a LFR DEMO  

SciTech Connect (OSTI)

A control-oriented dynamics simulator for a Generation IV Lead-cooled Fast Reactor (LFR) demonstrator (DEMO) has been developed aimed at providing a flexible, simple and fast-running tool allowing to perform design-basis transient and stability analyses, and to lay the foundations for the study of the system control strategy. For such purposes, a model representing a compromise between accuracy and straightforwardness has been necessarily sought, and in this view an object-oriented approach based on the Modelica language has been adopted. The reactor primary and secondary systems have been implemented by assembling both component models already available in a specific thermal-hydraulic library, and ad hoc developed nuclear component models suitably modified according to the specific DEMO configuration. The resulting overall plant simulator, incorporating also the balance of plant, consists in the following essential parts: core, integrated steam generator/primary pump block, cold and hot legs, primary coolant cold pool, turbine, heat sink, secondary coolant pump. Afterwards, the reactor response to typical transient initiators has been investigated: feedwater mass flow rate and temperature enhancement, turbine admission valve coefficient variation, increase of primary coolant mass flow rate, and transient of overpower have been simulated; results have been compared with the outcomes of analogous analyses performed by employing a lumped-parameter DEMO plant model. (authors)

Ponciroli, R.; Bortot, S.; Lorenzi, S.; Cammi, A. [Politecnico di Milano, Dept. of Energy, CeSNEF-Nuclear Engineering Div., via Ponzio 34/3, 20133 Milano (Italy)

2012-07-01T23:59:59.000Z

46

Utilization of Smart Materials and Predictive Modeling to Integrate Intracellular Dynamics with Cell Biomechanics and Collective Tissue Behavior  

E-Print Network [OSTI]

Utilization of Smart Materials and Predictive Modeling to Integrate Intracellular Dynamics important structures inside cells. New "smart" material will be used to trigger changes to cell movement Medical University Control of Cell Polarization by Smart Material Substrates Multiscale Imaging Multiscale

Mather, Patrick T.

47

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerky, S.E. Johnsony, P:==svr-www.eng.cam.ac.uk=research=projects=Multimedia Document Retrieval 1 System Description The CU-MDR Demo [3] is a web based application that allows the user-line. The system downloads the audio track of British and American news broadcasts from the Internet once a day

Drummond, Tom

48

The Cambridge University Multimedia Document Retrieval Demo System  

E-Print Network [OSTI]

The Cambridge University Multimedia Document Retrieval Demo System A.Tuerk, S.E. Johnson, P://svr-www.eng.cam.ac.uk/research/projects/Multimedia Document Retrieval 1 System Description The CU-MDR Demo [3] is a web based application that allows the user-line. The system downloads the audio track of British and American news broadcasts from the Internet once a day

Drummond, Tom

49

Progress in Developing the K-DEMO Device Configuration  

SciTech Connect (OSTI)

K-DEMO is being studied by South Korean researchers as a follow-on to ITER and the next step toward the construction of a commercial fusion power plant. The K-DEMO mission defines a staged approach targeting operation with an initial testing phase for plasma facing components and critical operating systems to be followed by a second phase which centers on upgrading the in-vessel components for operation at 200 to 600 MWe with a planned 70% availability.

Brown, Tom

2013-06-27T23:59:59.000Z

50

Demo of below ground site that once held the Plutonium Recycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford Demo of below ground site that once held the Plutonium Recycle Test Reactor at Hanford...

51

System analysis study for Korean fusion DEMO reactor  

Science Journals Connector (OSTI)

A conceptual design study for a steady-state Korean fusion DEMO reactor (K-DEMO) has been initiated. Two peculiar features need to be noted. First, the major radius is designed to be just below 6.5m, considering practical engineering feasibilities. But still, high magnetic field at the plasma center around 8T is expected to be achieved by using current state-of-the-art high performance Nb3Sn strand technology. Second, a two-stage development plan is being considered. In the first stage, K-DEMO will demonstrate a net electricity generation but will also act as a component test facility. Then, after a major upgrade, K-DEMO is expected to show a net electric generation on the order of 300MWe and the competitiveness in cost of electricity (COE). Feasibility of such a practical, near-future demonstration reactor is studied in this paper, based on a zero dimensional system analysis code study. It was shown that a net electric generation on the order of 300MWe can be achieved below the optimistic ?N limit of 5. The elongation of K-DEMO is around 1.8 with single null configuration. Detailed optimization process and the resultant various plasma parameters are described.

Jun Ho Yeom; Keeman Kim; Young Seok Lee; Hyoung Chan Kim; Sangjun Oh; Kihak Im; Charles Kessel

2013-01-01T23:59:59.000Z

52

Cyprus Smart metering demo (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Cyprus Smart metering demo (Smart Grid Project) Cyprus Smart metering demo (Smart Grid Project) Jump to: navigation, search Project Name Cyprus Smart metering demo Country Cyprus Coordinates 35.126411°, 33.429859° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.126411,"lon":33.429859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

NETL: News Release - Florida Demo Tames High Sulfur Coal: Delivers Power at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 11, 2005 March 11, 2005 Florida Demo Tames High Sulfur Coal: Delivers Power at Very Low Emissions Shows that New Technology Cuts Pollutants to Fractions of Federal Clean Air Limits JACKSONVILLE, FL - Recent tests with one of the nation's mid- to high-sulfur coals have further verified that a new electric generation technology in its first large-scale utility demonstration here is one of the world's cleanest coal-based power plants. This city's municipal utility JEA logged the achievement at its Northside Generating Station using Illinois No. 6 coal in a 300 megawatt demonstration of circulating fluidized bed (CFB) combustion, which is the largest application yet of the new form in the United States. It almost triples the size of a previous demonstration and scales up the technology to the sizes preferred for adding new plants and replacing old ones, also called repowering.

54

Cost effective path to DEMO University of Washington  

E-Print Network [OSTI]

1 Cost effective path to DEMO By Tom Jarboe University of Washington To Fusion Power Associates December 14, 2011 #12;2 Outline · Maximizing the development-cost benefit from ITER knowledge · Getting on cost effective path · Requirements of smaller scale experiment · Cost problems are helped

55

PUBLISHED VERSION Diagnostics for machine protection of DEMO  

E-Print Network [OSTI]

as Protection of Investment) addresses both the risks to plant (to avoid costly repair or replacementPUBLISHED VERSION Diagnostics for machine protection of DEMO Felton R © 2014 UNITED KINGDOM ATOMIC Reactor Diagnostics: Proceedings of the International Conference, 9-13 September 2013, Villa Monastero

56

Demo Abstract: MARVEL: Multiple Antenna based Relative Vehicle Localizer  

E-Print Network [OSTI]

to install especially on existing vehicles and exhibit a tradeoff between accuracy and cost. Similarly, usingDemo Abstract: MARVEL: Multiple Antenna based Relative Vehicle Localizer Dong Li , Tarun Bansal , Zhixue Lu and Prasun Sinha Department of Computer Science and Engineering The Ohio State University

Sinha, Prasun

57

Initial Economic Analysis of Utility-scale Wind Integration in Hawaii  

Office of Energy Efficiency and Renewable Energy (EERE)

Summarizes analysis of the economic characteristics of the utility-scale wind configuration project that has been referred to as the Big Wind project.

58

A new concept for utility integrated resource planning: ``Start with the customer``  

SciTech Connect (OSTI)

The competitive restructuring of the electric power industry is intensifying pressures for electric utilities to control costs through improved utilization of existing assets and by minimizing capital investment in new generation, transmission, and distribution capacity. This article introduces a new planning approach that can provide more informed business decisions, resulting in higher asset utilization, lower overall costs, and enhanced customer service. Unlike traditional planning methods, which assumed captive customer load growth, this process starts at the customer, focusing on how the customer`s energy service needs can best be met. Experience garnered from utilities on four continents illustrates the potential of this new approach to reduce capital expenditure for energy resource additions, often at less than one-half the cost of conventional solutions. By reorienting how utilities think, plan, and are internally organized, this new approach can assist utilities in making the fundamental transition to a customer-driven industry. Additional benefits include accurate costing of energy resources and wheeling, reduced vulnerability to conflicts over facility siting, reduced risk in a time of rapid industry change. The process proposed here may not be the best IRP process for utilities in the future but could be of significant benefit during the restructuring period.

Arsali, N.; Neelakanta, P.S.

1998-04-01T23:59:59.000Z

59

Initial Economic Analysis of Utility-Scale Wind Integration in Hawaii  

SciTech Connect (OSTI)

This report summarizes an analysis, conducted by the National Renewable Energy Laboratory (NREL) in May 2010, of the economic characteristics of a particular utility-scale wind configuration project that has been referred to as the 'Big Wind' project.

Not Available

2012-03-01T23:59:59.000Z

60

New Report: Integrating More Wind and Solar Reduces Utilities' Carbon Emissions and Fuel Costs  

Broader source: Energy.gov [DOE]

The National Renewable Energy Laboratory (NREL) released Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2), a follow-up to the initial WWSIS released in May 2010, which examined the viability, benefits, and challenges of integrating as much as 33% wind and solar power into the electricity grid of the western United States.

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ESIF Plugs Utility-Scale Hardware into Simulated Grids to Assess Integration Effects (Fact Sheet)  

SciTech Connect (OSTI)

At NREL's Energy Systems Integration Facility (ESIF), integrated, megawatt-scale power hardware-in-the-loop (PHIL) capability allows researchers and manufacturers to test new energy technologies at full power in real-time simulations - safely evaluating component and system performance and reliability before going to market.

Not Available

2014-04-01T23:59:59.000Z

62

Study of integrated metal hydrides heat pump and cascade utilization of liquefied natural gas cold energy recovery system  

Science Journals Connector (OSTI)

The traditional cold energy utilization of the liquefied natural gas system needs a higher temperature heat source to improve exergy efficiency, which barricades the application of the common low quality thermal energy. The adoption of a metal hydride heat pump system powered by low quality energy could provide the necessary high temperature heat and reduce the overall energy consumption. Thus, an LNG cold energy recovery system integrating metal hydride heat pump was proposed, and the exergy analysis method was applied to study the case. The performance of the proposed integration system was evaluated. Moreover, some key factors were also theoretically investigated about their influences on the system performance. According to the results of the analysis, some optimization directions of the integrated system were also pointed out.

Xiangyu Meng; Feifei Bai; Fusheng Yang; Zewei Bao; Zaoxiao Zhang

2010-01-01T23:59:59.000Z

63

Utilizing Staging Tables in Data Integration to Load Data into Materialized Views  

Science Journals Connector (OSTI)

This paper proposes an approach to data integration and migration from a collection of heterogeneous and independent data sources into a data warehouse schema. Current methodology assumes that the data is loaded ...

Ahmed Ejaz; Revett Kenneth

2005-01-01T23:59:59.000Z

64

Copy of FINAL SG Demo Project List 11 13 09-External.xls | Department...  

Office of Environmental Management (EM)

Copy of FINAL SG Demo Project List 11 13 09-External.xls More Documents & Publications Smart Grid Regional and Energy Storage Demonstration Projects: Awards Energy Storage...

65

E-Print Network 3.0 - ac transit demos Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Streaming Application Summary: , United Kingdom Email: bocek--hecht--hausheer--stiller@ifi.uzh.ch, yehia@comp.lancs.ac.uk Abstract... --This demo shows the CompactPSH...

66

SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

67

Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization  

Science Journals Connector (OSTI)

Abstract China depends on naphtha (derived from oil) as the main feedstock for ethylene plants, resulting in margins that are negatively co-related with the price of oil. Clearly, light hydrocarbons provide cost advantages over the conventional naphtha feedstock. Consequently, the recovery of light hydrocarbons from refinery gas has been gathering more and more significance. Nonetheless, the cryogenic separation needs low process temperatures, substantially increasing the refrigeration load requirements and, attendantly, the compression requirements associated with the refrigeration system. In this paper, the cold energy of liquefied natural gas (LNG) is applied to light hydrocarbons cryogenic separation process to replace the compression refrigeration system on the basis of one China refinery. The results show that LNG can provide 14,373kW cold energy for the separation process, resulting in a direct compression power saving of 7973kW and making the utilization rate of LNG cold energy as high as 71.9%.

Yajun Li; Hao Luo

2014-01-01T23:59:59.000Z

68

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 41, NO. 2, MARCH/APRIL 2005 507 Integrated High-Speed Intelligent Utility Tie Unit for  

E-Print Network [OSTI]

is to rejuvenate the idea of integrated resource planning and promote the distributed generation via traditional paradigm of the vertically integrated electrical utility structure has begun to change. In the United States, the Federal Energy Regula- tory Commission has issued several rules and Notices of Proposed

Oraintara, Soontorn

69

Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity  

SciTech Connect (OSTI)

Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

2012-11-30T23:59:59.000Z

70

Pre-conceptual Design Assessment of DEMO Remote Maintenance  

E-Print Network [OSTI]

EDFA, as part of the Power Plant Physics and Technology programme, has been working on the pre-conceptual design of a Demonstration Power Plant (DEMO). As part of this programme, a review of the remote maintenance strategy considered maintenance solutions compatible with expected environmental conditions, whilst showing potential for meeting the plant availability targets. A key finding was that, for practical purposes, the expected radiation levels prohibit the use of complex remote handling operations to replace the first wall. In 2012/13, these remote maintenance activities were further extended, providing an insight into the requirements, constraints and challenges. In particular, the assessment of blanket and divertor maintenance, in light of the expected radiation conditions and availability, has elaborated the need for a very different approach from that of ITER. This activity has produced some very informative virtual reality simulations of the blanket segments and pipe removal that are exceptionally ...

Loving, A; Sykes, N; Iglesias, D; Coleman, M; Thomas, J; Harman, J; Fischer, U; Sanz, J; Siuko, M; Mittwollen, M; others,

2013-01-01T23:59:59.000Z

71

Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

72

Deputy Secretary Daniel Poneman's Remarks at demosEUROPA Event in Warsaw,  

Broader source: Energy.gov (indexed) [DOE]

demosEUROPA Event in demosEUROPA Event in Warsaw, Poland - As Prepared for Delivery Deputy Secretary Daniel Poneman's Remarks at demosEUROPA Event in Warsaw, Poland - As Prepared for Delivery September 28, 2011 - 12:00pm Addthis Thank you, Ambassador Feinstein, for the introduction. And thank you to demosEUROPA and President Pawel Swieboda for hosting today's event. We are here today to talk about the future - our collective future - and how we can work together to achieve our shared energy goals. I am reminded of the dramatic moments when the whole world was watching the Gdańsk shipyards. Now, we can look back at those events with the patina of historical inevitability, but at the time, the outcome was much less evident. As a global community, we watched this battle for freedom unfold

73

A Study on the Site Plot Plan and Building Schematics of a Fusion DEMO Plant  

Science Journals Connector (OSTI)

DEMO and Next-Step Facilities / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

Hyuck Jong Kim; Changwoo Park; Yong-su Kim; Gyunyoung Heo; Jong Kyung Kim; Chang-ho Shin

74

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1982-08-01T23:59:59.000Z

75

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report  

SciTech Connect (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1983-03-01T23:59:59.000Z

76

Call for Student Demos and Posters on Unmanned Aerial Systems AIAA workshop on "Airborne Networks and Communications"  

E-Print Network [OSTI]

Call for Student Demos and Posters on Unmanned Aerial Systems AIAA workshop on "Airborne Networks, this workshop will also include a session on student posters and demonstrations of unmanned aerial vehicles. Undergraduate and graduate students whose posters and demos are selected for presentation will be provided

Namuduri, Kamesh

77

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

78

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

79

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid  

E-Print Network [OSTI]

Demo Abstract: Toward Data-driven Demand-Response Optimization in a Campus Microgrid Yogesh Simmhan-driven demand response optimization (DR) in the USC campus microgrid, as part of the Los An- geles Smart Grid of this project is to investigate techniques for demand-response optimization (DR) ­ cur- tailing the electricity

Prasanna, Viktor K.

80

Importance to DEMO of the Quasi-Axisymmetric Extension of Tokamak Operating Space  

E-Print Network [OSTI]

1 Importance to DEMO of the Quasi-Axisymmetric Extension of Tokamak Operating Space Allen Boozer, Columbia University Quasi-axisymmetric (QA) shaping allows tokamak control that is not possible with pure, a conventional tokamak, to large while preserving the good trajectory confinement. Addresses a large fraction

Princeton Plasma Physics Laboratory

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Demo Abstract: Wireless Sensor Network for Substation Monitoring: Design and Deployment  

E-Print Network [OSTI]

Demo Abstract: Wireless Sensor Network for Substation Monitoring: Design and Deployment Asis-Transmissions & Substations 9625 Research Drive Charlotte, NC 28262 {lvanderz,birodriguez} @epri.com Ralph McKosky, Joseph in a substation for monitoring the health of power subsystems such as circuit breakers, trans- formers

Nasipuri, Asis

82

MATLAB Resources 1. MATLAB Help: Video Tutorials/Demos on Specific Topics and Features  

E-Print Network [OSTI]

MATLAB Resources 1. MATLAB Help: Video Tutorials/Demos on Specific Topics and Features 2. MathWorks Website: Interactive MATLAB & Simulink Based Tutorials (http://www.mathworks.com/academia/student_center/tutorials/) Strongly Recommended: Interactive MATLAB Tutorial 3. MathWorks Recorded Webinars (http

Walker, Homer F.

83

Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions  

E-Print Network [OSTI]

Thermo-mechanical analysis of a DEMO divertor under the EFREMOV test conditions Igor Simonovski as a boundary condition in a thermo-mechanical analysis of the divertor. The analysis is performed for a number to Fusion Engineering and Design May 11, 2009 #12;Key words: thermo-mechanical analysis, divertor, He

Cizelj, Leon

84

Demo Abstract: ThermoSense: Thermal Array Sensor Networks in Building Management  

E-Print Network [OSTI]

the heating, cooling, ventilation and lighting of a building to optimize energy usage. Categories and Subject-Based Ap- plication Systems]: Real-time and embedded systems 1. INTRODUCTION Energy usage has increasedDemo Abstract: ThermoSense: Thermal Array Sensor Networks in Building Management Varick L. Erickson

Cerpa, Alberto E.

85

Live Demo: Spiking ratSLAM: Rat Hippocampus Cells in Spiking Neural Hardware  

E-Print Network [OSTI]

complex mazes and remember the location of home and food, rats take advantage a cells in the hippocampusLive Demo: Spiking ratSLAM: Rat Hippocampus Cells in Spiking Neural Hardware F. Galluppi l , J Abstract-We will demonstrate a model of rat hippocampus place, grid and Border cells implemented

Kuehnlenz, Kolja

86

Demo Abstract: Energy Transference for Sensornets Affan A. Syed Young Cho John Heidemann  

E-Print Network [OSTI]

Demo Abstract: Energy Transference for Sensornets Affan A. Syed Young Cho John Heidemann USC continuous monitoring, 24x7, at remote, inaccessible locations making energy man- agement a critical part of most sensornets. The sensornet research community has explored energy conservation and energy

Heidemann, John

87

Demo Abstract: Energy Transference for Sensornets ISI Technical Report ISI-TR-2010-669  

E-Print Network [OSTI]

Demo Abstract: Energy Transference for Sensornets ISI Technical Report ISI-TR-2010-669 November, inaccessible locations making energy man- agement a critical part of most sensornets. The sensornet research community has explored energy conservation and energy harvesting to address this problem of long-lived sen

Heidemann, John

88

Laboratory experiments as demos and projects in the underwater acoustics and sonar course  

Science Journals Connector (OSTI)

Underwater Acoustics and Sonar (SP411) is a 3?h course that is typically offered to Midshipmen in their senior year. General science majors take the course in the fall while the oceanography majors enroll in the spring. A sprinkling of physics electrical engineers ocean engineers and systems majors also populate the course (totaling ?110 students/yr). Since this course is offered without a lab the in?class experience has been enhanced with the development (over many years) of our demo carts which surround the classroom. Although Friday is our major demo day demos are performed throughout the week. They motivate the students out?of?class experimental projects. Demos include: (a) waves on slinkies; (b) Fourier analysis of tones in noise homemade musical instruments; (c) harmonic synthesis; (d) receiver operating characteristics from processed signals in noise; (e) two?element and loudspeaker beam patterns; (f) sound speed versus temperature in water; (g) target strength versus angle of a model sub; (h) Ref. coef. from an Al/water interface; (i) PC?IMAT (interactive multisensor analysis training) simulations of array steering ray tracing active sonar propagation loss; and (j) FM detection and Doppler effects. Students get involved with the measurements have fun and their understanding of underwater sound is greatly enhanced.

Elizabeth L. Simmons; Murray S. Korman

1999-01-01T23:59:59.000Z

89

A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys  

SciTech Connect (OSTI)

A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small-medium commercial and industrial customer, and $82,000 for large commercial and industrial customer. Future work to improve the quality and coverage of information on the value of electricity reliability to customers is described.

Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

2003-11-01T23:59:59.000Z

90

Materials R&D for a timely DEMO: Key findings and recommendations of the EU Roadmap Materials Assessment Group  

Science Journals Connector (OSTI)

Abstract The findings of the EU Fusion Programme's Materials Assessment Group (MAG), assessing readiness of Structural, Plasma Facing (PF) and High Heat Flux (HHF) materials for DEMO, are discussed. These are incorporated into the EU Fusion Power Roadmap [1], with a decision to construct DEMO in the early 2030s. The methodology uses project-based and systems-engineering approaches, the concept of Technology Readiness Levels, and considers lessons learned from Fission reactor material development. Baseline materials are identified for each DEMO role, and the DEMO mission risks analysed from the known limitations, or unknown properties, associated with each baseline material. R&D programmes to address these risks are developed. The DEMO assessed has a phase I with a starter blanket: the blanket must withstand ?2MWyrm?2 fusion neutron flux (equivalent to ?20dpa front-wall steel damage). The baseline materials all have significant associated risks, so development of Risk Mitigation Materials (RMM) is recommended. The R&D programme has parallel development of the baseline and RMM, up to down-selection points to align with decisions on the DEMO blanket and divertor engineering definition. ITER licensing experience is used to refine the issues for materials nuclear testing, and arguments are developed to optimise scope of materials tests with fusion neutron (14MeV) spectra before DEMO design finalisation. Some 14MeV testing is still essential, and the Roadmap requires deployment of a ?30dpa (steels) testing capability by 2026. Programme optimisation by the pre-testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams is discussed along with the minimum 14MeV testing programme, and the key role which fundamental and mission-oriented modelling can play in orienting the research.

Derek Stork; Pietro Agostini; Jean-Louis Boutard; Derek Buckthorpe; Eberhard Diegele; Sergei L. Dudarev; Colin English; Gianfranco Federici; Mark R. Gilbert; Sehila Gonzalez; Angel Ibarra; Christian Linsmeier; Antonella Li Puma; Gabriel Marbach; Lee W. Packer; Baldev Raj; Michael Rieth; Min Quang Tran; David J. Ward; Steven J. Zinkle

2014-01-01T23:59:59.000Z

91

Integrated Industrial Wood Chip Utilization  

E-Print Network [OSTI]

The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

Owens, E. T.

1984-01-01T23:59:59.000Z

92

ELECTROLYSIS-UTILITY INTEGRATION WORKSHOP  

E-Print Network [OSTI]

of Canada 11:00 am Wind in the Electricity Infrastructure, Mark McGree, Xcel Energy 11:20 am Hydrogen

93

Utility Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Sponsored E-Source Membership Utility Potential...

94

Lessons learnt from ITER safety & licensing for DEMO and future nuclear fusion facilities  

E-Print Network [OSTI]

One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S&E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S&E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during ...

Taylor, Neill

2013-01-01T23:59:59.000Z

95

A collaboration opportunity for next step tokamaks: ITER and DEMO (specifically a next generation diagnostic: the pulsed polarimetry technique)  

E-Print Network [OSTI]

A collaboration opportunity for next step tokamaks: ITER and DEMO (specifically a next generation and developing diagnostic technique and propose it to the FESAC International Collaboration Panel as a topic for collaborative international research. The diagnostic is a remote sensing technique with potential for measuring

96

1 Empowering Collaboration and Technology IntegrationEmpowering Collaboration and Technology Integration1 IT Open Forum  

E-Print Network [OSTI]

Collaboration and Technology Integration Open Forum Q&A Instructions · WebEx Users: · Recorded demos will play back through your computer speakers · To submit a question via WebEx, please use the Q&A panel' will not be seen by the people monitoring the Q&A stream." · WebEx Presentation with Q&A will be posted on its

Su, Xiao

97

NSLS Utilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

98

Latest results of NEXT-DEMO, the prototype of the NEXT 100 double beta decay experiment  

E-Print Network [OSTI]

NEXT-DEMO is a 1:4.5 scale prototype of the NEXT100 detector, a high-pressure xenon gas TPC that will search for the neutrinoless double beta decay of $^{136}$Xe. X-ray energy depositions produced by the de-excitation of Xenon atoms after the interaction of gamma rays from radioactive sources have been used to characterize the response of the detector obtaining the spatial calibration needed for close-to-optimal energy resolution. Our result, 5.5% FWHM at 30 keV, extrapolates to 0.6% FWHM at the Q value of $^{136}$Xe. Additionally, alpha decays from radon have been used to measure several detection properties and parameters of xenon gas such as electron-ion recombination, electron drift velocity, diffusion and primary scintillation light yield. Alpha spectroscopy is also used to quantify the activity of radon inside the detector, a potential source of background for most double beta decay experiments.

Serra, L; Martin-Albo, J; Sorel, M; Gomez-Cadenas, J J

2014-01-01T23:59:59.000Z

99

NREL: Energy Systems Integration - Integrated Deployment Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

100

Utility Formation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amounts See detailed discussion of these standards. For more information regarding tribal utility formation, contact the Power Service Line Account Executives: Eastern Power...

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

For Utilities  

Broader source: Energy.gov [DOE]

Utilities and energy efficiency program administrators can incorporate Superior Energy Performance (SEP) into new or existing programs to help their industrial customers meet efficiency targets. The utility can provide incentives or other support to manufacturers who decide to implement SEP or pursue capital investments in energy efficiency. Accredited verification bodies have verified the substantial energy savings that are possible with SEP.

102

Characterisation of NEXT-DEMO using xenon K$_?$ X-rays  

E-Print Network [OSTI]

The NEXT experiment aims to observe the neutrinoless double beta decay of $^{136}$Xe in a high pressure gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon k-shell x-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a ~1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K$_{\\alpha}$ X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from $^{22}$Na.

NEXT Collaboration; D. Lorca; J. Martn-Albo; A. Laing; P. Ferrario; J. J. Gmez-Cadenas; V. lvarez; F. I. G. Borges; M. Camargo; S. Crcel; S. Cebrin; A. Cervera; C. A. N. Conde; T. Dafni; J. Daz; R. Esteve; L. M. P. Fernandes; A. L. Ferreira; E. D. C. Freitas; V. M. Gehman; A. Goldschmidt; H. Gmez; D. Gonzlez-Daz; R. M. Gutirrez; J. Hauptman; J. A. Hernando Morata; D. C. Herrera; I. G. Irastorza; L. Labarga; I. Liubarsky; M. Losada; G. Luzn; A. Mar; G. Martnez-Lema; A. Martnez; T. Miller; F. Monrabal; M. Monserrate; C. M. B. Monteiro; F. J. Mora; L. M. Moutinho; J. Muoz Vidal; M. Nebot-Guinot; D. Nygren; C. A. B. Oliveira; J. Prez; J. L. Prez Aparicio; J. Renner; L. Ripoll; A. Rodrguez; J. Rodrguez; F. P. Santos; J. M. F. dos Santos; L. Segu; L. Serra; D. Shuman; A. Simn; C. Sofka; M. Sorel; J. F. Toledo; J. Torrent; Z. Tsamalaidze; J. F. C. A. Veloso; R. Webb; J. T. White; N. Yahlali

2014-11-05T23:59:59.000Z

103

NREL: Transmission Grid Integration - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects NREL's transmission integration projects provide data and models that help utilities and policymakers make informed decisions about the integration of variable generation,...

104

Z:\\gis553s12\\lab5\\demo\\grid2poly.py Wednesday, January 18, 2012 4:49 PM # Create a square quadrat (polygon) dataset based on the input feature class.  

E-Print Network [OSTI]

Z:\\gis553s12\\lab5\\demo\\grid2poly.py Wednesday, January 18, 2012 4:49 PM # Create a square quadrat.env.workspace + "/" + inputpoint desc = arcpy.Describe(inputfull) -1- #12;Z:\\gis553s12\\lab5\\demo\\grid2poly.py Wednesday, January 18

Hung, I-Kuai

105

The poster and demo session of CPSWeek 2011 will be held at 5:00PM on Tuesday in the Grand Foyer. Dinner will be served starting at 6:30PM on the fourth floor, but presenters are invited to attend their posters and  

E-Print Network [OSTI]

1 The poster and demo session of CPSWeek 2011 will be held at 5:00PM on Tuesday in the Grand Foyer their posters and demos until 6:45PM. All presentations are listed at the end of this document. Each presentation has an ID number, which is assigned to a specific poster easel and/or demo table to be found

Liberzon, Daniel

106

Public Utilities (Florida) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

107

Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System  

E-Print Network [OSTI]

et al. , 2007. Utility Wind Integration and Operating ImpactThe Western Wind and Solar Integration Study . Golden, CO:Association, the Utility Wind Integration Group, and the

Mills, Andrew

2010-01-01T23:59:59.000Z

108

Federal Utility Partnership Working Group Utility Partners  

Broader source: Energy.gov [DOE]

Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

109

features Utility Generator  

E-Print Network [OSTI]

#12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive Content Classification Loop features content VO selection & Utility Selector content features Real

Chang, Shih-Fu

110

Utility Sounding Board  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports, Publications, and Research Utility Toolkit Sponsored E-Source Membership Utility Potential Calculator EE Maximization Tool Conduit Utility Sounding Board Residential...

111

Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae  

SciTech Connect (OSTI)

The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

Vdovin, V. L., E-mail: vdov@nfi.kiae.ru [National Research Centre 'Kurchatov Institute,' (Russian Federation)

2013-02-15T23:59:59.000Z

112

Utilization Analysis Page 1 UTILIZATION ANALYSIS  

E-Print Network [OSTI]

Utilization Analysis Page 1 UTILIZATION ANALYSIS Section 46a-68-40 and HIRING/PROMOTION GOALS utilized in the Health Center's workforce, the numbers of protected classes in the workforce must conducted for each occupational category and position classification. The Utilization Analysis was performed

Oliver, Douglas L.

113

utility functions scaling profiles utility-fair  

E-Print Network [OSTI]

bandwidth utility functions scaling profiles utility-fair I. INTRODUCTION The emerging MPEG-4 video. This can result in a significant increase in the utilization of network capacity [1]. These techniques. Bandwidth utility functions [9] can be used to characterize an application's capability to adapt over

Chang, Shih-Fu

114

California cotton growers utilize integrated pest management  

E-Print Network [OSTI]

economic thresholds in cotton. In: Frisbie RE, Adkission,the Good Bugs in Cotton: Field Guide to Predators, ParasitesInsect and Mite Pests of Cotton. Texas Agricultural

Brodt, Sonja; Goodell, Peter B.; Krebill-Prather, Rose L.; Vargas, Ron N.

2007-01-01T23:59:59.000Z

115

Integrating Solar PV in Utility System Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

Webinar presenting findings from the recent report, authored jointly by researchers at Argonne National Laboratory, Berkeley Lab, and the National Renewable Energy Laboratory and entitled, ...

116

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

normal distribution. Bonneville Power Administration BPA2009 BPA separately quantifies following reserve andand system operators). BPA picks a single reserve quantity

Mills, A.

2014-01-01T23:59:59.000Z

117

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

to $4.00/MMBtu and coal price increases from $1.96/MMBtu togas prices and higher coal prices, while the highest is $by the assumed increase in coal price in that case. Perfect

Mills, A.

2014-01-01T23:59:59.000Z

118

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

of Renewable Energy Note that total costs increasedemand and renewable energy to minimize production cost. TheCost of PV . 54 Renewable Energy

Mills, A.

2014-01-01T23:59:59.000Z

119

Integrating Solar PV in Utility System Operations  

E-Print Network [OSTI]

System Operator combined cycle Control Performance Standardstart-up times such as combined cycle plants. However, we do4 steam turbines, 9 combined cycle, and 41 combustion

Mills, A.

2014-01-01T23:59:59.000Z

120

Cogeneration - A Utility Perspective  

E-Print Network [OSTI]

are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition...

Williams, M.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Utility Monitor September 2010  

E-Print Network [OSTI]

Utility Monitor September 2010 Why monitor utility syntax? Enforce and Maintain Company-Wide DB2 Utility Standards. Jennifer Nelson Product Specialist, Rocket Software © 2010 IBM Corporation © 2010............................................................................................................... iv 1 Why Monitor DB2 Utility Syntax

122

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

123

NREL: Distributed Grid Integration - Solar Distributed Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Distributed Grid Integration Projects Solar Distributed Grid Integration Projects NREL provides grid integration support, system-level testing, and systems analysis for DOE's Solar Distributed Grid Integration Projects supported by the SunShot Initiative. These projects address technical issues and develop solutions for high penetration grid integration of solar technologies into the electric power system to meet the following goals: Reduce cost: reduce interconnection costs by developing streamlined procedures including advanced integration models for utility interconnection of photovoltaics (PV) Reduce market barriers: work with utilities and system integrators to reduce market barriers by providing research on impacts of integration of high penetration of PV systems and developing solutions.

124

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

125

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

126

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

127

Utilization Technology Institute | Open Energy Information  

Open Energy Info (EERE)

Institute Institute Jump to: navigation, search Name Utilization Technology Institute Place Des Plaines, IL References Utilization Technology Institute[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Utilization Technology Institute is a company located in Des Plaines, IL. References ↑ "Utilization Technology Institute" Retrieved from "http://en.openei.org/w/index.php?title=Utilization_Technology_Institute&oldid=381738" Categories: Clean Energy Organizations Companies Organizations What links here Related changes

128

Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

129

NREL: Energy Systems Integration Facility - Research Electrical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Electrical Distribution Bus The Research Electrical Distribution Bus is the Energy Systems Integration Facility's internal utility infrastructure interconnecting its...

130

Survey of Western U.S. Electric Utility Resource Plans  

E-Print Network [OSTI]

1992. The process of integrating DSM and supply resources incosts to target intensive DSM campaigns. Utilities Policy 5,Vollans, G.E. , 1994. With DSM, who needs IRP? Utilities

Wilkerson, Jordan

2014-01-01T23:59:59.000Z

131

The Utility Battery Storage Systems Program Overview  

SciTech Connect (OSTI)

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

Not Available

1994-11-01T23:59:59.000Z

132

Utility Theory Social Intelligence  

E-Print Network [OSTI]

Utility Theory Social Intelligence Daniel Polani Utility Theory ­ p.1/15 Utilities: Motivation Consider: game scenario For Instance: 2-or-more players Necessary: development of concept for utilities decisions sequential decisions (time) games Utility The Prototypical Scenario Consider: agent that can take

Polani, Daniel

133

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

134

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

135

Florida CFB demo plant yields low emissions on variety of coals  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has reported results of tests conducted at Jacksonville Electric Authority (JEA)'s Northside power plant using mid-to-low-sulfur coal, which indicate the facility is one of the cleanest burning coal-fired power plants in the world. A part of DOE's Clean Coal Technology Demonstration Program, the JEA project is a repowering demonstration of the operating and environmental performance of Foster Wheeler's utility-scale circulating fluidized bed combustion (CFB) technology on a range of high-sulfur coals and blends of coal and high-sulfur petroleum coke. The 300 MW demonstration unit has a non-demonstration 300 MW twin unit.

NONE

2005-07-01T23:59:59.000Z

136

Energy Systems Integration  

Broader source: Energy.gov [DOE]

Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers the National Renewable Energy Laboratory's Energy Systems Integration Facility (ESIF) and its capabilities.

137

Physics analyses on the core plasma properties in the helical fusion DEMO reactor FFHR-d1  

Science Journals Connector (OSTI)

Physics assessments on magnetohydrodynamics equilibrium, neoclassical transport and alpha particle confinement have been carried out for the helical fusion DEMO reactor FFHR-d1, using radial profiles extrapolated from the Large Helical Device. Large Shafranov shift is foreseen in FFHR-d1 due to its high-beta property. This leads to deterioration in neoclassical transport and alpha particle confinement. Plasma position control using vertical magnetic field has been examined and shown to be effective for Shafranov shift mitigation. In particular, in the high-aspect-ratio configuration, it is possible to keep the magnetic surfaces similar to those in vacuum with high central beta of ~8% by applying a proper vertical magnetic field. As long as the Shafranov shift is mitigated, the neoclassical heat loss can be kept at a level compatible with the alpha heating power. The alpha particle loss can also be kept at a low level if the loss boundary of alpha particles is on the blanket surface and the plasma position control is properly applied. The lost positions of alpha particles are localized around the divertor region that is located behind the blanket in FFHR-d1.

J. Miyazawa; Y. Suzuki; S. Satake; R. Seki; Y. Masaoka; S. Murakami; M. Yokoyama; Y. Narushima; M. Nunami; T. Goto; C. Suzuki; I. Yamada; R. Sakamoto; H. Yamada; A. Sagara; the FFHR Design Group

2014-01-01T23:59:59.000Z

138

Copy of FINAL SG Demo Project List 11 13 09-External.xls  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid Regional Demonstrations HQ State HQ City Name of Primary Awardee Project Title and Brief Project Description Project Locations Recovery Act Funding Total Project Value Including Cost Share CA Los Angeles Los Angeles Department of Water and Power Los Angeles Department of Water and Power Smart Grid Regional Demonstration Project - In partnership with a consortium of local research institutions, deploy smart grid systems at partners' university campus properties and technology transfer laboratories. The demonstration projects will also include gathering data on how consumers use energy in a variety of systems, testing on the next generation of cybersecurity technologies, and how to integrate a significant number of plug-in hybrid electric vehicles

139

A Case Study of Danville Utilities: Utilizing Industrial Assessment...  

Broader source: Energy.gov (indexed) [DOE]

A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing...

140

Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Pennsylvania. Preliminary background report  

SciTech Connect (OSTI)

The authority to regulate public utilities is generally vested in the Pennsylvania Public Utility Commission. The Commission is comprised of five members appointed by the governor with the advice and consent of two-thirds of the senate. Commission members are appointed for 10 year terms. They must be free from any employment which is incompatible with the duties of the Commission, and are subject to a statutory code of ethics. The Commission is charged with responsibility for enforcing the Public Utility Law. Within the purview of its powers, the authority of the Commission supersedes that of local governments. The Commission, for example, may grant exemptions from local zoning requirements, and has approving authority over privileges or franchises granted by municipalities to public utilities. The Commission, however, has no authority over municipally owned utilities operating within municipal boundaries. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Maine. Preliminary background report  

SciTech Connect (OSTI)

The Maine Supreme Court holds that the regulation of the operations of public utilities is an exercise of the police powers of the state. The legislature has delegated such regulatory authority to the Maine Public Utilities Commission (PUC). The statutes provide no role for local government in the regulation of public utilities. The PUC consists of three full time members, appointed by the Governor subject to review by the Joint Standing Committee on Public Utilities and to confirmation by the Legislature. They each serve seven year terms. One member is designated by the Governor as chairman. The Commission appoints a secretary, assistant secretary, director of transportation, and, with the approval of the Attorney General, a general counsel. A member of the PUC cannot have any official or professional connection or relation with or hold any stock or securities in any public utility. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

1980-01-01T23:59:59.000Z

142

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District (Redirected from Sacramento Municipal Utility District (SMUD)) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

143

Utility Wind Interest Group | Open Energy Information  

Open Energy Info (EERE)

Wind Interest Group Wind Interest Group Jump to: navigation, search Name Utility Wind Interest Group Place Reston, Virginia Zip VI 20195 Sector Wind energy Product The Utility Wind Interest Group (UWIG) is a non-profit corporation whose mission is to accelerate the appropriate integration of wind power into the electric system. References Utility Wind Interest Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Wind Interest Group is a company located in Reston, Virginia . References ↑ "Utility Wind Interest Group" Retrieved from "http://en.openei.org/w/index.php?title=Utility_Wind_Interest_Group&oldid=352690" Categories: Clean Energy Organizations

144

Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Florida. Preliminary background report  

SciTech Connect (OSTI)

The authority to regulate public utilities is vested generally in the Florida Public Service Commission. The Commission is comprised of five members appointed by the governor with the approval of the senate. The governor must choose his appointees from a list of persons recommended by the nine-person Florida Public Service Commission Nominating Council. Commissioners serve either three- or four-year terms. They must be free from any employment or pecuniary interests in any utility subject to the jurisdiction of the Commission. Within the purview of its powers, the authority of the Commission supersedes that of local governments. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

1980-01-01T23:59:59.000Z

145

Termite baiting system technology: utilization and evaluation for integrated management of Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) subterranean termite populations, with seasonal variation and spatial patterns exhibited in foraging strategies  

E-Print Network [OSTI]

Commercial termite baiting systems were utilized and evaluated under real-world conditions in order to provide a comparison of efficacy in the management of subterranean termites. Three commercial termite baiting systems available for comparison...

Glenn, Grady J.

2006-04-12T23:59:59.000Z

146

Utilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utilities Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic development grant awarded by the U.S. Department of the Interior's Office of Indian Energy and Economic Development to the Ak-Chin Indian Community and its tribal utility authority, Ak-Chin Energy Services. Source: Leonard S. Gold, Utility Strategies Consulting Group,

147

FEMP Utility Services  

Broader source: Energy.gov (indexed) [DOE]

Utility Services Utility Services Karen Thomas & Deb Beattie  SPONSORED BY THE FEDERAL ENERGY MANAGEMENT PROGRAM  Overview  UESC Project Support  Agency / Utility Partnerships  Renewable Project Support  Design Assistance  Agency Energy Implementation Plans * * * * * * UESC Project Support Education UESC Workshops Agency Briefings Utility Briefings On-site team training Communications Web site Enabling documents * Case studies UESC Project Support Direct Project Assistance Project facilitation Advise & Consult In depth Contract development Technical Proposal review Performance Verification Agency / Utility Partnerships Federal Utility Partnership Working Group Strategic Partnering Meeting Renewable Projects  Resource Screening: - PV - Solar Hot Water

148

Utility Solar Generation Valuation Methods  

SciTech Connect (OSTI)

Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

Hansen, Thomas N.; Dion, Phillip J.

2009-06-30T23:59:59.000Z

149

GSA- Utility Interconnection Agreements  

Broader source: Energy.gov [DOE]

Presentation given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

150

Transmission Utilization Group (TUG)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improvement (CBPI) Customer Forum Energy Imbalance Market Generator Interconnection Reform Implementation Intertie Initiatives Intertie Open Season Transmission Utilization...

151

Colorado Public Utility Commission's Xcel Wind Decision  

SciTech Connect (OSTI)

In early 2001 the Colorado Public Utility Commission ordered Xcel Energy to undertake good faith negotiations for a wind plant as part of the utility's integrated resource plan. This paper summarizes the key points of the PUC decision, which addressed the wind plant's projected impact on generation cost and ancillary services. The PUC concluded that the wind plant would cost less than new gas-fired generation under reasonable gas cost projections.

Lehr, R. L. (NRUC/NWCC); Nielsen, J. (Land and Water Fund of the Rockies); Andrews, S.; Milligan, M. (National Renewable Energy Laboratory)

2001-09-20T23:59:59.000Z

152

By-Products Utilization  

E-Print Network [OSTI]

Fellow at the UWM-CBU. His research interests include the use of coal fly ash, coal bottom ash, and usedCenter for By-Products Utilization USE OF UNDER-UTILIZED COAL- COMBUSTION PRODUCTS IN PERMEABLE-Utilized Coal-Combustion Products in Permeable Roadway Base Construction 1 (MS #LV-R67) Use of Under

Wisconsin-Milwaukee, University of

153

Energy and Utility Project Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Utility Project Review and Utility Project Review Energy and Utility Project Review < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources The DNR's Office of Energy and Environmental Analysis is responsible for coordinating the review of all proposed energy and utility projects in the

154

Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO  

SciTech Connect (OSTI)

A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.

L. C. Cadwallader; C. P. C. Wong; M. Abdou; B. B. Morely; B.J Merrill

2014-10-01T23:59:59.000Z

155

PILOTING UTILITY MODELING APPLICATIONS (PUMA) UTILITY BRIEFING PAPERS  

E-Print Network [OSTI]

1 PILOTING UTILITY MODELING APPLICATIONS (PUMA) UTILITY BRIEFING PAPERS Utility Page Seattle Public Utilities 2 Tampa Bay Water 6 San Francisco Public Utilities Commission 11 New York City Department of Environmental Protection 15 Portland Water Bureau 20 #12;2 SEATTLE PUBLIC UTILITIES Utility Briefing Paper

156

OpenEI Community - Utility+Utility Access Map  

Open Energy Info (EERE)

Finding Utility Finding Utility Companies Under a Given Utility ID http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id  Here's a quick way to find all the utility company pages under a given utility id.  From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". http://en.openei.org/community/blog/finding-utility-companies-under-given-utility-id#comments

157

"List of Covered Electric Utilities" under the Public Utility...  

Broader source: Energy.gov (indexed) [DOE]

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

158

Utility Service Renovations  

Broader source: Energy.gov [DOE]

Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

159

Utility Data Collection Service  

Broader source: Energy.gov [DOE]

Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

160

Generalized utility metrics for supercomputers  

E-Print Network [OSTI]

2007:112 Generalized utility metrics for supercomputers 12.ISSUE PAPER Generalized utility metrics for supercomputersproblem of ranking the utility of supercom- puter systems

Strohmaier, Erich

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Superconductive tunnel junction integrated circuit  

SciTech Connect (OSTI)

Josephson Junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson Junction electrode for the Josephson Junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson Junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groundplane function and the Josephson Junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie, D.W. Jr.; Smith, L.N.

1984-02-07T23:59:59.000Z

162

NREL: Innovation Impact - Energy Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and their customers while giving utilities more control over their electric delivery systems. NREL's research in energy systems integration will prepare more technologies for the...

163

Integrated Deployment Success Stories | Department of Energy  

Office of Environmental Management (EM)

stories about how DOE has helped states, cities, tribes, islands, campuses, and utilities apply an integrated technology deployment approach to achieve clean energy goals....

164

Helping Utilities Make Smart Solar Decisions Utility Barriers  

E-Print Network [OSTI]

Solar DecisionsSource: SEPA 2010 1,717 MW of utility scale solar or 63 % · Nevada & New Mexico 659 MW for utilities so utilities have cost recovery and return #12;Utility Solar Business Models Ownership Energy Purchases 14Helping Utilities Make Smart Solar Decisions Energy Purchases Financing #12;Utility Financing

Homes, Christopher C.

165

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS-fueled plants, particularly use of eastern coals, has lead to the use of clean coal and using advanced sulfur dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the concept

Wisconsin-Milwaukee, University of

166

By-Products Utilization  

E-Print Network [OSTI]

-Milwaukee, P.O. Box 784, Milwaukee, WI 53201 d Project Manager, Illinois Clean Coal Institute * Director UWM products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much products that utilize clean coal ash. With increasing federal regulations on power plant emissions, finding

Wisconsin-Milwaukee, University of

167

MAPLE demo 4  

E-Print Network [OSTI]

p. 409 / 11abc. Make only one plot of your favorite approximate solution. REMARKS: evalf( ) evaluates to be the floating point real number form of its argument.

1998-07-20T23:59:59.000Z

168

Natural Gas Utility Conservation Programs (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Natural Gas Utility Conservation Programs (Maine) Natural Gas Utility Conservation Programs (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Mandatory Utility Green Power Option Provider Public Utilities Commission This Chapter describes how natural gas utilities serving more than 5,000 residential customers must implement natural gas energy conservation programs. The regulations describe

169

Dekker PMIS Extraction Utility  

Broader source: Energy.gov (indexed) [DOE]

0907. The Extraction Utility is used for retrieving project 0907. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates focused to improve existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation validate any software update prior to its release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

170

Electric Utility Industry Update  

Broader source: Energy.gov (indexed) [DOE]

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

171

Dekker PMIS Extraction Utility  

Broader source: Energy.gov (indexed) [DOE]

1217. The Extraction Utility is used for retrieving project 1217. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into the Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates primarily focused to improve the existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation site validate all software updates prior to release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

172

By-Products Utilization  

E-Print Network [OSTI]

-Products Utilization E-mail: ymchun@uwm.edu and F. D. Botha Project Manager, Illinois Clean Coal Institute 5776 Coal, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 4 Project Manager, Illinois Clean Coal Institute

Wisconsin-Milwaukee, University of

173

Supervisory Public Utilities Specialist  

Broader source: Energy.gov [DOE]

The incumbent of this position serves as a Supervisory Public Utilities Specialist in the Long Term Power Planning Group that is part of Power Servicess Generation Asset Management, Power &...

174

Utility and Industrial Partnerships  

E-Print Network [OSTI]

In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

Sashihara, T. F.

175

utilities.scm  

E-Print Network [OSTI]

;;; Some utility functions (define (negative-abs m) ;; m can be big, so we'll try to be nice here (if (abs_m m) ;; returns smallest p...

176

Iraq and the utilities  

SciTech Connect (OSTI)

This article discusses the possible impact on the public utilities of the invasion of Kuwait by Iraq. The author feels the industry is in better shape to weather this than the energy crisis of 1973 and 1974. However regulatory policies that prohibit some utilities from recovering fuel costs through rate adjustments may cause distress for some. The author feels that a revision of regulatory policies is needed.

Studness, C.M.

1990-09-13T23:59:59.000Z

177

Utility theory front to back inferring utility from agents' choices  

E-Print Network [OSTI]

Utility theory front to back ­ inferring utility from agents' choices A. M. G. Cox Dept to utility theory and consumption & investment problems. Instead of specifying an agent's utility function) and ask if it is possible to derive a utility function for which the observed behaviour is optimal. We

178

Asymptotic utility-based pricing and hedging for exponential utility  

E-Print Network [OSTI]

Asymptotic utility-based pricing and hedging for exponential utility Jan Kallsen Christian deals with pricing and hedging based on utility indifference for exponential utility. We consider order approximation the utility indifference price and the corresponding hedge can be determined from

Kallsen, Jan

179

Production of jet fuels from coal-derived liquids. Volume 10. Jet fuels production by-products, utility, and sulfur-emissions control integration study. Interim report, 1 May 1988-1 April 1989  

SciTech Connect (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding has been provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to evaluate the impact of integrating Jet Fuel and/or Chemical Production Facilities with the Great Plains Gasification Plant.

Rossi, R.J.

1989-06-01T23:59:59.000Z

180

"List of Covered Electric Utilities" under the Public Utility...  

Broader source: Energy.gov (indexed) [DOE]

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"List of Covered Electric Utilities" under the Public Utility...  

Broader source: Energy.gov (indexed) [DOE]

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

182

Coal Utilization Science Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

183

utilities | OpenEI  

Open Energy Info (EERE)

utilities utilities Dataset Summary Description Datasets are for the US electricity grid system interconnect regions (ASCC, FRCC, HICC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC) for 2008. The data is provided in life cycle inventory (LCI) forms (both xls and xml). A module report and a detailed spreadsheet are also included. Source US Life Cycle Inventory Database Date Released May 01st, 2011 (3 years ago) Date Updated Unknown Keywords ASCC FRCC HICC interconnect region LCI life cycle inventory MRO NPCC RFC SERC SPP TRE unit process US utilities WECC Data application/zip icon interconnect_lci_datasets_2008.zip (zip, 6.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

184

ENERGY COMMISSION PUBLIC UTILITIES COMMISSION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA PUBLIC UTILITIES COMMISSION FOR IMMEDIATE RELEASE Prosper, California Public Utilities Commission, 415.703.2160 GREENHOUSE GAS STRATEGIES OPINION RELEASED SACRAMENTO -- The California Energy Commission and the California Public Utilities Commission today released

185

Utility View of Risk Assessment  

E-Print Network [OSTI]

This paper will address a utility perspective in regard to risk assessment, reliability, and impact on the utility system. Discussions will also include the critical issues for utilities when contracting for energy and capacity from cogenerators...

Bickham, J.

186

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

187

Innovative Utility Pricing for Industry  

E-Print Network [OSTI]

INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

Ross, J. A.

188

BBEE Public Utility Conference Call  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BBEE Public Utility Conference Call May 19, 2011 - Summary Summer Goodwin, BPA, welcomed public utility representative participants, asked them to introduce themselves, and...

189

Utility Power Plant Construction (Indiana)  

Broader source: Energy.gov [DOE]

This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

190

Sacramento Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

District District (Redirected from SMUD) Jump to: navigation, search Name Sacramento Municipal Util Dist Place Sacramento, California Website www.smud.org Utility Id 16534 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration

191

Utility spot pricing, California  

E-Print Network [OSTI]

The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

Schweppe, Fred C.

1982-01-01T23:59:59.000Z

192

By-Products Utilization  

E-Print Network [OSTI]

was carried out to utilize wood ash in making self- compacting controlled low-strength materials (CLSM), air and Presentation at the Seventh CANMET/ACI International Conference on Recent Advances in Concrete Technology, Las-entrained and non-air- entrained concretes, and bricks/blocks/paving stones. Initial test results indicated

Wisconsin-Milwaukee, University of

193

By-Products Utilization  

E-Print Network [OSTI]

SELF-COMPACTING CONCRETE By Tarun R. Naik, Rudolph N. Kraus, and Yoon-moon Chun Report No. CBU-2004 of Limestone Quarry By-Products for Developing Economical Self-Compacting Concrete Principle Investigator Name. For this proposed project, self-compacting concrete mixtures will be developed for prototype production that utilize

Wisconsin-Milwaukee, University of

194

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization SELF-COMPACTING CONCRETE (SCC) OR SELF- LEVELING CONCRETE (SLC - MILWAUKEE #12;2 SELF-COMPACTING CONCRETE (SCC) OR SELF ­LEVELING CONCRETE (SLC) INTRODUCTION Self-compacting as the concrete which can be placed and compacted into every corner of a form work, purely by means of its self

Wisconsin-Milwaukee, University of

195

INTRODUCTION Ukiah Electric Utility  

E-Print Network [OSTI]

INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

196

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF CLEAN COAL ASH AS SETTING TIME REGULATOR IN PORTLAND OF WISCONSIN ­ MILWAUKEE #12;2 Use of Clean Coal Ash as Setting Time Regulator in Portland Cement by Zichao Wu as setting time regulator for portland cement production. In this paper a source of clean coal ash (CCA

Wisconsin-Milwaukee, University of

197

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce for manufacture of cement-based products using ashes generated from combustion of high-sulfur coals. A clean coal

Wisconsin-Milwaukee, University of

198

By-Products Utilization  

E-Print Network [OSTI]

shrinkage; durability; freezing and thawing; recycling; sludge; wastewater treatment; wood cellulose fibersCenter for By-Products Utilization RECYCLING OF PULP AND PAPER MILL RESIDUALS TO INCREASE FREEZING College of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN ­ MILWAUKEE #12;Recycling of Pulp

Wisconsin-Milwaukee, University of

199

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R. Naik, Rudolph N. Kraus, Shiw S. Singh, Lori-Lynn C mixtures were developed using blends of wood FA and Class C coal FA. Two levels of blended ash

Wisconsin-Milwaukee, University of

200

By-Products Utilization  

E-Print Network [OSTI]

) coal-ash and by replacing up to 9% of aggregates with wet-collected, low-lime, coarse coal-ash. Cast of coal fly ash, coal bottom ash, and used foundry sand in concrete and cast-concrete productsCenter for By-Products Utilization PROPERTIES OF CAST-CONCRETE PRODUCTS MADE WITH FBC ASH

Wisconsin-Milwaukee, University of

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST Report No.CBU-1996-07 July 1996 Presented and Published at the American Coal Ash Association's Twelfth International Coal Ash Use Symposium, Orlando, FL, January 26-30, 1997. Department of Civil Engineering

Wisconsin-Milwaukee, University of

202

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH By Tarun R OF WISCONSIN­MILWAUKEE #12;1 GREENER CONCRETE FROM WOOD FLY ASH AND COAL FLY ASH Synopsis: This investigation coal FA. Two levels of blended ash of approximately 25% and 35% were used. The effect of source of wood

Wisconsin-Milwaukee, University of

203

Utilities Drive Solar Projects  

Science Journals Connector (OSTI)

The second quarter was the largest ever for utility photovoltaic installations in the U.S. Demand for solar electricity from power companies drove a 45% increase in solar installations compared with the first quarter and a 116% increase from last years ...

MELODY BOMGARDNER

2012-09-16T23:59:59.000Z

204

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization PROPERTIES OF CONCRETE CONTAINING SCRAP TIRE RUBBER in a variety of rubber and plastic products, thermal incineration of waste tires for production of electricity rubber in asphalt mixes, (ii) thermal incineration of worn-out tires for the production of electricity

Wisconsin-Milwaukee, University of

205

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. PRODUCING CRUMB RUBBER MODIFIER (CRM) FROM USED TIRES . . . . . 3 2.1 PRODUCTION OF CRM THE UNIVERSITY OF WISCONSIN - MILWAUKEE #12;APPLICATION OF SCRAP TIRE RUBBER IN ASPHALTIC MATERIALS: STATE

Wisconsin-Milwaukee, University of

206

By-Products Utilization  

E-Print Network [OSTI]

currently being produced by Manitowoc Public Utilities. Flowable Materials have up to 1200 psi compressive of water, and consist mostly of ash or similar materials. It is believed that concrete Bricks, Blocks in manufacturing Blended Cements. Soil stabilization or site remediation is another significant potential use

Wisconsin-Milwaukee, University of

207

By-Products Utilization  

E-Print Network [OSTI]

consume all of the ashes currently being produced by Manitowoc Public Utilities. Flowable Materials have little portland cement and a lot of water, and consist mostlyof ash or similar materials. It is believed fly ash in manufacturing Blended Cements. Soil stabilization or site remediation is another

Wisconsin-Milwaukee, University of

208

By-Products Utilization  

E-Print Network [OSTI]

wood with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and coke to generateCenter for By-Products Utilization DEVELOPMENT OF CLSM USING COAL ASH AND WOOD ASH, A SOURCE OF NEW

Wisconsin-Milwaukee, University of

209

By-Products Utilization  

E-Print Network [OSTI]

with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, such as bark, twigs, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and cokeCenter for By-Products Utilization CLSM CONTAINING MIXTURES OF COAL ASH AND A NEW POZZOLANIC

Wisconsin-Milwaukee, University of

210

Utility Grid EV charging  

E-Print Network [OSTI]

Main Utility Grid EV charging PCC Batteries DC Load EV charging Flywheel Interlinking converter PV or large distance interconnected grids, to energy efficient applications in distribution system, energy storage systems and local loads as a local grid, is gaining more interests due to its potential

Chaudhary, Sanjay

211

UTILITY MAXIMISATION AND UTILITY INDIFFERENCE PRICE FOR EXPONENTIAL  

E-Print Network [OSTI]

UTILITY MAXIMISATION AND UTILITY INDIFFERENCE PRICE FOR EXPONENTIAL SEMI-MARTINGALE MODELS WITH RANDOM FACTOR A. Ellanskaya1 and L. Vostrikova2 Abstract. We consider utility maximization problem to the conditional one, given = u, which we solve using dual approach. For HARA utilities we con- sider information

Boyer, Edmond

212

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

213

Optimizing Asset Utilization and Operating Efficiency Efficiently, June  

Broader source: Energy.gov (indexed) [DOE]

Optimizing Asset Utilization and Operating Efficiency Efficiently, Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Smart Grid Implementation Workshop Breakout Group Report, a discussion of metrics for smart grid implementation. The following major caveats and findings were identified: Optimizing asset utilization and operating efficiently depends on proper integration of technologies with business processes and associated IT Build metrics, by definition, need to be updated regularly to reflect new technology Build metrics should not be technology prescriptive or result innarrowing technology options for Smart Grid (should be as "technology agnostic"as possible) Build metrics need to differentiate between statistics

214

Optimizing Asset Utilization and Operating Efficiency Efficiently, June  

Broader source: Energy.gov (indexed) [DOE]

Optimizing Asset Utilization and Operating Efficiency Efficiently, Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Smart Grid Implementation Workshop Breakout Group Report, a discussion of metrics for smart grid implementation. The following major caveats and findings were identified: Optimizing asset utilization and operating efficiently depends on proper integration of technologies with business processes and associated IT Build metrics, by definition, need to be updated regularly to reflect new technology Build metrics should not be technology prescriptive or result innarrowing technology options for Smart Grid (should be as "technology agnostic"as possible) Build metrics need to differentiate between statistics

215

STEP Utility Data Release Form  

Broader source: Energy.gov [DOE]

STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

216

pine (mail utility info)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pine (mail utility info) pine (mail utility info) Basics, FAQ, etc, On our UNIX machines, module load pine The line module load pine should ALSO be in the file ~/.rc/user_modules (The pine module also includes pico) pine usage with IMAP4 (UNIX) Moving pine email files into IMAP4 LBNL UNIX info on pine links to Pine Information Center Pine 4.2.1/Solaris: Forwarding as attachment; the following procedure has proved successful for at least some users: Check the option "enable-full-header-cmd". To get to this option, 1. M (Main Menu) 2. S (Setup) "Choose a setup task from the menu below :" 3. C (Configure) 4. Scroll down to "Advanced Command Preferences", and press "X" to set "enable-full-header-cmd". It looks like this: ================================================================

217

PDSF Utilization Graphs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphs Graphs Utilization Graphs This page contains a series of graphs that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated approximately every 15 minutes. This graph shows the aggregate cluster CPU availablity and usage according to sgeload: 24 hour rolling usage graph (click to see long term averages) This graph shows the number of jobs being run by each group: Rolling 24 Running Jobs by Group (click to see long term averages) This is the same graph as above weighted by the clockspeed (GHz) of the node used for the job: Rolling 24 Running Jobs by Group (click to see long term averages) This graph show the number of pending jobs by group: Rolling 24 Pending Jobs

218

By-Products Utilization  

E-Print Network [OSTI]

Center for By-Products Utilization USE OF FBC ASH AND PONDED COAL-ASH IN READY-MIXED CONCRETE #12;Naik, Kraus, Chun, & Botha Use of FBC ash and Ponded Coal-Ash in Ready-Mixed Concrete 1 MS# M8-60. FINAL. October 2005. Use of FBC Ash and Ponded Coal-Ash in Ready-Mixed Concrete by Tarun R. Naik

Wisconsin-Milwaukee, University of

219

Utility Cost Analysis  

E-Print Network [OSTI]

utility bills. The r~~ulte of the modeling program and actual 1983 natural gas and electric consumption are graphed in Figures 2 and 3. The results indicate a good understanding of the heating requiremente of the facility as demonetrated by the close... fit of the two curves defining actual and modeled natural gas usage. Examination of the graph showing modeled electric coneumption verens actual 1983 data, illustrates an underetanding of electrical energy requiremente during all but peak cooling...

Horn, S.

1984-01-01T23:59:59.000Z

220

Physical Plant Utility Department  

E-Print Network [OSTI]

electrical distribution systems a 13.8 kV grounded wye Primary Selective system and a 2.4 kV ungrounded delta open loop system. The campus takes service at 13.8 kV from the utility via two paralleled feeds on the Westside of campus and at this time generates 10MWs at 13.8 kV with future additional generation planned

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

OpenEI - US utilities  

Open Energy Info (EERE)

Electric Utility Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

222

Explicit global integrators  

E-Print Network [OSTI]

be advantageous. For this purpose, forward interpolation utilizing Radau Quadrature will be employed. An explicit method of global integration has been developed to estimate a solution to a differential equation. A set of functions P (x), P (x), , P (x) and a... set of points n+1 x , x , , x can be found such that n+1 r x n+1 f(u)du = g P. (x)i'(x. ) 0 i=1 for all x when f(u) is a polynomial of degree n or less. The above process is described by Axelsson as global integration. In . th the cases...

Merriam, Robert Stevens

2012-06-07T23:59:59.000Z

223

Time functions as utilities  

E-Print Network [OSTI]

Every time function on spacetime gives a (continuous) total preordering of the spacetime events which respects the notion of causal precedence. The problem of the existence of a (semi-)time function on spacetime and the problem of recovering the causal structure starting from the set of time functions are studied. It is pointed out that these problems have an analog in the field of microeconomics known as utility theory. In a chronological spacetime the semi-time functions correspond to the utilities for the chronological relation, while in a K-causal (stably causal) spacetime the time functions correspond to the utilities for the K^+ relation (Seifert's relation). By exploiting this analogy, we are able to import some mathematical results, most notably Peleg's and Levin's theorems, to the spacetime framework. As a consequence, we prove that a K-causal (i.e. stably causal) spacetime admits a time function and that the time or temporal functions can be used to recover the K^+ (or Seifert) relation which indeed turns out to be the intersection of the time or temporal orderings. This result tells us in which circumstances it is possible to recover the chronological or causal relation starting from the set of time or temporal functions allowed by the spacetime. Moreover, it is proved that a chronological spacetime in which the closure of the causal relation is transitive (for instance a reflective spacetime) admits a semi-time function. Along the way a new proof avoiding smoothing techniques is given that the existence of a time function implies stable causality, and a new short proof of the equivalence between K-causality and stable causality is given which takes advantage of Levin's theorem and smoothing techniques.

E. Minguzzi

2009-09-04T23:59:59.000Z

224

Carrots for Utilities: Providing Financial Returns for Utility Investments  

Open Energy Info (EERE)

Carrots for Utilities: Providing Financial Returns for Utility Investments Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Focus Area: Energy Efficiency Topics: Socio-Economic Website: www.aceee.org/research-report/u111 Equivalent URI: cleanenergysolutions.org/content/carrots-utilities-providing-financial Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Cost Recovery/Allocation This report examines state experiences with shareholder financial incentives that encourage investor-owned utilities to provide energy

225

Federal Utility Partnership Working Group- Utility Interconnection Panel  

Broader source: Energy.gov [DOE]

Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

226

Utility Partnership Webinar Series: State Mandates for Utility Energy Efficiency  

Broader source: Energy.gov [DOE]

This webinar highlights state mandates from throughout the country, and how theyve influenced utility industrial energy efficiency programs.

227

Extraction Utility Design Specification  

Broader source: Energy.gov (indexed) [DOE]

Extraction Utility Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version 8.0.20100628 July 14, 2010 1.5.1 2.8 Igor Pedan,

228

Method of manufacturing Josephson junction integrated circuits  

SciTech Connect (OSTI)

Josephson junction integrated circuits of the current injection type and magnetically controlled type utilize a superconductive layer that forms both Josephson junction electrode for the Josephson junction devices on the integrated circuit as well as a ground plane for the integrated circuit. Large area Josephson junctions are utilized for effecting contact to lower superconductive layers and islands are formed in superconductive layers to provide isolation between the groudplane function and the Josephson junction electrode function as well as to effect crossovers. A superconductor-barrier-superconductor trilayer patterned by local anodization is also utilized with additional layers formed thereover. Methods of manufacturing the embodiments of the invention are disclosed.

Jillie Jr., D. W.; Smith, L. N.

1985-02-12T23:59:59.000Z

229

Handbook of evaluation of utility DSM programs  

SciTech Connect (OSTI)

Program evaluation has become a central issue in the world of utility integrated resource planning. The DSM programs that utilities were operating to meet federal requirements or to improve customer relations are now becoming big business. DSM is being considered an important resource in a utility`s portfolio of options. In the last five years, the amount of money that utilities have invested in DSM has grown exponentially in most regulatory jurisdictions. Market analysts are now talking about DSM being a $30 billion industry by the end of the decade. If the large volume of DSM-program investments was not enough to highlight the importance of evaluation, then the introduction of regulatory incentives has really focused the spotlight. This handbook was developed through a process that involved many of those people who represent the diverse constituencies of DSM-program evaluation. We have come to recognize the many technical disciplines that must be employed to evaluate DSM programs. An analysis might start out based on the principles of utility load research to find out what happened, but a combination of engineering and statistical methods must be used to ``triangulate`` an estimate of what would have happened without the program. The difference, of course, is that elusive but prized result of evaluation: what happened as the direct result of the DSM program. Technical performance of DSM measures is not the sole determinant of the answer, either. We also recognize the importance of such behavioral attributes of DSM as persistence and free ridership. Finally, DSM evaluation is meaningless without attention to planning an approach, communicating results to relevant decision-makers, and focusing as much on the process as the impacts of the program. These topics are all covered in this handbook.

Hirst, E.; Reed, J. [eds.; Bronfman, B.; Fitzpatrick, G.; Hicks, E.; Hirst, E.; Hoffman, M.; Keating, K.; Michaels, H.; Nadel, S.; Peters, J.; Reed, J.; Saxonis, W.; Schoen, A.; Violette, D.

1991-12-01T23:59:59.000Z

230

Utility spot pricing study : Wisconsin  

E-Print Network [OSTI]

Spot pricing covers a range of electric utility pricing structures which relate the marginal costs of electric generation to the prices seen by utility customers. At the shortest time frames prices change every five ...

Caramanis, Michael C.

1982-01-01T23:59:59.000Z

231

Cogeneration Assessment Methodology for Utilities  

E-Print Network [OSTI]

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic...

Sedlik, B.

1983-01-01T23:59:59.000Z

232

SunShot Initiative: Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Integration to someone by Systems Integration to someone by E-mail Share SunShot Initiative: Systems Integration on Facebook Tweet about SunShot Initiative: Systems Integration on Twitter Bookmark SunShot Initiative: Systems Integration on Google Bookmark SunShot Initiative: Systems Integration on Delicious Rank SunShot Initiative: Systems Integration on Digg Find More places to share SunShot Initiative: Systems Integration on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Competitive Awards Balance of Systems Systems Integration High Penetration Solar Portal The High Penetration Solar Portal has timely information related to high penetration solar scenarios and integrating solar into the grid. The site allows utilities, grant awardees, regulators, researchers, and other solar

233

Utilization FLY ASH INFORMATION FROM  

E-Print Network [OSTI]

, quarries, and pits (34%), 6% for temporary stockpile, and 7% landfilled. Fly Ash In Europe, the utilization

Wisconsin-Milwaukee, University of

234

NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012)  

Broader source: Energy.gov [DOE]

The National Association of Regulatory Utility Commissioners (NARUC) has released Cybersecurity for State Regulators, a primer that explains conceptual cybersecurity basics and points to additional resources that can help regulators develop internal cybersecurity expertise, ask questions of their utilities, engage in partnerships with the public and private sector to develop and implement cost-effective cybersecurity, and begin to explore the integrity of their internal cybersecurity practices.

235

Integrated-optic fluid sensor using heat transfer  

Science Journals Connector (OSTI)

An integrated-optic fluid sensor utilizing the heat-transfer phenomenon is proposed. An optical waveguide interferometer is used to convert the temperature of the waveguide surface...

Enokihara, Akira; Izutsu, Masayuki; Sueta, Tadasi

1988-01-01T23:59:59.000Z

236

Initial Economic Analysis of Utility-scale Wind Integration in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from OWITSTRC Wind Curtailment (MWhyear) -90,000 Sourced from OWITSTRC Delivered Energy Capacity Factor (%) 42.29% Sourced from OWITSTRC CAPITAL COST FACTORS Wind Farm &...

237

Utilizing Load Response for Wind and Solar Integration and Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory 1617 Cole Blvd., Golden, CO 80401 michael.milligan@nrel.gov Topics: Demand Response Power System Operations and Wind Energy Abstract Responsive load is still the...

238

Integration of Photovoltaics into Electric Utilities: Issues and Approaches  

Science Journals Connector (OSTI)

This paper presents an overview of the key issues addressed in the comprehensive strategy being implemented by the Office of Solar Energy Conversion at the U.S. Department of Energy to achieve the deployment o...

Robert H. Annan; James E. Rannels

1991-01-01T23:59:59.000Z

239

Integrated approaches to the optimization of process-utility systems  

E-Print Network [OSTI]

.0% (Figure 3.3). 18 0 0.5 1 1.5 2 2.5 0 500 1000 1500 2000 Super heat ( o F) | R e l a t i v e e rro r (% )| Figure 3.3 The absolute relative error of the enthalpy as a function of steam temperature and saturation temperature, for different superheat... a t iv e e rro r (% )| Figure 3.5 The absolute relative error of the entropy as a function of steam temperature and saturation temperature at different pressure values 0 1 2 3 4 5 6 7 0 500 1000 1500 2000 Superheat temperature ( o F) | R e l a...

Al-Azri, Nasser Ahmed

2009-05-15T23:59:59.000Z

240

Design for Process Integration and Efficient Energy Utilization  

E-Print Network [OSTI]

within a process unit is provided by a Fluid Catalytic Cracker (FCCU) operating at design capacity and 80% of design capacity. The process is energy intensive and cracks hydrocarbons into lighter components, with incidental deposition of carbon onto..., with the energy balance closed by power import or export. To facilitate start-up, a steam turbine is added to the shaft. RfGlNERATDll flUE GAS AlII TO RfGINERATDll BY?PASS ~===:(I MIG EXHAUST Figure 8. FCCU Expander/ Compressor Hot combustion gases...

James, A. J.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Extraction Utility Design Specification  

Broader source: Energy.gov (indexed) [DOE]

Extraction Extraction Utility Design Specification May 13, 2013 Document Version 1.10 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version

242

Utility Data Collection Service  

Broader source: Energy.gov (indexed) [DOE]

Data Collection Service Data Collection Service Federal-Utility Partnership Working Group 4 May 2006 Paul Kelley, Chief of Operations, 78 th CES, Robins AFB David Dykes, Industrial Segment Mgr, Federal, GPC Topics  Background  Commodities Metered  Data Collection  Cost  Results Background  Robins AFB (RAFB) needed to:  Control electricity usage and considered Demand Control  Track and bill base tenants for energy usage  Metering Project Originated in 1993  $$ requirements limited interest  Developed criteria for available $$  Energy Policy Act 2005:  All facilities sub-metered by 2012  $$ no longer restricts metering project Metering Criteria prior to EPACT 2005  All New Construction - (per Air Force Instructions)

243

EM Utility Contracts  

Broader source: Energy.gov (indexed) [DOE]

12 12 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract # East Tennessee Technology Park TN Tennessee Valley Authority 4/27/2007 Energy supply contract (retail) DE-AC05-07OR23242 Hanford WA Bonneville Power Administration 10/1/2001 Transmission Service Agreement Hanford WA Bonneville Power Administration 10/1/2011 Power Sales Agreement (retail) Moab UT Paducah KY Electric Energy, Inc. (EEI as agent for DOE) Original Power Contract Portsmouth OH Pike Natural Gas 2/28/2007 Negotiated contract Portsmouth OH Ohio Valley Electric Corporation (OVEC) 9/10/2008 Letter Agreement DE-AC05-03OR22988 Savannah River Site SC South Carolina Electric & Gas

244

Utility Metering - AGL Resources  

Broader source: Energy.gov (indexed) [DOE]

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

245

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

246

Public Utilities Commission Consumer Programs  

E-Print Network [OSTI]

California Public Utilities Commission Consumer Programs Water Programs The CPUC regulates company's service territory and have varying income limits. Check with your water utility to find out plans that can help you man- age your bills. Contact the utility directly, using the customer service

247

Fusion Technology for ITER, the ITER Project. Further Development Towards a DEMO Fusion Power Plant (3/4)  

E-Print Network [OSTI]

This is the second half of a lecture series on fusion and will concentrate on fusion technology. The early phase of fusion development was concentrated on physics. However, during the 1980s it was realized that if one wanted to enter the area of fusion reactor plasmas, even in an experimental machine, a significant advance in fusion technologies would be needed. After several conceptual studies of reactor class fusion devices in the 1980s the engineering design phase of ITER started in earnest during the 1990s. The design team was in the beginning confronted with many challenges in the fusion technology area as well as in physics for which no readily available solution existed and in a few cases it was thought that solutions may be impossible to find. However, after the initial 3 years of intensive design and R&D work in an international framework utilizing basic fusion technology R&D from the previous decade it became clear that for all problems a conceptual solution could be found and further devel...

CERN. Geneva

2011-01-01T23:59:59.000Z

248

Integration of solar thermal energy into processes with heat demand  

Science Journals Connector (OSTI)

An integration of solar thermal energy can reduce the utility cost and the environmental impact. A proper integration of solar thermal energy is required in order to achieve ... objective of this study is to maxi...

Andreja Nemet; Zdravko Kravanja

2012-06-01T23:59:59.000Z

249

National Utility Rate Database: Preprint  

SciTech Connect (OSTI)

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

250

Pelican Utility | Open Energy Information  

Open Energy Info (EERE)

Pelican Utility Pelican Utility Jump to: navigation, search Name Pelican Utility Place Alaska Utility Id 29297 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4450/kWh Industrial: $0.3890/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pelican_Utility&oldid=411348

251

Flora Utilities | Open Energy Information  

Open Energy Info (EERE)

Flora Utilities Flora Utilities Jump to: navigation, search Name Flora Utilities Place Indiana Utility Id 6425 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Municipal Rate Commercial Power Acct. Rate Commercial Residential Rate Residential Average Rates Residential: $0.0958/kWh Commercial: $0.0893/kWh Industrial: $0.0805/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Flora_Utilities&oldid=410706

252

US utilities | OpenEI  

Open Energy Info (EERE)

6489 6489 Varnish cache server US utilities Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

253

Utility Connection | Open Energy Information  

Open Energy Info (EERE)

Utility Connection Utility Connection Jump to: navigation, search Return to Connections to Energy Use Data and Information Page Please tell us how connected you are to your customers Thank you for taking the time to complete this questionnaire! As you know, utility data is very important and, if used correctly, can educate consumers and change their behavior to save money and energy. First select your utility company, then provide us a little information about yourself. Only one person from each utility can answer these questions and the results from your input will be shown on the Utility Data Accessibility Map. If the questionnaire has already been completed for your utility and you think the answers need to be changed, or if you are having trouble accessing your questionnaire, please contact the .

254

NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) |  

Broader source: Energy.gov (indexed) [DOE]

NARUC Releases Cybersecurity Primer for Utility Regulators (June NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) June 14, 2012 - 4:50pm Addthis The National Association of Regulatory Utility Commissioners (NARUC) has released "Cybersecurity for State Regulators," a primer that explains conceptual cybersecurity basics and points to additional resources that can help regulators develop internal cybersecurity expertise, ask questions of their utilities, engage in partnerships with the public and private sector to develop and implement cost-effective cybersecurity, and begin to explore the integrity of their internal cybersecurity practices. The primer was developed by the State Electricity Regulators Capacity Assessment and Training (SERCAT) program and was funded by a $4 million

255

NREL: Electricity Integration Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

256

NREL: Transportation Research - Electric Vehicle Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration Illustration of a house with a roof-top photovoltaic system. A wind turbine and utility towers appear in the background. A car, parked in the garage, is...

257

Utility Partnership Webinar Series: State Mandates for Utility...  

Broader source: Energy.gov (indexed) [DOE]

State Mandates for Utility Energy Efficiency March 1, 2011 Industrial Technologies Program eere.energy.gov Speakers and Topics: * National Association of State Energy Officials...

258

Slinger Utilities | Open Energy Information  

Open Energy Info (EERE)

Slinger Utilities Slinger Utilities Jump to: navigation, search Name Slinger Utilities Place Wisconsin Utility Id 17324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day Commercial General Service- Three-Phase Commercial General Service- Three-Phase- Time-of-Day Commercial Industrial Power- Time-of-Day Industrial Large Power- Time-of-Day Commercial Ornamental Street Lighting- 150W HPS Lighting Overhead Street Lighting- 150W HPS Lighting

259

Decatur Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Decatur Utilities Place Alabama Utility Id 4958 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - BILL CODE 50 Commercial Commercial - Bill Code 40 Commercial Residential - Bill Code 22 Residential Security Light 100 W HPS (No Pole) Lighting Security Light 100 W HPS (With Pole) Lighting Security Light 250 W HPS (No Pole) Lighting Security Light 250 W HPS (With Pole) Lighting

260

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Waupun Utilities | Open Energy Information  

Open Energy Info (EERE)

Waupun Utilities Waupun Utilities Jump to: navigation, search Name Waupun Utilities Place Wisconsin Utility Id 20213 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial Three Phase Commercial Renewable Energy Residential Residential Small Power Industrial Average Rates Residential: $0.1060/kWh Commercial: $0.0968/kWh Industrial: $0.0770/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

262

Maryville Utilities | Open Energy Information  

Open Energy Info (EERE)

Maryville Utilities Maryville Utilities Jump to: navigation, search Name Maryville Utilities Place Tennessee Utility Id 11789 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Schedule GSA-1 Commercial Commercial- Schedule GSA-2 Commercial Commercial- Schedule GSA-3 Commercial Outdoor Light- 100W HP Sodium Security Light Lighting Outdoor Light- 175W Mercury Vapor Lighting Outdoor Light- 250W HP Sodium Flood Light Lighting Outdoor Light- 250W HP Sodium Security Light Lighting Outdoor Light- 400W Mercury Vapor Lighting

263

Oconomowoc Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Oconomowoc Utilities Place Wisconsin Utility Id 13963 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

264

Sheffield Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Sheffield Utilities Place Alabama Utility Id 17033 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light 100 W HPS Openbottom Lighting Security Light 150 W HPS Cobrahead Lighting Security Light 150 W HPS Decorative Light Lighting Security Light 1500 W MH Floodlight Lighting Security Light 175 W MV Openbottom Lighting Security Light 250 W HPS Cobrahead Lighting Security Light 250 W HPS Decorative Light Lighting Security Light 250 W HPS Floodlight Lighting

265

Cannelton Utilities | Open Energy Information  

Open Energy Info (EERE)

Cannelton Utilities Cannelton Utilities Jump to: navigation, search Name Cannelton Utilities Place Indiana Utility Id 2964 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting: Murcury Vapor Light, 175 Watt Lighting Rate 1: Residential Residential Rate 2: Multi-Phase Commercial Rate 2: Single Phase Commercial Rate 3: Industrial Phase II Residential Rate 3: Industrial phase I Industrial Street Lighting: Decorative Metal Halide, 175 Watt Lighting Street Lighting: High Pressure Sodium, 100 Watt Lighting

266

Primer on gas integrated resource planning  

SciTech Connect (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

267

Utilities must do more communicating  

SciTech Connect (OSTI)

The dramatic changes within the electric-utility industry over the past decade require them to do a greater and more effective job of communicating with their customers. When the revenues and advertising burgets for investor-owned electric utilities over a six-year period are compared with the revenues and ad dollars of other large industries and selected companies, the discrepancy is apparent. The ad costs for just one brand of cigarette are three-fourths of all utility ad spending. The utilities need to use advertising to explain new service programs and rate strategies to the public. 3 figures.

Uhler, R.G.

1981-01-01T23:59:59.000Z

268

PHEV development test platform Utilization  

Broader source: Energy.gov (indexed) [DOE]

PHEV development test platform Utilization vssp07lohsebusch DOE Merit Review May 19, 2009 Henning Lohse-Busch, Neeraj Shidore, Richard Carlson, Thomas Wallner Mike Duoba,...

269

Rural Utilities Service Electric Program  

Broader source: Energy.gov [DOE]

The Rural Utilities Service Electric Programs loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

270

TEST UTILITY COMPANY | Open Energy Information  

Open Energy Info (EERE)

TEST UTILITY COMPANY Jump to: navigation, search Name: Test Utility Company Place: West Virginia References: Energy Information Administration.1 EIA Form 861 Data Utility Id...

271

Partnering with Utilities for Energy Efficiency & Security |...  

Broader source: Energy.gov (indexed) [DOE]

Partnering with Utilities for Energy Efficiency & Security Partnering with Utilities for Energy Efficiency & Security Presentation covers partnering with utilities for energy...

272

BPA_Utilities_and_Cities.mxd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cTribalandIOUCustomerServiceAreas.mxd State Boundary Indian Reservations Public Utilities Tribal Utilities Tribal Investor Owned Utilities Idaho Power Company Northwestern...

273

Insolation integrator  

DOE Patents [OSTI]

An electric signal representative of the rate of insolation is integrated to determine if it is adequate for operation of a solar energy collection system.

Dougherty, John J. (Norristown, PA); Rudge, George T. (Lansdale, PA)

1980-01-01T23:59:59.000Z

274

Assisting the searcher: utilizing software  

E-Print Network [OSTI]

Assisting the searcher: utilizing software agents for Web search systems Bernard J. Jansen and Udo, ineffectiveness in expanding results, and the inability to reduce results to a manageable number (Jansen et al; however, searchers seldom utilize these features (Jansen and Pooch, 2001). Others researchers have

Jansen, James

275

Xylose utilization in recombinant zymomonas  

DOE Patents [OSTI]

Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

2014-03-25T23:59:59.000Z

276

Contract pricing and utility sharing  

Science Journals Connector (OSTI)

......wealths x and y. This clearly does not hold in most cases of some...Utility in social choice. Handbook of Utility Theory (S. Barber...and subjective probability. Handbook of Game Theory (R. J. Aumann...1986) Social choice theory. Handbook of Mathematical Economics......

Michail Anthropelos; Nikolaos E. Frangos; Stylianos Z. Xanthopoulos; Athanasios N. Yannacopoulos

2014-07-01T23:59:59.000Z

277

Property:OpenEI/UtilityRate/Utility | Open Energy Information  

Open Energy Info (EERE)

Utility Utility Jump to: navigation, search This is a property of type Page. Name: Utility Subproperties This property has the following 1 subproperty: A Data:Add4bb7f-e6bd-4427-a614-3a92bd5ba15d Pages using the property "OpenEI/UtilityRate/Utility" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + Prairie Land Electric Coop Inc + 000086db-7a5e-4356-9c57-c912f7d1622e + Talquin Electric Coop, Inc + 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + Central Electric Membership Corporation + 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + New London Electric&Water Util + 000b6dfa-a541-428a-9029-423006e22a34 + City of Plymouth, Wisconsin (Utility Company) + 000db36e-b548-43e7-a283-d37ecc77cef1 + Surprise Valley Electrification Corp. +

278

GSA-Utility Interconnection Agreements  

Broader source: Energy.gov (indexed) [DOE]

Property Property Asset Management Office of General Counsel Real Property Division Richard R. Butterworth Senior Assistant General Counsel (202) 501-4436 richard.butterworth@gsa.gov The Problem: * Most agreements require indemnity clauses - usually either by tariff or by the submission of standard contracts to PSCs * Federal Government precluded from providing indemnity by: * Anti-deficiency Act - 31 U.S.C. 665(a) * Adequacy of Appropriations Act - 41 U.S.C. 11 GSA - Utility Interconnection Agreements GSA - Utility Interconnection Agreements Exception: Utility Contracts * GAO decision sets the foundation for exception for utility contracts - 59 Comp. Gen. 705 * But it's a narrow exception - B-197583, January 19, 1981 GSA - Utility Interconnection Agreements

279

Grid Integration  

Broader source: Energy.gov [DOE]

The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid.

280

Solar Valuation in Utility Planning Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Improving alternative fuel utilization: detailed kinetic combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

282

Engagement with Utilities on Multifamily Retrofits | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assistance Program Multifamily Retrofits Engagement with Utilities on Multifamily Retrofits Engagement with Utilities on Multifamily Retrofits Weatherization professionals...

283

The Michigan regulatory incentives study for electric utilities  

SciTech Connect (OSTI)

This is the final report of Phase I of the Michigan Regulatory Incentives Study for Electric Utilities, a three-phase review of Michigan's regulatory system and its effects on resource selection by electric utilities. The goal of Phase I is to identify and analyze financial incentive mechanisms that encourage selection of resources in accord with the principles of integrated resource planning (IRP) or least-cost planning (LCP). Subsequent study phases will involve further analysis of options and possibly a collaborative formal effort to propose regulatory changes. The Phase I analysis proceeded in three steps: (1) identification and review of existing regulatory practices that affect utilities; selection of resources, particularly DSM; (2) preliminary analysis of ten financial mechanisms, and selection of three for further study; (3) detailed analysis of the three mechanisms, including consideration of how they could be implemented in Michigan and financial modeling of their likely impacts on utilities and ratepayers.

Reid, M.W.; Weaver, E.M. (Barakat and Chamberlin, Inc., Oakland, CA (United States)) [Barakat and Chamberlin, Inc., Oakland, CA (United States)

1991-06-17T23:59:59.000Z

284

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network [OSTI]

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

285

Market Failure in Public Utility Industries: An Institutionalist Critique of Deregulation  

Science Journals Connector (OSTI)

There is a general consensus that public utility services are an integral part of the infrastructure of modern society. Typically, these services are provided by capital intensive networks that link centralize...

Harry M. Trebing

2003-01-01T23:59:59.000Z

286

Cost of Gas Adjustment for Gas Utilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) Cost of Gas Adjustment for Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Generation Disclosure Provider Public Utilities Commission This rule, applicable to gas utilities, establishes rules for calculation of gas cost adjustments, procedures to be followed in establishing gas cost adjustments and refunds, and describes reports required to be filed with

287

Utility Energy Savings Contract Project  

Broader source: Energy.gov (indexed) [DOE]

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

288

Utility Security & Resiliency: Working Together  

Broader source: Energy.gov [DOE]

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingdiscusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

289

Deregulating the electric utility industry  

E-Print Network [OSTI]

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

290

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

291

Utility Lines and Facilities (Montana)  

Broader source: Energy.gov [DOE]

These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

292

Utility Energy Services Contracts Guide  

Broader source: Energy.gov [DOE]

Document features a compilation of samples and templates developed as a resource to help Federal contracting officers task orders for utility energy service contracts (UESCs) under existing U.S. General Service Administration (GSA) areawide contracts (AWCs).

293

Photovoltaics: New opportunities for utilities  

SciTech Connect (OSTI)

This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

Not Available

1991-07-01T23:59:59.000Z

294

Hustisford Utilities | Open Energy Information  

Open Energy Info (EERE)

Hustisford Utilities Hustisford Utilities Jump to: navigation, search Name Hustisford Utilities Place Wisconsin Utility Id 9124 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

295

Content first in markup demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9/2/11 9/2/11 Frequently Asked Questions (FAQ) eBuy Questions Apple Safari issues Approvals Customer identification Getting information Invoices Logins Packing lists Project IDs Purchase order numbers Remote Access Restricted items Returns Where do I get information about eBuy? A: The best place for eBuy information is on the Procurement Web site. Read the contents of this document and its various links like eBuy Help and Merchant information to get an idea of what eBuy is about. How are eBuy requisitions approved? A: eBuy requisition authorization uses eProcurement's basic approval engine with some rule changes. In general, requisitions $350 or less will self-approve when submitted and do not require an approver.In the following cases, however, the eBuy user needs to enter an Authorized Signer (from

296

MODIS Land Products Subsets Demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GLOBAL Subsetting and GLOBAL Subsetting and Visualization Tool Webinar: Bringing time-series satellite-based land data to the field scientist National Aeronautics and Space Administration www.nasa.gov Suresh K.S. Vannan and Tammy Walker Beaty Oak Ridge National Laboratory Distributed Active Archive Center, ORNL DAAC July 24 and 25, 2013 National Aeronautics and Space Administration Tammy Walker Beaty 2 About ORNL DAAC * The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for biogeochemical dynamics is one of the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS) data centers managed by the Earth Science Data and Information System (ESDIS) Project, which is responsible for providing users with access to data from NASA's Earth Science

297

Content first in markup demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14/13 14/13 Frequently Asked Questions (FAQ) Preparing Requsitions How do I obtain materials or services from vendors? A: Visit the Procurement Step-by-Step Buying Guide page. What is the average turn-around time for a procurement to be placed once it is approved in ePro? Does it vary for P-Card vs. purchase orders? A: Requisitions made into PCard orders are placed in approximately one day. Requisitions made into regular purchase orders/subcontracts are placed within 1-30 days--depending on the dollar amount and complexity of the purchase. The Leadtime Chart shows times required to process different kinds of purchase transactions. What happens if the amount of a procurement is higher than the authorized requisition amount? A: Any substantive changes, such as making a substitution, competing a

298

Content first in markup demo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4/12/07 4/12/07 Frequently Asked Questions (FAQ) Purchases Greater than $5,000 I am trying to approve an order in ePro that is adding $ to an existing blanket order. I can't see the PO# or the vendor name. Is there a way to get that information without having to go back to the Requester or the Requisition Preparer? A: For increases in funding to existing blanket orders, Requisition Preparers can enter the new start and end dates, existing order number, and existing vendor name in the Description for the requisition Line 1. This, together with the new requisition amounts, will be visible to the Approver and buyer. How does one process the extension on a blanket if no additional dollars need to be added? A: To extend the term of an existing blanket order without adding

299

Demoing the Modified TALON Robot  

Broader source: Energy.gov [DOE]

A technician at Idaho National Laboratory demonstrates the modified TALON robot; which is being sent to assist emergency workers at Japan's Fukishima nuclear reactor.

300

BuildingIQ Tech Demo  

Broader source: Energy.gov [DOE]

Lead Performer: BuildingIQ, Inc. Foster City, CaliforniaPartners: Department of General Services Washington, DCDOE Funding: $1,767,138Cost Share: $1,767,138Project Term: October 2014 ...

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Systems Integration  

Broader source: Energy.gov [DOE]

Through the SunShot Initiative, the U.S. Department of Energy (DOE) supports the development of innovative, cost-effective solutions that allow increasing amounts of solar energy to integrate...

302

Integration elements  

Science Journals Connector (OSTI)

Market-based integration is simple: Do whatever you want, the rest is up to the market. This model of the individual and its relation to others best suits the logic of the consumer society ?self-orientation an...

Dr. Eric Dieth

2011-01-01T23:59:59.000Z

303

Procurement Integrity  

Broader source: Energy.gov (indexed) [DOE]

employment with certain bidders or offerors. This chapter is intended to act as a primer for all DOE employees on issues related to procurement integrity. As such, not all...

304

Technoeconomic Analysis of Biofuel Production and Biorefinery Operation Utilizing Geothermal Energy  

Science Journals Connector (OSTI)

Technoeconomic Analysis of Biofuel Production and Biorefinery Operation Utilizing Geothermal Energy ... A technoeconomic study is conducted to assess the feasibility of integrating geothermal energy into a biorefinery for biofuel production. ... Geothermal energy is utilized in the refinery to generate process steam for gasification and steam-methane reforming in addition to providing excess electricity via the organic Rankine cycle. ...

Sudhanya Banerjee; Jordan A. Tiarks; Maciej Lukawski; Song-Charng Kong; Robert C. Brown

2013-02-28T23:59:59.000Z

305

Federal Utility Partnership Working Group - Utility Interconnection Panel  

Broader source: Energy.gov (indexed) [DOE]

WORKING GROUP - Utility Interconnection Panel M. Renee Jewell, Program/Energy Manager, & Contracting Officer, Forest Service (reneejewell@fs.fed.us) SCENARIO: Fed Agencies had Solar PV Projects To Connect with Utility in California * United States (US) Forest Service (FS) - 1 small Solar Photovoltaic (PV) project; and - 1 small Renewable project (Solar PV) exporting energy to grid. * U.S. National Park Service (NPS) - 24 Small Solar Photovoltaic projects. * U.S. Dept. of Veterans Affairs (VA) - 6 Renewable generation projects of different sizes. FS Region 5 (California) - Solar Photovoltaic Installations Solar PV Project @ Mono Lake Visitor Center (Inyo NF) Solar PV Project (net exporter) @ San Dimas Technology and Development Center SITUATION - Utility Wanted Feds to Sign Its

306

Utility Partnerships Webinar Series: Gas Utility Energy Efficiency Programs  

Broader source: Energy.gov [DOE]

Emerging gas technologies to enhance industrial energy efficiency, challenges of integrating into the marketplace and an overview of DTE Energys energy efficiency programs for natural gas customers.

307

Jefferson Utilities | Open Energy Information  

Open Energy Info (EERE)

Jefferson Utilities Jefferson Utilities Place Wisconsin Utility Id 9690 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service 7am-9pm with Parallel Generation(20kW or less) Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

308

Energy Efficiency and Electric Utilities  

SciTech Connect (OSTI)

The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

NONE

2007-11-15T23:59:59.000Z

309

Renewable Energy Options for a Utility System  

Science Journals Connector (OSTI)

In this paper renewable energies have been re?addressed with respect to the potentials and feasibility of being incorporated in process industries. Within a process utility system is considered to be the most appropriate place for using sustainable energies. For integrating the renewable energies the pinch analysis is applied as the main tool to provide opportunity for energy conservation. The results demonstrated that the power generation by the wind is the most cost effective and environmentally friendly option for energy conservation in comparison to the other sustainable resources. However the tidal energy stands the least due to the long payback period. Also a computer program has been developed using MATLAB 7.3 to screen out different scenarios and perform economic study. The outcome data showed that there are several different opportunities for the integration of alternative energies. Finally this method has been applied to a case study and various retrofit projects have been identified each of which has certain amount of CO 2 reduction and estimated values for the required investment saving potential and payback period.

Lena Ahmadi; M. Hassan Panjeshahi; Simon Perry

2009-01-01T23:59:59.000Z

310

MHD Integrated Topping Cycle Project  

SciTech Connect (OSTI)

The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

Not Available

1992-03-01T23:59:59.000Z

311

Optimal operation of an ethylene plant utility system  

Science Journals Connector (OSTI)

The algorithm developed allows the selection of the pressure and temperature conditions of the high, medium and low pressure vapor headers and the deaerator pressure of an ethylene plant utility system. The utility system optimization can be done simultaneously with the ethylene plant optimization including four decision variables: Conversion and dilution ratio of the pyrolysis reactor, cracked-gas compressor inlet pressure and demethanizer column pressure. Their values are calculated, solving a Nonlinear Programming subproblem where the modeling equations of the utility system and the ethylene plant are considered. A rigorous simulation of the utility system is carried out using a water property prediction package. There is a strong integration between the ethylene plant and the utility system due to the generation of high steam pressure in the pyrolysis reactor or the use of residual gas as fuel gas in the boilers. The sensitivity of the profit function with respect to the ethylene and utility plant optimization variables is shown for different ethylene prices optimal solutions.

N. Petracci; A.M. Eliceche; A. Bandoni; E.A. Brignole

1993-01-01T23:59:59.000Z

312

integr~1  

Broader source: Energy.gov (indexed) [DOE]

7 7 AUDIT REPORT THE U.S. DEPARTMENT OF ENERGY' S MANAGEMENT OF RESEARCH AND DEVELOPMENT INTEGRATION MARCH 1998 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES DEPARTMENT OF ENERGY Washington, DC 20585 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Principal Deputy Inspector General SUBJECT: INFORMATION : Audit Report on "Audit of the Department of Energy's Management of Research and Development Integration" BACKGROUND The Congress, independent task forces, and advisory groups have pointed out the need for the Department to improve its integration of research and development (R&D) projects. In the past, R&D management was carried out by different program offices with the research being

313

Merging utilities handle disparate EMSs  

SciTech Connect (OSTI)

When two utilities merge, a major aim of the merger is to improve overall system efficiency. When Gulf States Utilities Co (GSU) and Entergy Corp became one company on Jan 1, 1994, they had already taken a giant step towards improving efficiency by consolidating their energy management systems (EMS). When merger talks started, both companies had advanced EMS, but the systems were not compatible and could not fully communicate with each other. The solution to that problem was key to setting the stage for improving combined system operations into the future. This paper describes the EMS systems before and after the merger along with planned upgrades in the future. 3 figs.

NONE

1995-08-01T23:59:59.000Z

314

utility rate | OpenEI Community  

Open Energy Info (EERE)

utility rate utility rate Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 June, 2012 - 09:30 Increasing ask query limit developer utility rate An NREL user who is trying to use the utility rate service was having an issue. He writes "I noticed that any rates past 10,000 are not accessible via json. For example, this query only returns two entries:

315

Utility Companies | OpenEI Community  

Open Energy Info (EERE)

Utility Companies Utility Companies Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(1992) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane Sandy OpenEI outages storm United States Utility Companies As Hurricane Sandy continues to track towards the coast of the Eastern

316

Joint Electrical Utilities (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

317

Mississippi Public Utility Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mississippi Public Utility Act Mississippi Public Utility Act Mississippi Public Utility Act < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Industry Recruitment/Support Siting and Permitting Provider Public Service Commission The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN) from the Mississippi Public Service Commission (PSC) before commencing construction of a new electric

318

Studying the Communications Requirements of Electric Utilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

319

Federal Energy Efficiency through Utility Partnerships  

SciTech Connect (OSTI)

Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

Not Available

2007-08-01T23:59:59.000Z

320

Utility Energy Services Contracting Overview | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Contracting Overview Utility Energy Services Contracting Overview Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-features an...

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oregon Public Utility Commission | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oregon Public Utility Commission Oregon Public Utility Commission Offer comments on the United States Department of Energy Smart Grid Request for Information (RFI). Oregon Public...

322

Partnering with Utilities and Other Program Administrators |...  

Broader source: Energy.gov (indexed) [DOE]

Partnering with Utilities and Other Program Administrators Partnering with Utilities and Other Program Administrators U.S. Department of Energy (DOE) Technical Assistance Program...

323

Watertown Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Watertown Municipal Utilities Jump to: navigation, search Name: Watertown Municipal Utilities Place: South Dakota References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

324

Rural Utilities Service | Open Energy Information  

Open Energy Info (EERE)

Utilities Service Name: Rural Utilities Service Abbreviation: RUS Address: USDA Rural Development, Room 4051-S, 1400 Independence Avenue SW Place: Washington, DC Zip: 20250-1510...

325

A Technical Databook for Geothermal Energy Utilization  

E-Print Network [OSTI]

A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

Phillips, S.L.

1981-01-01T23:59:59.000Z

326

2012 Green Utility Leaders | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top Green Power Providers See All Leaders x Renewable Energy Sales Total Customer Participants Customer Participation...

327

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

328

Integrated Solid Waste Management Act (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Integrated Solid Waste Management Act (Nebraska) Integrated Solid Waste Management Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and

329

PADD 3 Weekly Inputs & Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Utilization 97.4 95.3 94.8 94.9 95.9 92.2 2010-2015 Refiner and Blender Net Inputs Motor Gasoline Blending Components -2,174 -2,008 -2,012 -2,095 -2,214 -2,291 2004-2015 RBOB -283...

330

State and Utility Engagement Activities  

Broader source: Energy.gov [DOE]

AMO engages state / local / regional organizations and utilities to drive energy efficiency investments throughout the industrial sector. Partnerships and State Grants help develop local infrastructure and boost offerings to local manufacturers (such as outreach, training, and technical assistance). This collaborative approach creates a value-added chain of stakeholders who are committed to significantly improving industrial energy efficiency.

331

Utility Marketing Strategies & Pricing Trends  

E-Print Network [OSTI]

Marketing seems to have come out of the utility closet once again, but it is a far sight different from that of the 1970s. While some are still on a sell, Sell, SELL! campaign, most are soberly looking at their customers from a different...

Gilbert, J. S.

332

Integrated System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Window System Our research activities in the field of high performance windows have led us to conclude that even by using high performance insulating glass units, low conductivity frames, and warm edge spacers, there are still untapped sources for improving energy efficiency in the design and use of residential windows. While such high performance windows are a dramatic improvement over conventional units, they do not reduce conductive losses through wall framing around the window, offer guarantees against excessive wall/window infiltration nor do they adapt to the daily and seasonal potentials for night insulation and summer shading. To meet this need, we have been working on the design, development, and prototyping of Integrated Window Systems (IWS) since 1993. Integrated Window Systems are a form of panelized construction where the wall panel includes an operable or fixed window sash, recessed night insulation, integral solar shading, and is built in a factory setting in order to minimize thermal short circuits and infiltration at joints. IWSs can be built in modular lengths to facilitate their installation with conventional wood frame stick construction or other forms of panelized construction.

333

Report on discussions with utility engineers about superconducting generators  

SciTech Connect (OSTI)

This report relates to a series of discussions with electric utility engineers concerning the integration of high-temperature superconducting (HTS) generators into the present electric power system. The current and future interest of the utilities in the purchase and use of HTS generators is assessed. Various performance and economic factors are also considered as part of this inspection of the utility prospects for HTS generators. Integration of HTS generators into the electric utility sector is one goal of the Superconductivity Partnership Initiative (SPI). The SPI, a major part of the Department of Energy (DOE) Superconductivity Program for Electric Systems, features vertical teaming of a major industrial power apparatus manufacturers, a producer of HTS wire, and an end-user with assistance and technical support for the national laboratories. The SPI effort on HTS generators is headed by a General Electric Corporation internal team comprised of the Corporate Research Laboratories, Power Generation Engineering, and Power Systems Group. Intermagnetics General corporation, which assisted in the development of the superconducting coils, is the HTS wire and tape manufacturer. Additional technical support is provided by the national laboratories: Argonne, Los Alamos, and Oak Ridge, and the New York State Institute on Superconductivity. The end-user is represented by Niagara-Mohawk and the Electric Power Research Institute.

none,

1996-03-01T23:59:59.000Z

334

NETL: IEP - Coal Utilization By-Products - Utilization Projects -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of North Dakota, EERC - Table of Contents University of North Dakota, EERC - Table of Contents Coal Ash Resources Research Consortium Stabilizing Feedlots Using Coal Ash Environmental Evaluation for Utilization of Ash in Soil Stabilization Coal Ash Resources Research Consortium Background CAEEC is a cooperation among industry, government, and the research community to work together to solve CCB- related problems and promote the environmentally safe, technically sound, and economically viable utilization and disposal of CCBs. Objectives To improve the technical and economic aspects of coal combustion by-product (CCB) management. Description CARRC tasks fall into three general categories: Member-prioritized research tasks, Technical and administrative tasks, and Special projects that support CARRC objectives and strengthen and increase the availability of sound technical data for CARRC use.

335

THERMODYNAMIC MODELLING OF BIOMASS INTEGRATED GASIFICATION COMBINED CYCLE (BIGCC) POWER GENERATION SYSTEM.  

E-Print Network [OSTI]

??An attractive and practicable possibility of biomass utilization for energy production is gasification integrated with a combined cycle. This technology seems to have the possibility (more)

Desta, Melaku

2011-01-01T23:59:59.000Z

336

Promotional practices at energy utilities: An update on recent state action  

SciTech Connect (OSTI)

Like other businesses, public utilities sometimes implement promotional activities designed to increase sales, enhance market share, or encourage customers to select one utility service over another. Regulators generally disallow the costs of promotional activities for ratemaking purposes in order to avoid competition with nonregulated businesses and to prevent the costs from devolving on ratepayers, especially those who do not benefit from these activities. Some state utility commissions, however, have been rethinking their promotional practice rules in light of recent developments affecting energy utilities-particularly demand-side management (DSM), conservation and load management, integrated resource planning, and economic development initiatives.

Nagelhout, M.

1993-05-01T23:59:59.000Z

337

Power Sales to Electric Utilities  

SciTech Connect (OSTI)

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

338

Integrating Variable Renewable Energy: Challenges and Solutions  

SciTech Connect (OSTI)

In the U.S., a number of utilities are adopting higher penetrations of renewables, driven in part by state policies. While power systems have been designed to handle the variable nature of loads, the additional supply-side variability and uncertainty can pose new challenges for utilities and system operators. However, a variety of operational and technical solutions exist to help integrate higher penetrations of wind and solar generation. This paper explores renewable energy integration challenges and mitigation strategies that have been implemented in the U.S. and internationally, including forecasting, demand response, flexible generation, larger balancing areas or balancing area cooperation, and operational practices such as fast scheduling and dispatch.

Bird, L.; Milligan, M.; Lew, D.

2013-09-01T23:59:59.000Z

339

General Services Administration Public Utility Contracting  

Broader source: Energy.gov [DOE]

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingdiscusses the government utility bill, utility service characteristics, utility energy service contract (UESC) requirements, supplier diversity requirement, subcontracting plan requirements, reporting requirements, and the Subcontracting Orientation and Assistance Reviews (SOARs).

340

Investments and forward utilities Marek Musiela  

E-Print Network [OSTI]

Investments and forward utilities Marek Musiela and Thaleia Zariphopoulou BNP Paribas, London proposes a new approach for portfolio allocation. The novel concept of forward dynamic utility is introduced. General classes of such utilities are constructed by combining the local variational util- ity

Zariphopoulou, Thaleia

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

7.4 Landfill Methane Utilization  

Broader source: Energy.gov [DOE]

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

342

Shared Value in Utility and Efficiency Partnerships  

Broader source: Energy.gov [DOE]

Presents four case studies highlighting partnerships between local utilities and energy efficiency programs.

343

SunShot Initiative: Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Integration Systems Integration High Penetration Solar Portal The High Penetration Solar Portal has timely information related to high penetration solar scenarios and integrating solar into the grid. The site allows utilities, grant awardees, regulators, researchers, and other solar professionals can easily share data, case studies, lessons learned, and demonstration project findings. Photo of power lines. Transmission line access is one challenge facing new utility-scale solar installations in the U.S. Photo by Dennis Schroeder, NREL 18981 Through the SunShot Initiative, the U.S. Department of Energy (DOE) supports the development of innovative, cost-effective solutions that allow increasing amounts of solar energy to integrate seamlessly with the national power grid while mitigating associated risks and reducing system costs. Such solutions will help achieve the SunShot goals by ensuring system reliability and encouraging the widespread deployment of solar technologies, such as photovoltaics and concentrating solar power.

344

Federal Energy Management Program: Utility Contract Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Competition to someone by E-mail Competition to someone by E-mail Share Federal Energy Management Program: Utility Contract Competition on Facebook Tweet about Federal Energy Management Program: Utility Contract Competition on Twitter Bookmark Federal Energy Management Program: Utility Contract Competition on Google Bookmark Federal Energy Management Program: Utility Contract Competition on Delicious Rank Federal Energy Management Program: Utility Contract Competition on Digg Find More places to share Federal Energy Management Program: Utility Contract Competition on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts Types of Contracts Laws & Regulations Best Practices Financing Decrease Interest Buydown & Buyout Approaches Contract Competition Diversify Project Portfolios

345

Public Utility Regulation (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

346

Electric Utility Measurement & Verification Program  

E-Print Network [OSTI]

Abstract BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydro?s demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM...) corporation. The province?s transmission assets are owned by a separate crown corporation, the BC Transmission Corporation. POWER SMART ? DEMAND SIDE MANAGEMENT PROGRAM RISK MITIGATION Power Smart is BC Hydro?s demand-side- management (DSM...

Lau, K.; Henderson, G.; Hebert, D.

347

Electric utility system master plan  

SciTech Connect (OSTI)

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

348

Purdue Solar Energy Utilization Laboratory  

SciTech Connect (OSTI)

The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

Agrawal, Rakesh [Purdue] [Purdue

2014-01-21T23:59:59.000Z

349

Utility stack opacity troubleshooting guidelines  

SciTech Connect (OSTI)

Stack plume visibility, otherwise defined as plume opacity, has become a concern to the utility industry. This concern stems from the fact that some coal-fired stations with operating FGD systems have been cited for opacity in excess of the New Source Performance Standards (NSPS) even though the particulate mass emissions are within regulated limits. Postulated causes for the unacceptable opacities include scrubber-generated particulate matter, condensible particulate matter such as sulfuric acid mist, fine particles penetrating the particulate control device, and/or colored gases such as nitrogen dioxide in the flue gas. It is important that the underlying cause of the plume opacity be identified to determine if it is possible to reduce plume opacity. This report presents a troubleshooting methodology developed during field tests at four utilities experiencing high stack opacities. Results from these field tests are presented as case studies to demonstrate how this methodology can be applied by a utility to determine the cause of their plume opacity. 10 refs., 18 figs., 5 tabs.

Keeth, R.J. (United Engineers and Constructors, Inc., Denver, CO (USA). Stearns-Roger Div.); Balfour, D.A.; Meserole, F.M.; Defries, T. (Radian Corp., Austin, TX (USA))

1991-03-01T23:59:59.000Z

350

Electric Utility Demand-Side Evaluation Methodologies  

E-Print Network [OSTI]

"::. ELECTRIC UTILITY DEMAND-SIDE EVALUATION METHODOLOGIES* Nat Treadway Public Utility Commission of Texas Austin, Texas ABSTRACT The electric. util ity industry's demand-side management programs can be analyzed ?from various points... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

Treadway, N.

351

Survey of state regulatory activities on least cost planning for gas utilities  

SciTech Connect (OSTI)

Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs.

Goldman, C.A. (Lawrence Berkeley Lab., CA (United States) National Association of Regulatory Utility Commissioners, Washington, DC (United States)); Hopkins, M.E. (Fleming Group, Washington, DC (United States))

1991-04-01T23:59:59.000Z

352

The Integration Of Shallow Solar-Pond and Swimming Pool  

Science Journals Connector (OSTI)

A way of integration of shallow solar-pond into swimming pool is proposed for collecting, storage and utilizing ... solar-pond part can heat the water of swimming pool, share the heat loads of ventilation and...

Haijun Qiao; Diankui Gao

2009-01-01T23:59:59.000Z

353

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation  

Broader source: Energy.gov [DOE]

Imagine a grid where utilities and consumers work together to alleviate congestion and meet growing energy demands. RDSI is working to facilitate this reality by focusing on the integration of on...

354

EA-66-B Citizens Utilities Company | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6-B Citizens Utilities Company EA-66-B Citizens Utilities Company Order authorizing Citizens Utilities Company to export electric energy to Canada EA-66-B Citizens Utilities...

355

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition An entity that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge battery electric

356

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition A corporation or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge

357

Avista Utilities - Net Metering | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Avista Utilities - Net Metering Avista Utilities - Net Metering Avista Utilities - Net Metering < Back Eligibility Agricultural Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Home Weatherization Wind Program Info State Idaho Program Type Net Metering Provider Avista Utilities Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net-metering tariff that has been approved by the Idaho Public Utilities Commission (PUC). The framework of the utilities' net-metering programs is similar, in that each utility: (1) offers net metering to customers that generate electricity using solar,

358

Building-integrated photovoltaics  

SciTech Connect (OSTI)

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

NONE

1993-01-01T23:59:59.000Z

359

NREL: Transmission Grid Integration - Wind Integration Datasets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Integration Datasets The Wind Integration Datasets provide energy professionals with a consistent set of wind profiles for the eastern United States and the western United...

360

Dual formulation of the utility maximization problem : the case of nonsmooth utility  

E-Print Network [OSTI]

, finitely valued on the whole real line, we study the dual formulation of the utility maximization problemDual formulation of the utility maximization problem : the case of nonsmooth utility B. Bouchard the dual formulation of the utility maximization problem in incomplete markets when the utility function

Touzi, Nizar

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SETTING-UP AND PAYING UTILITIES SIGNING UP FOR UTILITY SERVICE  

E-Print Network [OSTI]

SETTING-UP AND PAYING UTILITIES SIGNING UP FOR UTILITY SERVICE When you sign up for utility service, you may be required to pay a deposit. Here are some questions you should ask a utility company should call to report service problems? If you have an issue with a utility company that you can

Bogaerts, Steven

362

Utility theory U: O-> R (utility maps from outcomes to a real number)  

E-Print Network [OSTI]

9/22/2010 1 Utility theory U: O-> R (utility maps from outcomes to a real number) represents the attitude about risk by mapping the value to a utility. Decreasing marginal utility · Typically, at some point, having an extra dollar does not make people much happier (decreasing marginal utility). Marginal

Allan, Vicki H.

363

ELICITING UTILITY FOR (NON)EXPECTED UTILITY PREFERENCES USING INVARIANCE TRANSFORMATIONS  

E-Print Network [OSTI]

ELICITING UTILITY FOR (NON)EXPECTED UTILITY PREFERENCES USING INVARIANCE TRANSFORMATIONS André DE,version1-15Sep2010 #12;Eliciting Utility for (Non)Expected Utility Preferences Using Invariance of (non)-expected utility theory. When individual preference satisfies a given invariance property, his

Paris-Sud XI, Université de

364

C H A P T E R From Experienced Utility to Decision Utility  

E-Print Network [OSTI]

C H A P T E R 18c0018 From Experienced Utility to Decision Utility Kent C. Berridge and John P. O'Doherty O U T L I N E Introduction 325 Experienced Utility 325 Brain Mechanisms of Sensory Pleasure: Window into Experienced Utility Generators 326 Experienced Utility: Neuroimaging Brain Activations in Humans 327 Relating

Berridge, Kent

365

Energy Crossroads: Utility Energy Efficiency Programs | Environmental  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency Programs Energy Efficiency Programs Suggest a Listing Efficiency United The energy efficiency program for 18 Michigan Utilities including Alpena Power Company, Baraga Electric Utility, Bayfield Electric Cooperative, City of Crystal Falls Electric Department, City of Gladstone Department of Power & Light, City of South Haven Public Works, Daggett Electric Company, Hillsdale Board of Public Utilities, Indiana Michigan Power Company, L'Anse Electric Utility, Michigan Gas Utilities, Negaunee Electric Department, The City of Norway Department of Power & Light, SEMCO ENERGY Gas Company, Upper Peninsula Power Company, We Energies, Wisconsin Public Service and Xcel Energy. Energy Company Links A directory of approximately 700 oil and gas companies, utilities and oil

366

Utility Regulation (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

367

Utility Energy Services Contracts: Enabling Documents Update  

Broader source: Energy.gov (indexed) [DOE]

Documents Documents Update San Diego, CA November 28, 2007 Deb Beattie & Karen Thomas Overview  Legislative & Executive Actions  Legal Opinions  Agency Guidance  Contracts  Sample Documents  Resources www.eere.energy.gov/femp/pdfs/28792.pdf Enabling Legislation for Utility Programs Energy Policy Act of 1992 Section 152(f) - Utility Incentive Programs Section 152(f) - Utility Incentive Programs Agencies:  Are authorized and encouraged to participate in utility programs generally available to customers  May accept utility financial incentives, goods, and services generally available to customers  Are encouraged to enter into negotiations with utilities to design cost effective programs to address unique needs of facilities used by agency

368

Federal Energy Management Program: Federal Utility Partnership Working  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Utility Federal Utility Partnership Working Group Utility Partners to someone by E-mail Share Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Facebook Tweet about Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Twitter Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Google Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Delicious Rank Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on Digg Find More places to share Federal Energy Management Program: Federal Utility Partnership Working Group Utility Partners on AddThis.com...

369

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

370

"List of Covered Electric Utilities" under the Public Utility  

Broader source: Energy.gov (indexed) [DOE]

8 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) -List of Covered Electric Utilities - 2006 "List of Covered Electric Utilities" under the Public Utility

371

Finding Utility Companies Under a Given Utility ID | OpenEI Community  

Open Energy Info (EERE)

Finding Utility Companies Under a Given Utility ID Finding Utility Companies Under a Given Utility ID Home > Groups > Developer Jayhuggins's picture Submitted by Jayhuggins(15) Member 22 June, 2012 - 09:39 Utility+Utility Access Map Here's a quick way to find all the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". Groups: Developer Login to post comments Jayhuggins's blog Latest blog posts Rmckeel The utility rate database version 1 API is now deprecated Posted: 6 Sep 2013 - 14:00 by Rmckeel Jweers New Robust References! Posted: 7 Aug 2013 - 18:23 by Jweers 1 comment(s) 1 of 10 ›› Groups Menu You must login in order to post into this group.

372

Clarksdale Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Clarksdale Public Utilities Clarksdale Public Utilities Jump to: navigation, search Name Clarksdale Public Utilities Place Mississippi Utility Id 3702 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church and Fraternal Commercial Church and Fraternal-All Electric Commercial Commercial All Electric/Governmental All Electric/Utility All Electric Commercial Commercial Small/Governmental Small/Utility Small\ Commercial

373

Utility Contract Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Competition Competition Utility Contract Competition October 7, 2013 - 2:26pm Addthis Opening utility energy service contracts to competing franchised utility companies ensures Federal agencies get the best value for their projects. Federal agencies are not legally required to compete for utility incentive services provided by the "established source" utility in the utility's franchised service territory. If services are available, the Energy Policy Act of 1992 states that there should be no restriction on Federal facilities directly benefiting from the services the same as any other customer. The exception is if there is more than one serving utility offering utility energy services (e.g., a gas company and an electric company). In this case, the Federal Acquisition Regulations and good fiscal management

374

Keewatin Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Keewatin Public Utilities Keewatin Public Utilities Jump to: navigation, search Name Keewatin Public Utilities Place Minnesota Utility Id 10089 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Average Rates Residential: $0.0883/kWh Commercial: $0.0889/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Keewatin_Public_Utilities&oldid=410929" Categories: EIA Utility Companies and Aliases

375

Utility Service Renovations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utility Service Renovations Utility Service Renovations Utility Service Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Utility Service Renovations Photovoltaics Wind Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies

376

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API The utility rate database version 1 API is now deprecated Rmckeel 6 Sep 2013 - 14:00 Blog entry API Lighting Electricity Rates on OpenEI Sfomail 31 May 2013 - 12:04 Blog entry API Utility Rates API Version 2 is Live! Sfomail 17 May 2013 - 11:14 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis

377

Industrial Low Temperature Waste Heat Utilization  

E-Print Network [OSTI]

In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

Altin, M.

1981-01-01T23:59:59.000Z

378

Federal Utility Program Overview (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

Not Available

2009-07-01T23:59:59.000Z

379

RCx Insights and Best Practices from Utilities  

Broader source: Energy.gov [DOE]

Presentation covers the RCx Insights and Best Practices from Utilities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

380

Spot pricing of public utility services  

E-Print Network [OSTI]

This thesis analyzes how public utility prices should be changed over time and space. Earlier static and non spatial models of public utility pricing emerge as special cases of the theory developed here. Electricity is ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Utilization of Certain Hydrocarbons by Microorganisms  

Science Journals Connector (OSTI)

...UTILIZATION OF CERTAIN HYDROCARBONS BY MICROORGANISMS...1940 INTRODUCTION Hydrocarbons, as a class, represent...obtained by comparing the heat of combustion of some six carbon...biological utilization of hydrocarbons as sources of energy...

L. D. Bushnell; H. F. Haas

1941-05-01T23:59:59.000Z

382

Utilities: Emerging Opportunities in Performance Contracting  

E-Print Network [OSTI]

obligations to regulators. Although many of these contracts have been successful, the utilities often have mixed (if not outright negative) feelings toward the performance contractors. These often adversarial relationships stem in part from the lack of utility...

Wood, G. W.

383

BPA and new public utilities.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in BPA's policy on the creation of new utilities. It is important to understand that BPA is absolutely neutral on whether new public utilities form or where they form. BPA is...

384

NREL: Transportation Research - NREL Helps Utilities Develop...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Helps Utilities Develop Next Generation Plug-in Hybrid Electric Trucks Photo of utility truck under test in a laboratory setting. A computer monitor is attached to the side of...

385

Utility Systems Management and Operational Optimization  

E-Print Network [OSTI]

The provision of an adequate and reliable supply of utilities (fuel, steam and power) represents a significant operating cost for many industrial companies. For many industries, the energy/utilities cost is the largest operating expense after...

Dhole, V.; Seillier, D.; Garza, K.

386

23 CFR 645 - Utilities | Open Energy Information  

Open Energy Info (EERE)

645 - Utilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 23 CFR 645 - UtilitiesLegal Abstract This section describes...

387

Maximizing expected utility over a knapsack constraint  

E-Print Network [OSTI]

The expected utility knapsack problem is to pick a set of items whose values are ... variables so as to maximize the expected utility of the total value of the items...

2014-08-11T23:59:59.000Z

388

California Public Utilities Act | Open Energy Information  

Open Energy Info (EERE)

California Public Utilities ActLegal Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Pub. Util. Code 210 et seq. DOI Not Provided Check for DOI availability:...

389

Atmautluak Tribal Utilities | Open Energy Information  

Open Energy Info (EERE)

Atmautluak Tribal Utilities Jump to: navigation, search Name: Atmautluak Tribal Utilities Place: Alaska References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

390

Utility Energy Services Contracts: Enabling Documents DRAFT  

Broader source: Energy.gov [DOE]

Presentation on Cyber Security given at the Federal Utility Partnership Working Group Fall 2008 meeting in Williamsburg, Virginia.

391

Geothermal energy utilization with heat pipes  

Science Journals Connector (OSTI)

Several variants of heat pipes for utilization of geothermal energy and underground rock heat are studied. An...

L. L. Vasil'ev

1990-09-01T23:59:59.000Z

392

Energy Performance Assessment for Equipment and Utility Systems: Third  

Open Energy Info (EERE)

Energy Performance Assessment for Equipment and Utility Systems: Third Energy Performance Assessment for Equipment and Utility Systems: Third Edition Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Performance Assessment for Equipment and Utility Systems: Third Edition Focus Area: Energy Efficiency Topics: System & Application Design Website: www.emt-india.net/Book4/Book4.htm Equivalent URI: cleanenergysolutions.org/content/energy-performance-assessment-equipme Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Energy Standards,Upgrade Requirements" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

393

Utility Energy Service Contracts - Lessons Learned  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

394

UTILIZATION OF ALASKAN SALMON CANNERY WASTE  

E-Print Network [OSTI]

UTILIZATION OF ALASKAN SALMON CANNERY WASTE Marine Biological Laboratory iM0V3Ul953 WOODS HOLE and Wildlife Service, John L. Farley, Director UTILIZATION OP ALASKM SALMON CANlTEaT WASH PAHTS I AHD II, September 1953 #12;#12;UTILIZATION OF AUSKAN SALMON CANNERY WASTE y PART I 1. Possibility of Development

395

Work Force Planning for Public Power Utilities  

E-Print Network [OSTI]

Work Force Planning for Public Power Utilities: Ensuring Resources to Meet Projected Utilities Need to Do More to Prepare for Their Future Work Force Needs.............................................................................20 #12;ii Work Force Planning for Public Power Utilities #12;1 Work Force Planning for Public Power

396

Utility, informativity and protocols Robert van Rooy  

E-Print Network [OSTI]

Utility, informativity and protocols Robert van Rooy ILLC/University of Amsterdam R particular natural assumptions the utility of questions and answers reduces to their informativity, and that the ordering relation induced by utility sometimes even reduces to the logical relation of entailment

van Rooij, Robert

397

RAMS/HYPACT Evaluation and Visualization Utilities  

E-Print Network [OSTI]

REVU RAMS/HYPACT Evaluation and Visualization Utilities Version 2.3.1 User's Guide August 20, 2001 and Visualization Utilities (REVU), which is the standard supported package for generating graphical representations data in one of several available formats (e.g. Vis5D, GrADS, GRIB). REVU utilizes NCAR Graphics

Gohm, Alexander

398

Avista Utilities 1411 East Mission Avenue  

E-Print Network [OSTI]

Avista Utilities 1411 East Mission Avenue Spokane, WA 99220-3727 TOM LIENHARDPE, CMVP, CEM | Chief Energy Efficiency Engineer | Avista Utilities As the Chief Energy Efficiency Engineer for Avista Utilities, Tom is responsible for managing customer energy efficiency projects and supervises a team

399

Utility Ontology Development with Formal Concept Analysis  

E-Print Network [OSTI]

Utility Ontology Development with Formal Concept Analysis Gaihua Fu and Anthony G Cohn School for the development of ontologies in the utility infrastructure domain. It arises from a practical industrial problem consideration of interoperability with other utility information systems. The proposed approach is based

Leeds, University of

400

Inventories and capacity utilization in general equilibrium  

E-Print Network [OSTI]

.-Util. Speci cation. : : : : : : : : 106 VI Correlation Matrix: Sep.-Util. Speci cation. : : : : : : : : : : : : : : 106 VII Rate of Capital Utilization: Coe cients of Autocorrelation. : : : : : 106 VIII Relative Standard Deviations: CEE Speci cation.... : : : : : : : : : : : 107 IX Correlation Matrix: CEE Speci cation. : : : : : : : : : : : : : : : : : 107 X Relative Standard Deviations: General Vs Benchmark. : : : : : : : : 108 XI Correlation Matrix: General Speci cation. : : : : : : : : : : : : : : : 108 ix LIST...

Trupkin, Danilo Rogelio

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Utility Energy Service Contracts - Lessons Learned  

Broader source: Energy.gov (indexed) [DOE]

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

402

Development of an Integrated Distribution Management System  

SciTech Connect (OSTI)

This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nations critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nations economic security. Our Nations economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

Schatz, Joe E.

2010-10-20T23:59:59.000Z

403

Buildings to Grid Integration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

404

Buildings to Grid Integration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings to Grid Integration Buildings to Grid Integration Buildings to Grid Integration The U.S. Department of Energy is coordinating strategies and activities with companies, individuals, and government entities to address the integration and optimization of buildings with the nation's energy grid. Buildings and the Energy Grid As electricity demand continues to increase, integrating buildings and the electricity grid is a key step to increasing energy efficiency. Intermittent and/or variable generation sources and loads, such as those of electric vehicles, are being installed on the grid in increasing numbers and at more distributed locations. For example, the U.S. government, many states, municipalities, and utility service areas are diversifying and distributing their generation mix, including a larger percentage of

405

NREL: Energy Systems Integration - Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships Partnerships Photo of a researcher in a laboratory in front of various computer simulations Advanced Energy NREL and AE are teaming up on solar inverter testing. Photo of a hybrid sport utility vehicle in motion; the vehicle is marked with the National Renewable Energy Laboratory logo. Toyota NREL and Toyota are studying grid impacts of electric vehicles. Photo of a glass cube containing power electronics equipment in a laboratory. Wyle NREL and Wyle are building a hybrid power system for the Army. The Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory (NREL) was recently designated a national user facility by the Energy Department, so utilities, industry, and other national laboratories can use the facility to develop their technologies with the

406

Quantum Degrees of Freedom, Quantum Integrability and Entanglment Generators  

E-Print Network [OSTI]

Dynamical algebra notion of quantum degrees of freedom is utilized to study the relation between quantum dynamical integrability and generalized entanglement. It is argued that a quantum dynamical system generates generalized entanglement by internal dynamics if and only if it is quantum non-integrable. Several examples are used to illustrate the relation.

Nikola Buric

2010-03-26T23:59:59.000Z

407

"List of Covered Electric Utilities" under the Public Utility  

Broader source: Energy.gov (indexed) [DOE]

6 Revised 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the

408

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

409

Energy essays: a focus on utility communication  

SciTech Connect (OSTI)

The following papers are included: (1) technology, customers, and the feedback loop, (2) utility communications: a need for understanding the American character, (3) utility programs and grass roots communication, (4) reading the tea leaves of public opinion, (5) the need for public opinion surveys in utility communication programs, (6) the role of assessment in effective utility communication programs, (7) utility customer communication; perspectives on current public policy and law, (8) customer communications - a notion in motion, (9) communication when your customer is your owner, (10) radio advertising, (11) television advertising, (12) newspaper advertising, and (13) magazine advertising. (MOW)

Selnow, G.W.; Crano, W.D.; Ludwig, S.; Messe, L.A. (eds.)

1981-08-01T23:59:59.000Z

410

Distribution Integrity Management Plant (DIMP)  

SciTech Connect (OSTI)

This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records for all piping system installed after the effective date of this Plan will be captured and retained in the UI records documentation system. Primary Utility Asbuilts are maintained by Utilities Mapping (UMAP) and additional records are maintained on the N drive. Engineering Change Notices (ECNs) are stored on the N drive under configuration management and kept up by Utilities and Infrastructure Division Office (UI-DO). Records include, at a minimum, the location where new piping and appurtenances are installed and the material of which they are constructed.

Gonzales, Jerome F. [Los Alamos National Laboratory

2012-05-07T23:59:59.000Z

411

Gowrie Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Gowrie Municipal Utilities Gowrie Municipal Utilities Jump to: navigation, search Name Gowrie Municipal Utilities Place Iowa Utility Id 7424 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0976/kWh Commercial: $0.0900/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gowrie_Municipal_Utilities&oldid=41075

412

Building Energy Software Tools Directory: Utility Manager  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Manager Utility Manager Utility Manager logo Utility Manager™ captures data from historical and current utility bills every month into its centralized database, helping clients measure and energy costs and usage. Utility Manager™ provides energy, operational and financial managers with a series of customizable reports to help shape future decisions regarding energy costs and usage. Screen Shots Keywords Central capture of utility data for cost and energy usage reporting and reduction Validation/Testing Software has been rigorously tested internally throughout the course of its development and ongoing maintenance and enhancement (more than 15 years). Expertise Required Basic computer skills and understanding of energy accounting principles. Users 400-500 U.S. and Canada (primarily U.S.).

413

Knoxville Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Knoxville Utilities Board Knoxville Utilities Board (Redirected from KUB) Jump to: navigation, search Name Knoxville Utilities Board Place Knoxville, Tennessee Utility Id 10421 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] Energy Information Administration Form 826[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Knoxville Utilities Board Smart Grid Project was awarded $3,585,022 Recovery Act Funding with a total project value of $9,356,989. Utility Rate Schedules Grid-background.png FIVE-MINUTE RESPONSE (5 MR) INTERRUPTIBLE POWER Commercial GSA (1) 0KW-50KW Commercial OUTDOOR LIGHTING Part B- Mercury Vapor 1000W Lighting

414

UGI Utilities, Inc | Open Energy Information  

Open Energy Info (EERE)

Utilities, Inc Utilities, Inc Jump to: navigation, search Name UGI Utilities, Inc Place Pennsylvania Utility Id 19390 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0204/kWh Industrial: $0.0373/kWh The following table contains monthly sales and revenue data for UGI Utilities, Inc (Pennsylvania).

415

Foley Board of Utilities | Open Energy Information  

Open Energy Info (EERE)

Foley Board of Utilities Foley Board of Utilities Jump to: navigation, search Name Foley Board of Utilities Place Alabama Utility Id 6491 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Electric- Option A Commercial Athletic Field Electric- Option B Commercial General Service -Three-Phase Commercial General Service- Single-Phase Commercial Public Highway Lighting- Special Lighting Public Street and Highway Lighting- Customer Owned Fixtures Lighting Public Street and Highway Lighting- Utility-Owned Fixtures- 20,000 Lumen

416

Lawrenceburg Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Lawrenceburg Municipal Utils Lawrenceburg Municipal Utils Jump to: navigation, search Name Lawrenceburg Municipal Utils Place Indiana Utility Id 10798 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.1150/kWh Industrial: $0.0597/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lawrenceburg_Municipal_Utils&oldid=410978

417

Gwitchyaa Zhee Utility Co | Open Energy Information  

Open Energy Info (EERE)

Gwitchyaa Zhee Utility Co Gwitchyaa Zhee Utility Co Jump to: navigation, search Name Gwitchyaa Zhee Utility Co Place Alaska Utility Id 7833 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.2730/kWh Commercial: $0.5010/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gwitchyaa_Zhee_Utility_Co&oldid=410787

418

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

419

Utility Rates | OpenEI Community  

Open Energy Info (EERE)

Utility Rates Utility Rates Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 6 September, 2013 - 14:00 The utility rate database version 1 API is now deprecated API Utility Rates There comes a time in every API version's lifecycle when it needs to be deprecated. OpenEI's utility rate database version 1 API has been in use since the inception of the database in 2010. As Illinois State University has taken a commanding lead of the project and its data curation, we have updated the schema and API to version 2 to present a richer spectrum of utility rate data. Rmckeel's picture Submitted by Rmckeel(297) Contributor 11 June, 2013 - 09:33 Tip for working with approvals on OpenEI EZFeed Utility Rates The "ApprovedRevs" extension is the feature on OpenEI that allows

420

Navajo Tribal Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Utility Authority Utility Authority (Redirected from Navajo Tribal Utility Association) Jump to: navigation, search Name Navajo Tribal Utility Authority Place Arizona Utility Id 13314 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Navajo Tribal Utility Association Smart Grid Project was awarded $4,991,750 Recovery Act Funding with a total project value of $10,611,849.

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tatitlek Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Tatitlek Electric Utility Tatitlek Electric Utility Jump to: navigation, search Name Tatitlek Electric Utility Place Alaska Utility Id 18480 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.5470/kWh Commercial: $0.4590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Tatitlek_Electric_Utility&oldid=411647

422

Nome Joint Utility Systems | Open Energy Information  

Open Energy Info (EERE)

Joint Utility Systems Joint Utility Systems Jump to: navigation, search Name Nome Joint Utility Systems Place Alaska Utility Id 13642 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Charge Residential Power Cost Equalization Average Rates Residential: $0.3600/kWh Commercial: $0.3310/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Nome_Joint_Utility_Systems&oldid=411195

423

Utility Easements (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utility Easements (Indiana) Utility Easements (Indiana) Utility Easements (Indiana) < Back Eligibility Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Siting and Permitting Provider Indiana Department of Natural Resources A permit is required from the Indiana Department of Natural Resources for the construction of a utility upon a state park, a state forest, a state game preserve, land acquired by the state and set aside as a scenic or historic place, or the portion of a public highway passing through one of the aforementioned types of places

424

Cairo Public Utility Company | Open Energy Information  

Open Energy Info (EERE)

Cairo Public Utility Company Cairo Public Utility Company Jump to: navigation, search Name Cairo Public Utility Company Place Illinois Utility Id 2776 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.1160/kWh Commercial: $0.1140/kWh Industrial: $0.0654/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Cairo_Public_Utility_Company&oldid=409150

425

Lanesboro Public Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Lanesboro Public Utility Comm Lanesboro Public Utility Comm Jump to: navigation, search Name Lanesboro Public Utility Comm Place Minnesota Utility Id 10685 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Phase 2 Commercial Commercial- Three Phase Commercial Residential Residential Average Rates Residential: $0.1140/kWh Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lanesboro_Public_Utility_Comm&oldid=410975

426

Mohegan Tribal Utility Auth | Open Energy Information  

Open Energy Info (EERE)

Mohegan Tribal Utility Auth Mohegan Tribal Utility Auth Jump to: navigation, search Name Mohegan Tribal Utility Auth Place Connecticut Utility Id 49826 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Mohegan_Tribal_Utility_Auth&oldid=411113" Categories:

427

Truman Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Truman Public Utilities Comm Truman Public Utilities Comm Jump to: navigation, search Name Truman Public Utilities Comm Place Minnesota Utility Id 19237 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1360/kWh Commercial: $0.1410/kWh Industrial: $0.1150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Truman_Public_Utilities_Comm&oldid=411881"

428

Public Utilities Act (Illinois) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Public Utilities Act (Illinois) Public Utilities Act (Illinois) Public Utilities Act (Illinois) < Back Eligibility Commercial Industrial Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Safety and Operational Guidelines Provider Illinois Commerce Commission This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports. Every public utility shall furnish to the Commission all information required by it to carry into effect the provisions of this Act, and shall make specific answers to

429

Integrated Resource Planning Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Integrated Resource Planning Act (Georgia) Integrated Resource Planning Act (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Industry Recruitment/Support Siting and Permitting Georgia's Integrated Resource Planning Act, which was passed in 1991 and is now Georgia Code § 46-3A, requires that any proposed new electric plant receive certification by the Georgia Public Service Commission (PSC) before construction begins. A utility is entitled to recover pre-approved costs

430

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project  

Broader source: Energy.gov (indexed) [DOE]

Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project Sacramento Utility to Launch Concentrating Solar Power-Natural Gas Project October 31, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced a new concentrating solar power (CSP) project led by the Sacramento Municipal Utility District (SMUD). The project will integrate utility-scale CSP technology with SMUD's 500-megawatt (MW) natural gas-fired Cosumnes Power Plant. Supported by a $10 million Energy Department investment, this project will help design, build and test cost-competitive CSP-fossil fuel power generating systems in the United

431

Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations  

SciTech Connect (OSTI)

This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

Brancucci Martinez-Anido, C.; Hodge, B. M.

2014-09-01T23:59:59.000Z

432

DOE Transmission System Integration Workshop  

Broader source: Energy.gov (indexed) [DOE]

Heyeck, AEP, Sr. Vice President, Transmission Heyeck, AEP, Sr. Vice President, Transmission and Chair, EPRI Power Delivery & Utilization Sector Council November 01-02, 2012 DoubleTree Hotel, Crystal City Washington D.C. DOE Transmission System Integration Workshop 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. Near-Zero Emissions Long-Term Operations Renewable Integration Water Management Electric Vehicles Demand Response & Efficiency Renewable Energy Energy Storage Sensors & Control Cyber Security Supply = Demand The Power System Supply to Demand Requires a full portfolio of innovative technologies. Tomorrow's Power System One size does not fit all 3 © 2012 Electric Power Research Institute, Inc. All rights reserved. Grid Transformation to Ensure Reliability, Efficiency, Resiliency and Security

433

Radiological considerations of phosphogypsum utilization in agriculture  

SciTech Connect (OSTI)

The radiological concerns associated with phosphogypsum utilization in agriculture have been placed in perspective by considering the consequences of a hypothetical case involving heavy long term applications of phosphogypsum. In California, such a schedule might consist of an initial gypsum application of 10 tons/acre followed by alternate year applications of 5 tons/acre. If the radium content of the gypsum were 15 pCi/g and the till depth 6 inches, this schedule could be maintained for more than 100 years before the radium buildup in the soil would reach a proposed federal concentration limit of 5 pCi/g. An agricultural worker spending 40 h a week in a field containing 5 pCi/g of radium would be exposed to terrestrial radiation of about 7 ..mu..R/h above background. This exposure would result in an annual radiation dose of about 15 mrem, which is 3% of the recommended limit for an individual working in an uncontrolled area. Five pCi/g of radium in the soil could generate airborne radon daughter concentrations exceeding the concentration limit proposed for residential exposure. However, as residential exposure limits are predicated on 75% of continuous occupancy, these limits should not be applied to agricultural workers because of the seasonal nature of their work. Radium uptake by food crops grown in the hypothetical soil would result in a 50 year integrated dose to the bone surface of 1.4 rem. This dose is conservatively based on the assumption that an adult's total vegetable diet comes from this source and that consumption was continuous during the 50 year period.

Lindeken, C.L.

1980-10-31T23:59:59.000Z

434

Asymptotic analysis of utility-based prices and hedging strategies for utilities defined on the  

E-Print Network [OSTI]

Asymptotic analysis of utility-based prices and hedging strategies for utilities defined 6th 2009 #12;Outline Optimal investment and utility-based pricing hedging Asymptotic expansions horizon T 3. preferences over terminal wealth described by a utility function U #12;Trading strategies

Sîrbu, Mihai

435

Western Wind and Solar Integration Study (Fact Sheet)  

SciTech Connect (OSTI)

Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

Not Available

2012-09-01T23:59:59.000Z

436

INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL  

SciTech Connect (OSTI)

With declining petroleum reserves, increased world demand, and unstable politics in some of the worlds richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or strands model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

2007-12-01T23:59:59.000Z

437

1994 Panel 1 Utilization Plan  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is intended to receive, handle, and permanently dispose of transuranic (TRU) waste. To fulfill this mission, the U.S. Department of Energy (DOE) constructed a full-scale facility to demonstrate both technical and operational principles of the permanent isolation of TRU waste. The WIPP consists of surface and underground facilities. Panel 1 is situated in the underground facility horizon which is located approximately 2,150 feet below the surface in the predominantly halite Salado Formation. The Panel 1 Utilization Plan provides a strategy for the optimum use of Panel 1 which is consistent with the priorities established by the DOE to accomplish the WIPP mission. These priorities, which include maintaining personnel safety, conducting performance assessment, and continued operational enhancements, are the guiding premise for the decisions on the planned usage of the WIPP underground facility. The continuation of ongoing investigations along with the planned testing and training to be carried out in Panel 1 will enhance the current knowledge and understanding of the operational and geotechnical aspects of the panel configuration. This enhancement will ultimately lead to safer, more efficient, and more cost-effective methods of operation. Excavation of the waste storage area began in May 1986 with the mining of entries to Panel 1. The original design for the waste storage rooms at the WIPP provided a limited period of time during which to mine the openings and to emplace waste. Each panel, consisting of seven storage rooms, was scheduled to be mined and filled in less than 5 years. Panel 1 was developed to receive waste for a demonstration phase that was scheduled to start in October 1988. The demonstration phase was deferred, and the experimental test program was modified to use contact-handled (CH) transuranic waste in bin-scale tests, planned for Room 1, Panel 1.

Not Available

1994-11-01T23:59:59.000Z

438

Microelectromechanical pump utilizing porous silicon  

DOE Patents [OSTI]

A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

Lantz, Jeffrey W. (Albuquerque, NM); Stalford, Harold L. (Norman, OK)

2011-07-19T23:59:59.000Z

439

Adrian Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Comm Public Utilities Comm Jump to: navigation, search Name Adrian Public Utilities Comm Place Minnesota Utility Id 150 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial - LC Commercial Residential - RL Residential Residential Electric Heat Residential Security Lights - SL Commercial Small Commercial - SC Single-Phase Commercial Small Commercial - SC Three-Phase Commercial Average Rates Residential: $0.0955/kWh Commercial: $0.0980/kWh Industrial: $0.1120/kWh References

440

Canton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Canton Municipal Utilities Canton Municipal Utilities Jump to: navigation, search Name Canton Municipal Utilities Place Mississippi Utility Id 2974 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E01 RESIDENTIAL ALL ELECTRIC Residential E04 COMMERCIAL ELECTRIC Commercial E08 LARGE INDUSTRIAL ELECTRIC Industrial E09 RESIDENTIAL ELECTRIC Residential E12 SMALL INDUSTRIAL ELECTRIC Industrial E13 ELECTRIC WATER HEATER Commercial Average Rates Residential: $0.0978/kWh

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bristol Virginia Utilities | Open Energy Information  

Open Energy Info (EERE)

Bristol Virginia Utilities Bristol Virginia Utilities Jump to: navigation, search Name Bristol Virginia Utilities Place Virginia Utility Id 2248 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - Schedule GSA1-(<50 kW and <15,000 kWh) Commercial General Power Rate - Schedule GSA2-(>50 kW & 15,000 kWh) Industrial General Power Rate - Schedule GSA2-(>50 kW &

442

Utility Data Accessibility Map | Open Energy Information  

Open Energy Info (EERE)

Utility Data Accessibility Map Utility Data Accessibility Map Jump to: navigation, search Residential Commercial Benchmarking Energy Efficiency Delivery of Data Time Period Frequency of Data Access to Data Residential frequency of data access Ua Utility Data Access Map Having access to your electricity use data is a very important step in understanding your overall energy usage. Comparing historical data to your current usage is one way to see trends and determine ways for reducing electricity costs and improving overall efficiency. We asked all U.S. electric utility companies to tell us how accessible their electricity use data is for both residential and commercial customers. The results are updated live based on the responses we have to date. As more utilities provide information, the utility boundaries will be automatically colored

443

Hawley Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hawley Public Utilities Comm Hawley Public Utilities Comm Jump to: navigation, search Name Hawley Public Utilities Comm Place Minnesota Utility Id 8307 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 3 PHASE COMMERCIAL ELECTRIC Commercial COMMERCIAL ELECTRIC Commercial ELECTRIC VARIANCE Commercial GENERATOR RATE Commercial GROUND SOURCE HEAT PUMP - RESIDENTIAL Residential LARGE COMMERCIAL ELECTRIC Commercial MINNKOTA WIND SURCHARGE - COMMERCIAL Commercial MINNKOTA WIND SURCHARGE - RESIDENTIAL Residential

444

Barbourville Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Barbourville Utility Comm Barbourville Utility Comm Jump to: navigation, search Name Barbourville Utility Comm Place Kentucky Utility Id 1201 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Large Power Electric Commercial Residential Electric Service Residential Average Rates Residential: $0.0778/kWh Commercial: $0.0757/kWh Industrial: $0.0626/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

445

Delano Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Delano Municipal Utilities Place Minnesota Utility Id 5015 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commerical Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.1060/kWh Commercial: $0.0995/kWh Industrial: $0.0854/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

446

Waverly Municipal Elec Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Elec Utility Municipal Elec Utility Jump to: navigation, search Name Waverly Municipal Elec Utility Place Iowa Utility Id 20214 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Commercial and Municipal time of Use Service Commercial Electric Heat Rate for Residential Service Residential General Service General and Minicipal Demand Time of Use Service Commercial

447

Shakopee Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Shakopee Public Utilities Comm Shakopee Public Utilities Comm Jump to: navigation, search Name Shakopee Public Utilities Comm Place Minnesota Website www.ci.shakopee.mn.us/ind Utility Id 16971 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate Commercial Large general service rate Industrial Large industrial service rate Industrial Residential service rate Residential Residential service rate - senior citizens Residential Average Rates Residential: $0.1080/kWh Commercial: $0.0946/kWh Industrial: $0.0805/kWh

448

Springfield Public Utils Comm | Open Energy Information  

Open Energy Info (EERE)

Springfield Public Utils Comm Springfield Public Utils Comm Place Minnesota Utility Id 17836 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Power Commercial Residential Residential Residential with Electric Heating Residential Street Lighting Lighting Average Rates Residential: $0.1180/kWh Commercial: $0.0998/kWh Industrial: $0.0979/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Springfield_Public_Utils_Comm&oldid=411601

449

Bancroft Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Bancroft Municipal Utilities Bancroft Municipal Utilities Jump to: navigation, search Name Bancroft Municipal Utilities Place Iowa Utility Id 1172 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Rates Commercial Schedule 1 Residential Schedule 2 Commercial Schedule 3 Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0990/kWh Industrial: $0.0932/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

450

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

451

Sharyland Utilities LP | Open Energy Information  

Open Energy Info (EERE)

Sharyland Utilities LP Sharyland Utilities LP Jump to: navigation, search Name Sharyland Utilities LP Place Texas Utility Id 17008 Utility Location Yes Ownership I NERC ERCOT Yes NERC SPP Yes ISO Ercot Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (Rate Codes 550, 552, and 559) Commercial Competitive Service Rider Commercial Cotton Gin (Rate Codes 671 and 672) Commercial General Service Bundled Service (Rate Codes 110, 111, 112, 113, 114, and 115) Commercial Irrigation (Rate Code 440) Commercial Large Power Primary (Rate Codes 660 and 668) Commercial

452

Hutchinson Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hutchinson Utilities Comm Hutchinson Utilities Comm Jump to: navigation, search Name Hutchinson Utilities Comm Place Minnesota Utility Id 9130 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL ELECTRIC SERVICE Industrial LARGE GENERAL ELECTRIC SERVICE - PRIMARY VOLTAGE (CUSTOMER OWNED) Industrial

453

Utility Rebate Program | Open Energy Information  

Open Energy Info (EERE)

Utility Rebate Program Utility Rebate Program Jump to: navigation, search States, local governments and utilities offer rebates to promote the installation of renewable energy systems and energy efficiency measures. The majority of rebate programs that support renewable energy are administered by states, municipal utilities and electric cooperatives; these programs commonly provide funding for solar water heating and/or photovoltaic (PV) systems. Most rebate programs that support energy efficiency are administered by utilities. Rebate amounts vary widely based on technology and program administrator. [1] Utility Rebate Program Incentives CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1718) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

454

Corbin City Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Corbin City Utilities Comm Corbin City Utilities Comm Jump to: navigation, search Name Corbin City Utilities Comm Place Kentucky Utility Id 4341 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LGS-1 Large General Service Industrial LGS-2 Large General Srvice V2 Industrial RS-1 Residential Service Residential SGS-1 Small General Service Commercial SLS-1 Security Lighting Service-100 Watt Open Bottom Lighting SLS-1 Security Lighting Service-250 Watt Cobra Lighting SLS-1 Security Lighting Service-250 Watt Directional Flood Lighting

455

Ketchikan Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Ketchikan Public Utilities Ketchikan Public Utilities Jump to: navigation, search Name Ketchikan Public Utilities Place Alaska Utility Id 10210 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential and Community Facilities Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0974/kWh Industrial: $0.0877/kWh

456

Cascade Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Cascade Municipal Utilities Cascade Municipal Utilities Jump to: navigation, search Name Cascade Municipal Utilities Place Iowa Utility Id 3137 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Rate Residential City/Interdept. Rate Commercial Commercial Rate 3-phase Commercial Commercial Rate Single-phase Commercial Demand Rate Industrial Residential Rates Residential Average Rates Residential: $0.1040/kWh

457

Category:Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Category containing Utility Companies. Add a new Utility Company Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Subcategories This category has only the following subcategory. G [×] Green Button Utility Companies‎ 80 pages Pages in category "Utility Companies" The following 200 pages are in this category, out of 3,832 total. (previous 200) (next 200) 3 3 Phases Energy Services 4 4-County Electric Power Assn A A & N Electric Coop A & N Electric Coop (Virginia) Accent Energy Holdings, LLC Accent Energy Holdings, LLC (New York) Accent Energy Holdings, LLC (Texas) Access Energy Coop Adams Electric Coop Adams Electric Cooperative Inc Adams Rural Electric Coop, Inc Adams-Columbia Electric Coop

458

Indianola Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Indianola Municipal Utilities Indianola Municipal Utilities Jump to: navigation, search Name Indianola Municipal Utilities Place Iowa Utility Id 9275 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rates Commercial Electric Heat Source Commercial Government Commercial Large Industrial Industrial Outside City Limits Residential Residential Rates Residential Small Industrial Industrial

459

Chillicothe Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Chillicothe Municipal Utils Chillicothe Municipal Utils Jump to: navigation, search Name Chillicothe Municipal Utils Place Missouri Utility Id 3486 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL (NON DEMAND)SERVICE SCHEDULE - CO Commercial LARGE COMMERCIAL SERVICE SCHEDULE - LP Commercial LARGE INDUSTRIAL SERVICE SCHEDULE - LI-01 Industrial RESIDENTIAL SERVICE SCHEDULE Residential SMALL INDUSTRIAL (NON DEMAND) SERVICE SCHEDULE - CO-06 Industrial Average Rates

460

Melrose Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Melrose Public Utilities Place Minnesota Utility Id 12286 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Industrial Large Commercial Commercial OFF-PEAK(Heat Sink) Commercial Residential(Elec Heat Customers) Residential Rural Service Residential Security Light-150 watt Lighting Security Light-70 watt Lighting Security Lighting-250 Watt Lighting

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Florida Public Utilities Co | Open Energy Information  

Open Energy Info (EERE)

Florida Public Utilities Co Florida Public Utilities Co Jump to: navigation, search Name Florida Public Utilities Co Place Florida Utility Id 6457 Utility Location Yes Ownership I NERC Location FRCC NERC FRCC Yes NERC SERC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSLDT:General Service-Large Demand TOU(Experimental) Industrial General Service - Demand (GSD)-Northeast Florida Industrial General Service - Demand (GSD)-Northwest Florida Commercial General Service - Large Demand (GSLD)-Northeast Florida Industrial

462

Litchfield Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Litchfield Public Utilities Place Minnesota Utility Id 11064 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase General Service- Three Phase Commercial Large Power Commercial Residential Residential Rural Residential Small Power Commercial Wind Power Commercial Average Rates Residential: $0.0876/kWh Commercial: $0.0932/kWh Industrial: $0.0686/kWh

463

Easton Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Utilities Comm Utilities Comm Jump to: navigation, search Name Easton Utilities Comm Place Maryland Utility Id 5625 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Commercial LARGE GENERAL SERVICE(Primary Metering) Commercial PRIMARY GENERAL SERVICE Commercial RESIDENTIAL RATE Residential SMALL GENERAL SERVICE Commercial SMALL GENERAL SERVICE(Primary Metering) Commercial

464

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: challenge Type Term Title Author Replies Last Post sort icon Discussion challenge 2013 Civic Hacking Day Ideas Rmckeel 1 22 May 2013 - 08:23 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne

465

Pascoag Utility District | Open Energy Information  

Open Energy Info (EERE)

Pascoag Utility District Pascoag Utility District Jump to: navigation, search Name Pascoag Utility District Place Rhode Island Utility Id 14537 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial and Industrial (unbundled service) Large Commercial and Industrial - Standard Offer (bundled) Large Commercial and Industrial Seasonal (unbundled) Large Commercial and Industrial Seasonal Standard Offer (bundled) Public and Private Lighting - Mercury - 175 watt Lighting

466

Brainerd Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Brainerd Public Utilities Brainerd Public Utilities Jump to: navigation, search Name Brainerd Public Utilities Place Minnesota Utility Id 2138 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel (Space Heating) Commercial Commercial Dual Fuel (Space Heating) Industrial Industrial Dual Fuel (Space Heating) Residential Residential General Service Demand Commercial General Service Rate Commercial Industrial Power Industrial Industrial Power 2% Discount Industrial

467

Reedsburg Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Reedsburg Utility Comm Reedsburg Utility Comm Jump to: navigation, search Name Reedsburg Utility Comm Place Wisconsin Utility Id 15804 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

468

Fort Valley Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Utility Comm Utility Comm Jump to: navigation, search Name Fort Valley Utility Comm Place Georgia Utility Id 6617 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL: #20 Commercial INDUSTRIAL LARGE POWER: #26/28 Industrial INSTITUTIONAL: #14 Commercial Industrial Small Power Industrial RESIDENTIAL: #10 Residential SMALL COMMERCIAL: #22 Commercial Average Rates Residential: $0.0787/kWh Commercial: $0.1030/kWh Industrial: $0.0772/kWh References

469

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

470

Kerrville Public Utility Board | Open Energy Information  

Open Energy Info (EERE)

Kerrville Public Utility Board Kerrville Public Utility Board Jump to: navigation, search Name Kerrville Public Utility Board Place Texas Utility Id 28604 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial-for Energy greater than 2500 kWh Commercial Commercial-for Energy greater than 2500 kWh-Distributed generation Rider Commercial Commercial-for Energy less or equal to 2500 kWh Commercial Commercial-for Energy less orequal to 2500 kWh-Distributed generation rider

471

Kenyon Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Kenyon Municipal Utilities Kenyon Municipal Utilities Jump to: navigation, search Name Kenyon Municipal Utilities Place Minnesota Utility Id 10179 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Large Commercial/Demand Service Rate Commercial Residential Service Rate Residential Security Lights Lighting Street Lights Lighting Average Rates Residential: $0.1200/kWh Commercial: $0.1100/kWh

472

Aitkin Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Aitkin Public Utilities Comm Aitkin Public Utilities Comm Jump to: navigation, search Name Aitkin Public Utilities Comm Place Minnesota Utility Id 174 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential (Peak 08:00 a.m. - 12:00 p.m.) Residential Residential (Peak 12:00 p.m. - 5:00 p.m.) Residential Residential (Peak 5:00 p.m. - 9:00 p.m.) Residential Residential Dual Fuel Residential Security Lights 150 Watt Lighting Security Lights 250 Watt Lighting

473

Winner Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Winner Municipal Utility Winner Municipal Utility Jump to: navigation, search Name Winner Municipal Utility Place South Dakota Utility Id 20823 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Mutiple Dwelling Rate Residential Residential Rate Residential Security Lighting Rate Lighting Small Commercial Rate Commercial Average Rates Residential: $0.0929/kWh Commercial: $0.0845/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

474

Bagley Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Bagley Public Utilities Comm Bagley Public Utilities Comm Jump to: navigation, search Name Bagley Public Utilities Comm Place Minnesota Utility Id 1101 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Commercial Electric Demand Commercial Commercial Electric Demand Three Phase Commercial Commercial Electric Three Phase Commercial Electric Heat Non Ripple New Residential Electric Heat Non Ripple Old Residential Electric Heat Ripple Plan 1 Residential Electric Heat Ripple Plan 2 Residential

475

Greenville Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Utilities Comm Utilities Comm Jump to: navigation, search Name Greenville Utilities Comm Place North Carolina Utility Id 7639 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes ISO Other Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png County, Municipal, or Housing Authority Outdoor Lighting- 175W Mercury Vapor Lighting County, Municipal, or Housing Authority Outdoor Lighting- 250W Mercury Vapor Lighting County, Municipal, or Housing Authority Outdoor Lighting- 250W Sodium Vapor

476

Clinton Combined Utility Sys | Open Energy Information  

Open Energy Info (EERE)

Clinton Combined Utility Sys Clinton Combined Utility Sys Jump to: navigation, search Name Clinton Combined Utility Sys Place South Carolina Utility Id 3804 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Large General Service Commercial General Electric Service Commercial Residential Rate Residential Average Rates Residential: $0.1250/kWh Commercial: $0.1140/kWh Industrial: $0.0851/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

477

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: developer Type Term Title Author Replies Last Post sort icon Blog entry developer Utility Rates API Version 2 is Live! Sfomail 17 May 2013 - 11:14 Discussion developer Utility rate change propagation is now much faster Rmckeel 1 21 Mar 2013 - 09:11 Blog entry developer OpenEI maintenance March 8-9, 2013 Rmckeel 8 Mar 2013 - 14:23 Blog entry developer Semantic Mediawiki Semantic Forms update Rmckeel 22 Oct 2012 - 07:23 Discussion developer Increasing ask query limit Rmckeel 1 28 Jun 2012 - 14:35 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank...

478

Brownsville Public Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Brownsville Public Utilities Board Brownsville Public Utilities Board Jump to: navigation, search Name Brownsville Public Utilities Board Place Texas Utility Id 2409 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service GSA-1 Commercial General Service- GSA-2 Commercial General Service- GSA-3 Commercial

479

Proctor Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Proctor Public Utilities Comm Proctor Public Utilities Comm Jump to: navigation, search Name Proctor Public Utilities Comm Place Minnesota Utility Id 15460 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric- Demand Metering Commercial Commercial Electric- Single Phase Commercial Commercial Electric- Three Phase Commercial Residential Electric Residential Residential- Duel Fuel Residential Residential- ETS Residential Average Rates Residential: $0.0866/kWh Commercial: $0.0849/kWh Industrial: $0.0825/kWh

480

Algoma Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Algoma Utility Comm Algoma Utility Comm Jump to: navigation, search Name Algoma Utility Comm Place Wisconsin Utility Id 307 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Interdepartmental Service Commercial Customer Owner Generation Systems (Greater than 20kW) Industrial General Service - Optional Time-of-Day Single Phase less than 100kW 7am-7pm Industrial General Service - Optional Time-of-Day Single Phase less than 100kW 9am-9pm Industrial General Service - Optional Time-of-Day Single Phase less than 100kW 8am-8pm

Note: This page contains sample records for the topic "demo utility integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Eldridge City Utilities | Open Energy Information  

Open Energy Info (EERE)

Eldridge City Utilities Eldridge City Utilities Jump to: navigation, search Name Eldridge City Utilities Place Iowa Utility Id 5742 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Industrial Industrial Residential Residential Residential- All Electric Residential Security Lighting- 100W HPS Lighting Security Lighting- 100W HPS - Customer Owned Pole Lighting Security Lighting- 400W HPS Lighting Security Lighting- 400W HPS - Customer Owned Pole Lighting

482

OpenEI Community - utility rate  

Open Energy Info (EERE)

Rates API Rates API Version 2 is Live! http://en.openei.org/community/blog/utility-rates-api-version-2-live Smart meterAfter several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at util_rates">http://en.openei.org/services/doc/rest/util_ratesutility-rates-api-version-2-live" target="_blank">read more

483

Page Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Page Electric Utility Page Electric Utility Jump to: navigation, search Name Page Electric Utility Place Arizona Utility Id 14373 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service with Demand Meter Commercial Commercial Service without Demand Meter Commercial Residential Service > 200 Amps Residential Residential Service < 200 Amps Residential

484

Rock Rapids Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rapids Municipal Utility Rapids Municipal Utility Jump to: navigation, search Name Rock Rapids Municipal Utility Place Iowa Utility Id 16206 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power (Single-Phase) Commercial Commercial Power (Three-Phase) Commercial Residential Power Residential Average Rates Residential: $0.0807/kWh Commercial: $0.0633/kWh Industrial: $0.0899/kWh

485

Orlando Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Orlando Utilities Comm Orlando Utilities Comm (Redirected from OUC) Jump to: navigation, search Name Orlando Utilities Comm Place Florida Utility Id 14610 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Firm General Service Demand Primary Service Standby Service Industrial

486

Kauai Island Utility Cooperative | Open Energy Information  

Open Energy Info (EERE)

Island Utility Cooperative Island Utility Cooperative Jump to: navigation, search Name Kauai Island Utility Cooperative Place Hawaii Utility Id 10071 Utility Location Yes Ownership C NERC Location HICC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Residential Service Residential General Light and Power Service Schedule G Commercial General Light and Power Service Schedule J Commercial Large Power Secondary Schedule P Industrial Large Power Service Schedule L Industrial

487

Henderson City Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Henderson City Utility Comm Henderson City Utility Comm Jump to: navigation, search Name Henderson City Utility Comm Place Kentucky Utility Id 8449 Utility Location Yes Ownership M NERC Location serc NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Rate Schedule Schedule D Industrial General Service Rate Schedule Schedule GS-Single Phase- Commercial Commercial General Service Rate Schedule Schedule GS-Single Phase- Industrial Industrial General Service Rate Schedule Schedule GS-Three Phase- Commercial

488

Weatherford Mun Utility System | Open Energy Information  

Open Energy Info (EERE)

Mun Utility System Mun Utility System Jump to: navigation, search Name Weatherford Mun Utility System Place Texas Utility Id 20230 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service - 1 (Demand 20.00 - 200.00) Industrial Large General Service - 2 (Demand 200.00 -1000.00) Industrial Large General Service - 2* Industrial Large General Service - 3 (Demand 1000.00 or More) Industrial Large General Service - 3* Industrial MV Lighting Lighting Residential service Residential

489

Sylacauga Utilities Board | Open Energy Information  

Open Energy Info (EERE)

Sylacauga Utilities Board Sylacauga Utilities Board Jump to: navigation, search Name Sylacauga Utilities Board Place Alabama Utility Id 18395 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General Service Commercial Commercial Large General Service Industrial Industrial Large General Service Primary Service Credit with Standby Generator Capacity Industrial Large General Service Primary Service Credit Commercial Commercial Large General Service Primary Service Credit Industrial Industrial

490

Albertville Municipal Utils Bd | Open Energy Information  

Open Energy Info (EERE)

Albertville Municipal Utils Bd Albertville Municipal Utils Bd Jump to: navigation, search Name Albertville Municipal Utils Bd Place Alabama Utility Id 241 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - SGSC Commercial General Power Rate - SGSD Industrial General Power Rate(Schedule GSA)-Part 1 Commercial General Power Rate(Schedule GSA)-Part 2 Commercial General Power Rate(Schedule GSA)-Part 3 Commercial Manufacturing Service Rate - SMSB Industrial Manufacturing Service Rate - SMSC Industrial

491

Madisonville Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Madisonville Municipal Utils Madisonville Municipal Utils Jump to: navigation, search Name Madisonville Municipal Utils Place Kentucky Utility Id 11488 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Service-less than 50 KW Commercial Demand Commercial Electric Service-50 KW per month or more Commercial Residential Electric Service Residential Security Lights Overhead Flood Light HPS 400 W Lighting Security Lights Overhead Flood Light MH 400 W Lighting Security Lights Overhead HPS 150 W Lighting

492

Fairmont Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Comm Public Utilities Comm Jump to: navigation, search Name Fairmont Public Utilities Comm Place Minnesota Utility Id 6151 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ALL ELECTRIC RATE Industrial COMMERCIAL SERVICE Commercial GENERAL SERVICE Industrial INDUSTRIAL SERVICE Industrial INDUSTRIAL SERVICE - PRIMARY VOLTAGE Industrial RESIDENTIAL HEAT Residential RESIDENTIAL SERVICE Residential RURAL SERVICE Residential

493

Emerald People's Utility Dist | Open Energy Information  

Open Energy Info (EERE)

Utility Dist Utility Dist Jump to: navigation, search Name Emerald People's Utility Dist Place Oregon Utility Id 40437 Utility Location Yes Ownership P NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AGRICULTURAL PUMPING Poly-Phase 30.1 hp to 60 hp Commercial AGRICULTURAL PUMPING Poly-Phase 30hp or less Commercial AGRICULTURAL PUMPING Poly-Phase 60.1 hp & over Commercial AGRICULTURAL PUMPING Single Phase Commercial

494

Wisconsin Dells Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dells Electric Util Dells Electric Util Jump to: navigation, search Name Wisconsin Dells Electric Util Place Wisconsin Utility Id 20844 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase Commercial General Service- Three Phase Commercial Large General Service Commercial Large Power Service Industrial Large Power Service(Primary Metering & Transformer Ownership) Industrial Large Power Service(Primary Metering) Industrial Large Power Service(Transformer Ownership) Industrial

495

Trenton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Trenton Municipal Utilities Trenton Municipal Utilities Jump to: navigation, search Name Trenton Municipal Utilities Place Missouri Utility Id 19150 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church Rate Commercial Commercial All Electric Rate Commercial Commercial General Electric Rate Commercial Commercial Power Rate Commercial Grundy Electric Rate for City Line Usage Commercial

496

Tecumseh Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Tecumseh Utility Authority Tecumseh Utility Authority Jump to: navigation, search Name Tecumseh Utility Authority Place Oklahoma Utility Id 18524 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Bright Light Service- (Any Kind) Lighting General Commercial Service Commercial High Pressure Sodium Light Lighting Large Commercial Rate Commercial Residential Rate Residential Residential Total Electric Residential Average Rates Residential: $0.1590/kWh Commercial: $0.1460/kWh References

497

Navajo Tribal Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Navajo Tribal Utility Authority Navajo Tribal Utility Authority Place Arizona Utility Id 13314 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Navajo Tribal Utility Association Smart Grid Project was awarded $4,991,750 Recovery Act Funding with a total project value of $10,611,849. Utility Rate Schedules Grid-background.png

498

Rancho Cucamonga Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rancho Cucamonga Municipal Utility Rancho Cucamonga Municipal Utility Jump to: navigation, search Name Rancho Cucamonga Municipal Utility Place California Utility Id 56224 Utility Location Yes Ownership M NERC WECC Yes ISO CA Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Systems Commercial Large Commercial Commercial Medium Commercial Commercial Medium Commercial (Time-Of-Use) Commercial Net Energy Metering Commercial Outdoor Area Lighting Lighting Small Comercial Commercial Small Commercial Three Phase Commercial

499

Whitehall Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Whitehall Electric Utility Whitehall Electric Utility Jump to: navigation, search Name Whitehall Electric Utility Place Wisconsin Utility Id 20583 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting- City of Whitehall Lighting Athletic Field Lighting- Whitehall Schools Lighting General Service- Single-Phase Commercial General Service- Three-Phase Commercial General Service- Time-of-Day- Single-Phase- Peak: 7am-7pm Commercial

500

Williamstown Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Williamstown Utility Comm Williamstown Utility Comm Jump to: navigation, search Name Williamstown Utility Comm Place Kentucky Utility Id 20731 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 Watt High Pressure Sodium Area Light Lighting 150 Watt High Pressure Sodium Floodlight Lighting 175 Watt Mercury Vapor Area Light Lighting 250 Watt High Pressure Sodium Area Light Lighting 250 Watt High Pressure Sodium Floodlight Lighting 400 Watt High Pressure Sodium Area Light Lighting