National Library of Energy BETA

Sample records for demand-side management electrification

  1. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  2. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J.

    1995-05-01

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  3. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B.

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  4. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. )

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  5. Network-Driven Demand Side Management Website | Open Energy Informatio...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnetwork-driven-demand-side-management Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  6. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  7. Agreement Template for Energy Conservation and Demand Side Management Services

    Broader source: Energy.gov [DOE]

    Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below.

  8. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    1995-07-01

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  9. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    1997-12-01

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  10. Summary of Characteristics and Energy Efficiency Demand-side Management Programs in the Southeastern United States

    SciTech Connect (OSTI)

    Glatt, Sandy

    2010-04-01

    This report is the first in a series that seeks to characterize energy supply and industrial sector energy consumption, and summarize successful industrial demand-side management (DSM) programs within each of the eight North American Electric Reliability Corporation (NERC) regions.

  11. Demand-side management program evaluation and the EPA Conservation Verification Protocols. Final report

    SciTech Connect (OSTI)

    Willems, P.; Ciraulo, J.; Smith, B.

    1993-11-01

    The US Environmental Protection Agency (EPA) Conservation Verification Protocols (CVPs) are a set of step-by-step procedures for impact monitoring and evaluation of electric utility demand-side management (DSM) programs. The EPA developed these protocols as part of its mission to implement the Acid Rain Program authorized by Title IV of the Clean Air Amendments of 1990. This report provides an overview of the CVPs and how they can be used by electric utilities in DSM program monitoring and evaluation. Both the CVPs Monitoring Path and Stipulated Path procedures are summarized and reviewed. Several examples are provided to illustrate how to calculate DSM program energy savings using the CVPSs.

  12. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1997-01-01

    Since 1987, many electric utilities throughout North America have been actively promoting demand-side management (DSM), the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them are the subjects of this paper.

  13. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1995-12-31

    Since 1987, many electric utilities throughout North America have been actively promoting DSM--demand-side management, the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them--these are the subjects of this paper.

  14. Why industry demand-side management programs should be self-directed

    SciTech Connect (OSTI)

    Pritchett, T.; Moody, L. ); Brubaker, M. )

    1993-11-01

    U.S. industry believes in DSM. But it does not believe in the way DSM is being implemented, with its emphasis on mandatory utility surcharge/rebate programs. Self-directed industrial DSM programs would be better for industry - and for utilities as well. Industrial demand-side management, as it is currently practiced, relies heavily on command-and-control-style programs. The authors believe that all parties would benefit if utilities and state public service commissions encouraged the implementation of [open quotes]self-directed[close quotes] industrial DSM programs as an alternative to these mandatory surcharge/rebate-type programs. Here the authors outline industrial experience with existing demand-side management programs, and offer alternative approaches for DSM in large manufacturing facilities. Self-directed industrial programs have numerous advantages over mandatory utility-funded and sponsored DSM programs. Self-directed programs allow an industrial facility to use its own funds to meet its own specific goals, whether they are set on the basis of demand reduction, energy use reduction, spending levels for DSM and environmental activities, or some combination of these or other readily measurable criteria. This flexibility fosters a higher level of cost effectiveness, a more focused and effective approach for optimizing energy usage, larger emission reductions per dollar of expenditure, and more competitive industrial electric rates.

  15. Electricity pricing as a demand-side management strategy: Western lessons for developing countries

    SciTech Connect (OSTI)

    Hill, L.J.

    1990-12-01

    Electric utilities in the Western world have increasingly realized that load commitments can be met not only by constructing new generating plants but also by influencing electricity demand. This demand-side management (DSM) process requires that electric utilities promote measures on the customer's side of the meter to directly or indirectly influence electricity consumption to meet desired load objectives. An important demand-side option to achieve these load objectives is innovative electricity pricing, both by itself and as a financial incentive for other demand-site measures. This study explores electricity pricing as a DSM strategy, addressing four questions in the process: What is the Western experience with DSM in general and electricity pricing in particular Do innovative pricing strategies alter the amount and pattern of electricity consumption Do the benefits of these pricing strategies outweigh the costs of implementation What are future directions in electricity pricing Although DSM can be used to promote increases in electricity consumption for electric utilities with excess capacity as well as to slow demand growth for capacity-short utilities, emphasis here is placed on the latter. The discussion should be especially useful for electric utilities in developing countries that are exploring alternatives to capacity expansion to meet current and future electric power demand.

  16. Demand Side Management in the Smart Grid: Information Processing for the Power Switch

    SciTech Connect (OSTI)

    Alizadeh, Mahnoosh; LI, Xiao; Wang, Zhifang; Scagilone, Anna; Melton, Ronald B.

    2012-09-01

    In this article we discuss the most recent developments in the area of load management, and consider possible interaction schemes of novel architectures with distributed energy resources (DER). In order to handle the challenges faced by tomorrow’s smart grid, which are caused by volatile load and generation profiles (from the large number of plug-in EVs and from renewable integration), the conventional grid operating principle of load-following needs to be changed into load-shaping or generation-following. Demand Side Management will be a most promising and powerful solution to the above challenges. However, many other issues such as load forecasting, pricing structure, market policy, renewable integration interface, and even the AC/DC implementation at the distribution side, need to be taken into the design in order to search for the most effective and applicable solution.

  17. Table 8.13 Electric Utility Demand-Side Management Programs, 1989-2010

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Electric Utility Demand-Side Management Programs, 1989-2010 Year Actual Peakload Reductions 1 Energy Savings Electric Utility Costs 4 Energy Efficiency 2 Load Management 3 Total Megawatts Million Kilowatthours Thousand Dollars 5 1989 NA NA 12,463 14,672 872,935 1990 NA NA 13,704 20,458 1,177,457 1991 NA NA 15,619 24,848 1,803,773 1992 7,890 9,314 17,204 35,563 2,348,094 1993 10,368 12,701 23,069 45,294 2,743,533 1994 11,662 13,340 25,001 52,483 2,715,657 1995 13,212 16,347 29,561 57,421

  18. Hawaii demand-side management resource assessment. Final report: DSM opportunity report

    SciTech Connect (OSTI)

    1995-08-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

  19. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    SciTech Connect (OSTI)

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  20. Industrial demand-side management programs: What`s happened, what works, what`s needed

    SciTech Connect (OSTI)

    Jordan, J.A.; Nadel, S.M.

    1993-03-01

    In order to analyze experience to date with industrial demand-side management (DSM), a survey of utilities was conducted and a database of industrial DSM programs was prepared. More than eighty utilities and third-party organizations were interviewed. Data were collected via phone, fax, and/or mail from the utilities and entered into a database. In order to limit the scope of this study, the database contains incentive-based, energy-saving programs and not load management or information-only programs (including technical assistance programs). Programs in the database were divided into four categories: two ``prescriptive rebate`` categories and two ``custom rebate`` categories. The database contains 31 incentive-based, energy-saving industrial DSM programs offered by 17 utilities. The appendix to this report summarizes the results approximately 60 industrial DSM programs. Most of the programs included in the appendix, but not in the database, are either C&I programs for which commercial and industrial data were not disaggregated or new industrial DSM programs for which data are not yet available.

  1. Comments on the Glen Canyon Dam EIS treatment of demand-side management

    SciTech Connect (OSTI)

    Cavallo, J.D.

    1992-10-08

    The Glen Canyon Dam EIS has developed a substantial body of research on the economic consequences of altering the dam and plant operation. The following comments deals only with the electric power planning aspects of the study in general and the demand-side management estimates in particular. Most of the material in the report Power System Impacts of Potential Changes in Glen Canyon Power Plant Operations'' is outside the area of DSM/C RE, but appears reasonable. In particular, the input assumptions relating to the potential costs of power plants for capacity expansion planning are not unlike the costs Argonne is using in its studies and those which are used by others when comparison are made to DSM program choices. Statement of Major Concerns. The central concerns of the DSM/C RE results shown in the Glen Canyon study are as follows: (1) The assumption that DSM will penetrate the systems of Western's customers to a level which would reduce peak demand by 10 percent in the baseline alternative is overly optimistic given (a) the current reductions from the C RE programs, (b) the economic incentives faced by Western's customers, and (c) the current manner in which Western's power is used by its customers. (2) The result that DSM will reduce load by the same amount in each alternative is suspicious and unlikely.

  2. Comments on the Glen Canyon Dam EIS treatment of demand-side management

    SciTech Connect (OSTI)

    Cavallo, J.D.

    1992-10-08

    The Glen Canyon Dam EIS has developed a substantial body of research on the economic consequences of altering the dam and plant operation. The following comments deals only with the electric power planning aspects of the study in general and the demand-side management estimates in particular. Most of the material in the report ``Power System Impacts of Potential Changes in Glen Canyon Power Plant Operations`` is outside the area of DSM/C&RE, but appears reasonable. In particular, the input assumptions relating to the potential costs of power plants for capacity expansion planning are not unlike the costs Argonne is using in its studies and those which are used by others when comparison are made to DSM program choices. Statement of Major Concerns. The central concerns of the DSM/C&RE results shown in the Glen Canyon study are as follows: (1) The assumption that DSM will penetrate the systems of Western`s customers to a level which would reduce peak demand by 10 percent in the baseline alternative is overly optimistic given (a) the current reductions from the C&RE programs, (b) the economic incentives faced by Western`s customers, and (c) the current manner in which Western`s power is used by its customers. (2) The result that DSM will reduce load by the same amount in each alternative is suspicious and unlikely.

  3. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect (OSTI)

    Sartor, D.; Munn, M.

    1998-06-01

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  4. Impact of the Demand-Side Management (DSM) Program structure on the cost-effectiveness of energy efficiency projects

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.; Dixon, D.R.; Elliott, D.B.

    1994-12-01

    Pacific Northwest Laboratory (PNL) analyzed the cost-effective energy efficiency potential of Fort Drum, a customer of the Niagara Mohawk Power Corporation (NMPC) in Watertown, New York. Significant cost-effective investments were identified, even without any demand-side management (DSM) incentives from NMPC. Three NMPC DSM programs were then examined to determine the impact of participation on the cost-effective efficiency potential at the Fort. The following three utility programs were analyzed: (1) utility rebates to be paid back through surcharges, (2) a demand reduction program offered in conjunction with an energy services company, and (3) utility financing. Ultimately, utility rebates and financing were found to be the best programs for the Fort. This paper examines the influence that specific characteristics of the DSM programs had on the decision-making process of one customer. Fort Drum represents a significant demand-side resource, whose decisions regarding energy efficiency investments are based on life-cycle cost analysis subject to stringent capital constraints. The structures of the DSM programs offered by NMPC affect the cost-effectiveness of potential efficiency investments and the ability of the Fort to obtain sufficient capital to implement the projects. This paper compares the magnitude of the cost-effective resource available under each program, and the resulting level of energy and demand savings. The results of this analysis can be used to examine how DSM program structures impact the decision-making process of federal and large commercial customers.

  5. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called ...

  6. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    SciTech Connect (OSTI)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

    1994-07-01

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

  7. Local government involvement in long term resource planning for community energy systems. Demand side management

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    A program was developed to coordinate governmental, research, utility, and business energy savings efforts, and to evaluate future potential actions, based on actual field data obtained during the implementation of Phase I of the State Resource Plan. This has lead to the establishment of a state conservation and energy efficiency fund for the purpose of establishing a DSM Program. By taking a state wide perspective on resource planning, additional savings, including environmental benefits, can be achieved through further conservation and demand management. This effort has already blossomed into a state directive for DSM programs for the natural gas industry.

  8. Chapter 3: Demand-Side Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Demand-Side Resources Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called demand-side resources), some for more than two decades. According to one source, U.S. electric utilities spent $14.7 billion on DSM programs between 1989 and 1999, an average of $1.3 billion per year. Chapter 3: Demand-Side Resources (265.28 KB) More Documents & Publications Chapter 3 Demand-Side Resources Draft Ch

  9. Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs

    SciTech Connect (OSTI)

    Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

    1995-03-01

    The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

  10. South Korea-ANL Distributed Energy Resources and Demand Side...

    Open Energy Info (EERE)

    is part of a team that assists the Korean government in analyzing the economic and environmental benefits of distributed resources and demand side management (DSM). DSM has...

  11. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  12. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  13. Energy conservation and electricity sector liberalization: Case-studies on the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom

    SciTech Connect (OSTI)

    Slingerland, S.

    1998-07-01

    In this paper, the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom are compared. It is discussed to what extent these developments are determined by the liberalization process. Three key liberalization variables are identified: unbundling, privatization and introduction of competition. The analysis suggests that unbundling prior to introduction of full competition in generation is particularly successful in stimulating industrial cogeneration; simultaneous introduction of competition and unbundling mainly stimulates non-cogeneration gas-based capacity; and introduction of competition in itself is likely to impede the development of district-heating cogeneration. Furthermore, it is argued that development of wind energy and demand-side management are primarily dependent on the kind of support system set up by policy makers rather than on the liberalization process. Negative impacts of introduction of competition on integrated resource planning and commercial energy services could nevertheless be expected.

  14. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  15. Hawaii demand-side management resource assessment. Final report, Reference Volume 5: The DOETRAN user`s manual; The DOE-2/DBEDT DSM forecasting model interface

    SciTech Connect (OSTI)

    1995-04-01

    The DOETRAN model is a DSM database manager, developed to act as an intermediary between the whole building energy simulation model, DOE-2, and the DBEDT DSM Forecasting Model. DOETRAN accepts output data from DOE-2 and TRANslates that into the format required by the forecasting model. DOETRAN operates in the Windows environment and was developed using the relational database management software, Paradox 5.0 for Windows. It is not necessary to have any knowledge of Paradox to use DOETRAN. DOETRAN utilizes the powerful database manager capabilities of Paradox through a series of customized user-friendly windows displaying buttons and menus with simple and clear functions. The DOETRAN model performs three basic functions, with an optional fourth. The first function is to configure the user`s computer for DOETRAN. The second function is to import DOE-2 files with energy and loadshape data for each building type. The third main function is to then process the data into the forecasting model format. As DOETRAN processes the DOE-2 data, graphs of the total electric monthly impacts for each DSM measure appear, providing the user with a visual means of inspecting DOE-2 data, as well as following program execution. DOETRAN provides three tables for each building type for the forecasting model, one for electric measures, gas measures, and basecases. The optional fourth function provided by DOETRAN is to view graphs of total electric annual impacts by measure. This last option allows a comparative view of how one measure rates against another. A section in this manual is devoted to each of the four functions mentioned above, as well as computer requirements and exiting DOETRAN.

  16. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    the value of the resources and alleviate problems arising from their intermittent nature. This report describes how information was collected, analysed and synthesized and...

  17. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  18. Report: Impacts of Demand-Side Resources on Electric Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report assesses the relationship between high levels of demand-side resources (including end-use efficiency, demand response, and distributed generation) and investment in new ...

  19. Impacts of Demand-Side Resources on Electric Transmission Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Demand-Side Resources on Electric Transmission Planning Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have ...

  20. Navajo Electrification Demonstration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Plans * Navajo Electrification Demonstration Program -Video OBJECTIVES OBJECTIVES " ... Navajo Electrification Demonstration Navajo Electrification Demonstration Program Program ...

  1. Paying for demand-side response at the wholesale level

    SciTech Connect (OSTI)

    Falk, Jonathan

    2010-11-15

    The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

  2. The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit

    U.S. Energy Information Administration (EIA) Indexed Site

    The Demand Side: Behavioral Patterns and Unpicked Low-Hanging Fruit James Sweeney Stanford University Director Precourt Energy Efficiency Center (Née: Precourt Institute for Energy Efficiency) Professor, Management Science and Engineering 6 Source: McKinsey & Co. Increased commercial space Gasoline Price Controls Compact Fluorescent Penetration LED: Traffic Lights, Task Lighting Appliance Energy Labeling Gasoline Rationing Much Incandescent Lighting Congestion Pricing Personal Computer

  3. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt071_vss_cesiel_2011_o.pdf (760.6 KB) More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  4. ARRA Electrification Projects

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    U.S. Department of Energy funded multiple electrification projects through the American ... The U.S. Department of Energy funded multiple electrification projects through the ...

  5. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  6. Chapter 3 Demand-Side Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Typically, these resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys ...

  7. Mobile Truck Stop Electrification Locator Now Available - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a billion gallons of fuel each year nationwide," said Wendy Dafoe, NREL manager of DOE's Alternative Fuels and Advanced ... of electrification sites, the mobile locator can ...

  8. Buildings sector demand-side efficiency technology summaries

    SciTech Connect (OSTI)

    Koomey, J.G.; Johnson, F.X.; Schuman, J.

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  9. Interstate Electrification Improvement Project

    SciTech Connect (OSTI)

    Puckette, Margaret; Kim, Jeff

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by

  10. Navajo Electrification Demonstraiton Project

    SciTech Connect (OSTI)

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Confidential, 4222013 2013 DOE VEHICLE TECHNOLOGIES PROGRAM REVIEW PRESENTATION Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification...

  12. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  13. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  14. Club for Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    Electrification Jump to: navigation, search Name: Club for Rural Electrification Place: Freiburg, Germany Zip: 79114 Sector: Solar Product: An industry association of German...

  15. Alliance for Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    Alliance for Rural Electrification1 The Alliance for Rural Electrification is the only international business association in the world focusing on the promotion and the...

  16. Quadrennial Technology Review Vehicle Efficiency and Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Documents | Department of Energy Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents (6.05 MB) More Documents & Publications QTR Public Webinar 2 Quadrennial Technology Review Workshop Portfolios Quadrennial

  17. Handbook of evaluation of utility DSM programs. [Demand-Side Management (DSM)

    SciTech Connect (OSTI)

    Hirst, E.; Reed, J.; Bronfman, B.; Fitzpatrick, G.; Hicks, E.; Hirst, E.; Hoffman, M.; Keating, K.; Michaels, H.; Nadel, S.; Peters, J.; Reed, J.; Saxonis, W.; Schoen, A.; Violette, D.

    1991-12-01

    Program evaluation has become a central issue in the world of utility integrated resource planning. The DSM programs that utilities were operating to meet federal requirements or to improve customer relations are now becoming big business. DSM is being considered an important resource in a utility's portfolio of options. In the last five years, the amount of money that utilities have invested in DSM has grown exponentially in most regulatory jurisdictions. Market analysts are now talking about DSM being a $30 billion industry by the end of the decade. If the large volume of DSM-program investments was not enough to highlight the importance of evaluation, then the introduction of regulatory incentives has really focused the spotlight. This handbook was developed through a process that involved many of those people who represent the diverse constituencies of DSM-program evaluation. We have come to recognize the many technical disciplines that must be employed to evaluate DSM programs. An analysis might start out based on the principles of utility load research to find out what happened, but a combination of engineering and statistical methods must be used to triangulate'' an estimate of what would have happened without the program. The difference, of course, is that elusive but prized result of evaluation: what happened as the direct result of the DSM program. Technical performance of DSM measures is not the sole determinant of the answer, either. We also recognize the importance of such behavioral attributes of DSM as persistence and free ridership. Finally, DSM evaluation is meaningless without attention to planning an approach, communicating results to relevant decision-makers, and focusing as much on the process as the impacts of the program. These topics are all covered in this handbook.

  18. Electric Utility Demand-Side Management IT EJA Data News: EIA...

    Gasoline and Diesel Fuel Update (EIA)

    Change, Petroleum Products Supplied, and Ending Stocks ... 44 3.1b Imports, Exports, and Net Imports ... . 45 3.2 Crude Oil Supply and...

  19. Chile rural electrification cooperation

    SciTech Connect (OSTI)

    Flowers, L.

    1997-12-01

    The author describes a joint program to use renewables for rural electrification projects in Chile. The initial focus was in a limited part of the country, involving wind mapping, pilot project planning, training, and development of methodologies for comparative evaluations of resources. To this point three wind hybrid systems have been installed in one region, as a part of the regional private utility, and three additional projects are being designed. Additional resource assessment and training is ongoing. The author points out the difficulties in working with utilities, the importance of signed documentation, and the need to look at these programs as long term because of the time involved in introducing such new technologies.

  20. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  1. China-NREL Rural Electrification Projects | Open Energy Information

    Open Energy Info (EERE)

    Rural Electrification Projects Jump to: navigation, search Logo: China Rural Electrification Name China Rural Electrification AgencyCompany Organization National Renewable Energy...

  2. Truckstop -- and Truck!-- Electrification

    SciTech Connect (OSTI)

    Skip Yeakel

    2001-12-13

    The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Peer Evaluation Meeting arravt072vssmackie2013o.pdf More Documents & Publications Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  4. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vssarravt067bazzi2010p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV

  5. Viet Nam Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    Rural Electrification Location of project Vietnam Energy Services Lighting, Cooking and water heating, Space heating, Cooling Year initiated 2009 Organization Asian Development...

  6. Renewable Energy Technologies for Rural Electrification - The...

    Open Energy Info (EERE)

    Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies for Rural Electrification - The Role of the Private Sector AgencyCompany...

  7. German Club for Rural Electrification CLE | Open Energy Information

    Open Energy Info (EERE)

    Electrification CLE Jump to: navigation, search Name: German Club for Rural Electrification (CLE) Place: Freiburg, Germany Zip: 79114 Sector: Renewable Energy Product: German...

  8. Modified Microgrid Concept for Rural Electrification in Africa...

    Open Energy Info (EERE)

    Modified Microgrid Concept for Rural Electrification in Africa Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Modified Microgrid Concept for Rural Electrification in...

  9. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries Accelerating the Electrification...

  10. Rural Electrification Act of 1936 | Open Energy Information

    Open Energy Info (EERE)

    901 et seq. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Rural Electrification Act of 1936 Citation Rural Electrification Act of...

  11. Advancing Transportation Through Vehicle Electrification - PHEV |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy arravt067_vss_bazzi_2012_o.pdf (1.95 MB) More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram 1500

  12. Interruptible service system: A demand-side management application for the City of Los Angeles Department of Water & Power

    SciTech Connect (OSTI)

    Leblanc, M.; Sweeney, D.

    1994-12-31

    The Los Angeles Department of Water & Power (LADWP) instituted an electric rate schedule, A3-B, for its largest industrial power consumers in 1985. The A3 rate provides these LADWP customers (2000 Kilowatts or more users) a significant savings on their electric service rate. LADWP benefits by having the capability to interrupt the industrial customer`s load after giving them a 10 minute warning notice of interruption. The Interruptible Service System (ISS) automates this formerly manual process and allows for continuous monitoring of the power used of the power system`s largest power consumers. An ISS remote terminal unit (RTU) is installed at each customer`s site. This RTU communicates with a master computer (desktop PC) at LADWP`s Energy Control Center (ECC). The ECC initiates control, monitoring, and interrupt operations involving all customers on the ISS rate. Communication between the master computer and the various ISS customer RTUs will be accomplished via Pacific Bell Telephone`s advanced digital network (ADN). Future Plans include expansion to monitoring and control of co-generation facilities and monitoring of other large industrial customer power consumption.

  13. Subsea Technology and Electrification | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsea Electrification and Seafloor Oil and Gas Processing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in ...

  14. Advancing Transportation Through Vehicle Electrification - PHEV |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt067_vss_bazzi_2011_o.pdf (706.85 KB) More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project Advancing Transportation Through Vehicle Electrification - PHEV Advancing Transportation Through Vehicle Electrification -

  15. Codes and Standards to Support Vehicle Electrification | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Codes and Standards to Support Vehicle Electrification Codes and Standards to Support Vehicle Electrification 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss053_bohn_2012_o.pdf (1.28 MB) More Documents & Publications Codes and Standards to Support Vehicle Electrification Codes and Standards Support Vehicle Electrification Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical

  16. Incubating Innovation for Rural Electrification. Executive Summary

    SciTech Connect (OSTI)

    2013-07-01

    In June, the team held a workshop on ''Low Carbon Sustainable Rural Electrification'' in Salima, Malawi. Co-organized with the Government of Malawi's Department of Energy, this event gathered participants from the energy, telecom, non-profit, banking sectors as well as from governmental and international agencies to discuss the potential development of private led off-grid electrification in Malawi where only 9% of the population has currently access to electricity. A very active participation provided us with insightful feedback and valuable recommendations.

  17. Surprise Valley Electrification Corp. Recovery Act: Rural Cooperative Geothermal Development Electric &

    Office of Scientific and Technical Information (OSTI)

    Surprise Valley Electrification Corp. Recovery Act: Rural Cooperative Geothermal Development Electric & Agriculture DE-EE0003006 Final Scientific Report Principal Investigator: E. Lynn Culp Team Members: Brad Kresge, General Manager Jane Eaton, Finance Manager SVEC Board of Directors Jeff Mann & Chun Chin, POWER Engineers Roy Mink, Geologist Silvio Pezzopane, Geologist January 12, 2016 Table of Contents Executive Summary 4 Project Objectives 6 Sustainable and Reliable Competitively

  18. Power to the people: rural electrification sector. Summary report

    SciTech Connect (OSTI)

    Wasserman, G.; Davenport, A.

    1983-12-01

    Results of studies of the impact of rural electrification (RE) programs in Bolivia, Costa Rica, Ecuador, and the Philippines are summarized.

  19. Best Practices of the Alliance for Rural Electrification: what...

    Open Energy Info (EERE)

    of the Alliance for Rural Electrification: what renewable energy can achieve in developing countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices of...

  20. Ghana-NREL Rural Electrification | Open Energy Information

    Open Energy Info (EERE)

    electrification project in Ghana in cooperation with UNDP and GEF. NREL also piloted a business model for providing energy services in rural areas of Ghana.1 References ...

  1. Ghana-GTZ Electrification Component of the Promotion of Private...

    Open Energy Info (EERE)

    Topics Background analysis Website http:www.gtz.deenthemenum Country Ghana Western Africa References Electrification Component of the Promotion of Private Sector Programme...

  2. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Batteries Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries EA-1712: ...

  3. Accelerating the Electrification of U.S. Drive Trains: Ready...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Batteries Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced Batteries FY 2012 ...

  4. NRECA`s electrification model

    SciTech Connect (OSTI)

    Waddle, D.

    1997-12-01

    This paper looks at the role of the National Rural Electric Cooperative Association (NRECA) with regard to applying renewable energy in a village setting. This group has historically been active with state utilities to promote extension of the grid system, and until recently has no historical involvement with renewable resources. They have realized that most future clients will not be served by extending the grid, because of the costs involved, and that renewables play a part of the solution to this problem. NRECA has sought to provide project management and management consultant services, emphasizing training, management efficiency, cost of services studies, and assistance in dealing with regulations. They specialize in forming, training, and supporting user-owned electric service companies, and rely on other partners for technological services and support.

  5. Hawaii demand-side management resource assessment. Final report, Reference Volume 4: The DBEDT DSM assessment model user`s manual

    SciTech Connect (OSTI)

    1995-04-01

    The DBEDT DSM Assessment Model (DSAM) is a spreadsheet model developed in Quattro Pro for Windows that is based on the integration of the DBEDT energy forecasting model, ENERGY 2020, with the output from the building energy use simulation model, DOE-2. DOE-2 provides DSM impact estimates for both energy and peak demand. The ``User`s Guide`` is designed to assist DBEDT staff in the operation of DSAM. Supporting information on model structure and data inputs are provided in Volumes 2 and 3 of the Final Report. DSAM is designed to provide DBEDT estimates of the potential DSM resource for each county in Hawaii by measure, program, sector, year, and levelized cost category. The results are provided for gas and electric and for both energy and peak demand. There are two main portions of DSAM, the residential sector and the commercial sector. The basic underlying logic for both sectors are the same. However, there are some modeling differences between the two sectors. The differences are primarily the result of (1) the more complex nature of the commercial sector, (2) memory limitations within Quattro Pro, and (3) the fact that the commercial sector portion of the model was written four months after the residential sector portion. The structure for both sectors essentially consists of a series of input spreadsheets, the portion of the model where the calculations are performed, and a series of output spreadsheets. The output spreadsheets contain both detailed and summary tables and graphs.

  6. Ecuador rural electrification. Project impact evaluation report 21

    SciTech Connect (OSTI)

    Kessler, J.L.; Ballantyne, J.; Maushammer, R.; Simancas, N.R.

    1981-01-01

    The direct and indirect benefits of rural electrification in Ecuador warrant A.I.D.'s continued sponsorship of such programs. This assessment of A.I.D.'s 1964-75 sponsorship of four electrification projects in Ecuador concludes that, although implemented along with other development projects such as road construction, the program was a key factor in upgrading the towns of Santa Elena, Santo Domingo de los Colorados, Daule, and Ambato into regional market and service centers. The main benefits of this program, which was not originally designed to benefit the poor, were job creation, access to agricultural product processing facilities, and increased opportunities for small commercial enterprises.

  7. Decentralized Rural Electrification: the Critical Success Factors...

    Open Energy Info (EERE)

    which are more context-specific on: Financing Institutional support Ownership Management Local Participation Energy Management Standards Market References http:...

  8. The Department of Energy's Transportation Electrification Program, 0AS-RA-12-11

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Electrification Program OAS-RA-12-11 May 2012 Department of Energy Washington, DC 20585 May 10, 2012 MEMORANDUM FOR THE DEPUTY ASSISTANT SECRETARY FOR ENERGY EFFICIENCY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on "The Department of Energy's Transportation Electrification Program" INTRODUCTION The Department of Energy established the Transportation Electrification Program (Program) to demonstrate

  9. Final Report - Navajo Electrification Demonstration Project - FY2004

    SciTech Connect (OSTI)

    Kenneth L. Craig, Interim General Manager

    2007-03-31

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

  10. Shorepower Truck Electrification Project (STEP) - Cumulative through June 2014

    SciTech Connect (OSTI)

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  11. Shorepower Truck Electrification Project (STEP) - Cumulative through February 2015

    SciTech Connect (OSTI)

    2015-02-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  12. Shorepower Truck Electrification Project (STEP) - 2013 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved.

  13. Technology Improvement Pathway to Cost-effective Vehicle Electrification: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    454 February 2010 Technology Improvement Pathways to Cost-Effective Vehicle Electrification Preprint A. Brooker, M. Thornton, and J. Rugh National Renewable Energy Laboratory To be presented at SAE 2010 World Congress Detroit, Michigan April 13-15, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a

  14. User-owned utility models for rural electrification

    SciTech Connect (OSTI)

    Waddle, D.

    1997-12-01

    The author discusses the history of rural electric cooperatives (REC) in the United States, and the broader question of whether such organizations can serve as a model for rural electrification in other countries. The author points out the features of such cooperatives which have given them stability and strength, and emphasizes that for success of such programs, many of these same features must be present. He definitely feels the cooperative models are not outdated, but they need strong local support, and a governmental structure which is supportive, and in particular not negative.

  15. Shorepower Truck Electrification Project (STEP) - 1Q - 2Q 2013

    SciTech Connect (OSTI)

    2014-02-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the use of shorepower at 50 planned American Recovery and Reinvestment Act (ARRA)-funded truck stop electrification (TSE) sites across the nation. Trucks participating in the study have idle-reduction equipment installed that was purchased with rebates through the ARRA. A total of 5,000 rebates will be approved. the ARRA. A total of 5,000 rebates will be approved.

  16. Bolivia: rural electrification. Project impact evaluation report No. 16

    SciTech Connect (OSTI)

    Butler, E.; Poe, K.M.; Tendler, J.

    1980-12-01

    Two rural electrification systems initiated in Bolivia in 1973 and 1974 are the subject of this report. By 1979, all distribution networks were completed, except in the La Paz region. Power was supplied to 42,000 consumers and was used primarily for residential lighting. Although demand outpaced supply, consumption per household was lower than projected, and irrigation and industrial use was negligible. The preponderant positive impact of the projects was social. Household lighting improved the physical quality of life for 7% of Bolivia's rural population.

  17. Oregon Senator Jeff Merkley to Visit Surprise Valley Electrification Corp. Project Site

    Broader source: Energy.gov [DOE]

    Senator Jeff Merkley of Oregon will be stopping by our ARRA Low-Temperature project, Surprise Valley Electrification Corp., this Sunday, August 28, 2011, for a brief site visit.

  18. Indonesia solar home systems project for rural electrification

    SciTech Connect (OSTI)

    Sanghvi, A.P.

    1997-12-01

    This paper presents, from a financing aspect the broad issues involved in a plan to provide solar home systems (SHS) to provide rural electrification in several areas of rural Indonesia. The paper discusses the approaches being used to provide funding, develop awareness of the technology, and assure the success of the project. The plan involves the use of grant money to help with some of the initial costs of such systems, and thereby to encourage local financing on a terms rather than cash basis. There are needs for market development, and development of a business structure in the country to support this type of technology. Provided this plan can succeed, it may serve as a model for further efforts.

  19. Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 3

    SciTech Connect (OSTI)

    1995-04-01

    This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

  20. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  1. Google+ Virtual Field Trip on Vehicle Electrification at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Don't miss this exclusive peek into the U.S. Department of Energy's Argonne National Laboratory. Attendees will meet three researchers who will explain a different phase of vehicle electrification research. This field trip is very similar to the tou

  2. Competitive energy management and environmental technologies: Proceedings

    SciTech Connect (OSTI)

    1995-03-01

    This book contains the proceedings of the 17th World Energy Engineering Congress 4th Environmental Technology Expo held in December of 1994. The topics of the papers presented at this meeting include environmental management, water resource efficiency, energy management strategies, advances in lighting efficiency and applications, HVAC systems, competitive power technologies, federal energy management programs, and demand-side management. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Transportation Electrification Education Partnership for Green Jobs and Sustainable Mobility

    SciTech Connect (OSTI)

    Peng, Huei; Mi, Chris; Gover, James

    2013-06-28

    This collaborative educational project between the University of Michigan—Ann Arbor, University of Michigan—Dearborn and the Kettering University successfully executed almost all the elements we proposed to do. In the original proposal, we proposed to develop four graduate courses, six undergraduate courses, four professional short courses, a K-12 electric vehicle education kit, a Saturday morning seminar series, and a set of consumer education material to support the advancement of transportation electrification. The first four deliverables were all successfully developed and offered. When we held the kick-off meeting in NETL in Morgantown back in early 2010 with all the ten ARRA education teams, however, it quickly became clear that among the ten ARRA education grantee teams, our proposed “consume education” activities are not better or with the potential to create bigger impact than some of activities proposed in other teams. For example, the Odyssey 2010 event held by the West Virginia University team had planned and successfully reached to more than 230,000 attendees, which is way more than what our proposed 100k event could ever reach. It was under the suggestion of Joseph Quaranta, the ARRA education Program Director at that time, that we should coordinate and eliminate redundancy. The resources should then be focused on activities that have less overlap. Therefore, the originally proposed activities: Saturday morning seminar series, and a set of consumer education material were dropped from our scope. We expanded the scope of our “education kit” activity to include some educational materials, mainly in the form of videos. The target audience also changed from general public to K-12 students. The majority of the project cost (~70%) goes toward the establishment of three undergraduate laboratories, which provides critically needed hands-on learning experience for next-generation green mobility engineers. We are very proud that the ARRA money

  4. Railroad electrification in America's future: an assessment of prospects and impacts. Final report

    SciTech Connect (OSTI)

    White, R.K.; Yabroff, I.W.; Dickson, E.M.; Zink, R.A.; Gray, M.E.; Moon, A.E.

    1980-01-01

    Such considerations as the level of traffic, the relative financial health of individual railroads, the capacity of the associated supply and engineering/construction industries, and the logical connecting points at classifying yards, as well as the national interest value of creating a continuous system, continental in scope, were used to construct a scenario for railroad electrification that closely approximates how an electrification program might be implemented. For the economic reasons cited, much of the US railroad system would remain conventionally powered. This scenario provides for an electrified network involving 14 mainlines operated by 10 companies that could transport much of the nation's rail-borne freight. Five years of planning and engineering work would be required for each link before construction could begin. With 1000 miles or less of electrified route per year, 14 years would be needed to construct the 9000-mile network of our scenario. (The scenario constructed runs from 1980 to 1998.) The analysis was aided with the construction of the SRI Railroad Industry Model. Basically a model of industry operations and finances, the model produces income statements and balance sheets at yearly intervals. Railroad energy costs, railroad freight levels, maintenance costs, purchases and leases of rooling stock, electrification facility investments, future inflation, rate setting practices, annual depreciation, taxes, and profits were calculated.

  5. Evidence is growing on demand side of an oil peak

    SciTech Connect (OSTI)

    2009-07-15

    After years of continued growth, the number of miles driven by Americans started falling in December 2007. Not only are the number of miles driven falling, but as cars become more fuel efficient, they go further on fewer gallons - further reducing demand for gasoline. This trend is expected to accelerate. Drivers include, along with higher-efficiency cars, mass transit, reversal in urban sprawl, biofuels, and plug-in hybrid vehicles.

  6. A Hierarchical Framework for Demand-Side Frequency Control

    SciTech Connect (OSTI)

    Moya, Christian; Zhang, Wei; Lian, Jianming; Kalsi, Karanjit

    2014-06-02

    With large-scale plans to integrate renewable generation, more resources will be needed to compensate for the uncertainty associated with intermittent generation resources. Under such conditions, performing frequency control using only supply-side resources become not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in frequency control to maintain the stability of the system at an acceptable cost. In this paper, a novel hierarchical decentralized framework for frequency based load control is proposed. The framework involves two decision layers. The top decision layer determines the optimal droop gain required from the aggregated load response on each bus using a robust decentralized control approach. The second layer consists of a large number of devices, which switch probabilistically during contingencies so that the aggregated power change matches the desired droop amount according to the updated gains. The proposed framework is based on the classical nonlinear multi-machine power system model, and can deal with timevarying system operating conditions while respecting the physical constraints of individual devices. Realistic simulation results based on a 68-bus system are provided to demonstrate the effectiveness of the proposed strategy.

  7. Impacts of Demand-Side Resources on Electric Transmission Planning

    SciTech Connect (OSTI)

    Hadley, Stanton W.; Sanstad, Alan H.

    2015-01-01

    Will demand resources such as energy efficiency (EE), demand response (DR), and distributed generation (DG) have an impact on electricity transmission requirements? Five drivers for transmission expansion are discussed: interconnection, reliability, economics, replacement, and policy. With that background, we review the results of a set of transmission studies that were conducted between 2010 and 2013 by electricity regulators, industry representatives, and other stakeholders in the three physical interconnections within the United States. These broad-based studies were funded by the US Department of Energy and included scenarios of reduced load growth due to EE, DR, and DG. While the studies were independent and used different modeling tools and interconnect-specific assumptions, all provided valuable results and insights. However, some caveats exist. Demand resources were evaluated in conjunction with other factors, and limitations on transmission additions between scenarios made understanding the role of demand resources difficult. One study, the western study, included analyses over both 10- and 20-year planning horizons; the 10-year analysis did not show near-term reductions in transmission, but the 20-year indicated fewer transmission additions, yielding a 36percent capital cost reduction. In the eastern study the reductions in demand largely led to reductions in local generation capacity and an increased opportunity for low-cost and renewable generation to export to other regions. The Texas study evaluated generation changes due to demand, and is in the process of examining demand resource impacts on transmission.

  8. A Hierarchical Framework for Demand-Side Frequency Control (Conference...

    Office of Scientific and Technical Information (OSTI)

    the aggregated load response on each bus using a robust decentralized control approach. ... Realistic simulation results based on a 68-bus system are provided to demonstrate the ...

  9. Federal Energy and Water Management Awards 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Linda Collins U.S. General Services Administration Public Buildings Service Washington, D.C. Linda Collins has worked at the General Services Administration (GSA) for 41 years, with 32 years in the field of acquisition. Her dedication and commitment to achieving federal energy goals are evident in both the "demand side" energy management initiatives and "supply side" energy procurement best practices she has helped agencies implement over her career. She has also worked

  10. Transportation Electrification

    SciTech Connect (OSTI)

    Schwendeman, Lawrence; Crouch, Alan

    2013-12-17

    This project has accomplished the following objectives: to address the critical need for technician training in new and emerging propulsion technologies by developing new courses, including information and training on electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles; to integrate the new certificate with the existing Associate of Applied Science Degree and Certificate automotive degrees; to disseminate these leading edge courses throughout the Commonwealth of Virginia and neighboring Mid-Atlantic States; and to provide training opportunities for displaced workers and underrepresented populations seeking careers in the automotive industry.

  11. Recovery Act - An Interdisciplinary Program for Education and Outreach in Transportation Electrification

    SciTech Connect (OSTI)

    Anderson, Carl; Bohmann, Leonard; Naber, Jeffrey; Beard, John; Passerello, Chris; Worm, Jeremy; Chen, Bo; Allen, Jeffrey; Weaver, Wayne; Hackney, Stephen; Keith, Jason; Meldrum, Jay; Mork, Bruce

    2013-01-30

    1) How the project adds to the education of engineering students in the area of vehicle electrification: This project created and implemented a significant interdisciplinary curriculum in HEV engineering that includes courses focused on the major components (engines, battery cells, e-machines, and power electronics). The new curriculum, rather uniquely, features two new classes and two new labs that emphasize a vehicle level integration of a hybrid electric powertrain that parallels the vehicle development process used by the OEMs - commercial grade software is used to design a hybrid electric vehicle, hardware-in-the-loop testing is performed on each component until the entire powertrain is optimized, the calibration is flashed to a vehicle, ride-and-drives are executed including on board data acquisition. In addition, nine existing courses were modified by adding HEV material to the courses. 2) The educational effectiveness and economic feasibility of the new curriculum: The new courses are offered at both the undergraduate and graduate levels. They are listed across the college in mechanical, chemical, electrical, and materials science and engineering. They are offered both on campus and to distance learning students. Students across the college of engineering and at all degree levels are integrating these courses into their degree programs. Over the three year project the course enrollments on-campus has totaled 1,249. The distance learning enrollments has totaled 315. With such robust enrollments we absolutely expect that these courses will be in the curriculum for the long run. 3) How the project is otherwise of benefit to the public: One outcome of the project is the construction of the Michigan Tech Mobile Lab. Two complete HEV dynamometer test cells, and four work stations are installed in the 16.2 meter Mobile Laboratory and hauled by a class 8 truck. The Mobile Lab is used to teach the university courses. It is also used to deliver short courses to

  12. Implementing and managing a DSM program: Central Hudson`s dollar $avers commercial/industrial rebate program

    SciTech Connect (OSTI)

    Voltz, M.F.

    1996-01-01

    Demand-Side Management (DSM) program managers at utilities throughout the United States are faced with the challenge of achieving DSM goals while minimizing program costs in order to mitigate rate impacts. Many utilities are also allowed to earn a shareholder equity incentive based upon the cost effectiveness of DSM programs (shared savings type incentive). Program goals must be achieved in a market which is constantly evolving. This paper presents Central Hudson Gas & Electric Corporations`s experience over the past 4 years implementing and managing a commercial industrial (C/I) efficient lighting rebate program which has been marketed as the Dollar $avers Lighting rebate program.

  13. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  14. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Utilization Assessment of Target Electrification Vehicles at Marine Corps Base Camp Lejeune. Task 3

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2015-11-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (Intertek) to conduct several U.S. Department of Defense base studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at MCBCL to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report. Intertek acknowledges the support of Idaho National Laboratory, Marine Corps headquarters, and Marine Corps Base Camp Lejeune Fleet management and personnel for participation in this study. Intertek is pleased to provide this report and is encouraged by enthusiasm and support from MCBCL personnel.

  17. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:www.nnsa.energy.govaboutusouroperationsmanagementandbudget

  18. management

    National Nuclear Security Administration (NNSA)

    5%2A en Management and Budget http:nnsa.energy.govaboutusouroperationsmanagementandbudget

    P...

  19. Photovoltaic rural electrification

    SciTech Connect (OSTI)

    Williams, N.

    1996-12-31

    This paper describes projects taken on by the Solar Electric Light Fund in various developing countries to implement the use of Solar Home Systems. Such systems have seen dramatic drops in demand for kerosene from families purchasing such systems. They provide a source of power which does not put a carbon load back in the atmosphere, while providing power which can be used for lighting and other appliance usage.

  20. Advanced Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Advanced Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Advanced Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Building Energy Management Open-Source Software Development ...

    Office of Environmental Management (EM)

    BEMOSS will be able to optimize electricity usage to reduce energy consumption and help implement demand response (DR). This opens up demand side ancillary services markets and ...

  4. Intermittent Renewable Management Pilot Phase 2

    SciTech Connect (OSTI)

    Kiliccote, Sila; Homan, Gregory; Anderson, Robert; Hernandez, John

    2015-04-01

    The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related with direct participation of third-parties and customers including customer acceptance; market transformation challenges (wholesale market, technology); technical and operational feasibility; and value to the rate payers, DR resource owners and the utility on providing an enabling mechanism for DR resources into the wholesale markets. The customer had the option of committing to either three contiguous hour blocks for 24 days or six contiguous hours for 12 days a month with day-ahead notification that aligned with the CAISO integrated forward market. As a result of their being available, the customer was paid $10/ kilowatt (kW)-month for capacity in addition to CAISO energy settlements. The participants were limited to no more than a 2 megawatt (MW) capacity with a six-month commitment. Four participants successfully engaged in the pilot. In this report, we provide the description of the pilot, participant performance results, costs and value to participants as well as outline some of the issues encountered through the pilot. Results show that participants chose to participate with storage and the value of CAISO settlements were significantly lower than the capacity payments provided by the utility as incentive payments. In addition, this pilot revealed issues both on the participant side and system operations side. These issues are summarized in the report.The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related with

  5. ESMAP-Rural Electrification Strategies/Africa Electrification...

    Open Energy Info (EERE)

    World Bank, International Finance Corporation (IFC) Sector Energy Focus Area Renewable Energy, Non-renewable Energy, Grid Assessment and Integration Topics Co-benefits assessment,...

  6. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. Interstate Grid Electrification Improvement Project

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Interstate Grid Electrification Improvement Project

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Decentralized customerlevel under frequency load shedding in...

    Open Energy Info (EERE)

    EU Smart Grid Projects Map1 Overview The project focuses on a smart demand side management of household consumers. Modern communication technology enables the management...

  12. U.S.-India Collaboration Expands Indian Market for U.S. Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand-side management technologies can improve electricity reliability by managing how electricity consumers interact with the grid. Demand Response (DR), which is widely used in ...

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Demand-Side Management Program Incremental Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand ...

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    . Demand-Side Management Program Annual Effects by Program Category, 2004 through 2012 (Table Discontinued) Energy Efficiency Load Management Total Year Energy Savings (Thousand ...

  15. Utility Partnerships Webinar Series: Electric Utility Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Customer Relations, Dan Smith, and Demand Side Management Manager, Gene ... Industrial Energy Efficiency Program 1052010 61 Questions ? Contact: Dan Smith, BHE-COE ...

  16. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  17. Agricultural Outlook Forum | Department of Energy

    Office of Environmental Management (EM)

    Services | Department of Energy Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below. Download the template agreement. (722.15 KB) Download the model agreement

  18. DLC+VIT4IP (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  19. DLC+VIT4IP (Smart Grid Project) (Israel) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  20. DLC+VIT4IP (Smart Grid Project) (Italy) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  1. DLC+VIT4IP (Smart Grid Project) (Netherlands) | Open Energy Informatio...

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  2. DLC+VIT4IP (Smart Grid Project) (United Kingdom) | Open Energy...

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  3. DLC+VIT4IP (Smart Grid Project) (Belgium) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  4. DLC+VIT4IP (Smart Grid Project) (Austria) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa......

  6. Reducing Home Heating and Cooling Costs

    U.S. Energy Information Administration (EIA) Indexed Site

    public library should be able to help locate the office. Many utilities have "Demand Side Management" programs that will assist any utility customer. Depending on the local...

  7. DOE/EIA-0555(96)/1

    U.S. Energy Information Administration (EIA) Indexed Site

    to new Household Survey questions about availability u and participation in demand-side management (DSM) programs .vere evaluated by compar.ng them with responses to similar...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa......

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa... Eligibility: Investor-Owned Utility, Retail Supplier Savings Category:...

  10. Coordinating Interstate ElectricTransmission Siting: An Introduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While improved demand-side management (including energy effi ciency and demand response), bett er utilization of the existing transmission grid, and other strategies (such as ...

  11. Environmental Impact of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollutants * Evaluate impact from Smart Grid on reducing pollutants through: - Demand Response - Electric Vehicles - Demand Side Management - Renewables and Distributed Energy ...

  12. Second Round of Small Business Vouchers Pilot Awards 3 Small...

    Energy Savers [EERE]

    Outsmart Power Systems, Natick, Massachusetts: OutSmart will leverage work with the labs to expand and develop demand side management and demand response markets. Working with ...

  13. Competitive Resources | Open Energy Information

    Open Energy Info (EERE)

    Zip: 06492 Region: Northeast - NY NJ CT PA Area Sector: Efficiency Product: Demand side management programs Website: www.competitiveresourcesinc.co Coordinates:...

  14. Commercial and Industrial DSM Program Overview | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial DSM Program Overview Commercial and Industrial DSM Program Overview Presentation provides an overview of PEPCO and Delmarva Power's demand side management...

  15. Sacramento Area Voltage Support Environmental Impact Statement

    Broader source: Energy.gov (indexed) [DOE]

    ... ES.5 ALTERNATIVE DEVELOPMENT Western identified five broad alternative categories (new power generation, demand-side management (DSM), distributed generation, new transmission, and ...

  16. Community-Scale Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Source: New Jersey Department of Community Affairs-Local Finance. Demand-Side Management Guidebook Covers renewable power generation, direct use of renewable, nonrenewable ...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa... Eligibility:...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utilities (IOUs) to engage in demand response and adopt demand-side management (DSM)... Eligibility: Investor-Owned Utility Savings Category: CustomOthers pending...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa... Eligibility: Investor-Owned Utility, Retail Supplier Savings...

  20. EIA - Electric Power Data

    Gasoline and Diesel Fuel Update (EIA)

    and customer counts, peak load, electric purchases, and energy efficiency and demand-side management programs, green pricing and net metering programs, and distributed ...

  1. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data ... and demand-side management programs, green pricing and net metering programs, and ...

  2. Recovery Act Final Project Report -- Transportation Electrification

    SciTech Connect (OSTI)

    Gogineni, Kumar

    2013-12-31

    ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washington DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.

  3. Advancing Transportation Through Vehicle Electrification- PHEV

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Advancing Transportation Through Vehicle Electrification- PHEV

    Office of Energy Efficiency and Renewable Energy (EERE)

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Yurok Tribal Telecommunications and Electrification Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 2. Branch Line Extensions and Service Connections. Multi-Pair copper line run from ... Phase 1. Main Line Extension. Multi-Pair copper line run with Verizon installed fiber ...

  6. Advancing Transportation through Vehicle Electrification - PHEV

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  7. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt067vssbazzi2011o.pdf More Documents & ...

  8. Rural Electrification with Renewable Energy: Technologies, quality...

    Open Energy Info (EERE)

    www.ruralelec.orgfileadminDATADocuments06PublicationsARETECHNOL Cost: Free Language: English This publication aims to give eve- ryone, from the general public to...

  9. Codes and Standards to Support Vehicle Electrification

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Surprise Valley Electrification Corp. (Oregon) | Open Energy...

    Open Energy Info (EERE)

    TOT CONS 2009-03 108.007 1,617.292 1,134 21.619 300.164 336 14.159 214.616 248 143.785 2,132.072 1,718 2009-02 122.657 1,866.778 1,135 23.915 339.757 336 15.181 254.511 248 161.753...

  11. NREL: Transportation Research - Truck Stop Electrification Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these ...

  12. Truckstop Electrification Locator | Open Energy Information

    Open Energy Info (EERE)

    United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a...

  13. Mobile Truck Stop Electrification Site Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at 800-254-6735. They will be able to assist you. TSE...

  14. Codes and Standards Support Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011o.pdf (335.31 KB

  16. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012o.pdf (1.42 MB

  17. Strategic Energy Management Plan for the Santa Ynez Band of Chumash Indians

    SciTech Connect (OSTI)

    Davenport, Lars; Smythe, Louisa; Sarquilla, Lindsey; Ferguson, Kelly

    2015-03-27

    This plan outlines the Santa Ynez Band of Chumash Indians’ comprehensive energy management strategy including an assessment of current practices, a commitment to improving energy performance and reducing overall energy use, and recommended actions to achieve these goals. Vision Statement The primary objective of the Strategic Energy Management Plan is to implement energy efficiency, energy security, conservation, education, and renewable energy projects that align with the economic goals and cultural values of the community to improve the health and welfare of the tribe. The intended outcomes of implementing the energy plan include job creation, capacity building, and reduced energy costs for tribal community members, and tribal operations. By encouraging energy independence and local power production the plan will promote self-sufficiency. Mission & Objectives The Strategic Energy Plan will provide information and suggestions to guide tribal decision-making and provide a foundation for effective management of energy resources within the Santa Ynez Band of Chumash Indians (SYBCI) community. The objectives of developing this plan include; Assess current energy demand and costs of all tribal enterprises, offices, and facilities; Provide a baseline assessment of the SYBCI’s energy resources so that future progress can be clearly and consistently measured, and current usage better understood; Project future energy demand; Establish a system for centralized, ongoing tracking and analysis of tribal energy data that is applicable across sectors, facilities, and activities; Develop a unifying vision that is consistent with the tribe’s long-term cultural, social, environmental, and economic goals; Identify and evaluate the potential of opportunities for development of long-term, cost effective energy sources, such as renewable energy, energy efficiency and conservation, and other feasible supply- and demand-side options; and Build the SYBCI’s capacity for

  18. Deactivation Management

    Broader source: Energy.gov [DOE]

    The purpose here is to provide information for specific aspects of project management that apply to deactivation. Overall management of deactivation projects should use a traditional project...

  19. Conference Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-03

    To establish requirements and responsibilities with respect to managing conferences sponsored by the Department of Energy (DOE) or by DOE management and operating contractors and other contractors who perform work at DOE-owned or -leased facilities, including management and integration contractors and environmental restoration management contractors (when using funds that will be reimbursed by DOE). Cancels DOE N 110.3.

  20. Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    Presentation given by Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric...

  1. Data Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Management Data Management PDSF and IHEP, in Beijing, China, are the two main computing facitilies for the Daya Bay experiment with PDSF being used primarily by North American ...

  2. NREL Names Santiago Grijalva Director for Power Systems Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing electric power system and to provide improved management strategies for demand response and transportation electrification. "Santiago is a pioneer in distributed power ...

  3. MANAGEMENT ALERT

    Broader source: Energy.gov (indexed) [DOE]

    COMMISSION FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert: Review of Allegations of Improper Disclosure of Confidential, Nonpublic...

  4. Environmental Management Waste Management Facility (EMWMF) at...

    Office of Environmental Management (EM)

    Review of the Environmental Management Waste Management Facility (EMWMF) at Oak Ridge ... INTRODUCTION The Environmental Management Waste Management Facility (EMWMF) is a land ...

  5. Teaching Managers How to Manage

    SciTech Connect (OSTI)

    Hylko, J.M.

    2006-07-01

    Following graduation from a college or university with a technical degree, or through years of experience, an individual's training and career development activities typically focus on enhancing technical problem-solving skills. However, as these technical professionals, herein referred to as 'Techies', advance throughout their careers, they may be required to accept and adapt to the role of being a manager, and must undergo a transition to learn and rely on new problem-solving skills. However, unless a company has a specific manager-trainee class to address this subject and develop talent from within, an employee's management style is learned and developed 'on the job'. Both positive and negative styles are nurtured by those managers having similar qualities. Unfortunately, a negative style often contributes to the deterioration of employee morale and ultimate closing of a department or company. This paper provides the core elements of an effective management training program for 'Teaching Managers How to Manage' derived from the Department of Energy's Integrated Safety Management System and the Occupational Safety and Health Administration 's Voluntary Protection Program. Discussion topics and real-life examples concentrate on transitioning an employee from a 'Techie' to a manager; common characteristics of being a manager; the history and academic study of management; competition, change and the business of waste management; what to do after taking over a department by applying Hylko's Star of Success; command media; the formal and informal organizational charts; chain of command; hiring and developing high-degree, autonomous employees through effective communication and delegation; periodic status checks; and determining if the program is working successfully. These common characteristics of a strong management/leadership culture and practical career tips discussed herein provide a solid foundation for any company or department that is serious about developing

  6. Quality Management

    Broader source: Energy.gov [DOE]

    The Office of Quality Management, within the Office of Health, Safety and Security develops policies and procedures to ensure the classification and control of information is effective and...

  7. Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Utilize energy efficiency to improve your industrial customer's business performance without the cost of major capital improvements. Energy efficiency is not...

  8. Deputy Manager

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will support the Oak Ridge Office (ORO) Manager by providing overall executive leadership to ORO.

  9. Position Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-06-23

    The order prescribes the policies, responsibilities, and procedures for position management within (DOE). Canceled by DOE N 1321.140. Cancels DOE 3510.1

  10. project management

    National Nuclear Security Administration (NNSA)

    3%2A en Project Management and Systems Support http:www.nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  11. project management

    National Nuclear Security Administration (NNSA)

    %2A en Project Management and Systems Support http:nnsa.energy.govaboutusouroperationsapmprojectmanagementandsystemssupport

  12. Bibliographic Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and more from varied resources and databases to organize references, keep notes to stay ahead of the game. Questions? 505-667-5809 Email Bibliographic management tools allow...

  13. acquisition management

    National Nuclear Security Administration (NNSA)

    the science, technology, and engineering base; and,

  14. Continue NNSA management reforms.
  1. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Debrief for the DOE-Managed Spent Nuclear Fuel and High Level Waste Research (aka Defense Repository) David Sevougian, Kevin McMahon Sandia National Laboratories Used Fuel Disposition Working Group Meeting Las Vegas, Nevada June 7-9, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract

  2. Energy Policy Socioeconomic Impact Model

    Energy Science and Technology Software Center (OSTI)

    1993-05-13

    Econometric model simulates consumer demand response to residential demand-side management programs and two-part tariff electricity rate designs and assesses their economic impact on various population groups.

  3. Optimal Technologies International Inc | Open Energy Information

    Open Energy Info (EERE)

    offers supply-side and demand-side management solutions targeted at the end-to-end optimization of power networks. Coordinates: 38.05241, -122.152539 Show Map Loading map......

  4. Renewables Portfolio Goal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the kWh attributable to nuclear power plants, demand-side management measures, and fossil fuel power plants that sequester their carbon emissions. For example, if a utility has...

  5. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa...

  6. Electric Power annual 1996: Volume II

    SciTech Connect (OSTI)

    1997-12-01

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  7. Assessment of U.S. Electric End-Use Energy Efficiency Potential

    SciTech Connect (OSTI)

    Gellings, Clark W.; Wikler, Greg; Ghosh, Debyani

    2006-11-15

    Demand-side management holds significant potential to reduce growth in U.S. energy consumption and peak demand, and in a cost-effective manner. But significant policy interventions will be required to achieve these benefits. (author)

  8. 2008 AR-FinancialSection-Nov 19.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand-side management programs both take time. The Council is working on its Sixth Power Plan, which will be a primary vehicle for the planning effort, in concert with the plans...

  9. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    The Colorado legislature enacted H.B. 1037 in 2007, requiring electricity and natural gas investor-owned utilities (IOUs) to engage in demand response and adopt demand-side management (DSM)...

  10. Oracle Management Tool Suite

    Energy Science and Technology Software Center (OSTI)

    2007-06-01

    The Oracle Management Tool Suite is used to automatically manage Oracle based systems. This includes startup and shutdown of databases and application servers as well as backup, space management, workload management and log file management.

  11. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Electric Utility Demand-Side Management Programs Actual Peakload Reductions Total, 1989-2010 Actual Peakload Reductions, 2010 Energy Savings, 1989-2010 Electric Utility Costs,¹ 1989-2010 266 U.S. Energy Information Administration / Annual Energy Review 2011 1 Program costs consist of all costs associated with providing the various Demand-Side Management (DSM) programs or measures. The costs of DSM programs fall into these major categories: customer rebates/incentives,

  12. Managing Critical Management Improvement Initiatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-01

    Provides requirements and responsibilities for planning, executing and assessing critical management improvement initiatives within DOE. DOE N 251.59, dated 9/27/2004, extends this Notice until 10/01/2005. Archived 11-8-10. Does not cancel other directives.

  13. Management Overview

    Office of Environmental Management (EM)

    Department of Energy's Isotope Development and Production for Research and Applications Program's Fiscal Year 2009 Balance Sheet Audit OAS-FS-12-09 June 2012 January 30, 2012 Mr. Gregory Friedman, Inspector General Dr. Jehanne Gillo, Director, Facilities and Project Management Division, Office of Nuclear Physics U.S. Department of Energy Washington, DC 20585 Dear Mr. Friedman and Dr. Gillo: We have audited the balance sheet of the United States Department of Energy's (Department or DOE) Isotope

  14. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Used Fuel Disposition R&D Campaign Working Group Meeting Introduction and Summary Peter Swift National Technical Director Used Fuel Disposition R&D Campaign Las Vegas, Nevada June 7, 2016 Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5194 PE Used

  15. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Evaluation David C. Sassani Sandia National Laboratories Used Fuel Disposition Campaign Annual Working Group Meeting June 6-9, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-5400 PE Used Fuel Disposition Presentation Overview  Deep Borehole Field Test

  16. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposal: Preliminary Performance Assessment Emily Stein, Geoff Freeze, Kris Kuhlman, Glenn Hammond, Jenn Frederick Sandia National Laboratories 2016 UFDC Annual Working Group Meeting Deep Borehole Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract

  17. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Borehole Characterization Kris Kuhlman Sandia National Laboratories Used Fuel Disposition Working Group Meeting June 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5041 PE Used Fuel Disposition Conceptual Profiles 2 1 2 3 4 5 Depth [km] Sources of Salinity *

  18. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium(VI) Sorption and Diffusion in Montmorillonite and Bentonite: Experiments and Modeling Ruth M. Tinnacher 1 , Christophe Tournassat 2 , James A. Davis 1 1) Earth and Environmental Sciences Area, Lawrence Berkeley National Lab 2) BRGM, French Geological Survey, Orléans, France Used Fuel Disposition Campaign - Annual Meeting Las Vegas, June 8 2016 Used Fuel Disposition 2 Research Motivation The long-term management of nuclear waste requires reliable predictions of radionuclide transport

  19. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Overview Ernest Hardin, Andrew Clark, John Cochran, Elena Kalinina, Emily Stein and Jiann Su Sandia National Laboratories Fred Peretz Oak Ridge National Laboratory UFD Working Group - Las Vegas, NV June 7-9, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Package Handling Conceptual Design Process Fred Peretz Oak Ridge National Laboratory UFD Annual Working Group Meeting June 8, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-nnnnn Used Fuel Disposition June 8, 2016 UFD Annual Working Group Meeting 2

  1. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Options for Completing the Emplacement Zone for Deep Borehole Field Disposal John R. Cochran & Ernest L. Hardin Sandia National Laboratories 2016 UFDC Annual Working Group Meeting Deep Borehole Field Test Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under

  2. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Reinvestigation into the Isothermal Room Closure Predictions at WIPP Benjamin Reedlunn Sandia National Laboratories Annual UFD Working Group Meeting June 8 th , 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-5495 C Used Fuel Disposition Acknowledgements /

  3. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic Disposal Systems Analysis (GDSA) Paul Mariner, Glenn Hammond, Emily Stein, David Sevougian, and Jennifer Frederick Sandia National Laboratories 2016 UFD Group Meeting UNLV, Las Vegas, Nevada June 8, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-5393

  4. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation Framework: PFLOTRAN Glenn Hammond Sandia National Laboratories 2016 UFDC Annual Working Group Meeting GDSA Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5318 PE Used Fuel Disposition  Petascale reactive

  5. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope Chemistry and Source Term Paul Mariner, Glenn Hammond, and Jennifer Frederick Sandia National Laboratories 2016 UFD Meeting, Las Vegas, Nevada June 8, 2016, GDSA Session Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-5392 PE Used Fuel Disposition June 8,

  6. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioisotope Source Term Degradation and Implementation in PFLOTRAN Jennifer M. Frederick Glenn E. Hammond and Paul Mariner Sandia National Laboratories 2016 UFDC Annual Working Group Meeting GDSA Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract

  7. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preview of GDSA/Process Model Integration Session S. David Sevougian Sandia National Laboratories 2016 UFDC Annual Working Group Meeting GDSA Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5294PE. Used Fuel Disposition

  8. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building the Crystalline Reference Case Performance Assessment Emily Stein, Jenn Frederick, Glenn Hammond, Paul Mariner, Dave Sevougian Sandia National Laboratories 2016 UFDC Annual Working Group Meeting GDSA Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under

  9. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning for FY2017 Paul Mariner, Glenn Hammond, Emily Stein, David Sevougian, and Jennifer Frederick Sandia National Laboratories 2016 UFD Group Meeting UNLV, Las Vegas, Nevada June 8, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-5389 PE Used Fuel

  10. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction and Objectives for GDSA ⇔ Process Model Integration S. David Sevougian Sandia National Laboratories 2016 UFDC Annual Working Group Meeting Process Model Integration Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PFLOTRAN Process Modeling: Density Dependence on Salinity Glenn Hammond Sandia National Laboratories 2016 UFDC Annual Working Group Meeting Integration Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5319 PE Used Fuel

  12. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Discrete Fracture Networks with Performance Assessment Emily Stein, Kris Kuhlman Sandia National Laboratories Nataliia Makedonska, Satish Karra, Jeffrey Hyman Los Alamos National Laboratory 2016 UFDC Annual Working Group Meeting GDSA Integration Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's

  13. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Package and Waste Form Degradation and Implementation in PFLOTRAN Jennifer M. Frederick Glenn E. Hammond and Paul Mariner Sandia National Laboratories 2016 UFDC Annual Working Group Meeting GDSA Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract

  14. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advances in PFLOTRAN Gridding: Octree Refinement and Ghost Node Correction Ayman Alzraiee and Glenn Hammond Sandia National Laboratories 2016 UFDC Annual Working Group Meeting Integration Session, June 8, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract

  15. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Outputs of Probabilistic Performance Assessment Robert J. MacKinnon Sandia National Laboratories Used Fuel Disposition Working Group Meeting June 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-5123 PE Used Fuel Disposition Performance Assessment

  16. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remaining Process Model Gaps for GDSA Paul Mariner, David Sevougian, Glenn Hammond, Emily Stein, and Jennifer Frederick Sandia National Laboratories 2016 UFD Group Meeting UNLV, Las Vegas, Nevada June 8, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-5391 PE

  17. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KOSINA Collaboration Ed Matteo UFD Working Group University of Nevada/Las Vegas June 7-9, 2016 Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-4049 PE Used Fuel Disposition What is KOSINA? June 9, 2016 KOSINA Collaboration - UFD Working Group Mtg. 2 Used Fuel

  18. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feature, Event, and Process (FEP) Catalogue for SNF/HLW Disposal in Salt Geoff Freeze, S. David Sevougian, Mike Gross, Kris Kuhlman, Christi Leigh - SNL Jens Wolf, Dieter Buhmann, Jörg Mönig UFD Working Group Meeting Las Vegas, NV June 9, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract

  19. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5328PE Overview of Defense Repository Safety Analysis R&D S. David Sevougian Sandia National Laboratories 2016 UFDC Annual Working Group Meeting Defense Repository Session, June 9, 2016 Las Vegas, NV Used

  20. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D-Repo Performance Assessment: Crystalline Reference Case Emily Stein, Dave Sevougian, Glenn Hammond, Jenn Frederick, Paul Mariner Sandia National Laboratories 2016 UFDC Annual Working Group Meeting Defense Repository Session, June 9, 2016 Las Vegas, NV Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration

  1. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Summary Geoff Freeze Sandia National Laboratories UFD Working Group Meeting Las Vegas, NV June 9, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-6237 C Used Fuel Disposition 2 Deep Borehole Disposal (DBD) Breakout Sessions SESSION 2 - WEDNESDAY, JUNE 8,

  2. Environmental Management

    ScienceCinema (OSTI)

    None

    2015-01-07

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  3. Environmental Management

    SciTech Connect (OSTI)

    2014-11-12

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  4. ORISE: Emergency Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Emergency Management Effective emergency management relies on thorough integration of preparedness plans at all levels of government. The Oak Ridge Institute for Science...

  5. Environmental Management System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management System Environmental Management System An Environmental Management System (EMS) is a set of processes and practices that enable an organization to reduce its...

  6. M E Environmental Management Environmental Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    safety  performance  cleanup  closure M E Environmental Management Environmental Management safety  performance  cleanup  closure M E Environmental Management Environmental Management M E Environmental Management Environmental Management Office of Site Restoration, EM-10 Office of D&D and Facility Engineering, EM-13 Facility Deactivation & Decommissioning (D&D) D&D Program Map Addendum: Impact of American Recovery and Reinvestment Act (ARRA) on EM's D&D

  7. Best Management Practice #1: Water Management Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    A successful water management program starts with developing a comprehensive water management plan. This plan should be included within existing facility operating plans.

  8. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Case Framework Geoff Freeze Sandia National Laboratories UFD Working Group Meeting Las Vegas, NV June 8, 2016 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5351PE Used Fuel Disposition 2 Safety Case Overview "The safety case is an integration of

  9. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On-Line Waste Library (OWL) Walter Walkow Solutions Architect, Data Sciences, SNL Database and Capabilities June 7, 2016 SAND2016-5415 C Used Fuel Disposition June 2016 On-Line Waste Library (OWL) - Database & Capabilities SAND2016-5415 C 2 What is OWL, What objective does it support?  OWL - The on-line waste library (OWL) contains detailed cross- linked information, both technical and organizational, regarding DOE-managed high-level waste (HLW) and spent nuclear fuel (SNF) (D-wastes),

  10. Management Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    package degradation: Clay - Metal Interactions Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000. SAND2016-nnnnn Carlos F. Jové Colón Sandia National Laboratories Florie A. Caporuscio Los Alamos National Laboratory Las Vegas, Nevada - June 7 - 9, 2016 SAND2016-5247 PE Used