Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

2

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

3

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

4

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

5

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

6

Declination Solar | Open Energy Information  

Open Energy Info (EERE)

Declination Solar Jump to: navigation, search Name Declination Solar Place San Francisco, California Sector Solar Product San Francisco solar installation firm acquired by...

7

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

dependence in natural gas usage. January typically sees theindustrial fuels usage. Natural gas demand has been risinggas demands regionally, to account for variability in energy usage

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

8

Residual Fuel Demand - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In the 1986 to 1991 period, residual fuel oil demand declined only slightly both in absolute and as a percent of total product demand. While not shown, residual fuel ...

9

When it comes to Demand Response, is FERC its Own Worst Enemy?  

E-Print Network (OSTI)

made between traditional demand response (DR) programs andpricing. Traditional demand response programs typically payFor overviews of demand response technologies and program

Bushnell, James; Hobbs, Benjamin; Wolak, Frank A.

2009-01-01T23:59:59.000Z

10

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

11

Energy conservation in typical Asian countries  

SciTech Connect

Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

Yang, M. [International Inst. for Energy Conservation, Bangkok (Thailand); Rumsey, P. [Supersymmetry USA, Berkeley, CA (United States)

1997-06-01T23:59:59.000Z

12

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

13

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

14

Demand Response for Ancillary Services  

Science Conference Proceedings (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

15

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

16

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network (OSTI)

of the baseline defining a customer's load profile, and (2) PVs cannot be turned on at will for scheduled tests customers to curtail demand when needed to reduce risk of grid failure during times of peak loading load. The value of this credit may reach or exceed $100/kW/year [1] Demand response is typically

Perez, Richard R.

17

Transmaterialization: technology and materials demand cycles  

SciTech Connect

Recently concern has risen worldwide regarding the issue of declining materials demand which has been termed dematerialization. A summary of the issues involved appears in the proceedings of the recent conference on metals demand published in Materials and Society (1986). Dematerialization refers to the constant decline in use of materials as a percentage of total production. Dematerialization implies a structural change in an economy, indicating a reduced demand for materials and, therefore, a decline in overall industrial growth. This paper proposes that, instead of dematerialization in the US material markets, the demand change that has been occurring can be more aptly described as transmaterialization. Transmaterialization implies a recurring industrial transformation in the way that economic societies use materials, a process that has occurred regularly or cyclically throughout history. Instead of a once and for all structural change as implied by dematerialization, transmaterialization suggests that minerals demand experiences phases in which old, lower-quality materials linked to mature industries undergo replacement periodically by higher-quality or technologically-more-appropriate materials. The latter, as of recent, tend to be lighter materials with more robust technical properties than those being replaced.

Waddell, L.M.; Labys, W.C.

1988-01-01T23:59:59.000Z

18

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

19

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

20

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

22

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

23

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

24

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

25

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

26

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, it’s also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if it’s cold, consumers will use ...

27

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

28

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

29

The Declining U.S. Equity Premium  

E-Print Network (OSTI)

study demonstrates U.S. equity premium declined significantly during the three decades. study calculates equity premium a variation a formula the classic Gordon stock valuation model. calculation includes bond yield, stock dividend yield, expected dividend growth rate, which this formulation change over study calculates premium several measures aggregate U.S. stock portfolio and several assumptions about bond yields stock dividends basically same result. premium averaged about percentage points during 1926--70 about percentage point that. This result is shown to reasonable by demonstrating roughly equal returns investments stocks consol bonds same duration would have earned between 1982 and 1999, years when equity premium is estimated views expressed herein those of authors and necessarily of Federal Reserve Bank Minneapolis Federal Reserve System. Historically, investors holding corporate equities have earned a premium, extra return holding equities instead of bonds, which more predictable returns. Es- timates equity premium in United States erage around 4 percentage points past centu- (Siegel 1998) around 7 percentage points 1926 period (Center Research in Security Prices). historical size of U.S. equity premium puz- economists since mid-1980s. Economists sumed size premium is primarily a measure compensation investors demand taking extra risk inherent equity investments. stan- dard asset pricing model which incorporates assump- been able account equity premium large 4 percentage points; with reasonable levels risk aversion and other standard assumptions, model pre- dicts instead a premium around 0.25 percentage point (Mehra Prescott 1985, Hansen and Jagannathan 1991). This discrepancy between data and theory come known as equity premium puzzle. puzzle some fruitful w...

Ravi Jagannathan; Ellen McGrattan; Anna Scherbina

2000-01-01T23:59:59.000Z

30

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

31

EIA - Annual Energy Outlook 2008 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2008 with Projections to 2030 Energy Demand Figure 40. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 41. Primary energy use by fuel, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Average Energy Use per Person Levels Off Through 2030 Because energy use for housing, services, and travel in the United States is closely linked to population levels, energy use per capita is relatively stable (Figure 40). In addition, the economy is becoming less dependent on energy in general. Energy intensity (energy use per 2000 dollar of GDP) declines by an average

32

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

33

The Integration of Energy Efficiency, Renewable Energy, Demand Response and Climate Change: Challenges and Opportunities for Evaluators and Planners  

E-Print Network (OSTI)

demand at night, then baseload plants and emissions willare typically used for baseload and peak capacity plants,

Vine, Edward

2007-01-01T23:59:59.000Z

34

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

35

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

36

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

37

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

38

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

39

-OGP 04 (1) -Predicting Injectivity Decline  

E-Print Network (OSTI)

- OGP 04 (1) - Predicting Injectivity Decline in Water Injection Wells by Upscaling On-Site Core, resulting in injectivity decline of injection wells. Particles such as biomass, corrosion products, silt on permeability. These data were then processed, upscaled to model injection wells and, finally, history matched

Abu-Khamsin, Sidqi

40

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

42

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

43

Changing fuel formulations will boost hydrogen demand  

SciTech Connect

Refinery demand in the U.S. for on-purpose hydrogen will continue to increase by 5-10 %/year, depending on the extent of implementation of the 1990 U.S. Clean Air Act Amendments (CAAA) and other proposed environmental legislation. Although the debate on the economic wisdom of the legislation still rages, it is evident that refiners likely will see a large upswing in hydrogen demand while existing hydrogen production may decline. To better understand the potential impact various reformulation scenarios may have on the refining industry, and specifically, on the demand for hydrogen, Texaco analyzed the hydrogen supply/demand scenario in great detail. Two cases were studied in this analysis: mild and severe reformulation. The mild reformulation case is based on current CAAA legislation along with minor modifications to automobile hardware. The severe case is based on a nationwide implementation of Phase 2 of the CAAA and California's proposed reformulated fuels. The paper discusses the current capacity balance; growth in demand; reformulated gasoline; steam methane reforming; and partial oxidation technology.

Simonsen, K.A.; O' Keefe, L.F. (Texaco Inc., White Plains, N.Y. (United States)); Fong, W.F. (Texaco Development Corp., White Plains, N.Y. (United States))

1993-03-22T23:59:59.000Z

44

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

45

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

46

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

47

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

48

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

49

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

50

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

51

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

52

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

53

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

54

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

55

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

56

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

57

California Independent System Operator demand response & proxy demand resources  

Science Conference Proceedings (OSTI)

Demand response programs are designed to allow end use customers to contribute to energy load reduction individually or through a demand response provider. One form of demand response can occur when an end use customer reduces their electrical usage ...

John Goodin

2012-01-01T23:59:59.000Z

58

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

59

A Fresh Look at Weather Impact on Peak Electricity Demand and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Building simulation, Energy use, Peak electricity demand, Typical meteorological year, Weather data Abstract Buildings consume more than one third of the world's total primary...

60

Is Real-Time Pricing Green?: The Environmental Impacts of Electricity Demand Variance  

E-Print Network (OSTI)

production costs of hydroelectricity are typically low) bute?ects likely driven by hydroelectricity availability. Thus,demand for peak-shaving hydroelectricity. Finally, the four

Holland, Stephen P.; Mansur, Erin T.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network (OSTI)

response as: changes in electric usage by end-use customerselectric competition Typical rate design includes demand and/or volumetric distribution charges, with all commodity usage

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

62

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

63

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

64

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

65

OpenEI - demand  

Open Energy Info (EERE)

are given by a location defined by the Typical Meteorological Year (TMY) for which the weather data was collected. Commercial load data is sorted by the (TMY) site as a...

66

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

67

Automated Demand Response Today  

Science Conference Proceedings (OSTI)

Demand response (DR) has progressed over recent years beyond manual and semi-automated DR to include growing implementation and experience with fully automated demand response (AutoDR). AutoDR has been shown to be of great value over manual and semi-automated DR because it reduces the need for human interactions and decisions, and it increases the speed and reliability of the response. AutoDR, in turn, has evolved into the specification known as OpenADR v1.0 (California Energy Commission, PIER Program, C...

2012-03-29T23:59:59.000Z

68

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

69

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

70

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

71

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

72

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

73

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

74

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

75

Urban Decline in Rust-Belt Cities  

E-Print Network (OSTI)

Many Rust-Belt cities have seen almost half their populations move from inside the city borders to the surrounding suburbs and elsewhere since the 1970s. As populations shifted, neighborhoods changed—in their average income, educational profi le, and housing prices. But the shift did not happen in every neighborhood at the same rate. Recent research has uncovered some of the patterns characterizing the process. Most major Rust-Belt cities have seen their populations shrink since their heydays, and with that decline, the average income of the remaining residents has fallen as well. Cities such as Buffalo, Cleveland, Detroit, and Pittsburgh have each lost more than 40 percent of their populations over the last four decades. However, the losses have not been uniform across neighborhoods. Some neighborhoods have declined more rapidly than others. The uneven population decline across neighborhoods implies that the distributions of income, house prices, and human capital have also shifted within cities and the larger

Daniel Hartley

2013-01-01T23:59:59.000Z

76

Pemex faces up to field decline  

Science Conference Proceedings (OSTI)

Although Mexican state oil company Pemex publishes only the most general statistics about its operations, there is indirect evidence that the nation's oil fields are in serious decline. To increase hydrocarbon production 3% a year, Pemex says it will be necessary to bring 1.6 million bopd of new production onstream over the next five years. When combined with estimated production from secondary recovery, this figure implies an annual field decline rate of 16%. The rate may even be higher for Mexico's two major oil provinces, Campeche and Reforma.

Baker, G.

1985-10-01T23:59:59.000Z

77

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

78

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

79

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

80

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

On Demand Paging Using  

E-Print Network (OSTI)

The power consumption of the network interface plays a major role in determining the total operating lifetime of wireless handheld devices. On demand paging has been proposed earlier to reduce power consumption in cellular networks. In this scheme, a low power secondary radio is used to wake up the higher power radio, allowing the latter to sleep or remain off for longer periods of time. In this paper we present use of Bluetooth radios to serve as a paging channel for the 802.11 wireless LAN. We have implemented an on-demand paging scheme on a WLAN consisting of iPAQ PDAs equipped with Bluetooth radios and Cisco Aironet wireless networking cards. Our results show power saving ranging from 19% to 46% over the present 802.11b standard operating modes with negligible impact on performance.

Bluetooth Radios On; Yuvraj Agarwal; Rajesh K. Gupta

2003-01-01T23:59:59.000Z

82

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 – REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFC’s core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 – Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

83

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

84

Late January Cold Impacted Both Supply & Demand  

Gasoline and Diesel Fuel Update (EIA)

A brief cold spell occurred in the second half of January on top of A brief cold spell occurred in the second half of January on top of the low stocks. Cold weather increases demand, but it also can interfere with supply, as happened this past January. During the week ending January 22, temperatures in the New England and the Mid-Atlantic areas shifted from being15 percent and 17 percent warmer than normal, respectively, to 24 percent and 22 percent colder than normal. The weather change increased weekly heating requirements by about 40 percent. Temperature declines during the winter affect heating oil demand in a number of ways: Space heating demand increases; Electricity peaking demand increases and power generators must turn to distillate to meet the new peak needs; Fuel switching from natural gas to distillate occurs among large

85

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

86

Dividends with Demand Response  

SciTech Connect

To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

2003-10-31T23:59:59.000Z

87

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

88

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

89

Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand  

E-Print Network (OSTI)

: Properties of the AIDS Generalized Maximum Entropy Estimator 24 #12;Estimating a Demand SystemEstimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey with nonnegativity constraints is presented. This approach, called generalized maximum entropy (GME), is more

Perloff, Jeffrey M.

90

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

91

DECLINING MOUNTAIN SNOWPACK IN WESTERN NORTH AMERICA*  

Science Conference Proceedings (OSTI)

In western North America, snow provides crucial storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. Manual and telemetered measurements of spring snow-pack, ...

Philip W. Mote; Alan F. Hamlet; Martyn P. Clark; Dennis P. Lettenmaier

2005-01-01T23:59:59.000Z

92

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

93

Thai gas demand seen outstripping supply  

SciTech Connect

Thailand's demand for gas will outstrip supplies in the late 1990s as rapid economic growth continues. Gas will be a cornerstone for Thai energy policy throughout the growth, although sources in neighboring countries need development. Thai gas production will rise 25% from 1992 to average 1 bcfd by 1995. Including production from new discoveries, production could rise to 1.5 bcfd by 2000, up almost 90% from the 1992 level. Increased gas flow output in the mid-1990s will be due largely to development of Gulf of Thailand fields. By 1998, production from Gulf of Thailand fields will not be enough to offset the decline in today's fields. Thailand will need to import more than 1 bcfd by 2005 in the absence of future discoveries in the country. The paper discusses new pipelines and imports.

1993-05-03T23:59:59.000Z

94

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

95

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

96

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

97

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heater Basics Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

98

Tankless Demand Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is shown. Cold water flows in one end of a pipe, flows through and around several curved pipes over the heating elements, and out the other end as hot water. Beneath the heating unit, a typical sink setup is shown. The sink has two pipes coming out the bottom, one for the hot water line and one for the cold water line. Both pipes lead to the heating unit, which is installed in close proximity to the area of hot water use, and is connected to a power source (110 or 220 volts). Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as

99

Production and Handling Slide 42: Typical Depleted Cylinder Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Typical Depleted Cylinder Storage Yard Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Typical Depleted Cylinder Storage Yard...

100

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

102

Our Dependence on Foreign Oil Is Declining | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining March 1, 2012 - 11:02am Addthis Image courtesy of whitehouse.gov Image courtesy of whitehouse.gov...

103

EM Occupational Injury and Illness Rates Continued to Decline...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Occupational Injury and Illness Rates Continued to Decline in Fiscal Year 2011 EM Occupational Injury and Illness Rates Continued to Decline in Fiscal Year 2011 February 1, 2012...

104

EIA - Annual Energy Outlook 2008 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand Natural Gas Demand Annual Energy Outlook 2008 with Projections to 2030 Natural Gas Demand Figure 72. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 73. Total natural gas consumption, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Fastest Increase in Natural Gas Use Is Expected for the Buildings Sectors In the reference case, total natural gas consumption increases from 21.7 trillion cubic feet in 2006 to a peak value of 23.8 trillion cubic feet in 2016, followed by a decline to 22.7 trillion cubic feet in 2030. The natural gas share of total energy consumption drops from 22 percent in 2006

105

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

106

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

107

Automated Demand Response and Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Commissioning Title Automated Demand Response and Commissioning Publication Type Conference Paper LBNL Report Number LBNL-57384 Year of Publication 2005 Authors Piette, Mary...

108

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

lvi Southern California Edison filed its SmartConnectinfrastructure (e.g. , Edison Electric Institute, DemandSouthern California Edison Standard Practice Manual

Heffner, Grayson

2010-01-01T23:59:59.000Z

109

Demand Uncertainty and Price Dispersion.  

E-Print Network (OSTI)

??Demand uncertainty has been recognized as one factor that may cause price dispersion in perfectly competitive markets with costly and perishable capacity. With the persistence… (more)

Li, Suxi

2007-01-01T23:59:59.000Z

110

1995 Demand-Side Managment  

U.S. Energy Information Administration (EIA)

U.S. Electric Utility Demand-Side Management 1995 January 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

111

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

112

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

113

Demand Response Quick Assessment Tool (DRQAT)  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool (DRQAT) The opportunities for demand reduction and cost saving with building demand responsive control vary tremendously with building type...

114

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

115

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

116

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

117

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

118

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

119

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

120

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Table 1. “Economic” demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

122

Both Distillate Supply and Demand Reached Extraordinary Levels This Winter  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: This chart shows some critical differences in distillate supply and demand during this winter heating season, in comparison to the past two winters. Typically, distillate demand peaks during the winter months, but "new supply" (refinery production and net imports) cannot increase as much, so the remaining supply needed is drawn from inventories. This pattern is evident in each of the past two winter heating seasons. This winter, however, the pattern was very different, for several reasons: With inventories entering the season at extremely low levels, a "typical" winter stockdraw would have been nearly impossible, particularly in the Northeast, the region most dependent on heating oil. Demand reached near-record levels in December, as colder-than-normal

123

Harnessing the power of demand  

Science Conference Proceedings (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

124

China, India demand cushions prices  

SciTech Connect

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

125

Production decline analysis of horizontal well in gas shale reservoirs.  

E-Print Network (OSTI)

??The major factor influencing the increase of natural gas use is the rise in its global demand. Due to the relentlessly increasing demand, there have… (more)

Adekoya, Folarin.

2009-01-01T23:59:59.000Z

126

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

127

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

128

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

129

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

130

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

131

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

132

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

133

Decline curve derivative analysis for homogeneous and composite reservoirs  

DOE Green Energy (OSTI)

In this study, the rate decline and rate decline derivatives of a constant pressure well are presented for infinite, constant pressure outer boundary, and closed outer boundary homogeneous reservoirs. A rate derivative type curve is provided for these cases as well. The effects of the dimensionless reservoir exterior radius are discussed. Rate decline and rate decline derivatives of a constant pressure well in an infinite composite reservoir are also presented. For composite reservoirs, the effects of mobility ratios and discontinuity distance on both rate decline and rate decline derivatives are presented. Type curves for dimensionless wellbore flow rate derivatives for infinite composite reservoirs are provided. A new correlating group for the derivative type curve is provided, and is different than the correlating group for the rate type curve presented in the past. Finally, an analysis method that comprises type curve and derivative type curve matching to determine the dimensionless variables is proposed and demonstrated with a simulated example.

Demski, J.A.

1987-06-01T23:59:59.000Z

134

Demand Response Research in Spain  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

135

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

136

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

137

Demand for money in China .  

E-Print Network (OSTI)

??This research investigates the long-run equilibrium relationship between money demand and its determinants in China over the period 1952-2004 for three definitions of money –… (more)

Zhang, Qing

2006-01-01T23:59:59.000Z

138

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

139

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

140

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

142

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

143

Leslie Mancebo (7234) Transportation Demand &  

E-Print Network (OSTI)

Leslie Mancebo (7234) Transportation Demand & Marketing Coordinator 1 FTE, 1 HC Administrative Vice Chancellor Transportation and Parking Services Clifford A. Contreras (0245) Director 30.10 FTE Alternative Transportation & Marketing Reconciliation Lourdes Lupercio (4723) Michelle McArdle (7512) Parking

Hammock, Bruce D.

144

Demand Response Spinning Reserve Demonstration  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

145

Energy Perspectives: United States energy imports decline while ...  

U.S. Energy Information Administration (EIA)

Energy Information ... Financial market analysis and financial data for major energy companies ... United States energy imports decline while energy exports increase.

146

Annual Production with 2 Percent Annual Growth & Decline  

U.S. Energy Information Administration (EIA)

It is unlikely that any single constant growth or decline rate would persist before or after the year of peak production. World oil production has sometimes ...

147

Outlook for US lube oil supply and demand  

Science Conference Proceedings (OSTI)

This paper examines the domestic demand for automotive and industrial lubricants to the year 2000 and evaluates the ability of U.S. refiners to meet the associated demand for base stocks. Changes in the supply/demand picture over the past several years are also reviewed. In the late 1970's, lube base stocks had been in short supply as healthy increases in demand pushed U.S. refiners to near maximum operating levels. Imports were increased to what were then record high levels and exports were reduced. This situation began to reverse itself in mid-1980 as marketers began to feel the impact of recession here and abroad. U.S. base stock consumption has since declined dramatically, to a level in 1982 estimated to be 17.5% below that of 1979's peak. In the meantime, refiners had added another 7.0 MB/CD to manufacturing capacity. 1982 lube plant operations are estimated to have dropped as low as 62% of nameplate capacity. The outlook for recovery is conservative. Due to continued depressed demand in certain market segments, 1983's increase in base oil demand is projected to be held to only 2%. Gains in 1984 and 1985 will be more robust, in the area of 6% per year. Thereafter, the overall rate of growth will drop to under 1% per year. The outlooks for automotive and industrial lubricants demand are summarized. Due to a forecast of greater relative growth in synthetic and water-based lubricants, base stock consumption is forecast to increase at a slower pace than that of the total finished lubricants volume.

Brecht, F.

1983-03-01T23:59:59.000Z

148

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

149

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

150

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network (OSTI)

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

151

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network (OSTI)

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

152

Successful demand-side management  

Science Conference Proceedings (OSTI)

This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

Hadley, S. [Oak Ridge National Laboratory, TN (United States); Flanigan, T. [Results Center, Aspen, CO (United States)

1995-05-01T23:59:59.000Z

153

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

154

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

155

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

156

OpenEI - building demand  

Open Energy Info (EERE)

are given by a location defined by the Typical Meteorological Year (TMY) for which the weather data was collected. Commercial load data is sorted by the (TMY) site as a...

157

An Integrated Strategy for Whole Ecological Utilization of Typical ...  

Science Conference Proceedings (OSTI)

... of typical industrial solid wastes, such as titanium-bearing blast furnace slag, high-silicon iron tailing and boron-enriched slag as well as oil shale.

158

Nuclear outages back within typical range since July following ...  

U.S. Energy Information Administration (EIA)

U.S. nuclear generator outages were above the levels of the previous four years in the second quarter of 2011 but have returned to more typical ...

159

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

residential electricity consumption, the flattening of the demand curves (except Maximum demand) reflects decreasing population growth ratesresidential electricity demand are described in Table 11. For simplicity, end use-specific UEC and saturation rates

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

160

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

percent of 2008 summer peak demand (FERC, 2008). Moreover,138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).non-coincident summer peak demand by 157 GW” by 2030, or 14–

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

pricing tariffs have a peak demand reduction potential ofneed to reduce summer peak demand that is used to set demandcustomers and a system peak demand of over 43,000 MW. SPP’s

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

162

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

with total Statewide peak demand and on peak days isto examine the electric peak demand related to lighting inDaily) - TOU Savings - Peak Demand Charges - Grid Peak -Low

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

163

Tankless Demand Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Water Heaters Tankless Demand Water Heaters August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the top of the image, the heating unit is...

164

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

165

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

166

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

167

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

168

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

169

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

Regulatory Commission (FERC) 2006. “Assessment of DemandRegulatory Commission (FERC) 2007. “Assessment of DemandRegulatory Commission (FERC) 2008a. “Wholesale Competition

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

170

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

171

Demand Response as a System Reliability Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response as a System Reliability Resource Title Demand Response as a System Reliability Resource Publication Type Report Year of Publication 2012 Authors Eto, Joseph H.,...

172

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

173

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

174

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

175

Equity Capital Flows and Demand for REITs  

Science Conference Proceedings (OSTI)

This paper examines the shape of the market demand curve for ... Our results do not support a downward demand curve for ... Charleston, IL 61920, USA e-mail: ...

176

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Oakland CA, December. PJM Demand Side Response WorkingPrice Response Program a PJM Economic Load Response ProgramLoad Response Statistics PJM Demand Response Working Group

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

177

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

29 5.6. Peak and hourly demand43 6.6. Peak and seasonal demandthe average percent of peak demand) significantly impact the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

178

Water demand management in Kuwait  

E-Print Network (OSTI)

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

179

Demand-Side Management Glossary  

Science Conference Proceedings (OSTI)

In recent years, demand-side management (DSM) programs have grown in significance within the U.S. electric power industry. Such rapid growth has resulted in new terms, standards, and vocabulary used by DSM professionals. This report is a first attempt to provide a consistent set of definitions for the expanding DSM terminology.

1992-11-01T23:59:59.000Z

180

Typicality ranking via semi-supervised multiple-instance learning  

Science Conference Proceedings (OSTI)

Most of the existing methods for natural scene categorization only consider whether a sample is relevant or irrelevant to a particular concept. However, for the samples relevant to a certain concept, their typicalities or relevancy scores to the concept ... Keywords: multiple-instance learning, natural scene categorization, semi-supervised learning, typicality ranking

Jinhui Tang; Xian-Sheng Hua; Guo-Jun Qi; Xiuqing Wu

2007-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Demand Dispatch — Intelligent Demand for a More Efficient Grid  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Demand Dispatch: Intelligent Demand for a More Efficient Grid

Keith Dodrill

2011-01-01T23:59:59.000Z

182

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network (OSTI)

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

183

The alchemy of demand response: turning demand into supply  

Science Conference Proceedings (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

184

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

185

Demand Response and Risk Management  

Science Conference Proceedings (OSTI)

For several decades, power companies have deployed various types of demand response (DR), such as interruptible contracts, and there is substantial ongoing research and development on sophisticated mechanisms for triggering DR. In this white paper, EPRI discusses the increasing use of electricity DR in the power industry and how this will affect the practice of energy risk management. This paper outlines 1) characteristics of a common approach to energy risk management, 2) the variety of types of DR impl...

2008-12-18T23:59:59.000Z

186

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

187

Energy Use Savings for a Typical New Residential Dwelling Unit...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL-88603 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Energy Use Savings for a Typical New Residential Dwelling Unit Based on the 2009 and 2012...

188

Demand Trading: Measurement, Verification, and Settlement (MVS)  

Science Conference Proceedings (OSTI)

With this report, EPRI's trilogy of publications on demand trading is complete. The first report (1006015), the "Demand Trading Toolkit," documented how to conduct demand trading based on price. The second report (1001635), "Demand Trading: Building Liquidity," focused on the problem of liquidity in the energy industry and developed the Demand Response Resource Bank concept for governing electricity markets based on reliability. The present report focuses on the emerging price/risk partnerships in electr...

2004-03-18T23:59:59.000Z

189

Typical Boiler Tube Damage from Flexible Operation or Cycling  

Science Conference Proceedings (OSTI)

Power generation plants are under increasing pressure to cycle the boiler system to meet demand at the exact time it occurs. To survive in the new commercial sphere, it is essential that we adjust to a dynamic, flexible operating paradigm. The ability to adjust the overall system response to load demand is paramount; cycling is a fact in today’s power-for-profit business dynamic.The challenge is that for most fossil power plants in operation today—which were designed and ...

2013-12-19T23:59:59.000Z

190

Providing Reliability Services through Demand Response: A Prelimnary Evaluation of the Demand Response Capabilities of Alcoa Inc.  

Science Conference Proceedings (OSTI)

Demand response is the largest underutilized reliability resource in North America. Historic demand response programs have focused on reducing overall electricity consumption (increasing efficiency) and shaving peaks but have not typically been used for immediate reliability response. Many of these programs have been successful but demand response remains a limited resource. The Federal Energy Regulatory Commission (FERC) report, 'Assessment of Demand Response and Advanced Metering' (FERC 2006) found that only five percent of customers are on some form of demand response program. Collectively they represent an estimated 37,000 MW of response potential. These programs reduce overall energy consumption, lower green house gas emissions by allowing fossil fuel generators to operate at increased efficiency and reduce stress on the power system during periods of peak loading. As the country continues to restructure energy markets with sophisticated marginal cost models that attempt to minimize total energy costs, the ability of demand response to create meaningful shifts in the supply and demand equations is critical to creating a sustainable and balanced economic response to energy issues. Restructured energy market prices are set by the cost of the next incremental unit of energy, so that as additional generation is brought into the market, the cost for the entire market increases. The benefit of demand response is that it reduces overall demand and shifts the entire market to a lower pricing level. This can be very effective in mitigating price volatility or scarcity pricing as the power system responds to changing demand schedules, loss of large generators, or loss of transmission. As a global producer of alumina, primary aluminum, and fabricated aluminum products, Alcoa Inc., has the capability to provide demand response services through its manufacturing facilities and uniquely through its aluminum smelting facilities. For a typical aluminum smelter, electric power accounts for 30% to 40% of the factory cost of producing primary aluminum. In the continental United States, Alcoa Inc. currently owns and/or operates ten aluminum smelters and many associated fabricating facilities with a combined average load of over 2,600 MW. This presents Alcoa Inc. with a significant opportunity to respond in areas where economic opportunities exist to help mitigate rising energy costs by supplying demand response services into the energy system. This report is organized into seven chapters. The first chapter is the introduction and discusses the intention of this report. The second chapter contains the background. In this chapter, topics include: the motivation for Alcoa to provide demand response; ancillary service definitions; the basics behind aluminum smelting; and a discussion of suggested ancillary services that would be particularly useful for Alcoa to supply. Chapter 3 is concerned with the independent system operator, the Midwest ISO. Here the discussion examines the evolving Midwest ISO market structure including specific definitions, requirements, and necessary components to provide ancillary services. This section is followed by information concerning the Midwest ISO's classifications of demand response parties. Chapter 4 investigates the available opportunities at Alcoa's Warrick facility. Chapter 5 involves an in-depth discussion of the regulation service that Alcoa's Warrick facility can provide and the current interactions with Midwest ISO. Chapter 6 reviews future plans and expectations for Alcoa providing ancillary services into the market. Last, chapter 7, details the conclusion and recommendations of this paper.

Starke, Michael R [ORNL; Kirby, Brendan J [ORNL; Kueck, John D [ORNL; Todd, Duane [Alcoa; Caulfield, Michael [Alcoa; Helms, Brian [Alcoa

2009-02-01T23:59:59.000Z

191

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

Benenson, P.

2010-01-01T23:59:59.000Z

192

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

193

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network (OSTI)

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

194

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

195

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

14 Peak Demand Baselinewinter morning electric peak demand in commercial buildings.California to reduce peak demand during summer afternoons,

Kiliccote, Sila

2010-01-01T23:59:59.000Z

196

Re DSM: Here comes demand-side marketing  

SciTech Connect

Demand-side management (DSM) programs where utilities pay large rebates for energy efficient equipment are being declared dead. The popular view of DSM in the past was to encourage conservation of energy with significant rebates, credits and other incentives offered by electric and also natural gas utilities. After years of increase in utility DSM expenditures, the first decline took place last year of about 6% for the electric industry. Although still spending more than $2 billion in 1994, utilities have continued this year to reduce the number of DSM programs. For some utilities there has been a dramatic abandonment of energy efficiency incentive programs. Where programs remain, utilities are placing increased emphasis on the most cost-effective ones which are usually directed toward commercial and industrial facilities. At the same time utilities have been transforming their programs from demand-side management to demand-side marketing. The objectives have shifted to retaining existing customers, developing new accounts, and increasing profitable sales. Incentives are justified in this new cost-driven competitive environment when they result in decreased rates for all customers. Whereas, in the past, DSM program participants were the primary beneficiaries with reduced bills, in the new marketing environment all customers can benefit from reduced bills.

Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

1996-06-01T23:59:59.000Z

197

Building Energy Software Tools Directory : Demand Response Quick...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Back to Tool Demand response quick assessment tool screenshot Demand response quick assessment tool screenshot Demand response quick...

198

Price-elastic demand in deregulated electricity markets  

E-Print Network (OSTI)

by the amount of electricity demand that is settled forward.unresponsive demand side, electricity demand has to be metxed percentage of overall electricity demand. The ISO, thus,

Siddiqui, Afzal S.

2003-01-01T23:59:59.000Z

199

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

Braun (Purdue). 2004. Peak demand reduction from pre-coolingthe average and maximum peak demand savings. The electricityuse charges, demand ratchets, peak demand charges, and other

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

200

Demand Response Valuation Frameworks Paper  

Science Conference Proceedings (OSTI)

While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

Heffner, Grayson

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Demand Side Bidding. Final Report  

SciTech Connect

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

202

Our Dependence on Foreign Oil Is Declining | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining March 1, 2012 - 11:02am Addthis Image courtesy of whitehouse.gov Image courtesy of whitehouse.gov Megan Slack Deputy Director of Digital Content, White House Office of Digital Strategy What are the key facts? America's dependence on foreign oil has decreased every year since President Obama took office. We need an all-out, all-of-the-above strategy to protect Americans from high energy prices in the long run. Editor's Note: This post originally appeared on the White House Blog. America's dependence on foreign oil has gone down every single year since President Obama took office. In 2010, we imported less than 50 percent of the oil our nation consumed-the first time that's happened in 13

203

Our Dependence on Foreign Oil Is Declining | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dependence on Foreign Oil Is Declining Dependence on Foreign Oil Is Declining Our Dependence on Foreign Oil Is Declining March 1, 2012 - 11:02am Addthis Image courtesy of whitehouse.gov Image courtesy of whitehouse.gov Megan Slack Deputy Director of Digital Content, White House Office of Digital Strategy What are the key facts? America's dependence on foreign oil has decreased every year since President Obama took office. We need an all-out, all-of-the-above strategy to protect Americans from high energy prices in the long run. Editor's Note: This post originally appeared on the White House Blog. America's dependence on foreign oil has gone down every single year since President Obama took office. In 2010, we imported less than 50 percent of the oil our nation consumed-the first time that's happened in 13

204

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

205

Distillate Demand Strong in December 1999  

Gasoline and Diesel Fuel Update (EIA)

5% higher than in the prior year, due mainly to diesel demand growth, since warm weather kept heating oil demand from growing much. Last December, when stocks dropped below...

206

Solar in Demand | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's...

207

Demand Response - Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

over the last 11 years when interest in demand response increased. Demand response is an electricity tariff or program established to motivate changes in electric use by end-use...

208

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

209

Propane Demand by Sector - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In order to understand markets you also have to look at supply and demand. First, demand or who uses propane. For the most part, the major components of propane ...

210

OPEC production: Untapped reserves, world demand spur production expansion  

Science Conference Proceedings (OSTI)

To meet projected world oil demand, almost all members of the Organization of Petroleum Exporting Countries (OPEC) have embarked on ambitious capacity expansion programs aimed at increasing oil production capabilities. These expansion programs are in both new and existing oil fields. In the latter case, the aim is either to maintain production or reduce the production decline rate. However, the recent price deterioration has led some major OPEC producers, such as Saudi Arabia and Iran, to revise downward their capacity plans. Capital required for capacity expansion is considerable. Therefore, because the primary source of funds will come from within each OPEC country, a reasonably stable and relatively high oil price is required to obtain enough revenue for investing in upstream projects. This first in a series of two articles discusses the present OPEC capacity and planned expansion in the Middle East. The concluding part will cover the expansion plans in the remaining OPEC countries, capital requirements, and environmental concerns.

Ismail, I.A.H. (Organization of the Petroleum Exporting Countries, Vienna (Austria))

1994-05-02T23:59:59.000Z

211

U.S. Coal Supply and Demand: 2003 Review  

Gasoline and Diesel Fuel Update (EIA)

3 Review 3 Review 1 U.S. Coal Supply and Demand: 2003 Review by Fred Freme U.S. Energy Information Administration Overview U.S. coal production fell for the second year in a row in 2003, declining by 24.8 million short tons to end the year at 1,069.5 million short tons according to preliminary data from the Energy Information Administration (Table 1), down 2.3 percent from the 2002 level of 1,094.3 million short tons. (Note: All percentage change calculations are done at the short ton level.) Total U.S. coal consumption rose in 2003, with all coal-consuming sectors increasing or remaining stable for the year. Coal consumption in the electric power sector increased by 2.4 percent. However, there were only slight gains in consumption by the other sectors. U.S. coal exports rose in 2003 for the first time in

212

Energy-Efficient Lighting The typical American family spends more  

E-Print Network (OSTI)

fluorescent light bulbs (CFLs) saves you money in the long run with lower energy bills. CFLs are significant Typical incandescent 75-watt light bulb Compact Fluorescent 18-watt light bulb Purchase cost $0.60 $ 5 that incandescent bulbs use becomes heat while only 10 percent becomes light. CFLs create less heat because more

213

Travel Behavior and Demand Analysis and Prediction  

E-Print Network (OSTI)

and Demand Analysis and Prediction Konstadinos G. Goulias University of California Santa Barbara, Santa Barbara, CA, USA

Goulias, Konstadinos G

2007-01-01T23:59:59.000Z

214

Forecasting the demand for commercial telecommunications satellites  

Science Conference Proceedings (OSTI)

This paper summarizes the key elements of a forecast methodology for predicting demand for commercial satellite services and the resulting demand for satellite hardware and launches. The paper discusses the characterization of satellite services into more than a dozen applications (including emerging satellite Internet applications) used by Futron Corporation in its forecasts. The paper discusses the relationship between demand for satellite services and demand for satellite hardware

Carissa Bryce Christensen; Carie A. Mullins; Linda A. Williams

2001-01-01T23:59:59.000Z

215

Management of Power Demand through Operations of Building Systems  

E-Print Network (OSTI)

In hot summers, the demand for electrical power is dominated by the requirements of the air-conditioning and lighting systems. Such systems account for more than 80% of the peak electrical demand in Kuwait. A study was conducted to explore the potential for managing the peak electrical demand through improved operation strategies for building systems. Two buildings with partial occupancy patterns and typical peak loads of 1 and 2.2 MW were investigated. Changes to the operation of building systems included utilizing the thermal mass to reduce cooling production and distribution during the last hour of occupancy, time-of-day control of chillers and auxiliaries, and de-lamping. The implemented operational changes led to significant reductions in building loads during the hours of national peak demand. The achieved savings reached 31% during the critical hour, and up to 47% afterwards. Daily energy savings of 13% represented an added benefit. Additional operational changes could lead to further savings in peak power when implemented.

ElSherbini, A. I.; Maheshwari, G.; Al-Naqib, D.; Al-Mulla, A.

2009-11-01T23:59:59.000Z

216

Optimization of Occupancy Based Demand Controlled Ventilation in Residences  

SciTech Connect

Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

2011-05-01T23:59:59.000Z

217

Forecasting Uncertain Hotel Room Demand  

E-Print Network (OSTI)

Economic systems are characterized by increasing uncertainty in their dynamics. This increasing uncertainty is likely to incur bad decisions that can be costly in financial terms. This makes forecasting of uncertain economic variables an instrumental activity in any organization. This paper takes the hotel industry as a practical application of forecasting using the Holt-Winters method. The problem here is to forecast the uncertain demand for rooms at a hotel for each arrival day. Forecasting is part of hotel revenue management system whose objective is to maximize the revenue by making decisions regarding when to make rooms available for customers and at what price. The forecast approach discussed in this paper is based on quantitative models and does not incorporate management expertise. Even though, forecast results are found to be satisfactory for certain days, this is not the case for other arrival days. It is believed that human judgment is important when dealing with ...

Mihir Rajopadhye Mounir; Mounir Ben Ghaliay; Paul P. Wang; Timothy Baker; Craig V. Eister

2001-01-01T23:59:59.000Z

218

Forecasting demand of commodities after natural disasters  

Science Conference Proceedings (OSTI)

Demand forecasting after natural disasters is especially important in emergency management. However, since the time series of commodities demand after natural disasters usually has a great deal of nonlinearity and irregularity, it has poor prediction ... Keywords: ARIMA, Demand forecasting, EMD, Emergency management, Natural disaster

Xiaoyan Xu; Yuqing Qi; Zhongsheng Hua

2010-06-01T23:59:59.000Z

219

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

220

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

222

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network (OSTI)

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped

223

FINAL STAFF FORECAST OF 2008 PEAK DEMAND  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL STAFF FORECAST OF 2008 PEAK DEMAND STAFFREPORT June 2007 CEC-200 of the information in this paper. #12;Abstract This document describes staff's final forecast of 2008 peak demand demand forecasts for the respective territories of the state's three investor-owned utilities (IOUs

224

Leveraging gamification in demand dispatch systems  

Science Conference Proceedings (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

225

Ups and downs of demand limiting  

SciTech Connect

Electric power load management by limiting power demand can be used for energy conservation. Methods for affecting demand limiting, reducing peak usage in buildings, particularly usage for heating and ventilating systems, and power pricing to encourage demand limiting are discussed. (LCL)

Pannkoke, T.

1976-12-01T23:59:59.000Z

226

U.S. energy intensity projected to continue its steady decline ...  

U.S. Energy Information Administration (EIA)

In the United States, energy intensity has been declining steadily since the early 1970s and continues to decline in EIA's long-term projection.

227

Demand-Side Management (DSM) Opportunities as Real-Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-Side Management (DSM) Opportunities as Real-Options Demand-Side Management (DSM) Opportunities as Real-Options Speaker(s): Osman Sezgen Date: August 1, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare As some end-users of energy and aggregators are choosing to be exposed to real-time prices and energy price volatility, they are coming across new DSM opportunities that would not be feasible under typical utility rate structures. Effective evaluation of such opportunities requires a good understanding of the wholesale energy markets and the use of models based on recent financial techniques for option pricing. The speaker will give examples of such modeling approaches based on his experience in the retail-energy industry. Specific examples will include evaluation of distributed generation, load curtailment, dual-fuel cooling, and energy

228

Price Movements Related to Supply/Demand Balance  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: EIA sees a tenuous supply/demand balance over the remainder of 2001 and into the beginning of 2002, as illustrated by the low OECD inventory levels. Global inventories remain low, and need to recover to more adequate levels in order to avoid continued price volatility. While we saw some stocking in April and May, typical third quarter stock builds may not occur. Even with Iraqi oil exports resuming in early July, OPEC was going to need to increase its oil production to account for demand increases over the 2nd half of the year to prevent stocks from falling further. However, they not only haven't agreed to increase production, but agreed to cut production quotas by 1 million barrels per day beginning on September 1! EIA's forecast of a continued low stock cushion implies we not only

229

Rock mass response to the decline in underground coal mining  

SciTech Connect

Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

Holub, K. [Academy of Science in Czech Republic, Prague (Czech Republic)

2006-01-15T23:59:59.000Z

230

Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications  

E-Print Network (OSTI)

or phase space. In this work we con- sider the trajectory of sea ice in the ice thickness phase space. We175 Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications Geophysical Is the Trajectory of Arctic Sea Ice? Harry L. Stern and Ronald W. Lindsay Polar Science Center, Applied Physics

Lindsay, Ron

231

Energy solutions for CO2 emission peak and subsequent decline  

E-Print Network (OSTI)

Energy solutions for CO2 emission peak and subsequent decline Edited by Leif Sønderberg Petersen and Hans Larsen Risø-R-1712(EN) September 2009 Proceedings Risø International Energy Conference 2009 #12;Editors: Leif Sønderberg Petersen and Hans Larsen Title: Energy solutions for CO2 emission peak

232

Comparison of Emperical Decline Curve Analysis for Shale Wells  

E-Print Network (OSTI)

This study compares four recently developed decline curve methods and the traditional Arps or Fetkovich approach. The four methods which are empirically formulated for shale and tight gas wells are: 1. Power Law Exponential Decline (PLE). 2. Stretched Exponential Decline (SEPD). 3. Duong Method. 4. Logistic Growth Model (LGM). Each method has different tuning parameters and equation forms. The main objective of this work is to determine the best method(s) in terms of Estimated Ultimate Recovery (EUR) accuracy, goodness of fit, and ease of matching. In addition, these methods are compared against each other at different production times in order to understand the effect of production time on forecasts. As a part of validation process, all methods are benchmarked against simulation. This study compares the decline methods to four simulation cases which represent the common shale declines observed in the field. Shale wells, which are completed with horizontal wells and multiple traverse highly-conductive hydraulic fractures, exhibit long transient linear flow. Based on certain models, linear flow is preceded by bilinear flow if natural fractures are present. In addition to this, linear flow is succeeded by Boundary Dominated Flow (BDF) decline when pressure wave reaches boundary. This means four declines are possible, hence four simulation cases are required for comparison. To facilitate automatic data fitting, a non-linear regression program was developed using excel VBA. The program optimizes the Least-Square (LS) objective function to find the best fit. The used optimization algorithm is the Levenberg-Marquardt Algorithm (LMA) and it is used because of its robustness and ease of use. This work shows that all methods forecast different EURs and some fit certain simulation cases better than others. In addition, no method can forecast EUR accurately without reaching BDF. Using this work, engineers can choose the best method to forecast EUR after identifying the simulation case that is most analogous to their field wells. The VBA program and the matching procedure presented here can help engineers automate these methods into their forecasting sheets.

Kanfar, Mohammed Sami

2013-08-01T23:59:59.000Z

233

Measurement and Verification for Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement and Verification for Measurement and Verification for Demand Response Prepared for the National Forum on the National Action Plan on Demand Response: Measurement and Verification Working Group AUTHORS: Miriam L. Goldberg & G. Kennedy Agnew-DNV KEMA Energy and Sustainability National Forum of the National Action Plan on Demand Response Measurement and Verification for Demand Response was developed to fulfill part of the Implementation Proposal for The National Action Plan on Demand Response, a report to Congress jointly issued by the U.S. Department of Energy (DOE) and the Federal Energy Regulatory Commission (FERC) in June 2011. Part of that implementation proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given that demand response has matured, DOE and FERC decided that a "virtual" project

234

Are they equal yet. [Demand side management  

Science Conference Proceedings (OSTI)

Demand-side management (DSM) is considered an important tool in meeting the load growth of many utilities. Northwest regional and utility resource plans forecast demand-side resources to meet from one-half to two-thirds of additional electrical energy needs over the next 10 years. Numerous sources have stated that barriers, both regulatory and financial, exist to utility acquisition of demand-side resources. Regulatory actions are being implemented in Oregon to make demand-side investments competitive with supply-side investments. In 1989, the Oregon Public Utility Commission (PUC) took two actions regarding demand-side investments. The PUC's Order 89-1700 directed utilities to capitalize demand-side investments to properly match amortization expense with the multiyear benefits provided by DSM. The PUC also began an informal investigation concerning incentives for Oregon's regulated electric utilities to acquire demand-side resources.

Irwin, K.; Phillips-Israel, K.; Busch, E.

1994-05-15T23:59:59.000Z

235

Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint  

DOE Green Energy (OSTI)

This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

2012-07-01T23:59:59.000Z

236

Signatures of Heating and Cooling Energy Consumption for Typical AHUs  

E-Print Network (OSTI)

An analysis is performed to investigate the signatures of different parameters on the heating and cooling energy consumption of typical air handling units (AHUs). The results are presented in graphic format. HVAC simulation engineers can use these graphs to make quick and rational decisions during the model calibration, identify faulty parameters, and develop optimized operation and control schedules. An application example is given as well in the paper.

Wei, G.; Liu, M.; Claridge, D. E.

1998-01-01T23:59:59.000Z

237

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

face of oil and natural gas price rises, coal’s share may becoal consumption declined from 1996 to 2006, but rebounded in 2006; unless residential natural gas prices

Aden, Nathaniel

2010-01-01T23:59:59.000Z

238

A generalized window energy rating system for typical office buildings  

Science Conference Proceedings (OSTI)

Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of windows in buildings similar to the typical buildings. (author)

Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming [Research Center for Building Environmental Engineering, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China)

2010-07-15T23:59:59.000Z

239

Is the Sun Embedded in a Typical Interstellar Cloud?  

E-Print Network (OSTI)

The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.

P. C. Frisch

2008-04-23T23:59:59.000Z

240

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

242

Distributed Intelligent Automated Demand Response (DIADR) Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Intelligent Automated Demand Distributed Intelligent Automated Demand Response (DIADR) Building Management System Distributed Intelligent Automated Demand Response (DIADR) Building Management System The U.S. Department of Energy (DOE) is currently conducting research into distributed intelligent-automated demand response (DIADR) building management systems. Project Description This project aims to develop a DIADR building management system with intelligent optimization and control algorithms for demand management, taking into account a multitude of factors affecting cost including: Comfort Heating, ventilating, and air conditioning (HVAC) Lighting Other building systems Climate Usage and occupancy patterns. The key challenge is to provide the demand response the ability to address more and more complex building systems that include a variety of loads,

243

Optimal Design of Demand-Responsive Feeder Transit Services  

E-Print Network (OSTI)

The general public considers Fixed-Route Transit (FRT) to be inconvenient while Demand-Responsive Transit (DRT) provides much of the desired flexibility with a door-to-door type of service. However, FRT is typically more cost efficient than DRT to deploy. Therefore, there is an increased interest in flexible transit services including all types of hybrid services that combine FRT and pure DRT. The demand-responsive feeder transit, also known as Demand-Responsive Connector (DRC), is a flexible transit service because it operates in a demand-responsive fashion within a service area and moves customers to/from a transfer point that connects to a FRT network. In this research we develop analytical models, validated by simulation, to design the DRC system. Feeder transit services are generally operated with a DRC policy which might be converted to a traditional FRT policy for higher demand. By using continuous approximations, we provide an analytical modeling framework to help planners and operators in their choice of the two policies. We compare utility functions of the two policies to derive rigorous analytical and approximate closed-form expressions of critical demand densities. They represent the switching conditions, that are functions of the parameters of each considered scenario, such as the geometry of the service area, the vehicle speed and also the weights assigned to each term contributing to the utility function: walking time, waiting time and riding time. We address the problem faced by planners in determining the optimal number of zones for dividing a service area. We develop analytical models representing the total cost functions balancing customer service quality and vehicle operating cost. We obtain close-form expressions for the FRT and approximation formulas for the DRC to determine the optimal number of zones. Finally we develop a real-case application with collected customer demand data and road network data of El Cenizo, Texas. With our analytical formulas, we obtain the optimal number of zones, and the times for switching FRT and DRC policies during a day. Simulation results considering the road network of El Cenizo demonstrate that our analytical formulas provide good estimates for practical use.

Li, Xiugang

2009-08-01T23:59:59.000Z

244

The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations  

Science Conference Proceedings (OSTI)

Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

Kirby, Brendan J [ORNL

2006-07-01T23:59:59.000Z

245

Marketing & Driving Demand: Social Media Tools & Strategies ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing & Driving Demand: Social Media Tools & Strategies January 16, 2011 Maryanne Fuller (MF): Hi there. This is Maryanne Fuller from Lawrence Berkeley National Laboratory....

246

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

247

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

for the most natural gas usage (33% and 51% of total demanddependence in natural gas usage, and consequently, Januarygas demand exhibits a strong winter peak in residential usage

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

248

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

Federspiel, Clifford

2010-01-01T23:59:59.000Z

249

Electric Utility Demand-Side Management  

U.S. Energy Information Administration (EIA)

Demand side management (DSM) activities in the electric power industry. The report presents a general discussion of DSM, its history, current issues, and a ...

250

Capitalize on Existing Assets with Demand Response  

E-Print Network (OSTI)

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary reduction of electric demand in response to grid instability, provides financial incentives to participating facilities that agree to conserve energy. With demand response, facilities also receive advance notice of potential blackouts and can proactively protect their equipment and machinery from sudden losses of power. A detailed case study, focusing on a sample industrial customer’s participation in demand response, will support the presentation.

Collins, J.

2008-01-01T23:59:59.000Z

251

Optimization of Demand Response Through Peak Shaving  

E-Print Network (OSTI)

Jul 5, 2013 ... Optimization of Demand Response Through Peak Shaving. G. Zakeri(g.zakeri *** at*** auckland.ac.nz) D. Craigie(David.Craigie ***at*** ...

252

Automated Demand Response Technology Demonstration Project for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings...

253

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

254

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

California Energy Demand Scenario Projections to 2050 RyanResearch Program California Energy Commission November 7,Chris Kavalec. California Energy Commission. CEC (2003a)

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

255

Discrete Choice Analysis: Hydrogen FCV Demand Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Choice Analysis: H 2 FCV Demand Potential Cory Welch H 2 Scenario Analysis Workshop Washington, D.C. , January 31, 2007 2 Overview * Motivation for work * Methodology * Relative...

256

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

In Maximum demand, year 2050 electricity consumption reachesefficiency, year 2050 electricity consumption is 357 TWh,capita electricity consumption increases from 7,421 kWh/year

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

257

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

DOE/EIA-0589(97) Distribution Category UC-950 U.S. Electric Utility Demand-Side Management 1997 December 1998 Energy Information Administration Office of Coal ...

258

Northwest Open Automated Demand Response Technology Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA)...

259

Demand response participation in PJM wholesale markets  

Science Conference Proceedings (OSTI)

This paper provides an overview of demand response resource participation in PJM wholesale ancillary service markets which include: Day Ahead Scheduling Reserves, Synchronized Reserves and Regulation.

Peter L. Langbein

2012-01-01T23:59:59.000Z

260

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

networks_in_the_home_the_new_growth_market.htm [12] NationalHome Network Technologies and Automating Demand Responsethe University of California. Home Network Technologies and

McParland, Charles

2010-01-01T23:59:59.000Z

262

Distillate Demand Strong in December 1999  

U.S. Energy Information Administration (EIA)

Total distillate demand includes both diesel and heating oil. These are similar products. Physically, diesel can be used in the heating oil market, but low sulfur ...

263

Meteorology: typical meteorological data for selected stations in Ghana  

Open Energy Info (EERE)

data for selected stations in Ghana data for selected stations in Ghana from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations> (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

264

Meteorology: typical meteorological year data for selected stations in Sri  

Open Energy Info (EERE)

Sri Sri Lanka from NREL Dataset Summary Description (Abstract): A data set of hourly values of solar radiation and meteorological elements for a 1-year period. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

265

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Kenya from NREL Kenya from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

266

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Ethiopia from NREL Ethiopia from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions

267

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Brazil from NREL Brazil from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

268

Meteorology: typical meteorological year data for selected stations in  

Open Energy Info (EERE)

Nepal from NREL Nepal from NREL Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): A TMY consists of months selected from individual years and concatenated to form a complete year. The intended use is for computer simulations of solar energy conversion systems and building systems. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years. Because they represent typical rather than extreme conditions, they are not suited for designing systems and their components to meet the worst-case conditions occurring at a location.

269

A Model of Household Demand for Activity Participation and Mobility  

E-Print Network (OSTI)

household car ownership, car usage, and travel by differentownership demand, and car usage demand. Modal travel demand,mode), car ownership, and car usage for spatial aggregations

Golob, Thomas F.

1996-01-01T23:59:59.000Z

270

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network (OSTI)

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

271

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network (OSTI)

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

272

Results and commissioning issues from an automated demand response pilot  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities"Management and Demand Response in Commercial Buildings", L Band Commissioning Issues from an Automated Demand Response.

Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

2004-01-01T23:59:59.000Z

273

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

Dudley, June Han

2009-01-01T23:59:59.000Z

274

Rates and technologies for mass-market demand response  

E-Print Network (OSTI)

Roger. 2002. Using Demand Response to Link Wholesale andfor advanced metering, demand response, and dynamic pricing.EPRI. 2001. Managing Demand-Response To Achieve Multiple

Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

275

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

276

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network (OSTI)

Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

277

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network (OSTI)

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

278

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

279

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

Koch, Ed

2009-01-01T23:59:59.000Z

280

Dynamic Pricing, Advanced Metering, and Demand Response in Electricity Markets  

E-Print Network (OSTI)

the New England ISO Demand Response Collaborative, a NYSERDACEC Staff. Selected Demand Response Pilots in California:New Principles for Demand Response Planning, Electric Power

Borenstein, Severin; Jaske, Michael; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

282

Measurement and evaluation techniques for automated demand response demonstration  

E-Print Network (OSTI)

Development for Demand Response Calculation – Findings andManagement and Demand Response in Commercial Buildings. ”of Fully Automated Demand Response in Large Facilities. ”

Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

2004-01-01T23:59:59.000Z

283

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network (OSTI)

and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

284

U.S. Propane Demand - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

285

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

55. Sample distribution of vehicle electricity demand forand distribution facilities that supply electricity demand.55. Sample distribution of vehicle electricity demand for

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

286

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

5. Average, minimum, and maximum demand reduction at eachshow the minimum and maximum demand reduction during the7. Average, minimum, and maximum demand reduction at each

Kiliccote, Sila

2010-01-01T23:59:59.000Z

287

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Figure 16 Annual peak electricity demand by sector. Tableincludes an hourly electricity demand (i.e. power) profileof aggregating sectoral electricity demands into a statewide

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

288

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network (OSTI)

with Residential Electricity Demand in India's Future - How2008). The Boom of Electricity Demand in the residential2005). Forecasting Electricity Demand in Developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

289

Climate, extreme heat, and electricity demand in California  

E-Print Network (OSTI)

warming and electricity demand: A study of California.Extreme Heat, and Electricity Demand in California Norman L.high temperature and electricity demand for air-conditioned

Miller, N.L.

2008-01-01T23:59:59.000Z

290

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Statewide California Electricity Demand. [accessed June 22,fuel efficiency and electricity demand assumptions used into added vehicle electricity demand in the BAU (no IGCC)

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

291

Microgrid Dispatch for Macrogrid Peak-Demand Mitigation  

E-Print Network (OSTI)

Dispatch for Macrogrid Peak- Demand Mitigation NicholasDispatch for Macrogrid Peak-Demand Mitigation Nicholasdetermine whether the peak demand on the substation feeder

DeForest, Nicholas

2013-01-01T23:59:59.000Z

292

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

for Electricity and Power Peak Demand . . • . . ELECTRICITYby Major Utility Service Area Projected Peak Demand for1977 Historical Peak Demand by Utility Service Area Weather-

Benenson, P.

2010-01-01T23:59:59.000Z

293

Climate, extreme heat, and electricity demand in California  

E-Print Network (OSTI)

projected extreme heat and peak demand for electricity areadequately kept up with peak demand, and electricity supplytrend in aggregate peak demand in California is expected to

Miller, N.L.

2008-01-01T23:59:59.000Z

294

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007 INTEGRATED Table of Contents General Instructions for Demand Forecast Submittals.............................................................................. 4 Protocols for Submitted Demand Forecasts

295

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

Table 22. Agricultural natural gas demand by planning area.23. “Other” sector natural gas demand by planning area.Projections Monthly natural gas demands are depicted in

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

296

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

Total Annual Energy Usage Peak Electric Demand Power UsageSetpoint (°C) Peak Electric Demand Power Usage Effective-Total Annual Energy Usage Peak Electric Demand Scenario

Shehabi, Arman

2010-01-01T23:59:59.000Z

297

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

298

Rising Asian demand drives global coal consumption growth ...  

U.S. Energy Information Administration (EIA)

Global coal demand has almost doubled since 1980, driven by increases in Asia, where demand is up over 400% from 1980-2010. In turn, Asian demand is ...

299

A Probabilistic Deformation Demand Model and Fragility Estimates for Asymmetric Offshore Jacket Platforms  

E-Print Network (OSTI)

Interest in evaluating the performance and safety of offshore oil and gas platforms has been expanding due to the growing world energy supply and recent offshore catastrophes. In order to accurately assess the reliability of an offshore platform, all relevant uncertainties must be properly accounted for. This necessitates the development of a probabilistic demand model that accounts for the relevant uncertainties and model errors. In this study, a probabilistic demand model is developed to assess the deformation demand on asymmetric offshore jacket platforms subject to wave and current loadings. The probabilistic model is constructed by adding correction terms and a model error to an existing deterministic deformation demand model. The correction terms are developed to capture the bias inherent in the deterministic model. The model error is developed to capture the accuracy of the model. The correction terms and model errors are estimated through a Bayesian approach using simulation data obtained from detailed dynamic analyses of a set of representative asymmetric offshore platform configurations. The proposed demand model provides accurate and unbiased estimates of the deformation demand on offshore jacket platforms. The developed probabilistic demand model is then used to assess the reliability of a typical offshore platform considering serviceability and ultimate performance levels. In addition, a sensitivity analysis is conducted to assess the effect of key parameters on the results of the analyses. The proposed demand model can be used to assess the reliability of different design options and for the reliability-based optimal design of offshore jacket platforms.

Fallon, Michael

2012-12-01T23:59:59.000Z

300

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

Science Conference Proceedings (OSTI)

The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

2009-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

302

The Sun. A typical star in the solar neighborhood?  

E-Print Network (OSTI)

The Sun is used as the fundamental standard in chemical abundance studies, thus it is important to know whether the solar abundance pattern is representative of the solar neighborhood. Albeit at low precision (0.05 - 0.10 dex) the Sun seems to be a typical solar-metallicity disk star, at high precision (0.01 dex) its abundance pattern seems abnormal when compared to solar twins. The Sun shows a deficiency of refractory elements that could be due to the formation of terrestrial planets. The formation of giant planets may also introduce a signature in the chemical composition of stars. We discuss both planet signatures and also the enhancement of neutron-capture elements in the solar twin 18 Sco.

Melendez, Jorge

2013-01-01T23:59:59.000Z

303

Determination of selected elements in SRM 1548a typical diet  

Science Conference Proceedings (OSTI)

Neutron activation analysis (NAA), including instrumental NAA (INAA) and radiochemical NAA, is one of the primary analytical techniques used for the certification of elemental content in biological standard reference materials (SRMs) at the National Institute of Standards and Technology (NIST). SRM 1548a, which is a freeze-dried mixture of typical diet composite based on foods consumed in the United States was analyzed for aluminum, calcium, chlorine, potassium, manganese, and sodium by INAA. This analysis is a part of an ongoing effort to improve the quality of the SRMs by understanding and minimizing all known sources of errors or interferences in NAA. To perform highly accurate INAA, the system was calibrated using multiple primary standards. Homogeneity was also measured for these six elements in 12 samples of SRM 1548a in 250-mg sample sizes. The control samples were used to internally evaluate and cross-check the NAA method.

Tandon, L. [North American Scientific, North Hollywood, CA (United States); Garrity, K.M.; Becker, D.A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1996-12-31T23:59:59.000Z

304

Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD  

DOE Green Energy (OSTI)

An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.

1997-09-01T23:59:59.000Z

305

Designing presentations for on-demand viewing  

Science Conference Proceedings (OSTI)

Increasingly often, presentations are given before a live audience, while simultaneously being viewed remotely and recorded for subsequent viewing on-demand over the Web. How should video presentations be designed for web access? How is video accessed ... Keywords: digital library, streaming media, video on-demand

Liwei He; Jonathan Grudin; Anoop Gupta

2000-12-01T23:59:59.000Z

306

A distributed approach to taming peak demand  

Science Conference Proceedings (OSTI)

A significant portion of all energy capacity is wasted in over-provisioning to meet peak demand. The current state-of-the-art in reducing peak demand requires central authorities to limit device usage directly, and are generally reactive. We apply techniques ...

Michael Sabolish; Ahmed Amer; Thomas M. Kroeger

2012-06-01T23:59:59.000Z

307

Residential sector: the demand for energy services  

Science Conference Proceedings (OSTI)

The purpose of this report is to project the demand for residential services, and, thereby, the demand for energy into the future. The service demands which best represent a complete breakdown of residential energy consumption is identified and estimates of the amount of energy, by fuel type, used to satisfy each service demand for an initial base year (1978) are detailed. These estimates are reported for both gross (or input) energy use and net or useful energy use, in the residential sector. The various factors which affect the consumption level for each type of energy and each identified service demand are discussed. These factors include number of households, appliance penetration, choice of fuel type, technical conversion efficiency of energy using devices, and relative energy efficiency of the building shell (extent of insulation, resistance to air infiltration, etc.). These factors are discussed relative to both the present and expected future values, for the purpose of projections. The importance of the housing stock to service demand estimation and projection and trends in housing in Illinois are discussed. How the housing stock is projected based on population and household projections is explained. The housing projections to the year 2000 are detailed. The projections of energy consumption by service demand and fuel type are contrasted with the various energy demand projections in Illinois Energy Consumption Trends: 1960 to 2000 and explains how and why the two approaches differ. (MCW)

Not Available

1981-01-01T23:59:59.000Z

308

Note: The Newsvendor Model with Endogenous Demand  

Science Conference Proceedings (OSTI)

This paper considers a firm's price and inventory policy when it faces uncertain demand that depends on both price and inventory level. The authors extend the classic newsvendor model by assuming that expected utility maximizing consumers choose between ... Keywords: Demand Uncertainty, Fill Rate Competition, Inventory, Newsvendor Model, Pricing, Service Levels, Service Rate Competition

James D. Dana; Nicholas C. Petruzzi

2001-11-01T23:59:59.000Z

309

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 1: Statewide Electricity forecast is the combined product of the hard work and expertise of numerous staff members in the Demand the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast. Miguel Garcia

310

Forecasting Electricity Demand by Time Series Models  

Science Conference Proceedings (OSTI)

Electricity demand is one of the most important variables required for estimating the amount of additional capacity required to ensure a sufficient supply of energy. Demand and technological losses forecasts can be used to control the generation and distribution of electricity more efficiently. The aim of this paper is to utilize time series model

E. Stoimenova; K. Prodanova; R. Prodanova

2007-01-01T23:59:59.000Z

311

OECD Crude Oil v Product Demand Seasonal Patterns  

Gasoline and Diesel Fuel Update (EIA)

6 Notes: The answer lies in separating crude oil demand from product demand. Crude oil demand should be a better indicator of pressures on crude oil price than product demand....

312

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network (OSTI)

concerns during system peak demand conditions, and failurerelative to national peak demand, was about 5.0% in 2006 [2]to a region’s summer peak demand (see Fig. 2). Demand

Cappers, Peter

2009-01-01T23:59:59.000Z

313

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST  

E-Print Network (OSTI)

the entire forecast period, primarily because both weather-adjusted peak and electricity consumption were forecast. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, conservation, California Solar Initiative. #12

314

Coordination of Energy Efficiency and Demand Response  

Science Conference Proceedings (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

315

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network (OSTI)

load and customer maximum demand are most commonly used as1) minimum and maximum amounts of demand reduction; (2)

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

316

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

residential and commercial electricity demand forecasts. The23 Electricity Demandand commercial electricity demand per census division from

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

317

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

318

World's 1993 oil flow slips; demand to move up in 1994  

Science Conference Proceedings (OSTI)

World crude oil production in 1993 was down slightly from the year before. Production averaged 59.752 million b/d, off 287,000 b/d from 1992, largely because of production declines in the Commonwealth of Independent States (C.I.S.) and US. Those declines were offset in part by increases among members of the Organization of Petroleum Exporting Countries as well as in regions such as the North Sea and other non-OPEC areas. International Energy Agency (IEA) figures show world demand for petroleum products fell 100,000 b/d in 1993 to average 67 million b/d for the year. This included a stock build estimated at 400,000 b/d. IEA expects world demand to move up this year. However, it is still doubtful whether OPEC production will have to expand to meet the higher level of consumption. That will depend on decisions about additions to stocks. The paper discusses OPEC production, OPEC quota, world liquids supply, world demand, and outlook for 1994.

Beck, R.J.

1994-03-14T23:59:59.000Z

319

Decline curve analysis of vapor-dominated reservoirs  

DOE Green Energy (OSTI)

Geothermal Program activities at the INEEL include a review of the transient and pseudosteady state behavior of production wells in vapor-dominated systems with a focus on The Geysers field. The complicated history of development, infill drilling, injection, and declining turbine inlet pressures makes this field an ideal study area to test new techniques. The production response of a well can be divided into two distinct periods: transient flow followed by pseudo-steady state (depletion). The transient period can be analyzed using analytic equations, while the pseudo-steady state period is analyzed using empirical relationships. Yet by reviewing both periods, a great deal of insight can be gained about the well and reservoir. An example is presented where this approach is used to determine the permeability thickness product, kh, injection and production interference, and estimate the empirical Arps decline parameter b. When the production data is reinitialized (as may be required by interference effects), the kh determined from the new transient period is repeatable. This information can be used for well diagnostics, quantification of injection benefits, and the empirical estimation of remaining steam reserves.

Faulder, D.D.

1997-05-01T23:59:59.000Z

320

The relationship between electricity demand and the business cycle, 1969--1985  

SciTech Connect

This analysis examines the relationship between changes in electricity demand and changes in economic growth and concludes that there is no strong, consistent lead or lag pattern between these two variables. Weak evidence exists that changes in electricity use, in some cases, may have occurred prior to changes in economic activity, although this result was not discovered in all business cycles examined. Other factors including inventory behavior and capacity utilization may have little observable effect in delaying or accelerating electricity use. Based on a lack of compelling evidence, therefore, changes in electricity demand most likely are concurrent with changes in economic activity. Total electricity demand was noticeably affected only during the most recent business cycle. The drop in electricity use during that cycle (September 1981 through December 1985) was attributed largely to a decline in industrial electricity demand, the consequence of a severe drop in output from major electricity-intensive industries. Industrial electricity sales continue to be depressed because these cyclical industries have not yet experienced the recovery seen in other areas of the economy. Whether or not these industries do recover could affect the future electricity/GNP ratio and the nature of changes in electricity demand during business cycles. 11 figs., 10 tabs.

1986-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FERC sees huge potential for demand response  

Science Conference Proceedings (OSTI)

The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

NONE

2010-04-15T23:59:59.000Z

322

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

323

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

typically full and a low, standby level). Asymmetric multi-stairwells, where a low-standby level of light is requiredand sloppy installation. “Standby” losses can reduce the

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

324

Sustainable development and comprehensive capital : The post-Soviet decline of Central Asia  

E-Print Network (OSTI)

The general post-Soviet decline of the states of Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) mirrors specific declines in the robustness of these states' stocks of financial, physical, ...

Sievers, Eric

2001-01-01T23:59:59.000Z

325

Mass Market Demand Response and Variable Generation Integration Issues: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response and Variable Generation Integration Issues: A Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Title Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Cappers, Peter, Andrew D. Mills, Charles A. Goldman, Ryan H. Wiser, and Joseph H. Eto Pagination 76 Date Published 10/2011 Publisher LBNL City Berkeley Keywords demand response, electricity markets and policy group, energy analysis and environmental impacts department, renewable generation integration, smart grid Abstract The penetration of renewable generation technology (e.g., wind, solar) is expected to dramatically increase in the United States during the coming years as many states are implementing policies to expand this sector through regulation and/or legislation. It is widely understood, though, that large scale deployment of certain renewable energy sources, namely wind and solar, poses system integration challenges because of its variable and often times unpredictable production characteristics (NERC, 2009). Strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this variability are currently employed by bulk power system operators, although a host of additional options are envisioned for the near future. Demand response (DR), when properly designed, could be a viable resource for managing many of the system balancing issues associated with integrating large-scale variable generation (VG) resources (NERC, 2009). However, demand-side options would need to compete against strategies already in use or contemplated for the future to integrate larger volumes of wind and solar generation resources. Proponents of smart grid (of which Advanced Metering Infrastructure or AMI is an integral component) assert that the technologies associated with this new investment can facilitate synergies and linkages between demand-side management and bulk power system needs. For example, smart grid proponents assert that system-wide implementation of advanced metering to mass market customers (i.e., residential and small commercial customers) as part of a smart grid deployment enables a significant increase in demand response capability.1 Specifically, the implementation of AMI allows electricity consumption information to be captured, stored and utilized at a highly granular level (e.g., 15-60 minute intervals in most cases) and provides an opportunity for utilities and public policymakers to more fully engage electricity customers in better managing their own usage through time-based rates and near-real time feedback to customers on their usage patterns while also potentially improving the management of the bulk power system. At present, development of time-based rates and demand response programs and the installation of variable generation resources are moving forward largely independent of each other in state and regional regulatory and policy forums and without much regard to the complementary nature of their operational characteristics.2 By 2020, the electric power sector is expected to add ~65 million advanced meters3 (which would reach ~47% of U.S. households) as part of smart grid and AMI4 deployments (IEE, 2010) and add ~40-80 GW of wind and solar capacity (EIA, 2010). Thus, in this scoping study, we focus on a key question posed by policymakers: what role can the smart grid (and its associated enabling technology) play over the next 5-10 years in helping to integrate greater penetration of variable generation resources by providing mass market customers with greater access to demand response opportunities? There is a well-established body of research that examines variable generation integration issues as well as demand response potential, but the nexus between the two has been somewhat neglected by the industry. The studies that have been conducted are informative concerning what could be accomplished with strong broad-based support for the expansion of demand response opportunities, but typically do not discuss the many barriers that stand in the way of reaching this potential. This study examines how demand side resources could be used to integrate wind and solar resources in the bulk power system, identifies barriers that currently limit the use of demand side strategies, and suggests several factors that should be considered in assessing alternative strategies that can be employed to integrate wind and solar resources in the bulk power system. It is difficult to properly gauge the role that DR could play in managing VG integration issues in the near future without acknowledging and understanding the entities and institutions that govern the interactions between variable generation and mass market customers (see Figure ES-1). Retail entities, like load-serving entities (LSE) and aggregators of retail customers (ARC), harness the demand response opportunities of mass market customers through tariffs (and DR programs) that are approved by state regulatory agencies or local governing entities (in the case of public power). The changes in electricity consumption induced by DR as well as the changes in electricity production due to the variable nature of wind and solar generation technologies is jointly managed by bulk power system operators. Bulk power system operators function under tariffs approved by the Federal Energy Regulatory Commission (FERC) and must operate their systems in accordance with rules set by regional reliability councils. These reliability rules are derived from enforceable standards that are set by the North American Electric Reliability Corporation (NERC) and approved by federal regulators. Thus, the role that DR can play in managing VG integration issues is contingent on what opportunities state and local regulators are willing to approve and how customers' response to the DR opportunities can be integrated into the bulk power system both electrically (due to reliability rules) and financially (due to market rules).

326

Demand Controlled Ventilation and Classroom Ventilation  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ï‚· The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs). ï‚· Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

327

China End-Use Energy Demand Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

328

Integrated Predictive Demand Response Controller Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

329

Software demonstration: Demand Response Quick Assessment Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. The Demand Response Quick Assessment Tools developed at LBNL will be demonstrated. The tool is built on EnergyPlus simulation and is able to evaluate and compare different DR strategies, such as global temperature reset, chiller cycling, supply air temperature reset, etc. A separate EnergyPlus plotting tool will also be demonstrated during this seminar. Users can use the tool to test EnergyPlus models, conduct parametric analysis, or compare multiple EnergyPlus simulation

330

NCEP_Demand_Response_Draft_111208.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Council on Electricity Policy: Electric Transmission Series for State Offi National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the

331

Solar in Demand | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

332

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

333

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

334

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

Regulatory Commission [FERC] (2008). Assessment of DemandRegulatory Commission [FERC] (2009). A National AssessmentEIS EMCS EMS EPA ESCO ESPC FERC GE HVAC ISO ISO-NE kW kWh MW

Goldman, Charles

2010-01-01T23:59:59.000Z

335

Demand response-enabled residential thermostat controls  

E-Print Network (OSTI)

from the utility. The electricity rates were generated basedat the different electricity rates and the user’s discomfortrates. Demand response measures have the effect of adding elasticity to the electricity

Chen, Xue; Jang, Jaehwi; Auslander, David; Peffer, Therese; Arens, Edward

2008-01-01T23:59:59.000Z

336

A residential energy demand system for Spain  

E-Print Network (OSTI)

Sharp price fluctuations and increasing environmental and distributional concerns, among other issues, have led to a renewed academic interest in energy demand. In this paper we estimate, for the first time in Spain, an ...

Labandeira Villot, Xavier

2005-01-01T23:59:59.000Z

337

Demand Response Enabled Appliance Development at GE  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Enabled Appliance Development at GE Speaker(s): David Najewicz Date: June 12, 2009 - 12:00pm Location: 90-3122 Dave Najewicz of GE Consumer and Appliances will...

338

Automated Demand Response for Critical Peak Pricing  

NLE Websites -- All DOE Office Websites (Extended Search)

Automated Demand Response for Critical Peak Pricing Speaker(s): Naoya Motegi Date: June 9, 2005 - 12:00pm Location: Bldg. 90 California utilities have been exploring the use of...

339

Wireless Demand Response Controls for HVAC  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless Demand Response Controls for HVAC Speaker(s): Clifford Federspiel Date: June 22, 2006 - 12:00pm Location: 90-3148 Seminar HostPoint of Contact: Richard Diamond Peng Xu We...

340

Geographically Based Hydrogen Demand & Infrastructure Analysis (Presentation)  

DOE Green Energy (OSTI)

Presentation given at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006, discusses potential future hydrogen demand and the infrastructure needed to support hydrogen vehicles.

Melendez, M.

2006-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Software demonstration: Demand Response Quick Assessment Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal...

342

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

343

Demand response-enabled residential thermostat controls.  

E-Print Network (OSTI)

from the utility. The electricity rates were generated basedat the different electricity rates and the user’s discomfortrates. Demand response measures have the effect of adding elasticity to the electricity

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

344

Essays on exchange rates and electricity demand  

E-Print Network (OSTI)

This thesis examines two important issues in economic development: exchange rates and electricity demand and addresses methodological issues of using time series and panel data analysis to investigate important policy ...

Li, Xiangming, 1966-

1999-01-01T23:59:59.000Z

345

EIA - Annual Energy Outlook 2009 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

demand for renewable fuels increasing the fastestincluding E85 and biodiesel fuels for light-duty vehicles, biomass for co-firing at coal-fired electric power plants, and...

346

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and Demand Response Duke Energy is using the name “Save-a-Energy Efficiency Division. Duke Energy describes all of itsPresident, and C.E.O. Duke Energy Kateri Callahan President

Goldman, Charles

2010-01-01T23:59:59.000Z

347

Better Buildings Neighborhood Program: Driving Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

even know they have. This section explains how you can use effective marketing to drive demand for energy upgrades in your community. Following the lead of many Better Buildings...

348

Residential Sector Demand Module 2000, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

1999-12-01T23:59:59.000Z

349

Residential Sector Demand Module 2004, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2004-02-01T23:59:59.000Z

350

Residential Sector Demand Module 2001, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2000-12-01T23:59:59.000Z

351

Residential Sector Demand Module 2002, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2001-12-01T23:59:59.000Z

352

Residential Sector Demand Module 2005, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2005-04-01T23:59:59.000Z

353

Residential Sector Demand Module 2003, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2003-01-01T23:59:59.000Z

354

Residential Sector Demand Module 2008, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2008-10-10T23:59:59.000Z

355

Residential Sector Demand Module 2006, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2006-03-01T23:59:59.000Z

356

Residential Sector Demand Module 2009, Model Documentation  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2009-05-01T23:59:59.000Z

357

Residential Sector Demand Module 1999, Model Documentation  

Reports and Publications (EIA)

This is the fifth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1999.

John H. Cymbalsky

1998-12-01T23:59:59.000Z

358

Residential Sector Demand Module 2007, Model Documentation  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

John H. Cymbalsky

2007-04-26T23:59:59.000Z

359

Proceedings: Demand-Side Management Incentive Regulation  

Science Conference Proceedings (OSTI)

These proceedings provide background information on proposed regulatory incentive mechanisms to encourage utilities to develop demand-side management programs. Attendees discussed and analyzed various proposals and techniques and developed lists of key attributes that incentive mechanisms should have.

None

1990-05-01T23:59:59.000Z

360

Micro economics for demand-side management  

E-Print Network (OSTI)

This paper aims to interpret Demand-Side Management (DSM) activity and to point out its problems, adopting microeconomics as an analytical tool. Two major findings follow. first, the cost-benefit analysis currently in use ...

Kibune, Hisao

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

function of real-time electricity prices (left) and windinflexible) demand and real-time prices. The case study inas a special case. The real-time price process is modeled as

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

362

Rapid increases in electricity demand challenge both ...  

U.S. Energy Information Administration (EIA)

... on April 1 was the steepest so far this year in SPP. The rate of increase in electricity demand peaked at 12.4% between 6 a.m. and 7 a.m. ...

363

Marketing & Driving Demand Collaborative - Social Media Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Marketing and Demand Creation (1.5 hr video) - EarthAid & Efficiency 2.0 Facebook Social Plug-ins YouTube Google Tools - Adwords & Web Optimizer *...

364

Climate policy implications for agricultural water demand  

SciTech Connect

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

365

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

366

Tri-State Demand Response Framework  

Science Conference Proceedings (OSTI)

This report provides the results of a demand response framework development project of Tri-State Generation and Transmission, a wholesale provider to a number of rural electric associations in the Rocky Mountain west. Tri-State has developed an assortment of planned demand response and energy shaping products and services designed to both shave peak and shift consumption to off-peak hours. The applications, networks, and devices that will be needed to support these needs will involve many ...

2013-03-28T23:59:59.000Z

367

On demand responsiveness in additive cost sharing  

E-Print Network (OSTI)

Abstract. We propose two new axioms of demand responsiveness for additive cost sharing with variable demands. Group Monotonicity requires that if a group of agents increase their demands, not all of them pay less. Solidarity says that if agent i demands more, j should not pay more if k pays less. Both axioms are compatible in the partial responsibility theory postulating Strong Ranking, i.e., the ranking of cost shares should never contradict that of demands. The combination of Strong Ranking, Solidarity and Monotonicity characterizes the quasi-proportional methods, under which cost shares are proportional to ‘rescaled ’ demands. The alternative full responsibility theory is based on Separability, ruling out cross-subsidization when costs are additively separable. Neither the Aumann-Shapley nor the Shapley-Shubik method is group monotonic. On the other hand, convex combinations of “nearby ” …xed-path methods are group-monotonic: the subsidy-free serial method is the main example. No separable method meets Solidarity, yet restricting the axiom to submodular (or supermodular) cost functions leads to a characterization of the …xed-‡ow methods, containing the Shapley-Shubik and serial methods. JEL Classi…cation numbers: C 71, D 63.

Hervé Moulin; Yves Sprumont

2005-01-01T23:59:59.000Z

368

Ethanol Demand in United States Gasoline Production  

SciTech Connect

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

369

Distillate Supply/Demand Balance Reflected in Spreads  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: The price spike that initiated the flood of distillate imports last winter can be easily seen in this chart. The distillate supply/demand balance influences the spread between spot distillate and spot crude oil prices. For example, when stocks are higher than normal, the spread will be lower than usual. This spread is the price incentive that encourages or discourages changes in supply. The January/February 2000 price spike was shorter than the one last winter, largely due to the timing. Since last winter's price spike occurred early in the season, it took some time before prices receded substantially. Currently, the distillate fuel refining spread (the difference between the spot heating oil price and the WTI price) is more "typical". But as was

370

Residential electricity demand: a suggested appliance stock equation  

Science Conference Proceedings (OSTI)

The author develops a simple appliance stock equation for estimating seasonal patterns of power demand elasticity. The equation relates an index of appliances (estimates of typical use) to marginal price per kWh, to income, to average price of alternative fuels, to climate (cooling degree days and heating degree days), to age of the household head, to family size, and to race. Price elasticity is -0.785 for the winter and 0.493 for the summer, with all estimates significant to 0.001. The appliance stock coefficient is 0.801 for the winter and 0.971 for the summer. The equation may be useful in studies that do not require elaborate disaggregation of appliance stock. 7 references, 2 tables.

Garbacz, C.

1984-04-01T23:59:59.000Z

371

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

372

Storing hydroelectricity to meet peak-hour demand  

Science Conference Proceedings (OSTI)

This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

Valenti, M.

1992-04-01T23:59:59.000Z

373

Role of Standard Demand Response Signals for Advanced Automated Aggregation  

Science Conference Proceedings (OSTI)

Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

Lawrence Berkeley National Laboratory; Kiliccote, Sila

2011-11-18T23:59:59.000Z

374

CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS  

SciTech Connect

Type IIn supernovae (SNe IIn) are rare events, constituting only a few percent of all core-collapse SNe, and the current sample of well-observed SNe IIn is small. Here, we study the four SNe IIn observed by the Caltech Core-Collapse Project (CCCP). The CCCP SN sample is unbiased to the extent that object selection was not influenced by target SN properties. Therefore, these events are representative of the observed population of SNe IIn. We find that a narrow P-Cygni profile in the hydrogen Balmer lines appears to be a ubiquitous feature of SNe IIn. Our light curves show a relatively long rise time (>20 days) followed by a slow decline stage (0.01-0.15 mag day{sup -1}), and a typical V-band peak magnitude of M{sub V} = -18.4 {+-} 1.0 mag. We measure the progenitor star wind velocities (600-1400 km s{sup -1}) for the SNe in our sample and derive pre-explosion mass-loss rates (0.026-0.12 M{sub Sun} yr{sup -1}). We compile similar data for SNe IIn from the literature and discuss our results in the context of this larger sample. Our results indicate that typical SNe IIn arise from progenitor stars that undergo luminous-blue-variable-like mass loss shortly before they explode.

Kiewe, Michael; Gal-Yam, Avishay; Arcavi, Iair [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Leonard, Douglas C.; Emilio Enriquez, J. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Bradley Cenko, S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J.; Soderberg, Alicia M., E-mail: avishay.gal-yam@weizmann.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-01-01T23:59:59.000Z

375

American passenger train in the motor age: archival and econometric analyses of explanations for the decline in California, 1910-1941  

SciTech Connect

By analyzing the welfare consequences of passenger train service decisions in California, this dissertation addresses the question of whether the auto's eclipse of the American passenger train was in the public interest. Its thesis is that institutions supplying service failed to fully exploit passenger rail technology's welfare potential. The thesis is examined by testing the validity of four major explanations scholars have developed for the decline of the American train. Explanations are evaluated against archival and econometric analysis of primary sources. These sources focus on railroad passenger service in California, although the econometric analysis of demand examines the East Coast, as well. The study only partially unholds the thesis. Consumer choice accounted for a larger component of the decline than implied in the thesis. Most pre-auto rail demand in California was associated with rural areas; that remaining in the 1930's was mostly between large cities located close to each other and to a lesser extent those far apart. There were few such markets in California. However, after 1933 consumers increasingly demanded improved trains between large cities, and California's railroads succeeded in building a new traffic base centered on the long-distance train.

Thompson, G.L.

1987-01-01T23:59:59.000Z

376

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

DemandDirect DemandDirect Jump to: navigation, search Name DemandDirect Place Woodbury, Connecticut Zip 6798 Sector Efficiency, Renewable Energy, Services Product DemandDirect provides demand response, energy efficiency, load management, and distributed generation services to end-use electricity customers in order to reduce electricity consumption, improve grid reliability, and promote renewable energy. Coordinates 44.440496°, -72.414991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.440496,"lon":-72.414991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

U.S. Coal Supply and Demand  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 Review 2008 Review 2007 Review 2006 Review 2005 Review 2004 Review 2003 Review 2002 Review 2001 Review 2000 Review 1999 Review Data for: 2010 Released: May 2011 Next Release Date: April 2012 Table 3. Electric Power Sector Net Generation, 2009-2010 (Million Kilowatthours) New England Coal 14,378 14,244 -0.9 Hydroelectric 7,759 6,861 -11.6 Natural Gas 48,007 54,680 13.9 Nuclear 36,231 38,361 5.9 Other (1) 9,186 9,063 -1.3 Total 115,559 123,210 6.6 Middle Atlantic Coal 121,873 129,935 6.6 Hydroelectric 28,793 26,463 -8.1 Natural Gas 89,808 104,341 16.2 Nuclear 155,140 152,469 -1.7

378

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

379

Production Will Meet Demand Increase This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Production must meet increases in demand this year. Last year, increased imports met most of the summer demand increase, and increases in stock draws met almost all of the remainder. Production did not increase much. But this year, inventories will not be available, and increased imports seem unlikely. Thus, increases in production will be needed to meet increased demand. Imports availability is uncertain this summer. Imports in 1999 were high, and with Phase II RFG product requirements, maintaining this level could be challenging since not all refineries exporting to the U.S. will be able to meet the new gasoline specifications. Stocks will also contribute little supply this summer. Last year's high gasoline stocks allowed for a stock draw that was 58 MB/D higher than

380

Wireless Demand Response Controls for HVAC Systems  

Science Conference Proceedings (OSTI)

The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

Federspiel, Clifford

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Centralized and Decentralized Control for Demand Response  

Science Conference Proceedings (OSTI)

Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

2011-04-29T23:59:59.000Z

382

Supply and demand of lube oils  

Science Conference Proceedings (OSTI)

Lube oil consumption in the world has reached about 40 million tonnes per year, of which 24 million tonnes is used outside the communist areas. There are large regional differences in annual consumption per head from one kilogramme (kg) in India to 35 kg in North America. A statistical analysis of historical data over twenty years in about ninety countries has lead to the conclusion that national income, measured as GDP per head, is the key determinant of total lube oil consumption per head. The functional relationship, however, is different in different countries. Starting from GDP projections until the year 2000, regional forecasts of lube oil demand have been made which show that the share of developing nations outside the communist area in world demand will grow. This will increase the regional imbalance between base oil capacity and demand.

Vlemmings, J.M.L.M.

1988-01-01T23:59:59.000Z

383

Demand Management Institute (DMI) | Open Energy Information  

Open Energy Info (EERE)

Demand Management Institute (DMI) Demand Management Institute (DMI) Jump to: navigation, search Name Demand Management Institute (DMI) Address 35 Walnut Street Place Wellesley, Massachusetts Zip 02481 Sector Buildings Product Provides analysis for buildings on reducing energy use Website http://www.dmiinc.com/ Coordinates 42.3256508°, -71.2530294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3256508,"lon":-71.2530294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

385

Demand Responsive Lighting: A Scoping Study  

SciTech Connect

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

386

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

387

Behavioral Aspects in Simulating the Future US Building Energy Demand  

E-Print Network (OSTI)

off- site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%off-site energy demand (2030) 20% decrease to parameter 20%

Stadler, Michael

2011-01-01T23:59:59.000Z

388

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

as 15-minute minimum and maximum demand values are provided.8. Hourly average and maximum demand savings of McKinstry on9. Hourly average and maximum demand savings of McKinstry on

Kiliccote, Sila

2010-01-01T23:59:59.000Z

389

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

if the customer’s maximum demand has exceeded 999 kilowattswhose meter indicates a maximum demand of 200 kW or greater2) the customer's maximum billing demand has exceeded 499

Ghatikar, Girish

2010-01-01T23:59:59.000Z

390

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

the average, minimum and maximum demand reduction for each Average, Minimum and Maximum Demand Reduction Based on 3/1016 Average, Minimum and Maximum Demand Reduction Based on

Dudley, June Han

2009-01-01T23:59:59.000Z

391

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

of the small commercial peak demand.  The majority of the less than 200 kW of peak demand, make up 20?25% of  peak the small commercial  peak demand.  A ten percent reduction 

Dudley, June Han

2009-01-01T23:59:59.000Z

392

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

serves to partially fill off-peak demand troughs. If passivehigher before or after the peak demand hour when hydro powerare highest during off-peak demand hours, and are low at

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

393

California Baseline Energy Demands to 2050 for Advanced Energy Pathways  

E-Print Network (OSTI)

by Sector Residential Peak Demand (MW) Commercial IndustrialTable 16. Non-coincident peak demand by sector. growth Avg.IEPR Projected non-coincident peak demand (MW) 3.1.2. Hourly

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

394

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network (OSTI)

power generators during peak demand periods. 13 Onsite powerit can be used during peak-demand periods. 15 Implementingtreatment loads from peak demand hours to off-peak hours is

Thompson, Lisa

2008-01-01T23:59:59.000Z

395

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

minimization Monthly peak demand management Daily time-of-Some tariff designs have peak demand charges that apply tothat may result in a peak demand that occurs in one month to

Piette, Mary Ann

2009-01-01T23:59:59.000Z

396

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

Non-vehicle demand load factor Natural gas price Carbon tax89). They increase with demand (and gross natural gas-firedelectricity demand and by changing natural gas price and CO

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

397

Univariate Modeling and Forecasting of Monthly Energy Demand Time Series  

E-Print Network (OSTI)

in this report. #12;i ABSTRACT These electricity demand forms and instructions ask load-serving entities and Instructions for Electricity Demand Forecasts. California Energy Commission, Electricity Supply Analysis.................................................................................................................................7 Form 1 Historic and Forecast Electricity Demand

Abdel-Aal, Radwan E.

398

2012 Portland General Electric. All rights reserved. Planning for Demand  

E-Print Network (OSTI)

2/13/2013 1 © 2012 Portland General Electric. All rights reserved. Planning for Demand Response their usage. Demand Response ­ PGE Current Status 10 Automated Demand R

399

Installation and Commissioning Automated Demand Response Systems  

Science Conference Proceedings (OSTI)

Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

2008-04-21T23:59:59.000Z

400

Patterns of crude demand: Future patterns of demand for crude oil as a func-  

E-Print Network (OSTI)

from the perspective of `peak oil', that is from the pers- pective of the supply of crude, and price#12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion is given on the problems within the value chain, with an explanation of the reasons why the price of oil

Langendoen, Koen

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Demand for Food for People in Need Remains High Throughout the Year |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand for Food for People in Need Remains High Throughout the Year Demand for Food for People in Need Remains High Throughout the Year Demand for Food for People in Need Remains High Throughout the Year December 24, 2013 - 12:00pm Addthis Pictured are donations the Office of Human Capital at EM headquarters provided to the campaign. Pictured are donations the Office of Human Capital at EM headquarters provided to the campaign. WASHINGTON, D.C. - EM and its field sites donated 53,630 pounds - or 27 tons - of non-perishable items to a food drive by federal workers to help feed families across the country in 2013. EM surpassed its goal to donate 50,000 pounds to the 2013 Feds Feed Families Campaign. In Ohio, EM's Portsmouth site donated to the Community Action Committee of Pike County Food Pantry, which typically feeds about 250 needy families

402

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network (OSTI)

Tomato processing is a major component of California's food industry. Tomato processing is extremely energy intensive, with the processing season coinciding with the local electrical utility peak period. Significant savings are possible in the electrical energy, peak demand, natural gas consumption, and water consumption of facilities. The electrical and natural gas energy usage and efficiency measures will be presented for a sample of California tomato plants. A typical end-use distribution of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation measures and the associated savings will be presented. It is shown that an estimated electrical energy savings of 12.5%, electrical demand reduction of 17.2%, natural gas savings of 6.0%, and a fresh water usage reduction of 15.6% are achievable on a facility-wide basis.

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

403

ENERGY DEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL  

E-Print Network (OSTI)

of Statistics d) Nairobi, Kenya. See also Estimates ofDEMAND AND CONSERVATION IN KENYA: INITIAL APPRAISAL LeeDemand and Conservation in Kenya: Initial Appraisal Lee

Schipper, Lee

2013-01-01T23:59:59.000Z

404

Demand-Responsive and Efficient Building Systems as a Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-Responsive and Efficient Building Systems as a Resource for Electricity Reliability Title Demand-Responsive and Efficient Building Systems as a Resource for Electricity...

405

U.S. Electric Utility Demand-Side Management 1999  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1999 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

406

Forecasting the Demand of Woodfuels in Ghana - The Process Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

conducted to cover various categories of households to determine their basic energy demand for cooking, which is used to make more reliable projections in the future demand of...

407

CO2 Monitoring for Demand Controlled Ventilation in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Title CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Publication Type Report Year...

408

Electricity demand as frequency controlled reserves, ENS (Smart...  

Open Energy Info (EERE)

Electricity demand as frequency controlled reserves, ENS (Smart Grid Project) Jump to: navigation, search Project Name Electricity demand as frequency controlled reserves, ENS...

409

Natural Gas Demand: New Domestic Uses and LNG Exports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Natural Gas Demand: New Domestic Uses and LNG Exports Natural Gas Demand Outlook

410

Findings from the 2004 Fully Automated Demand Response Tests...  

NLE Websites -- All DOE Office Websites (Extended Search)

the 2004 Fully Automated Demand Response Tests in Large Facilities Title Findings from the 2004 Fully Automated Demand Response Tests in Large Facilities Publication Type Report...

411

A Demand Response (DR) Event: Benefits, Strategies, Automation...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Demand Response (DR) Event: Benefits, Strategies, Automation and Future of DR Title A Demand Response (DR) Event: Benefits, Strategies, Automation and Future of DR Publication...

412

Implementation Proposal for the National Action Plan on Demand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation Proposal for the National Action Plan on Demand Response - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to...

413

Opportunities for Energy Efficiency and Demand Response in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement...

414

2008-2010 Research Summary: Analysis of Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

-2010 Research Summary: Analysis of Demand Response Opportunities in California Industry Title 2008-2010 Research Summary: Analysis of Demand Response Opportunities in California...

415

Assessing the Control Systems Capacity for Demand Response in...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type...

416

Chilled Water Storage System and Demand Response at the University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chilled Water Storage System and Demand Response at the University of California at Merced Title Chilled Water Storage System and Demand Response at the University of California at...

417

Demand Response Providing Ancillary Services A Comparison of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Providing Ancillary Services A Comparison of Opportunities and Challenges in the US Wholesale Markets Title Demand Response Providing Ancillary Services A...

418

Response to several FOIA requests - Renewable Energy. Demand...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. nepdg251500.pdf....

419

Unlocking the potential for efficiency and demand response through...  

NLE Websites -- All DOE Office Websites (Extended Search)

Unlocking the potential for efficiency and demand response through advanced metering Title Unlocking the potential for efficiency and demand response through advanced metering...

420

Hawaiian Electric Company Demand Response Roadmap Project Final...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaiian Electric Company Demand Response Roadmap Project Final Report Title Hawaiian Electric Company Demand Response Roadmap Project Final Report Publication Type Report LBNL...

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Field Demonstration of Automated Demand Response for Both Winter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest Title Field Demonstration of Automated Demand Response for...

422

Variability in electricity demand highlights potential roles for ...  

U.S. Energy Information Administration (EIA)

Demand-response programs and technologies that tend to reduce the variability of hourly electric demand and the resulting supply requirement would reduce the need ...

423

Fast Automated Demand Response to Enable the Integration of Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fast Automated Demand Response to Enable the Integration of Renewable Resources Title Fast Automated Demand Response to Enable the Integration of Renewable Resources Publication...

424

LEED Demand Response Credit: A Plan for Research towards Implementatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

LEED Demand Response Credit: A Plan for Research towards Implementation Title LEED Demand Response Credit: A Plan for Research towards Implementation Publication Type Conference...

425

Scenario Analysis of Peak Demand Savings for Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center,...

426

Demand Response National Trends: Implications for the West? ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demand Response National Trends: Implications for the West? Demand Response National Trends: Implications for the West? Committee on Regional Electric Power Cooperation. San...

427

FERC Presendation: Demand Response as Power System Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy...

428

Electric grid planners: demand response and energy efficiency to ...  

U.S. Energy Information Administration (EIA)

Source: Form EIA-411, Coordinated Bulk Power Demand and Supply Report Note: All data are reported for time of summer peak, rather than overall demand.

429

Draft Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Chapter 3: Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs...

430

Demand Response Program Design and Implementation Case Study...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delurey, Dan, and J. Schwartz Date Published 022013 Keywords demand response research, demand side resources: policy, electricity markets, electricity markets and policy group,...

431

Rapid increases in electricity demand challenge both generating ...  

U.S. Energy Information Administration (EIA)

Because supply and demand for electricity must balance in real-time, rapid changes in demand create operational challenges for the electric system and generating unit ...

432

Electricity demand changes in predictable patterns - Today in ...  

U.S. Energy Information Administration (EIA)

... winter months tend to be higher than demand levels during the fall and spring "shoulder" seasons when system demand for space conditioning (heating or cooling) ...

433

Energy Demands and Efficiency Strategies in Data Center Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demands and Efficiency Strategies in Data Center Buildings Title Energy Demands and Efficiency Strategies in Data Center Buildings Publication Type Thesis Year of...

434

A Demand Forecasting System for Clean-Fuel Vehicles  

E-Print Network (OSTI)

potential demand for electric cars. Journal of Econometrics,car by multi-vehicle households and the demand for electricelectric) vehicles, beginning with 2 percent of annual car

Brownstone, David; Bunch, David S.; Golob, Thomas F.

1994-01-01T23:59:59.000Z

435

Transportation Demand Management in Beijing - Mitigation of emissions...  

Open Energy Info (EERE)

the implementation of transport demand management measures. Appropriate Transport Demand Management (TDM) strategies and measures can affect travel behaviour and therefore reduce...

436

China-Transportation Demand Management in Beijing: Mitigation...  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing -...

437

The Road Ahead for Light Duty Vehicle Fuel Demand  

U.S. Energy Information Administration (EIA)

The Road Ahead for Light Duty Vehicle Fuel Demand Joanne Shore Energy Information Administration July 7, 2005 Refining Capacity Surplus Shrank As Demand Grew ...

438

Dynamic Pricing, Advanced Metering, and Demand Response in Electricity Markets  

E-Print Network (OSTI)

as Large Comm. Interval metering system with monthly dataDynamic Pricing, Advanced Metering and Demand Response inE Dynamic Pricing, Advanced Metering, and Demand Response in

Borenstein, Severin; Jaske, Michael; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

439

South Korea-ANL Distributed Energy Resources and Demand Side...  

Open Energy Info (EERE)

Korea-ANL Distributed Energy Resources and Demand Side Management Jump to: navigation, search Name Distributed Energy Resources and Demand Side Management in South Korea Agency...

440

Microgrid Dispatch for Macrogrid Peak-Demand Mitigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Dispatch for Macrogrid Peak-Demand Mitigation Title Microgrid Dispatch for Macrogrid Peak-Demand Mitigation Publication Type Conference Proceedings Refereed Designation Refereed...

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tape storage solutions: meeting growing data demands  

Science Conference Proceedings (OSTI)

The exponential data growth caused by content-rich applications and new data compliance regulations has led to an increased demand for tape storage due to tape's low cost per GB and long shelf-life. However, tape technology suffers from several disadvantages: ...

Xianbo Zhang / David H. Du

2006-01-01T23:59:59.000Z

442

Demand Response Programs Oregon Public Utility Commission  

E-Print Network (OSTI)

(at 97 deg. F) #12;Cool Keeper Unit Installation #12;Cool Keeper Test Shed Load Profile 3350 3400 3450 operating according to their 'Natural Duty Cycle' 93 o F Expected load profile w/o Cool Keeper intervention, Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currently

443

Japan's Residential Energy Demand Outlook to 2030  

E-Print Network (OSTI)

for Energy Efficiency and Renewable Energy, Planning, Analysis, and Evaluation section in the U.S. Department section in the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. #12;ppaappeerr ttoo bbeeLBNL-292E Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards

444

Occupancy based demand response HVAC control strategy  

Science Conference Proceedings (OSTI)

Heating, cooling and ventilation accounts for 30% energy usage and for 50% of the electricity usage in the United States. Currently, most modern buildings still condition rooms assuming maximum occupancy rather than actual usage. As a result, rooms are ... Keywords: HVAC, demand response, energy savings, occupancy, ventilation

Varick L. Erickson; Alberto E. Cerpa

2010-11-01T23:59:59.000Z

445

Demand responsive public transportation using wireless technologies  

Science Conference Proceedings (OSTI)

Air pollution has been the bane of society for which we still have not got a satisfying solution. The air pollution due to automobiles constitutes around 60--90% of the total air pollution in the urban area. To curtail this, the mass transportation, ... Keywords: Djiktra's algorithm, on-demand public transportation, routing algorithms, wireless client-server backbone

S. Prashanth; Sp Geetha; Ga Shanmugha Sundaram

2011-12-01T23:59:59.000Z

446

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

447

A Structural Model of Demand for Apprentices ?  

E-Print Network (OSTI)

It is a widely held opinion that apprenticeship training represents a net investment for training firms, and that therefore firms only train if they have the possibility to recoup these investments after the training period. A recent study using a new firm-level dataset for Switzerland showed, however, that for 60 percent of the firms, the apprenticeship training itself does not result in net cost. In this context it seems important to examine the question whether the potential net cost of training (during the training period) are a major determinant for the demand for apprentices. Different count data models, in particular hurdle models, are used to estimate the effect of net cost on the demand for apprentices. The results show that the net cost have a significant impact on the training decision but no significant influence on the demand for apprentices, once the firm has decided to train. For policy purposes, these results indicate that subsidies for firms that already train apprentices would not boost the demand for apprentices. JEL Classification: J24, C25

Samuel Mühlemann; Jürg Schweri; Rainer Winkelmann; Stefan C. Wolter

2005-01-01T23:59:59.000Z

448

BRYAN LOVELL Energy supply, demand and impact  

E-Print Network (OSTI)

BRYAN LOVELL Energy supply, demand and impact Now it is Britain's turn to think harder, says Brian both are true. Most predict that fossil fuels must remain a significant part of our energy supply, Britain has had a comfortable and profitable respite from anxieties about security of energy supply. Now

Cambridge, University of

449

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

Information Center

2010-05-11T23:59:59.000Z

450

Letters: Energy demand prediction using GMDH networks  

Science Conference Proceedings (OSTI)

The electric power industry is in transition as it moves towards a competitive and deregulated environment. In this emerging market, traditional electric utilities as well as energy traders, power pools and independent system operators (ISOs) need the ... Keywords: Artificial neural networks, Energy demand, Forecasting, Group method of data handling (GMDH) networks, Self-organizing networks

Dipti Srinivasan

2008-12-01T23:59:59.000Z

451

Modeling the residential demand for energy  

Science Conference Proceedings (OSTI)

Demand for energy is derived from the demand for services that appliances and energy together provide. This raises a number of serious econometric issues when estimating energy-demand functions: delineation of short-run and long-run household responses, specification of the price variable and in particular, the assumption that the model is recursive, or in other words, that the appliance choice equation and the energy consumption equation are uncorrelated. The dissertation utilizes a structural model of energy use whose theoretical underpinnings derive from the conditional logit model and an extension of that model to the joint-discrete/continuous case by Dubin and McFadden (1980). It uses the 1978 to 1979 National Interim Energy Comsumption Survey. Three appliance portfolio choices are analyzed; choice of water and space heating and central air-conditioning; choice of room air conditioners; and choice of clothes dryers, either as multinomial logit or binary probit choices. Results varied widely across the appliance choice considered; use of Hausman's test led to acceptance of the null hypothesis of orthogonality in some cases but not in others. Demand for electricity and natural gas tended to be price inelastic; however, estimated own-price effects differed considerably when disaggregated by appliance categories and across methods of estimation.

Kirby, S.N.

1983-01-01T23:59:59.000Z

452

Estimation of Demand Responses to Ramp Meters  

E-Print Network (OSTI)

Estimation of Demand Responses to Ramp Meters by Lei Zhang and David Levinson For the 3rd ICTTS different types of trips respond to ramp meters (work vs. non-work; short vs. long) A bill was passed to shut off ramp meters to study effectiveness in the Twin Cities in Spring 2000 The shut-off experiment

Levinson, David M.

453

U.S. energy intensity projected to continue its steady decline ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil ... Energy use in homes, ... the role of energy-intensive industries in the United States declined with continuing structural changes ...

454

Decline curve analysis in unconventional resource plays using logistic growth models.  

E-Print Network (OSTI)

??Current models used to forecast production in unconventional oil and gas formations are often not producing valid results. When traditional decline curve analysis models are… (more)

Clark, Aaron James

2011-01-01T23:59:59.000Z

455

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

456

Price-responsive demand management for a smart grid world  

Science Conference Proceedings (OSTI)

Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

Chao, Hung-po

2010-01-15T23:59:59.000Z

457

CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST  

E-Print Network (OSTI)

Policy Report, over the entire forecast period, primarily because both weather-adjusted peak and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather normalization, annual peak demand, natural gas demand, self-generation, California Solar Initiative. #12;ii #12

458

Impact of improved building thermal efficiency on residential energy demand  

SciTech Connect

The impact of improved building shell thermal efficiency on residential energy demand is explored in a theoretical framework. The important economic literature on estimating the price elasticity of residential energy demand is reviewed. The specification of the residential energy demand model is presented. The data used are described. The empirical estimation of the residential energy demand model is described. (MHR)

Adams, R.C.; Rockwood, A.D.

1983-04-01T23:59:59.000Z

459

Managing Energy Demand With Standards and Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Energy Demand With Standards and Information Managing Energy Demand With Standards and Information Speaker(s): Sebastien Houde Date: September 13, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Christopher Payne The goal of this talk is to discuss two interrelated research projects that aim to assess the welfare effects of energy policies that rely on standards and information. The first project focuses on the Energy Star certification program. Using unique micro-data on the US refrigerator market, I first show that consumers respond to certification in different ways. Some consumers appear to rely heavily on Energy Star and pay little attention to electricity costs, others are the reverse, and still others appear to be insensitive to both electricity costs and Energy Star. I then develop a

460

Is Demand-Side Management Economically Justified?  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Is Demand-Side Management Economically Justified? With billions of dollars being spent on demand-side management programs in the U.S. every year, the rationale for and performance of these programs are coming under increasing scrutiny. Three projects in the Energy Analysis Program are making significant contributions to the DSM debate. *Total Resource Cost Test Ratio = ratio of utility avoided costs (i.e., benefits) divided by total cost of program (i.e., Administrative Cost + Incentive Cost + Consumer Cost) In May, Joe Eto, Ed Vine, Leslie Shown, Chris Payne, and I released the first in a series of reports we authored from the Database on Energy Efficiency Programs (DEEP) project. The objective of DEEP is to document the measured cost and performance of utility-sponsored energy-efficiency

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Home Network Technologies and Automating Demand Response  

Science Conference Proceedings (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

462

System Demand-Side Management: Regional results  

DOE Green Energy (OSTI)

To improve the Bonneville Power Administration's (Bonneville's) ability to analyze the value and impacts of demand-side programs, Pacific Northwest Laboratory (PNL) developed and implemented the System Demand-Side Management (SDSM) model, a microcomputer-based model of the Pacific Northwest Public Power system. This document outlines the development and application of the SDSM model, which is an hourly model. Hourly analysis makes it possible to examine the change in marginal revenues and marginal costs that accrue from the movement of energy consumption from daytime to nighttime. It also allows a more insightful analysis of programs such as water heater control in the context of hydroelectric-based generation system. 7 refs., 10 figs., 10 tabs.

Englin, J.E.; Sands, R.D.; De Steese, J.G.; Marsh, S.J.

1990-05-01T23:59:59.000Z

463

Increased demand spurs gas compression industry  

Science Conference Proceedings (OSTI)

The increasing demand for natural gas in the last five years has led to dynamic development in the gas compression industry as producers and transmission companies expand operations to supply gas. To handle the increase, for example, transmission companies have been steadily adding new lines to the pipeline infrastructure--3,437 miles in 1995 and an estimated 4,088 miles in 1997. New compression for pipelines has also increased from 212,637 horsepower added in 1989 to an estimated 311,685 horsepower to be added in 1997. Four key trends which influence the gas compression business have developed since the mid 1980s: first, a steady resurgence of demand for natural gas each year; second, a phenomenal number of mergers and buyouts among gas compression companies; third, an alarming drop in average daily gas production per well since 1972; and fourth, high drilling activity in the Gulf of Mexico.

Honea, M. [Weatherford Enterra, Inc., Houston, TX (United States)

1997-10-01T23:59:59.000Z

464

Pesticides and amphibian declines in the Sierra Nevada Mountains, California  

E-Print Network (OSTI)

Pacific chorus frog (Pseudacris regilla) hatchlings were translocated and placed in cages in sites (~2,200 m elevation) located in Lassen, Yosemite, and Sequoia National Parks. DDE was found in 97% of Yosemite National Park samples, 84% in Sequoia National Park samples, and 15% of Lassen Volcanic National Park samples in 2001 and 2002. Total endosulfans were detected in 3% of Sequoia samples, 9% of Lassen samples and 24% of Yosemite samples. Both pesticides were detected in tadpoles and metamorphs raised at the three parks regardless of origin. Because the tadpoles were translocated post hatching, this finding indicates that the pesticides, particularly DDE, were accumulated at the site, instead of through deposition in the egg mass. Liver cells from 108 newly metamorphosed frogs were examined with flow cytometry (FCM) techniques for evaluation of chromosome breakage as measured by the half-peak coefficient of variation (HPCV) of the G1 peak. Regardless of origin, experimental groups raised at Lassen, the reference site, had significantly less chromosomal breakage (p=0.04) than metamorphs raised at the other two parks. This is the first documented evidence of DNA damage in juvenile frogs in the Sierra Nevada Mountains. Cholinesterase (ChE) was measured in tadpoles collected at 28 days and in juvenile frogs collected upon metamorphosis. In 2001, ChE activity was significantly higher in animals raised at Lassen (reference site), than at the other two parks, indicating less exposure to cholinesterase-inhibiting pesticides. This trend was not observed in 2002, although Sequoia ChE values were consistently lower than the other two parks. Temperatures were significantly different among the three parks for both years (plevels. Survivorship to metamorphosis, days to metamorphosis, snout-vent lengths (SVL), and malformations were evaluated. Animals raised in Sequoia had shorter SVLs, took longer to metamorphose, and had lower survivorship to metamorphosis than in the other two parks (p<0.0001). Effects noted in P. regilla may be magnified in long lived ranid species. These findings may be important in evaluating the overall impact of aerially transported pesticides on declining frog populations in the Sierra Nevada Mountains.

Cowman, Deborah Fay

2005-12-01T23:59:59.000Z

465

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

466

Modular Communication Interface Specification for Demand Response  

Science Conference Proceedings (OSTI)

This report contains a technical specification for a modular interface for residential appliances that enables them to be compatible with any utility communication system through the use of customer-installable plug-in communication modules. This specification is the result of collaboration between utilities, appliance makers, communication system providers, demand response service providers, and trade organizations. The specification details the mechanical, electrical, and logical characteristics of a s...

2011-08-31T23:59:59.000Z

467

Residential Sector Demand Module 1998, Model Documentation  

Reports and Publications (EIA)

This is the fourth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1998. Since last year, severalnew end-use services were added to the module, including: Clothes washers,dishwashers, furnace fans, color televisions, and personal computers. Also, as with allNEMS modules, the forecast horizon has been extended to the year 2020.

John H. Cymbalsky

1998-01-01T23:59:59.000Z

468

Proceedings: Demand-side management incentive regulation  

SciTech Connect

These proceedings document a workshop on Demand-Side Management Incentive Regulation, which was held in Denver, Colorado on August 16--17, 1989. The workshop provided a forum for discussion of current DSM programs and trends and their implications; fundamentals and rationale for incentive mechanisms; short- and long-term issues from the utility perspective; and approaches for enhancing the attractiveness of DSM incentive mechanisms. Attendees at this workshop included DSM managers, planners, and analysts.

Not Available

1990-05-01T23:59:59.000Z

469

Only tough choices in Meeting growing demand  

SciTech Connect

U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

NONE

2007-12-15T23:59:59.000Z

470

The Impact of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand  

E-Print Network (OSTI)

Electric utilities have had a number of air conditioner rebate and maintenance programs for many years. The purpose of these programs was to improve the efficiency of the stock of air conditioning equipment and provide better demand-side management. This paper examines the effect of refrigerant charging (proper servicing of the equipment), system sizing, and efficiency on the steady-state, coincident peak utility demand of a residential central air conditioning system. The study is based on the results of laboratory tests of a three-ton, capillary tube expansion, split-system air conditioner, system capacity and efficiency data available from manufacturer's literature, and assumptions about relative sizing of the equipment to cooling load on a residence. A qualitative discussion is provided concerning the possible impacts of transient operation and total energy use on utility program decisions. The analysis indicates that proper sizing of the unit is the largest factor affecting energy demand of the three factors (sizing, charging, and efficiency) studied in this paper. For typical oversizing of units to cooling loads in houses, both overcharging and undercharging showed significant negative impact on peak demand. The impacts of SEER changes in utility peak demand were found to be virtually independent of oversizing. For properly sized units, there was a small peak benefit to higher efficiency air conditioners.

Neal, L.; O'Neal, D. L.

1992-05-01T23:59:59.000Z

471

AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION  

SciTech Connect

We present the results of a search for the most luminous star-forming galaxies at redshifts z Almost-Equal-To 6 based on Canada-France-Hawaii Telescope Legacy Survey data. We identify a sample of 40 Lyman break galaxies (LBGs) brighter than magnitude z' = 25.3 across an area of almost 4 deg{sup 2}. Sensitive spectroscopic observations of seven galaxies provide redshifts for four, of which only two have moderate to strong Ly{alpha} emission lines. All four have clear continuum breaks in their spectra. Approximately half of the LBGs are spatially resolved in 0.7 arcsec seeing images, indicating larger sizes than lower luminosity galaxies discovered with the Hubble Space Telescope, possibly due to ongoing mergers. The stacked optical and infrared photometry is consistent with a galaxy model with stellar mass {approx}10{sup 10} M{sub Sun }. There is strong evidence for substantial dust reddening with a best-fit A{sub V} = 0.75 and A{sub V} > 0.48 at 2{sigma} confidence, in contrast to the typical dust-free galaxies of lower luminosity at this epoch. The spatial extent and spectral energy distribution suggest that the most luminous z Almost-Equal-To 6 galaxies are undergoing merger-induced starbursts. The luminosity function of z = 5.9 star-forming galaxies is derived. This agrees well with previous work and shows strong evidence for an exponential decline at the bright end, indicating that the feedback processes that govern the shape of the bright end are occurring effectively at this epoch.

Willott, Chris J. [Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Rd, Victoria, BC V9E 2E7 (Canada); McLure, Ross J.; Bruce, Victoria A. [SUPA Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Hibon, Pascale [Gemini Observatory, Gemini South, AURA/Chile, P.O. Box 26732, Tucson, AZ 85726 (United States); Bielby, Richard [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); McCracken, Henry J. [Institut d'Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Kneib, Jean-Paul; Ilbert, Olivier [Laboratoire d'Astrophysique de Marseille, Universite Aix-Marseille, 38 Rue Frederic Joliot-Curie, F-13388 Marseille (France); Bonfield, David G.; Jarvis, Matt J., E-mail: chris.willott@nrc.ca [Centre for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom)

2013-01-01T23:59:59.000Z

472

Demand management : a cross-industry analysis of supply-demand planning  

E-Print Network (OSTI)

Globalization increases product variety and shortens product life cycles. These lead to an increase in demand uncertainty and variability. Outsourcing to low-cost countries increases supply lead-time and supply uncertainty ...

Tan, Peng Kuan

2006-01-01T23:59:59.000Z

473

Top-k typicality queries and efficient query answering methods on large databases  

Science Conference Proceedings (OSTI)

Finding typical instances is an effective approach to understand and analyze large data sets. In this paper, we apply the idea of typicality analysis from psychology and cognitive science to database query answering, and study the novel problem of answering ... Keywords: Efficient query answering, Top-k query, Typicality analysis

Ming Hua; Jian Pei; Ada W. Fu; Xuemin Lin; Ho-Fung Leung

2009-06-01T23:59:59.000Z

474

Chinese Oil Demand: Steep Incline Ahead  

U.S. Energy Information Administration (EIA) Indexed Site

Chinese Oil Demand: Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million Barrels/Day China South Korea Japan India IEA China Oil Forecast 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 16.3 mbd 12.7 mbd IEA China Oil Forecasts 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 WEO 2006 WEO 2004 WEO 2002 Vehicle Sales in China 0 2 4 6 8 10 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Registrations in China 0 10 20 30 40 50 1990 1995 2000 2005 2010 Million Vehicles/Year Vehicle Density vs GDP per Capita 0 20 40 60 80 100 120 140 160 180 200 0 4,000 8,000 12,000 16,000 GDP per capita, 2005$ PPP Vehicles per thousand people Taiwan South Korea China Vehicle Density vs GDP per Capita

475

Barrier Immune Radio Communications for Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrier Immune Radio Communications for Demand Response Barrier Immune Radio Communications for Demand Response Title Barrier Immune Radio Communications for Demand Response Publication Type Report LBNL Report Number LBNL-2294e Year of Publication 2009 Authors Rubinstein, Francis M., Girish Ghatikar, Jessica Granderson, Paul Haugen, Carlos Romero, and David S. Watson Keywords technologies Abstract Various wireless technologies were field-tested in a six-story laboratory building to identify wireless technologies that can scale for future DR applications through very low node density power consumption, and unit cost. Data analysis included analysis of the signal-to-noise ratio (SNR), packet loss, and link quality at varying power levels and node densities. The narrowband technologies performed well, penetrating the floors of the building with little loss and exhibiting better range than the wideband technology. 900 MHz provided full coverage at 1 watt and substantially complete coverage at 500 mW at the test site. 900 MHz was able to provide full coverage at 100 mW with only one additional relay transmitter, and was the highest-performing technology in the study. 2.4 GHz could not provide full coverage with only a single transmitter at the highest power level tested (63 mW). However, substantially complete coverage was provided at 2.4 GHz at 63 mW with the addition of one repeater node.

476

Projecting market demand for residential heat pumps  

SciTech Connect

Primarily because of technological improvements and sharp increases in energy prices after the 1970s energy crises, the sale of residential electric heat pumps rose ninefold from 1970 to 1983. This report describes current and future market demand for heat pumps used for space heating and cooling. A three-step approach was followed. In the first step, the historical growth of residential electric heat pumps was analyzed, and factors that may have affected market growth were examined. Also examined were installation trends of heat pumps in new single-family and multifamily homes. A market segmentation analysis was used to estimate market size by categories. In the second step, several methods for forecasting future market demand were reviewed and evaluated to select the most suitable one for this study. The discrete-choice approach was chosen. In the third step, a market penetration model based on selected discrete-choice methods was developed to project heat pump demand in key market segments such as home type (single-family or multifamily), new or existing construction, and race-ethnic origin of household (black, Hispanic, or white).

Teotia, A.P.S.; Raju, P.S.; Karvelas, D.; Anderson, J.

1987-04-01T23:59:59.000Z

477

Analysis of Distribution Level Residential Demand Response  

SciTech Connect

Control of end use loads has existed in the form of direct load control for decades. Direct load control systems allow a utility to interrupt power to a medium to large size commercial or industrial customer a set number of times a year. With the current proliferation of computing resources and communications systems the ability to extend the direct load control systems now exists. Demand response systems now have the ability to not only engage commercial and industrial customers, but also the individual residential customers. Additionally, the ability exists to have automated control systems which operate on a continual basis instead of the traditional load control systems which could only be operated a set number of times a year. These emerging demand response systems have the capability to engage a larger portion of the end use load and do so in a more controlled manner. This paper will examine the impact that demand response systems have on the operation of an electric power distribution system.

Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

2009-03-23T23:59:59.000Z

478

Demand or Request: Will Load Behave?  

Science Conference Proceedings (OSTI)

Power planning engineers are trained to design an electric system that satisfies predicted electrical demand under stringent conditions of availability and power quality. Like responsible custodians, we plan for the provision of electrical sustenance and shelter to those in whose care regulators have given us the responsibility to serve. Though most customers accept this nurturing gladly, a growing number are concerned with the economic costs and environmental impacts of service at a time when technology (particularly distributed generation, storage, automation, and information networks) offers alternatives for localized control and competitive service. As customers’ and their systems mature, a new relationship with the electricity provider is emerging. Demand response is perhaps the first unsteady step where the customer participates as a partner in system operations. This paper explores issues system planners need to consider as demand response matures to significant levels beyond direct load control and toward a situation where service is requested and bargains are reached with the electricity provider based on desired load behavior. On one hand, predicting load growth and behavior appears more daunting than ever. On the other, for the first time load becomes a new resource whose behavior can be influenced during system operations to balance system conditions.

Widergren, Steven E.

2009-07-30T23:59:59.000Z

479

Kyoto - End-Use Energy Demand (Residential & Commercial)  

U.S. Energy Information Administration (EIA)

... the convenience of natural gas heating and the decline in real oil and gas prices over the past decade have led many ... (compact fluorescent ...

480

Vehicle Technologies Office: Fact #506: February 18, 2008 Declining Rate of  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 18, 6: February 18, 2008 Declining Rate of Highway Fatalities and Injuries is Good News for Safety and Congestion Mitigation to someone by E-mail Share Vehicle Technologies Office: Fact #506: February 18, 2008 Declining Rate of Highway Fatalities and Injuries is Good News for Safety and Congestion Mitigation on Facebook Tweet about Vehicle Technologies Office: Fact #506: February 18, 2008 Declining Rate of Highway Fatalities and Injuries is Good News for Safety and Congestion Mitigation on Twitter Bookmark Vehicle Technologies Office: Fact #506: February 18, 2008 Declining Rate of Highway Fatalities and Injuries is Good News for Safety and Congestion Mitigation on Google Bookmark Vehicle Technologies Office: Fact #506: February 18, 2008 Declining Rate of Highway Fatalities and Injuries is Good News for Safety

Note: This page contains sample records for the topic "demand typically declines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty  

E-Print Network (OSTI)

follows: • EDemand t : electricity demand during day t (incost of reducing electricity demand (in $/MWh e ) • HRDCost:maximum fraction of electricity demand to be met by demand

Siddiqui, Afzal

2010-01-01T23:59:59.000Z

482

What China Can Learn from International Experiences in Developing a Demand Response Program  

E-Print Network (OSTI)

2012. Addressing Electricity Demand through Demand Response:has been driving up the electricity demand while widespreadexperiences in addressing electricity demand This section is

Shen, Bo

2013-01-01T23:59:59.000Z

483

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast  

E-Print Network (OSTI)

Sixth Northwest Conservation and Electric Power Plan Appendix C: Demand Forecast Energy Demand................................................................................................................................. 1 Demand Forecast Methodology.................................................................................................. 3 New Demand Forecasting Model for the Sixth Plan

484

Building Energy Software Tools Directory: Demand Response Quick Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool Demand Response Quick Assessment Tool Demand response quick assessment tool image The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. This assessment tool will predict the energy and demand savings, the economic savings, and the thermal comfort impact for various demand responsive strategies. Users of the tool will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tool will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points

485

LNG demand, shipping will expand through 2010  

Science Conference Proceedings (OSTI)

The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

True, W.R.

1998-02-09T23:59:59.000Z

486

Residual fuel consumption in the U.S. continues to decline - Today ...  

U.S. Energy Information Administration (EIA)

Crude oil , gasoline, heating ... in the late 1970s, demand for residual fuel oil in the United ... Changes on both the residual fuel supply and demand side of the ...

487

Barrier Immune Radio Communications for Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

94E 94E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J. Granderson, D. Watson Lawrence Berkeley National Laboratory P. Haugen, C. Romero Lawrence Livermore National Laboratory February 2009 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

488

Demand Controlled Filtration in an Industrial Cleanroom  

SciTech Connect

In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

2007-09-01T23:59:59.000Z

489

Demand-Side Response from Industrial Loads  

Science Conference Proceedings (OSTI)

Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

2013-01-01T23:59:59.000Z

490

Residential Sector Demand Module 1997, Model Documentation  

Reports and Publications (EIA)

This is the third edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System. It reflects changes made to the moduleover the past year for the Annual Energy Outlook 1997. Since last year, a subroutinewas added to the model which allows technology and fuel switching when space heaters,heat pump air conditioners, water heaters, stoves, and clothes dryers are retired in bothpre-1994 and post-1993 single-family homes. Also, a time-dependant function forcomputing the installed capital cost of equipment in new construction and the retail costof replacement equipment in existing housing was added.

John H. Cymbalsky

1997-01-01T23:59:59.000Z

491

Demand Shifting with Thermal Mass in Large Commercial Buildings in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Shifting with Thermal Mass in Large Commercial Buildings in a Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Title Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Publication Type Report LBNL Report Number LBNL-3898e Year of Publication 2009 Authors Xu, Peng, Rongxin Yin, Carrie Brown, and DongEun Kim Date Published June 2009 Publisher CEC/LBNL Keywords demand response, demand shifting (pre-cooling), DRQAT, hot climates, market sectors, office buildings, pre-cooling, technologies, testbed tools and guides, thermal mass Abstract The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones.This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates - one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

492

Financial Market Risk and U.S. Money Demand  

E-Print Network (OSTI)

This paper empirically examines U.S. broad money demand, emphasizing the role of financial market risk. Broad money demand displays long-run stability after controlling for financial market factors. We show that money demand rises with the liquidity risk of stock markets or the credit risk of corporate bond markets. The financial risk model for money demand surpasses the traditional model in explaining the persistent fluctuations observed in broad money demand in the last 15 years. Also, the models estimated in an error-correction specification suggest that financial market risk affects substantially the short-term fluctuations of broad money demand since the early 1990s.

Woon Gyu Choi; David Cook

2008-01-01T23:59:59.000Z

493

Demand for Wildlife Hunting in the Southeastern United States  

E-Print Network (OSTI)

concern of decline in hunting license sales (Anderson et al 1985; Sun et al. 2005) 20% decline in number 15500 16000 16500 1980 1990 2000 2001 2002 2005 Year Licenses('000) Fig: Certified hunting license sales in USA (US Fish & Wildlife Services) #12;2 Benefits from Hunting Revenue License sales Species management

Gray, Matthew

494

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 ACTUAL FORECAST National Action Plan on Demand Response the feDeRal eneRgy RegulatoRy commission staff 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 12 6 3 9 National Action Plan on Demand Response THE FEDERAL ENERGY REGULATORY COMMISSION STAFF June 17, 2010 Docket No. AD09-10 Prepared with the support of The Brattle Group * GMMB * Customer Performance Group Definitive Insights * Eastern Research Group The opinions and views expressed in this staff report do not necessarily represent those of the Federal Energy Regulatory Commission, its Chairman, or individual Commissioners, and are not binding on the Commission.

495

Growing demand for gas spawns pipeline projects  

Science Conference Proceedings (OSTI)

This paper reports that burgeoning demand for gas is fueling pipeline construction in Eastern and Western hemispheres. In the East, the North Sea is the focal point for activity. And in the West, the U.S. gas market is the power behind construction. As predictions of U.S. gas demand increase, Canadian pipeliners adjust expansion plans to be ready to capture greater shares of markets. Canada's TransCanada Pipelines Ltd. is racing to step up its share of the U.S. market. TransCanada's Western Gas Marketing Ltd. sold 242.3 bcf of gas in the 3 months ended last June 30, a 9.8% increase from last year. TransCanada reported lower volumes sold into Canadian markets, while exports into the U.S. continued to rise. Gas Research Institute (GRI) projects Canadian gas exports to the U.S. by 2000 will reach 2 tcf/year and LNG exports 800 bcf/year. U.S. gas supplies could increase to 23.9 tcf/year by 2010, mostly from Lower 48 production. GRI says supplies from Canada will make up the balance. In the past 2 years, TransCanada has spent about $1 billion expanding its interprovincial main line system.

Not Available

1991-09-09T23:59:59.000Z

496

A study of the effects of well and fracture design in a typical Marcellus shale well.  

E-Print Network (OSTI)

??The problem with typical Marcellus shale wells is the lack of information that has beenaccumulated and the amount of information that is commercially available to… (more)

Schweitzer, Ross T.

2009-01-01T23:59:59.000Z

497

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network (OSTI)

comes to demand response is FERC is own worst enemy? Tech.9.1-2 (1986), pp. 5–18. [46] FERC. A national assessment of09-demand-response.pdf. [47] FERC. National action plan on

Mathieu, Johanna L.

2013-01-01T23:59:59.000Z

498

Energy Demands and Efficiency Strategies in Data Center Buildings  

E-Print Network (OSTI)

DX Cooling Total Annual Energy Usage Peak Electric DemandDX Cooling Total Annual Energy Usage Scenario Supply/ ReturnDX Cooling Total Annual Energy Usage Peak Electric Demand

Shehabi, Arman

2010-01-01T23:59:59.000Z

499

EIA forecasts increased oil demand, need for additional supply ...  

U.S. Energy Information Administration (EIA)

World oil demand is forecast to increase by 1.7 million barrels per day (bbl/d) ... Cooling demand in the Middle East is expected to rise to record levels this summer.

500

Chapter 3: Demand-Side Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

spent 14.7 billion on DSM programs between 1989 and 1999, an average of 1.3 billion per year. Chapter 3: Demand-Side Resources More Documents & Publications Chapter 3 Demand-Side...