Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Demand response enabling technology development  

E-Print Network [OSTI]

behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

2

Demand response enabling technology development  

E-Print Network [OSTI]

Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

2006-01-01T23:59:59.000Z

3

Building Technologies Office: Integrated Predictive Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

4

Energy technologies and their impact on demand  

SciTech Connect (OSTI)

Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

Drucker, H.

1995-06-01T23:59:59.000Z

5

BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES  

E-Print Network [OSTI]

............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSsLBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey

6

Building Technologies Office: Commercial Reference Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

7

Home Network Technologies and Automating Demand Response  

E-Print Network [OSTI]

and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

McParland, Charles

2010-01-01T23:59:59.000Z

8

NETL: Oil & Natural Gas Technologies Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf Solicitations Project Summaries Publications News Releases Software/Databases CDs/DVDs EOR Illustrations Welcome to the NETL Oil & Natural Gas Technologies Reference Shelf. Recently released and in-demand reference materials are available directly from this page using the links below. Online Database of Oil and Natural Gas Research Results Now Available The Knowledge Management Database (KMD) provides easy access to the results of nearly four decades of research supported by the Office of Fossil EnergyÂ’s Oil and Natural Gas Program. The database portal provides access to content from dozens of CDs and DVDs related to oil and natural gas research that FE's National Energy Technology Laboratory has published over the years. It

9

The Role of Enabling Technologies in Demand Response  

SciTech Connect (OSTI)

The report provides a study of the technologies that are crucial to the success of demand response programs. It takes a look at the historical development of demand response programs and analyzes how new technology is needed to enable demand response to make the transition from a small scale pilot operation to a mass market means of improving grid reliability. Additionally, the report discusses the key technologies needed to enable a large scale demand response effort and evaluates current efforts to develop and integrate these technologies. Finally, the report provides profiles of leading developers of these key technologies.

NONE

2007-09-15T23:59:59.000Z

10

Home Network Technologies and Automating Demand Response  

SciTech Connect (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

11

Rates and technologies for mass-market demand response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rates and technologies for mass-market demand response Rates and technologies for mass-market demand response Title Rates and technologies for mass-market demand response Publication Type Conference Paper LBNL Report Number LBNL-50626 Year of Publication 2002 Authors Herter, Karen, Roger Levy, John Wilson, and Arthur H. Rosenfeld Conference Name 2002 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response, demand response and distributed energy resources center, demand response research center, rate programs & tariffs Abstract Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

12

Cumulative energy demand for selected renewable energy technologies  

Science Journals Connector (OSTI)

Calculation of Cumulative Energy Demand (CED) of various energy systems and the computation of their Energy Yield Ratio (EYR) suggests that one single renewable energy technology cannot be said to be the ... Due ...

Dirk Gürzenich; Jyotirmay Mathur…

1999-05-01T23:59:59.000Z

13

Demand Response Opportunities and Enabling Technologies for Data Centers:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Opportunities and Enabling Technologies for Data Centers: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Title Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Publication Type Report LBNL Report Number LBNL-5763E Year of Publication 2012 Authors Ghatikar, Girish, Venkata Ganti, Nance Matson, and Mary Ann Piette Publisher PG&E/SDG&E/CEC/LBNL Keywords communication and standards, control systems, data centers, demand response, enabling technologies, end-use technologies, load migration, market sectors, technologies Abstract The energy use in data centers is increasing and, in particular, impacting the data center energy cost and electric grid reliability during peak and high price periods. As per the 2007 U.S. Environmental Protection Agency (EPA), in the Pacific Gas and Electric Company territory, data centers are estimated to consume 500 megawatts of annual peak electricity. The 2011 data confirm the increase in data center energy use, although it is slightly lower than the EPA forecast. Previous studies have suggested that data centers have significant potential to integrate with supply-side programs to reduce peak loads. In collaboration with California data centers, utilities, and technology vendors, this study conducted field tests to improve the understanding of the demand response opportunities in data centers. The study evaluated an initial set of control and load migration strategies and economic feasibility for four data centers. The findings show that with minimal or no impact to data center operations a demand savings of 25% at the data center level or 10% to 12% at the whole building level can be achieved with strategies for cooling and IT equipment, and load migration. These findings should accelerate the grid-responsiveness of data centers through technology development, integration with the demand response programs, and provide operational cost savings.

14

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Broader source: Energy.gov (indexed) [DOE]

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

15

Automated Demand Response Technologies and Demonstration in New York City  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Demonstration in New York City Technologies and Demonstration in New York City using OpenADR Title Automated Demand Response Technologies and Demonstration in New York City using OpenADR Publication Type Report LBNL Report Number LBNL-6470E Year of Publication 2013 Authors Kim, Joyce Jihyun, Sila Kiliccote, and Rongxin Yin Date Published 09/2013 Publisher LBNL/NYSERDA Abstract Demand response (DR) - allowing customers to respond to reliability requests and market prices by changing electricity use from their normal consumption pattern - continues to be seen as an attractive means of demand-side management and a fundamental smart-grid improvement that links supply and demand. Since October 2011, the Demand Response Research Center at Lawrence Berkeley National Laboratory and New York State Energy Research and Development Authority have conducted a demonstration project enabling Automated Demand Response (Auto-DR) in large commercial buildings located in New York City using Open Automated Demand Response (OpenADR) communication protocols. In particular, this project focuses on demonstrating how OpenADR can automate and simplify interactions between buildings and various stakeholders in New York State including the independent system operator, utilities, retail energy providers, and curtailment service providers. In this paper, we present methods to automate control strategies via building management systems to provide event-driven demand response, price response and demand management based on OpenADR signals. We also present cost control opportunities under day-ahead hourly pricing for large customers and Auto-DR control strategies developed for demonstration buildings. Lastly, we discuss the communication architecture and Auto-DR system designed for the demonstration project to automate price response and DR participation.

16

Automated Demand Response Technology Demonstration Project for Small and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Demonstration Project for Small and Technology Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings Publication Type Report LBNL Report Number LBNL-4982E Year of Publication 2011 Authors Page, Janie, Sila Kiliccote, Junqiao Han Dudley, Mary Ann Piette, Albert K. Chiu, Bashar Kellow, Edward Koch, and Paul Lipkin Date Published 07/2011 Publisher CEC/LBNL Keywords demand response, emerging technologies, market sectors, medium commercial business, openadr, small commercial, small commercial business, technologies Abstract Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

17

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

Scott, Doug

2014-01-01T23:59:59.000Z

18

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

Technologies for Demand-Side Management on Isolated Mini-technologies used for demand- side management (DSM) on mini-can provide additional demand-side management based on the

Harper, Meg

2014-01-01T23:59:59.000Z

19

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

20

Automated Demand Response Technologies and Demonstration in New York City using OpenADR  

E-Print Network [OSTI]

and G. Heffner. “Do enabling technologies affect customerAutomated Demand Response Technologies and Demonstration inof Standards and Technology (NIST) along with organizations

Kim, Joyce Jihyun

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Impact of Control Technology on the Demand Response Potential of  

E-Print Network [OSTI]

LBNL-5750E The Impact of Control Technology on the Demand Response Potential of California was sponsored in part by the Demand Response Research Center which is funded

22

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

23

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

24

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network [OSTI]

, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

25

THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND  

E-Print Network [OSTI]

LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

26

Competitive Technologies, Equipment Vintages and the Demand for Energy  

Science Journals Connector (OSTI)

Macroeconometric modelling of energy demand resorts to two approaches leading to models ... of view. The first approach specifies the demand of a group of consumers for a single form of energy, independent of the...

F. Carlevaro

1988-01-01T23:59:59.000Z

27

Gossamer Roadmap Technology Reference Study for a Solar Polar Mission  

Science Journals Connector (OSTI)

A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given sola...

M. Macdonald; C. McGrath; T. Appourchaux; B. Dachwald…

2014-01-01T23:59:59.000Z

28

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

demand- side management (DSM) on mini-grids throughout theunderpin the need to employ DSM to reduce load or spreadand technologies for DSM vary. As described above, one

Harper, Meg

2014-01-01T23:59:59.000Z

29

The Impact of Technological Change and Lifestyles on the Energy Demand  

E-Print Network [OSTI]

demand into a model of total private consumption. Private consumption is determined by economic variables of technological and socio- demographic variables on the demand for gasoline/diesel, heating and electricity. Key, households' electricity and heat consumption are growing rapidly despite of technological progress

Steininger, Karl W.

30

Monitoring SERC Technologies: On-Demand Tankless Water Heaters  

Broader source: Energy.gov [DOE]

A webinar by Ethan MacCormick, VP for Services to Energy Businesses at Performance Systems Development, about On-Demand Tankless Water Heaters and how to properly monitor the installation.

31

New coal plant technologies will demand more water  

SciTech Connect (OSTI)

Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

2008-04-15T23:59:59.000Z

32

Demonstration and Results of Grid Integrated Technologies at the Demand to Grid Laboratory (D2G Lab): Phase I Operations Report  

E-Print Network [OSTI]

of Grid Integrated Technologies at the Demand to Gridof Grid Integrated Technologies at the Demand to GridCommercial Adoption of DR Technologies Related Activities

Ghatikar, Girish

2014-01-01T23:59:59.000Z

33

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect (OSTI)

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

34

NETL: Oil & Natural Gas Technologies Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Oil & Natural Gas Technologies Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf E&P Focus Newsletter Banner The oil and gas exploration and production R&D newsletter, E&P Focus, highlights the latest developments in R&D being carried out by NETL. E&P Focus promotes the widespread dissemination of research results among all types of oil and gas industry stakeholders: producers, researchers, educators, regulators, and policymakers. Each issue provides up-to-date information regarding extramural projects managed under the Strategic Center for Natural Gas and OilÂ’s traditional oil and gas program, the EPAct Section 999 Program administered by the Research Partnership to Secure Energy for America (RPSEA), and in-house oil and gas research carried out by NETLÂ’s Office of Research and Development.

35

Municipal demand-side policy tools and the strategic management of technology life cycles  

Science Journals Connector (OSTI)

Abstract This research is particularly concerned with public policy instruments which may help to accelerate the development and diffusion of sustainable innovations and support local economic development. While sustainable technology sectors are in high demand, firms still face significant barriers in developing and diffusing their technologies in regions throughout the world (Hoff, 2012). This area has been less explored in the extant research yet recent experiences suggest that supply side tools may not always have positive benefits for supporting clean technology evolution, or for taxpayers. Leveraging innovation policy and technology life cycle literature, we develop a model of demand-side policy instruments which could be applied at different stages of the technology s-curve in order to accelerate the adoption of sustainable technologies. Implications for managers, public policy actors and researchers are considered.

Boyd Cohen; Jose Ernesto Amorós

2014-01-01T23:59:59.000Z

36

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options and Policy Priorities  

E-Print Network [OSTI]

Electricity Demand-Side Management for an Energy Efficient Future in China: Technology Options sensitive impacts on electricity demand growth by different demand-side management (DSM) scenarios countries. The research showed that demand side management strategies could result in significant reduction

de Weck, Olivier L.

37

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

Energy Usage and Conservation Technologies Used in Fruit andThe Impact of Control Technology on the Demand ResponsePrepared By VaCom Technologies La Verne, California July 30,

Scott, Doug

2014-01-01T23:59:59.000Z

38

Abstract --Demand Response (DR) programs are not a new concept; moreover, the key technologies for their implementation  

E-Print Network [OSTI]

1 Abstract -- Demand Response (DR) programs are not a new concept; moreover, the key technologies migrate to active and dynamic demand response, under reliability criteria based on the smart grid paradigm. This article formulates a new perspective of demand response in emerging countries, based on the US

Catholic University of Chile (Universidad Católica de Chile)

39

Advanced Control Technologies and Strategies Linking DemandResponse and Energy Efficiency  

SciTech Connect (OSTI)

This paper presents a preliminary framework to describe how advanced controls can support multiple modes of operations including both energy efficiency and demand response (DR). A general description of DR, its benefits, and nationwide status is outlined. The role of energy management and control systems for DR is described. Building systems such as HVAC and lighting that utilize control technologies and strategies for energy efficiency are mapped on to DR and demand shedding strategies are developed. Past research projects are presented to provide a context for the current projects. The economic case for implementing DR from a building owner perspective is also explored.

Kiliccote, Sila; Piette, Mary Ann

2005-09-02T23:59:59.000Z

40

REFERENCES  

Broader source: Energy.gov (indexed) [DOE]

205.1B 205.1B Approved 05-16-2011 Page 1 REFERENCES 1. INTRODUCTION 2. . Includes a list of sources cited in the directive and additional information sources to assist in implementing DOE Order 205.1B, Cyber Security Program. FEDERAL LAWS AND REGULATIONS a. Public Law (P.L.) 93-579, Privacy Act of 1974, as amended [Title 5 United States Code (U.S.C.) Section 552a]. . b. P.L. 104-106, Division E, Clinger Cohen Act (CCA) (formerly Information Technology Management Reform Act of 1996. c. P.L. 106-65, "National Defense Authorization Act [Section 3212(d)], enacted October 1999. d. P.L. 107-347, Title III, Federal Information Security Management Act of 2002 (FISMA), enacted December 2002. 3. OFFICE OF MANAGEMENT AND BUDGET (OMB) CIRCULARS. Located at http://www.whitehouse.gov/omb/circulars_default/.

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Mapping Study to Characterize NSCR Performance on a Natural Gas-Fueled Engine Authors: Mohamed Toema (speaker), Sarah Nuss-Warren, and Kirby S. Chapman, Kansas State University National Gas Machinery Laboratory; James McCarthy and Thomas McGrath, Innovative Environmental Solutions Inc. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: The researchers are conducting a project to characterize pollutant emissions performance of field gas-fired four-stroke cycle rich burn engines equipped with non-selective catalytic reduction (NSCR) technology. Engine emissions and operating parameters are being monitored on three engines over an extended period. In addition, a mapping study was conducted on one engine. The NSCR was operated at various controlled air-to-fuel (AF) ratios while emission measurements were conducted and engine operating parameters monitored. NOx, CO, and oxygen were measured using both EPA reference method technology and the portable analyzer used in the long-term study. In the mapping study, ammonia, formaldehyde, CO, NOx, and speciated hydrocarbon emissions were recorded in real-time using an extractive FTIR system. This paper focuses on the engine mapping phase. The mapping tests demonstrated a trade-off between NOx emissions and CO, ammonia, and hydrocarbon emissions. Richer engine operation (lower AF) decreases NOx emissions at the expense of higher CO, ammonia, and hydrocarbons. Leaner operation has the opposite effect. The results to date of the semi-continuous monitoring are presented in a separate paper.

42

Chapter 21 - Case Study: Demand-Response and Alternative Technologies in Electricity Markets  

Science Journals Connector (OSTI)

Abstract The PJM wholesale electricity market has evolved to promote open competition between existing generation resources, new generation resources, demand-response, and alternative technologies to supply services to support reliable power grid operations. PJM has adapted market rules and procedures to accommodate smaller alternative resources while maintaining and enhancing stringent reliability standards for grid operation. Although the supply resource mix has tended to be less operationally flexible, the development of smart grid technologies, breakthroughs in storage technologies, microgrid applications, distributed supply resources, and smart metering infrastructure have the potential to make power transmission, distribution, and consumption more flexible than in the past. Competitive market signals in forward capacity markets and grid service markets have resulted in substantial investment in demand-response and alternative technologies to provide reliability services to the grid operator. This chapter discusses these trends and the market mechanisms by which both system and market operators can manage and leverage these changes to maintain the reliability of the bulk electric power system.

Andrew Ott

2014-01-01T23:59:59.000Z

43

Automated Demand Response Technologies and Demonstration in New York City using OpenADR  

E-Print Network [OSTI]

C. McParland, "Open Automated Demand Response Communications2011. Utility & Demand Response Programs Energy ProviderAnnual Consumption (kWh) Demand Response Program Curtailment

Kim, Joyce Jihyun

2014-01-01T23:59:59.000Z

44

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

E-Print Network [OSTI]

for Automated Demand Response in Commercial Buildings. ” In2010. “Open Automated Demand Response Dynamic Pricing2009. “Open Automated Demand Response Communications

Ghatikar, Girish

2010-01-01T23:59:59.000Z

45

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

E-Print Network [OSTI]

2010 Assessment of Demand Response and  Advanced Metering:  Development for Demand Response  Calculation ? Findings and Energy  Efficiency and  Demand Response with Communicating 

Page, Janie

2012-01-01T23:59:59.000Z

46

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network [OSTI]

fits into historical demand side management (DSM) concepts.response. Demand Side Management Energy Efficiency (Daily) -requirements and demand side management issues have also

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

47

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network [OSTI]

perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

48

Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies  

E-Print Network [OSTI]

2008. Estimating Demand Response Load Impacts: Evaluation ofK. C. Mares, and D. Shroyer. 2010. Demand Response andOpen Automated Demand Response Opportunities for Data

Ghatikar, Girish

2014-01-01T23:59:59.000Z

49

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network [OSTI]

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

50

EIA model documentation: World oil refining logistics demand model,``WORLD`` reference manual. Version 1.1  

SciTech Connect (OSTI)

This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.

Not Available

1994-04-11T23:59:59.000Z

51

References  

Science Journals Connector (OSTI)

......dosimeter: An improved cathode ray determination...Stopping Powers of Materials (1989) Gaithersburg...of the physically active ultraviolet (which...Standard Reference Materials: Accuracy in Analytical...dosimeter: An improved cathode ray determination...Stopping Powers of Materials, NIST Standard......

References

2008-12-01T23:59:59.000Z

52

Gossamer Roadmap Technology Reference Study for a Multiple NEO Rendezvous Mission  

Science Journals Connector (OSTI)

A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous co...

Bernd Dachwald; Hermann Boehnhardt; Ulrich Broj…

2014-01-01T23:59:59.000Z

53

Gossamer Roadmap Technology Reference Study for a Sub-L1 Space Weather Mission  

Science Journals Connector (OSTI)

A technology reference study for a displaced Lagrange point space weather mission is presented. The mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy to deliver a low mass pl...

Colin R. McInnes; Volker Bothmer; Bernd Dachwald…

2014-01-01T23:59:59.000Z

54

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Designing a Pilot-Scale Experiment for the Production of Natural Gas Hydrates and Sequestration of CO2 in Geologic Reservoirs Authors: Mark White and Pete McGrail Venue: The 9th International Conference on Greenhouse Gas Technologies will be held November 16-20, 2008 at The Omni Shoreham Hotel in Washington, DC. The Conference will be organized by MIT in collaboration with the IEA Greenhouse Gas R&D Programme (IEA GHG), with major sponsorship from the US Department of Energy. http://mit.edu/ghgt9/ . Abstract: Under high pressure and low temperature conditions small nonpolar molecules (typically gases) can combine with water to form crystalline structures known as clathrate hydrates. Methane (CH4) and carbon dioxide (CO2) form nearly identical clathrate structures (sI), with the CO2 hydrate being thermodynamically favored. Vast accumulations of methane hydrates have been found in suboceanic deposits and beneath the arctic permafrost. Because of the large volumetric storage densities, clathrate hydrates on the deep ocean floor have been suggested as a sequestration option for CO2. Alternatively, CO2 hydrates can be formed in the geologic settings of naturally occurring accumulations of methane hydrates. Global assessments of natural gas resources have shown that gas hydrate resources exceed those of conventional resources, which is indicative of the potential for clathrate hydrate sequestration of CO2. Recovery of natural gas from hydrate-bearing geologic deposits has the potential for being economically viable, but there remain significant technical challenges in converting these natural accumulations into a useable resource. Currently, conventional methods for producing methane hydrates from geologic settings include depressurization, thermal stimulation, and inhibitor injection. Although CO2 clathrates generally are not naturally as abundant as those of CH4, their occurrence forms the foundation of an unconventional approach for producing natural gas hydrates that involves the exchange of CO2 with CH4 in the hydrate structure. This unconventional concept has several distinct benefits over the conventional methods: 1) the heat of formation of CO2 hydrate is greater than the heat of dissociation of CH4 hydrate, providing a low-grade heat source to support additional methane hydrate dissociation, 2) exchanging CO2 with CH4 will maintain the mechanical stability of the geologic formation, and 3) the process is environmentally friendly, providing a sequestration mechanism for the injected CO2. The exchange production technology would not be feasible without the favorable thermodynamics of CO2 hydrates over CH4 hydrates. This situation yields challenges for the technology to avoid secondary hydrate formation and clogging of the geologic repository. Laboratory-scale experiments have demonstrated the feasibility of producing natural gas and sequestering CO2 using the direct exchange technology in geologic media. These experiments have duplicated numerically using the STOMP-HYD simulator, which solves the nonisothermal multifluid flow and transport equations for mixed hydrate systems in geologic media. This paper describes the design (via numerical simulation) of a pilot-scale demonstration test of the CO2 exchange production and sequestration technology for a geologic setting beneath the arctic permafrost, involving a gas-hydrate interval overlying a free-gas interval (i.e., Class 1 Hydrate Accumulation).

55

References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Analysis Analysis - Home Analytical Dashboards Computerized Accident Incident Reporting and Recordkeeping System (CAIRS) Corporate Safety Analysis Trends Daily Occurrence Reports Electrical Safety Occurrences Final Occurrence Reports Access System Login Lessons Learned and Best Practices Occurrence Reporting and Processing System (ORPS) Operating Experience Committee Operating Experience Level 1, 2, and 3 Documents Operating Experience Summaries Radiation Exposure Monitoring Systems (REMS) Safety Bulletins Safety and Health Alerts Safety Basis Information System (SBIS) Suspect/Counterfeit Items and Defective Items (SCI/DI) References HSS Logo References DOE O 210.2A, DOE Corporate Operating Experience Program (Apr 08, 2011) DOE O 210.2 Crosswalk DOE O 231.1B, Environment, Safety and Health Reporting (Jun 27, 2011)

56

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Decreasing Air Emission Impacts From Oil and Gas Development Authors: Charles B. McComas, PE; J. Daniel Arthur, PE; Gerry Baker; G. Lee Moody; and David B. Cornue, PG, CHMM Venue: American Chemical Society (53rd Pentasectional Meeting) – Halliburton Energy Services Technology Center, Duncan, OK, March 8, 2008 (http://www.acs.org [external site]) Abstract: Research funded by the United States Department of Energy’s National Energy Technology Laboratory and conducted under the direction of the Interstate Oil and Gas Compact Commission has examined concerns related to air emissions resulting from domestic onshore oil and gas exploration and production operations. Current air issues such as ambient air quality standards and non-attainment areas, regulatory compliance and regional inconsistencies, as well as global climate change and carbon sequestration are a few of the subjects perceived to represent potential barriers to energy development. The topic of air quality and how it relates to onshore oil and gas exploration and production activities is examined from the position of environmental sustainability. These concerns can be addressed through reasonable and prudent practices that industry may implement in order to avoid, minimize, or mitigate air emissions. Additionally, air emissions parameters that are not currently regulated (e.g.: CH4 and CO2) may become the subject of increased concern in the future and, therefore, add to the list of issues facing oil and gas exploration and production. Suggestions for further research opportunities with the potential to benefit responsible energy resource development are also presented.

57

REFERENCES  

Science Journals Connector (OSTI)

......239,240Pu in soils around the Rocky Flats Environmental Technology Site...Plutonium in Soil around the Rocky Flats Plant. HASL-235 (U.S. Atomic...appraisal of 241Am in soils around Rocky Flats, Colorado, Health Phys. 71......

REFERENCES

2006-06-01T23:59:59.000Z

58

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Field Evaluation of a Surfactant-Modified Zeolite System for Removal of Organics from Produced Water Authors: Robert S. Bowman, New Mexico Technological University, Socorro, NM; Enid J. Sullivan, Los Alamos National Laboratory, Los Alamos, NM; and Lynn E. Katz and Kerry A. Kinney, University of Texas, Austin, TX. Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: About 2.3 billion cubic meters (600 billion gallons) of wastewater (produced water) is generated each year as a byproduct of oil and gas operations in the continental United States. Disposal of this water represents about 10% of the cost of hydrocarbon production. Inexpensive treatment technologies can lower the cost of disposal and generate higher-quality water for other uses. Surfactant-modified zeolite (SMZ) has been shown to effectively sorb a variety of nonpolar organic compounds from water. SMZ was tested as a medium to remove benzene, toluene, ethylbenzene, and xylenes (BTEX) from produced water generated during extraction of coalbed natural gas. BTEX removal is necessary prior to surface discharge of produced waters or as a pretreatment for reverse osmosis. We demonstrated in laboratory column experiments that BTEX-saturated SMZ is readily regenerated by air sparging. There was no loss in BTEX sorption capacity, and a minor decrease in hydraulic conductivity, after 50 sorption/regeneration cycles. Based upon the laboratory results, a pilot-scale produced-water treatment system was designed and tested at a reinjection facility in the San Juan Basin of New Mexico. The SMZ-based system was designed to treat up to 110 liters (30 gallons) of produced water per hour on a continuous basis by running two SMZ columns in series. The system performed as predicted, based on laboratory results, over repeated feed and regeneration cycles during the month-long operation. The BTEX-laden sparge gases were treated with a vapor-phase bioreactor system, resulting in an emissions-free process

59

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Super-Cement for Annular Seal & Long-Term Integrity in Deep, Hot Wells Super-Cement for Annular Seal & Long-Term Integrity in Deep, Hot Wells Super-Cement for Annular Seal & Long-Term Integrity in Deep, Hot Wells Authors: Fred Sabins, Kevin Edgely, and Larry Watters, CSI Technologies, LLC, Houston, TX. Venue: 2007 Drilling Engineering Association Workshop, Moody Gardens Hotel, Galveston, TX, June 19-20, 2007 (http://www.dea-global.org) [external site]). Abstract: Successful laboratory and field testing of Ultra-Seal® R and Pre-Stressed Cement will be presented. The application of these materials can dramatically reduce the costs of re-establishing annular seal integrity in deep, hot wells, thereby significantly lowering life-cycle well costs. CSI Technologies chose two cement types for further field testing in the third phase of the project to develop a “supercement” for work in high-temperature/high-pressure (HT/HP) wells. HT/HP wells often encounter problems with isolation of production zones due to cement failures. This can result in expensive repair jobs and costly shut-ins of high-volume wells. CSI determined that resin and magnesium oxide cements showed very good mechanical properties and bonding characteristics and are controllable at HT/HP conditions. The resin cement has been used successfully in more than 50 field plugging jobs and in one HT/HP squeeze job. CSI developed a second supercement formulation that is Portland cement- based and functions by generating substantial expansion during the curing process. This material functions in the confined wellbore environment by developing significant cement matrix compressive stress during cure, resulting in a compressive pre-load. In practice, the compressive pre-load functions to elevate the effective tensile strength of the material because the compressive stress must be relieved before the material can experience tensile stress. Additionally, the pre-load functions to keep the material tightly bound to the wellbore tubulars, thereby reducing the tendency of repeated stress cycles to form a microannulus.

60

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments Coupled Hydrological, Thermal and Geomechanical Analysis of Wellbore Stability in Hydrate-Bearing Sediments (OTC 19672) Authors: Jonny Rutqvist (speaker), George J. Moridis, and Tarun Grover Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: This study investigated coupled multiphase flow, themal, thermodynamic and geomechanical behavior of oceanic Hydrate Bearing Sediments (HBS), during depressurization-induced gas production in general, and potential wellbore in-stability and casing deformation in particular. The project investigated the geomechanical changes and wellbore stability for two alternative cases of production using a horizontal well in a Class 3 deposit and a vertical well in a Class 2 deposit. The research compared the geomechanical responses and the potential adverse geomechanical effects for the two different cases. Analysis shows that geomechanical responses during depressurization-induced gas production from oceanic hydrate deposits is driven by the reservoir-wide pressure decline (Delta P), which in turn is controlled by the induced pressure decline near the wellbore. Because any change quickly propagates within the entire reservoir, the reservoir wide geomechanical response can occur within a few days of production induced pressure decline.

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand Permeability of Laboratory-Formed Hydrate-Bearing Sand (OTC 19536) Authors: Timothy J. Kneafsey (speaker), Yongkoo Seol, Arvind Gupta, and Liviu Tomutsa Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: Methane hydrate was formed in moist sand under confining stress in a long, x-ray transparent pressure vessel. Three initial water saturations were used to form three different methane hydrate saturations. X-ray computed tomography (CT) was used to observe location-specific density changes, caused by hydrate formation and flowing water. Gas permeability was measured in each test for dry sand, moist sand, frozen sand, and hydrate-bearing sand. Results of these measurements are presented. Water was flowed through the hydrate-bearing sand, and the changes in water saturation were observed using CT scanning. Inverse modeling will be performed using these data to extend the relative permeability measurements

62

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Tests of an Active Vibration Damper Drilling Tests of an Active Vibration Damper Drilling Tests of an Active Vibration Damper Authors: Mark Wassell, Martin Cobern, Carl Perry, Jason Barbely, and Daniel Burgess, APS Technology, Inc. Venue: Drilling Engineering Association’s 2007 DEA Workshop in Galveston, TX, June 19-20, 2007 Abstract: Testing of an active drilling vibration damper (AVD) system at TerraTek Laboratory, under conditions designed to induce vibration, demonstrated that the use of the AVD reduced vibration, maintained more consistent weight-on-bit, and increased rate of penetration (ROP). These tests demonstrated that the AVD is likely to provide significant time and cost savings, particularly in deep wells. The results of these tests will be outlined. Related NETL Project: The goal of the related NETL project DE-FC26-02NT41664, “Drilling Vibration Monitoring and Control System,” is to improve ROP and reduce the incidence of premature equipment failures in deep hard rock drilling environments by reducing harmful drillstring vibration.

63

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Characterization of Nonequilibrium Sorption of Gasoline Components by Surfactant-Modified Zeolite Authors: Joshua A. Simpson and Robert S. Bowman, New Mexico Technological University, Socorro, NM Venue: 44th Annual Meeting of the Clay Minerals Society in Santa Fe, NM, June 3–7, 2007 (http://www.clays.org/home/HomeAnnualMeeting.html [external site]). Abstract: Surfactant-modified zeolite (SMZ) has been shown to effectively remove benzene, toluene, ethylbenzene, and xylene (BTEX) from water generated during oil and natural gas production (produced water). The BTEX sorption isotherms are linear and noncompetitive, suggesting that the removal mechanism is partitioning into the surfactant’s hydrophobic bilayer formed on SMZ. Even though BTEX sorption in batch systems is rapid, chemical equilibrium models do not accurately describe BTEX transport through packed beds of SMZ. Comparison with transport of a nonreactive tracer (tritium) suggests that two-site, diffusive nonequilibrium sorption-desorption controls BTEX transport. We conducted batch experiments with SMZ to determine the nonequilibrium sorption kinetics of each BTEX constituent. The kinetic measurements were used to parameterize a nonequilibrium transport model to predict BTEX removal under varying flow conditions. The accuracy of predictions is being tested using laboratory column experiments with produced water from the San Juan Basin of New Mexico

64

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Mechanisms by Which Methane Gas and Methane Hydrate Coexist In Ocean Sediments Authors: Maša Prodanovic (speaker), Javad Behseresht, Yao Peng, Steven L. Bryant, Antone K. Jain and Ruben Juanes Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: A spectrum of behavior is encountered in methane hydrate provinces, especially ocean sediments, ranging from essentially static accumulations where the pore space is filled with hydrate and brine, to active seeps where hydrate and methane gas phase co-exist in the hydrate stability zone (HSZ). The grain-scale models of drainage and fracturing presented demonstrate key processes involved in pressure-driven gas phase invasion of a sediment. A novel extension of invasion percolation to infinite-acting, physically representative networks is used to evaluate the connectivity of water in a gas-drained sediment. A novel implementation of the level set method (LSM) is used to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. The discrete element method (DEM) is extended to model the coupling between the pore fluids and the solid, and thereby predict the onset of sediment fracturing by gas phase pressure under in situ loading conditions. The DEM grain mechanics model accounts for the different pressure of brine and methane gas in a “membrane” two-fluid model. The fluid-fluid configuration from LSM can be mapped directly to the pore space in DEM, thereby coupling the drainage and mechanics models. The type of behavior that can emerge from the coupled processes is illustrated with an extended LSM model. The extension computes grain displacement by the gas phase with a simple kinematic rule.

65

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Variation in Long-Term Emissions Data from NSCR-Equipped Natural Gas-Fueled Engine Authors: Kirby S. Chapman (speaker), Mohamed Toema, and Sarah Nuss-Warren, Kansas State University National Gas Machinery Laboratory. Venue: ASME Internal Combustion Engine Division 2009 Spring Technical Conference, May 3–6, Milwaukee, WI. http://www.asmeconferences.org/ICES09/index.cfm [external site]. Abstract: This paper describes work on a project to characterize pollutant emissions performance of non-selective catalytic reduction (NSCR) technology, including a catalyst and air-to-fuel ratio controller (AFRC), applied to four-stroke cycle rich-burn engines. Emissions and engine data were collected semi-continuously with a portable emissions analyzer on three engines in the Four Corners area. In addition, periodic emissions measurements that included ammonia were conducted several times. Data collected from October 2007 through August 2008 show significant variation in emissions levels over hours, days, and longer periods of time, as well as seasonal variation. As a result of these variations, simultaneous control of NOx to below a few hundred parts per million (ppm) and CO to below 1,000 ppm volumetric concentration was not consistently achieved. Instead, the NSCR/AFRC systems were able to simultaneously control both species to these levels for only a fraction of the time the engines were monitored. Both semi-continuous emissions data and periodically collected emissions data support a NOx-CO trade-off and a NOx-ammonia tradeoff in NSCR-equipped engines.

66

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Numerical Studies of Geomechanical Stability of Hydrate-Bearing Sediments Authors: George J. Moridis, Jonny Rutqvist, Lawrence Berkeley National Laboratory. Venue: 2007 Offshore Technology Conference, Houston, TX, April 30–May 1, 2007 (http://www.otcnet.org/ [external site]). Abstract: The thermal and mechanical loading of hydrate-bearing sediments (HBS) can result in hydrate dissociation and a significant pressure increase, with potentially adverse consequences on the integrity and stability of the wellbore assembly, the HBS, and the bounding formations. The perception of HBS instability, coupled with insufficient knowledge of their geomechanical behavior and the absence of predictive capabilities, has resulted in a strategy of avoidance of HBS when locating offshore production platforms. These factors can also impede the development of hydrate deposits as gas resources. For the analysis of the geomechanical stability of HBS, project researchers developed and used a numerical model that integrates a commercial geomechanical code into a simulator describing the coupled processes of fluid flow, heat transport, and thermodynamic behavior in geologic media. The geomechanical code includes elastoplastic models for quasi-static yield and failure analysis and viscoplastic models for time-dependent (creep) analysis. The hydrate simulator can model the non-isothermal hydration reactions (equilibrium or kinetic), phase behavior, and flow of fluids and heat in HBS, and can handle any combination of hydrate dissociation mechanisms. The simulations can account for the interdependence of changes in the hydraulic, thermodynamic, and geomechanical properties of the HBS, in addition to swelling/shrinkage, displacement (subsidence), and possible geomechanical failure. Researchers investigated in three cases the coupled hydraulic, thermodynamic, and geomechanical behavior of oceanic HBS systems. The first involves hydrate heating as warm fluids from deeper, conventional reservoirs ascend to the ocean floor through uninsulated pipes intersecting the HBS. The second case involves mechanical loading caused by the weight of structures placed on HBS at the ocean floor, and the third describes system response during gas production from a hydrate deposit. The results indicate that the stability of HBS in the vicinity of warm pipes may be significantly affected, especially near the ocean floor where the sediments are unconsolidated and more compressible. Conversely, the increased pressure caused by the weight of structures on the ocean floor increases the stability of hydrates, while gas production from oceanic deposits minimally affects the geomechanical stability of HBS under the conditions that are deemed desirable for production.

67

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Authors: Paul La Pointe, FracMan Technology Group, Golder Associates Inc., Redmond, WA; Robert D. Benson, Colorado School of Mines, Golden, CO; and Claudia Rebne, Legacy Energy, Denver, CO. Venue: American Association of Petroleum Geologists/Rocky Mountain Section Annual Meeting in Snowbird, UT, October 7-9, 2007. Abstract: A 3D9C survey was carried out over a 6 square mile portion of the Roadrunner and Towaoc fields on the Ute Mountain Ute reservation in southwestern Colorado. This survey was jointly funded by DOE and the Southern Ute tribeÂ’s Red Willow Corporation to promote development of Ismay algal mound plays in the Paradox Basin within Ute Mountain Tribal lands and elsewhere in the Paradox Basin. Multicomponent data were utilized to better delineate the external mound geometry as well as to estimate internal mound reservoir parameters such as matrix permeability, saturation, and porosity. Simple cross-plotting of various multicomponent attributes against reservoir properties did not provide the desired predictive accuracy, in part due to sub-optimal frequency content in components derived from the shear wave data. However, a multivariate statistical analysis greatly improved the predictive accuracy. These multivariate regressions were then used to prescribe reservoir properties for a static reservoir model, which in turn formed the basis for a dynamic reservoir simulation model of the project area to assess the usefulness of the multivariate relations developed. This poster presentation will illustrate the workflow used to carry out the multivariate modeling, key maps of the reservoir properties that were derived, the static model, and results from the dynamic simulation used to assess the usefulness of the approach. Results from wells drilled based on the seismic data also will be presented.

68

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution Within Carbonate Oil Reservoirs Authors: Sean P. Trisch, Wayne D. Pennington, and Roger Turpening, Michigan Technological University, Houghton, MI. Venue: Seismological Society of America’s annual meeting in Waikaloa, Kona, HI., April 11–13, 2007 Abstract: Imaging of the Earth’s crust is increasingly being accomplished through the use of borehole-based sensors. Experience gained in recent crosswell seismic surveys may assist endeavors to image the near-borehole environment near plate boundaries or other places of scientific interest. A high-resolution crosswell seismic data set was collected over a Silurian (Niagaran) reef in Michigan’s Lower Peninsula. The survey was optimized for both reflection imaging purposes and the gathering of a wide range of incidence angles. The reflection image was intended to aid in interpretation of the reef structure at a level of detail never before possible with seismic methods. The survey was also conducted to maximize data available for study of the dependence of amplitudes with angle-of-incidence. Prestack angle data were processed to half-degree intervals and utilized for enhanced interpretation of the seismic image through partial stacks and through amplitude variation with angle (AVA) analyses. Frequencies as high as 3,000 Hz (the limit of the source sweep) were recorded, with a predominant signal at about 2,000 Hz; the well separation was 600 m, and the target reef is at 1,400–1,525 m depth. Many of the interfaces present within the area have small reflection amplitudes at narrow angles that increase substantially near the critical angle. Analyses were performed on various interfaces in the seismic section to compare with Zoeppritz-equation solutions, using rock data acquired through an extensive library of seismic and well logging data available for the area. These models were then compared with the actual AVA character acquired at the interface and matched as closely as possible. Through this analysis and match process, various rock property estimates were inferred or refined.

69

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments Mechanical strength and seismic property measurements of hydrate-bearing sediments (HBS) during hydrate formation and loading tests (OTC 19559) Authors: Seiji Nakagawa (speaker), Timothy J. Kneafsey, and George J. Moridis Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 http://www.spe.org and http://www.smenet.org [external sites] Abstract: An on-going effort on conducting laboratory triaxial compression tests on synthetic methane hydrate-bearing sediment cores is presented. Methane hydrate is formed within a sand pack inside a test cell under controlled temperature and confining stress, and triaxial compression tests are performed while monitoring seismic properties. A unique aspect of the experiment is that the formation and dissociation of hydrate in a sediment core, and the failure of the sample during loading tests, can be monitored in real time using both seismic waves and x-ray CT imaging. For this purpose, a specially designed triaxial (geomechanical) test cell was built. This cell allows for conducting seismic wave measurements on a sediment core using compressional and shear (torsion) waves. Concurrently, CT images can be obtained through an x-ray-transparent cell wall. These are used to determine the porosity distribution within a sample owing to both original sand packing and formation of hydrate in the pore space. For interpreting the results from both seismic measurements and geomechanical tests, characterization of sample heterogeneity can be critically important. In this paper, the basic functions of the test cell are presented, with the results of preliminary experiments using non-hydrate bearing sandpack and sandstone core. These measurements confirmed that (1) clear x-ray images of gas-fluid boundaries within a sediment/rock core can be obtained through a thick aluminum test cell wall, (2) the test cell functions correctly during loading tests, and (3) both compressional and shear waves can be measured during a loading test. Further experiments using methane-hydrate-bearing samples will be presented at the conference

70

Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies  

E-Print Network [OSTI]

of Standards and Technology (NIST). 2010. NIST Framework andof Standards and Technology (NIST). 2012. NIST Framework andOpportunities and Enabling Technologies for Data Centers:

Ghatikar, Girish

2014-01-01T23:59:59.000Z

71

Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids  

E-Print Network [OSTI]

Center for Appropriate Technology. Alice Springs, Australia.Report of Intermediate Technology Consultants to Overseasand Communication Technologies and Development. Atlanta, GA.

Harper, Meg

2014-01-01T23:59:59.000Z

72

Smart finite state devices: A modeling framework for demand response technologies  

E-Print Network [OSTI]

We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the ...

Turitsyn, Konstantin

73

Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies  

E-Print Network [OSTI]

Analysis for Test 2 IT load Data Center Level DR SavingsAnalysis for Test 3 IT load Data Center Level DR SavingsResults show that for flat load data centers, the demand

Ghatikar, Girish

2014-01-01T23:59:59.000Z

74

Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential  

SciTech Connect (OSTI)

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

NONE

1995-04-01T23:59:59.000Z

75

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

76

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

on expensive solar-based equipment and energy storagechillers, energy storage, or solar-based technologies are

Stadler, Michael

2009-01-01T23:59:59.000Z

77

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network [OSTI]

chillers, energy storage, or solar-based technologies areand the huge solar thermal and heat storage system adoptionon expensive solar-based equipment and energy storage

Stadler, Michael

2009-01-01T23:59:59.000Z

78

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

79

Advanced Demand Responsive Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

80

Smart Finite State Devices: A Modeling Framework for Demand Response Technologies  

E-Print Network [OSTI]

We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following four types: (a) optional loads that can be shed, e.g. light dimming; (b) deferrable loads that can be delayed, e.g. dishwashers; (c) controllable loads with inertia, e.g. thermostatically-controlled loads, whose task is to maintain an auxiliary characteristic (temperature) within pre-defined margins; and (d) storage devices that can alternate between charging and generating. Our analysis of the devices seeks to find their optimal price-taking control strategy under a given stochastic model of the distribution market.

Turitsyn, Konstantin; Ananyev, Maxim; Chertkov, Michael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Low-level radioactive waste technology: a selected, annotated bibliography. [416 references  

SciTech Connect (OSTI)

This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

1981-10-01T23:59:59.000Z

82

The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges  

Science Journals Connector (OSTI)

Abstract In recent years, demand response and load control automation has gained increased attention from regulators, system operators, utilities, market aggregators, and product vendors. It has become a cost-effective demand-side alternative to traditional supply-side generation technologies to balance the power grid, enable grid integration of renewable energy, and meet growing demands for electricity. There are several factors that have played a role in the development of demand response programs. Existing research are however limited on reviewing in a systematic approach how these factors work together to drive this development. This paper makes an attempt to fill this gap. It provides a comprehensive overview on how policy and regulations, electricity market reform, and technological advancement in the US and other countries have worked for demand response to become a viable demand-side resource to address the energy and environmental challenges. The paper also offers specific recommendations on actions needed to capture untapped demand response potentials in countries that have developed active demand response programs as well as countries that plan to pursue demand response.

Bo Shen; Girish Ghatikar; Zeng Lei; Jinkai Li; Greg Wikler; Phil Martin

2014-01-01T23:59:59.000Z

83

Materials for Energy How pressing needs for innovative technologies demand new ways of creating materials and putting them together  

Broader source: Energy.gov (indexed) [DOE]

Littlewood Littlewood Associate Lab Director, Physical Sciences and Engineering Argonne National Laboratory Secretary of Energy Advisory Board 17 April 2012 Materials for Energy How pressing needs for innovative technologies demand new ways of creating materials and putting them together The scale of the challenge: Energy usage per m 2 Courtesy D J Mackay, UK DECC Renewable deployments are country-sized Courtesy D J Mackay, UK DECC Challenges of Geography, Efficiency, and Cost Power density Watt/m 2 Full insolation Arizona desert 300 Concentrated solar power (desert) 15-20 Solar photovoltaic 5-20 Biomass 1-2 Tidal pools/tidal stream 3-8 Wind 2-8 Rainwater (highland) 0.3 US energy consumption (all sources) 0.3 In the US: Solar + wind + storage + grid infrastructure= sustainable economy

84

Demand response-enabled residential thermostat controls.  

E-Print Network [OSTI]

human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

85

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

86

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network [OSTI]

and demand savings between an injection molding machine retrofitted with the high efficiency hydraulic pump system or variable frequency drive will also be presented....

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

87

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

88

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

89

Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant  

SciTech Connect (OSTI)

Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

Elder, H. K.

1981-10-01T23:59:59.000Z

90

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

SciTech Connect (OSTI)

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

91

Energy demand  

Science Journals Connector (OSTI)

The basic forces pushing up energy demand are population increase and economic growth. From ... of these it is possible to estimate future energy requirements.

Geoffrey Greenhalgh

1980-01-01T23:59:59.000Z

92

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

93

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Sequestration Potential of the North Michigan Silurian Reef CO2 Sequestration Potential of the North Michigan Silurian Reef CO2 Sequestration Potential of the North Michigan Silurian Reef Authors: Brian Toelle, Chaoqing Yang (speaker), and Tracee Imai, Schlumberger Ltd. Venue: Eastern Section of the American Association of Petroleum Geologists 2007 Annual Meeting, Lexington, KY, September 16–18, 2007 (http://www.uky.edu/KGS/esaapg07/ [external site]). Abstract: The Northern Silurian Reef trend of the Michigan Basin was developed within the stratigraphic unit historically referred to as the Niagaran Brown. Within the past few years this unit was renamed the Guelph Formation. Over 700 reefs make up this trend, with some of these being over 300 acres in size and having produced more than 5 million barrels of oil. Estimates of the total amount of hydrocarbons produced for the entire trend have been reported to be as much as nearly a half a billion barrels. The U.S. Department of Energy has funded a study of an ongoing enhanced oil recovery project being conducted on a reef within this trend and entailing CO2 injection. The Charlton 30/31 reef, located in Otsego County, MI, like many other reefs in the play, was discovered and developed during the 1970s and 1980s. This field has completed its primary production phase, during which six wells produced 2.6 million of the field’s estimated 7 million barrels of oil in place. This reservoir is characterized as a low-porosity, low-permeability limestone matrix with irregular dolomitized intervals providing a secondary network of higher porosity and permeability, which controls fluid flow throughout the reservoir. The estimated average porosity in this reef is just slightly over 6 percent. As part of this study, the reservoir attributes identified at the Charlton 30/31 reef were extended to the entire Northern Reef Trend in order to determine its CO2 sequestration capacity. Additionally, the potential oil recovery has been estimated.

94

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Unified Imaging Procedure for 2-D Land Multichannel Seismic Data a Unified Imaging Procedure for 2-D Land Multichannel Seismic Data Towards a Unified Imaging Procedure for 2-D Land Multichannel Seismic Data Authors: Jaiswal, Priyank, Zelt, C.A., Rice University, and Dasgupta, R., Oil India Limited Venue: 70th EAGE Conference and Exhibition, Rome, Italy, June 11-14, 2008 (http://www.eage.org/events/index.php?eventid=57&Opendivs=s2 [external site). Abstract: This project demonstrates that imaging of 2-D multichannel seismic data can be effectively accomplished by a combination of travel-time inversion and pre-stack depth migration (PSDM); this combined method is referred to as unified imaging. Unified imaging begins with inversion of direct arrivals for estimating a velocity model that is used in static corrections and stacking velocity analysis. The interval velocity model (from stacking velocities) is used for PSDM. The stacked data and the PSDM image are interpreted for common horizons and the corresponding wide-aperture reflections are identified in the shot gathers. Using the interval velocity model the stack interpretations are inverted as zero-offset reflections for constraining the corresponding interfaces in depth; the interval velocity model is maintained stationary. A coefficient of congruence, j, is defined which measures the discrepancy between the horizons from the PSDM image and their counterparts from the zero-offset inversion. A value of unity for j implies that the interpreted and inverted horizons are consistent to within the interpretational uncertainties and the unified imaging is said to have converged at this point. For j greater than unity, the interval velocity model and the horizon depths are updated by jointly inverting the direct arrivals with the zero-offset and the wide-aperture reflections. The updated interval velocity model is used again for both PSDM and zero-offset inversion. Interpretations of the new PSDM image are the updated horizons depths. The unified imaging is applied to seismic data from the Naga Thrust and Fold Belt, India. Wide-aperture and zero-offset data from three geologically significant horizons are used. Three runs of joint inversion and PSDM are required in a cyclic manner for j to converge to unity. A joint interpretation of the final velocity model and the final depth image reveal the presence of a triangle zone that appears to be promising for exploration.

95

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas the Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas The Performance of Class 2 and Class 3 Hydrate Deposits during Co-Production with Conventional Gas (OTC 19435) Authors: George J. Moridis (speaker), Matthew T. Reagan, and Keni Zhang Venue: 2008 Offshore Technology Conference, Houston, Texas, May 5-8, 2008 ( http://www.spe.org and http://www.smenet.org [external sites] ) Abstract: Recent numerical studies have provided strong indications that it is possible to produce large volumes of gas from natural hydrate deposits at high rates (in excess of 10 MMSCFD) for long times by depressurization-induced dissociation of hydrates. Of the various factors that can adversely affect the production potential of hydrates, low temperatures have one of the strongest negative impacts. These can be caused by low initial temperatures, increasing stability of the hydrate (as defined by the deviation between the temperature of the deposit and the equilibrium temperature at the reservoir pressure), and by an advanced stage of dissociation (a strongly endothermic reaction) when substantial amounts of hydrates remain. The reasons for the production decline include a reduction in the rate of the hydrate dissociation at lower temperatures and the evolution of flow restrictions in the vicinity of the well caused by the formation of hydrate and/or ice in the vicinity of the wellbore. The latter is caused by continuous cooling, and is the reason why large amounts of gas that may have been released in the reservoir in the course of earlier dissociation cannot be easily recovered.

96

Automated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR  

E-Print Network [OSTI]

2009. Open Automated Demand Response Communications2010. Open Automated Demand Response Technologies forenergy efficiency and demand response: Framework concepts

Kim, Joyce Jihyun

2014-01-01T23:59:59.000Z

97

Demand Forecasting of New Products  

E-Print Network [OSTI]

Keeping Unit or SKU) employing attribute analysis techniques. The objective of this thesis is to improve Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock

Sun, Yu

98

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

99

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

100

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground Environmental Surveillance Programs  

SciTech Connect (OSTI)

This Addendum supplements, and to some extent replaces, the preliminary description of environmental radiological surveillance programs for low-level waste burial grounds (LLWBG) used in the parent document, 11 Technology, Safety and Costs of DecolliTlissioning a Reference Low-Level Waste Burial Ground, 11 NUREG/ CR-0570. The Addendum provides additional detail and rationale for the environmental radiological surveillance programs for the two referenced sites and inventories described in NUREG/CR-0570. The rationale and performance criteria herein are expected to be useful in providing guidance for determining the acceptability of environmental surveillance programs for other inventories and other LLWBG sites. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are reference facilities considered in this Addendum, and as described in the parent document (NUREG/CR-0570). The two sites are assumed to have the same capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology, and hydrology of the two reference sites are typical of existing western and eastern sites, altnough a single population distribution was chosen for both. Each reference burial ground occupies about 70 hectares and includes 180 trenches filled with a total of 1.5 x 10{sup 6} m{sup 3} of radioactive waste. In acldition, there are 10 slit trenches containing about 1.5 x 10{sup 3} m{sup 3} of high beta-gamma activity waste. In this Addendum environmental surveillance programs are described for the several periods in the life of a LLWBG: preoperational (prior to nuclear waste receipt); operational (including interim trench closures); post-operational (after all nuclear waste is received), for both short-term {up to three years) and long-term (up to 100 years) storage and custodial care; and decommissioning (only for the special case of waste removal). The specific environmental monitoring requirements for final site characterization and certification surveys are beyond the scope of this Addendum. Data collection associated with site reconnaissance and preselection is not specifically addressed, but it is recognized that such data may be useful in designing the preoperational program. Predisposal control measures, quality assurance, and record-keeping (other than inventory records) associated with waste disposal operations are also not addressed. The primary intent of routine environmental surveillance at a LLWBG is to help ensure that site activities do not cause significant transport of radioactivity from the site, resulting in an unacceptable health hazard to people. Preoperational environmental surveillance serves to determine for later comparison the background radioactivity levels, either naturally occurring or the result of man's activities (e.g. world-wide fallout or an adjacent nuclear facility), in and around the proposed burial ground site. The operational environmental surveillance program is used to estimate radiological conditions, both onsite and offsite as a possible result of burial ground activities, including trench closure(s). These data help to determine LLWBG compliance with regulatory requirements. During the post-operational period environmental surveillance should normally be an extension of the program carried out during operations, with appropriate deletions (or modifications) to account for the differences between operational and post-operational activities at the site. During the long-term storage and custodial care period, environmental surveillance serves to verify the radionuclide confinement capability of the burial ground and to identify problem situations requiring remedial action. For waste removal (exhumation), the environmental surveillance program is again modified to account for the greatly increased potential for direct radiation and contamination spread. At the time of decommissioning, "environmental surveillance" takes on a new meaning, from that of an ongoing prog

Denham, D. H.; Eddy, P. A.; Hawley, K. A.; Jaquish, R. E.; Corley, J. P.

1981-07-01T23:59:59.000Z

102

Demand response enabling technology development  

E-Print Network [OSTI]

interface was modeled after the Honeywell Round thermostat.The Honeywell Round thermostat was designed over 50 yearsoriginal manual setback Honeywell Chronotherm shown below.

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

103

Demand response enabling technology development  

E-Print Network [OSTI]

relative humidity sensors, one mote with solar radiation andsensors and actuators. A study of a variety of solar,sensor was located under the eave of the roof and the other exposed to solar

2006-01-01T23:59:59.000Z

104

Demand response enabling technology development  

E-Print Network [OSTI]

global and diffuse solar radiation sensors, wind directionfrom a crude radiation sensor. Solar Radiation Conductiosensor data (Temperature, motion, relative humidity, solar

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

105

Demand response enabling technology development  

E-Print Network [OSTI]

occupied Bay Area house under study. Passive Proximity ACPASSIVE PROXIMITY AC CURRENT SENSOR 27 WIRELESSLY CONTROLLED MONITORING-OUTLETS28 WIRELESS MONITORING OF A TEST HOUSE House Meter”. ) Some final observations for sensors a) Size matters: Though the passive

2006-01-01T23:59:59.000Z

106

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

107

Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

108

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

109

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

110

Demand response-enabled autonomous control for interior space conditioning in residential buildings.  

E-Print Network [OSTI]

Demand Response Autonomous Controlssystem under the context of demand response for residential10] E. Arens et al. , Demand response enabling technology

Chen, Xue

2008-01-01T23:59:59.000Z

111

Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot  

E-Print Network [OSTI]

Martin Aspen. 2006. Demand Response Enabling TechnologiesDon. 2007. “Pricing for Demand Response from Residential andthe Level of Demand Response,” Power Point Presentation, 24

Herter, Karen

2010-01-01T23:59:59.000Z

112

When it comes to Demand Response, is FERC its Own Worst Enemy?  

E-Print Network [OSTI]

made between traditional demand response (DR) programs andpricing. Traditional demand response programs typically payFor overviews of demand response technologies and program

Bushnell, James; Hobbs, Benjamin; Wolak, Frank A.

2009-01-01T23:59:59.000Z

113

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

114

Distributed Automated Demand Response - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore National Laboratory Contact LLNL About This Technology...

115

Regulation Services with Demand Response - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created...

116

PIER: Demand Response Research Center Director, Mary Ann Piette  

E-Print Network [OSTI]

1 PIER: Demand Response Research Center Director, Mary Ann Piette Program Development and Outreach Response Research Plan #12;2 Demand Response Research Center Objective Scope Stakeholders Develop, prioritize, conduct and disseminate multi- institutional research to facilitate Demand Response. Technologies

117

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

118

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

119

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

120

Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest  

E-Print Network [OSTI]

of fully automated demand response in large facilities,2009). Open Automated Demand Response CommunicationsOpen Automated Demand Response Technology Demonstration

Piette, Mary Ann

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

122

Automated demand response applied to a set of commercial facilities.  

E-Print Network [OSTI]

?? Commercial facility demand response refers to voluntary actions by customers that change their consumption of electric power in response to price signals, incentives, or… (more)

Lincoln, Donald F.

2010-01-01T23:59:59.000Z

123

Automated demand response applied to a set of commercial buildings.  

E-Print Network [OSTI]

??Commercial facility demand response refers to voluntary actions by customers that change their consumption of electric power in response to price signals, incentives, or directions… (more)

Lincoln, Donald

2010-01-01T23:59:59.000Z

124

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

125

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

126

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

127

Value of Information References  

SciTech Connect (OSTI)

This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

Morency, Christina

2014-12-12T23:59:59.000Z

128

Value of Information References  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

Morency, Christina

129

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

130

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

131

DEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT  

E-Print Network [OSTI]

of the response of travelers to real-time pre- trip information. The demand simulator is an extension of dynamicDEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT Constantinos Antoniou, Moshe Ben-Akiva, Michel Bierlaire, and Rabi Mishalani Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract

Bierlaire, Michel

132

Global Energy: Supply, Demand, Consequences, Opportunities  

SciTech Connect (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2008-08-14T23:59:59.000Z

133

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

134

Real-Time Demand Side Energy Management  

E-Print Network [OSTI]

Real-Time Demand Side Energy Management Annelize Victor Michael Brodkorb Sr. Business Consultant Business Development Manager Aspen Technology, Inc. Aspen Technology España, S.A. Houston, TX Barcelona, Spain ABSTRACT To remain... competitive, manufacturers must capture opportunities to increase bottom-line profitability. The goal of this paper is to present a new methodology for reducing energy costs – “Demand-Side Energy Management.” Learn how process manufacturers assess energy...

Victor, A.; Brodkorb, M.

2006-01-01T23:59:59.000Z

135

NEWTON's General Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Science References General Science References Do you have a great general science reference link? Please click our Ideas page. Featured Reference Links: First.gov Science and Technology First.gov Science and Technology This site, sponsered by the US Government provides reference links to topics on science, telecommunications, computers, research agencies, and news. NASA Science NASA Science NASA Science, is a website sponsered by NASA, that supplies resources for understanding our world and the world above. Topics include earth science, heliophysics, the planets, astrophysics and much more. There is also an educator page! Nobel Laueate Listings and Stories Nobel Laueate Listings and Stories See the official site for the Nobel Prize, and read biographies about all of the Nobel Laureates, and there life changing discoveries and accomplishments.

136

Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment.  

E-Print Network [OSTI]

??The advancement of renewable energy technologies and the deregulation of theelectricity market have seen the emergence of Demand response (DR) programs. Demand response is a… (more)

Adika, Christopher Otieno

2014-01-01T23:59:59.000Z

137

Mass Market Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

138

Demand Response Assessment INTRODUCTION  

E-Print Network [OSTI]

Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

139

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

140

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and...

142

Chapter 3 Demand-Side Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

resources result from one of two methods of reducing load: energy efficiency or demand response load management. The energy efficiency method designs and deploys technologies...

143

How to Get More Response from Demand Response  

SciTech Connect (OSTI)

Despite all the rhetoric, demand response's contribution to meet peak load will remain elusive in the absence of enabling technology and standardized business protocols. (author)

Neumann, Scott; Sioshansi, Fereidoon; Vojdani, Ali; Yee, Gaymond

2006-10-15T23:59:59.000Z

144

Smart Buildings and Demand Response  

Science Journals Connector (OSTI)

Advances in communications and control technology the strengthening of the Internet and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto?DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components systems end?uses and whole building energy performance metrics. The paper presents a framework about when energy is used levels of services by energy using systems granularity of control and speed of telemetry. DR when defined as a discrete event requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

2011-01-01T23:59:59.000Z

145

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

146

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

147

Demand Response Programs for Oregon  

E-Print Network [OSTI]

Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

148

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

149

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

150

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

151

Retrofitting Existing Buildings for Demand Response & Energy Efficiency  

E-Print Network [OSTI]

Retrofitting Existing Buildings for Demand Response & Energy Efficiency www, enable demand response, improve productivity for older facilities. - Use technologies which minimize are notified by PG&E by 3pm the day prior to the critical event. - Customers with Auto-Demand Response enabled

California at Los Angeles, University of

152

Performance analysis of demand planning approaches for aggregating, forecasting and disaggregating interrelated demands  

Science Journals Connector (OSTI)

A synchronized and responsive flow of materials, information, funds, processes and services is the goal of supply chain planning. Demand planning, which is the very first step of supply chain planning, determines the effectiveness of manufacturing and logistic operations in the chain. Propagation and magnification of the uncertainty of demand signals through the supply chain, referred to as the bullwhip effect, is the major cause of ineffective operation plans. Therefore, a flexible and robust supply chain forecasting system is necessary for industrial planners to quickly respond to the volatile demand. Appropriate demand aggregation and statistical forecasting approaches are known to be effective in managing the demand variability. This paper uses the bivariate VAR(1) time series model as a study vehicle to investigate the effects of aggregating, forecasting and disaggregating two interrelated demands. Through theoretical development and systematic analysis, guidelines are provided to select proper demand planning approaches. A very important finding of this research is that disaggregation of a forecasted aggregated demand should be employed when the aggregated demand is very predictable through its positive autocorrelation. Moreover, the large positive correlation between demands can enhance the predictability and thus result in more accurate forecasts when statistical forecasting methods are used.

Argon Chen; Jakey Blue

2010-01-01T23:59:59.000Z

153

Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf Reference Shelf Find reference sources Questions? 505-667-5809 Email Biography Biographies of Women in Science Biography.com Marquis Who's Who NobelPrize.org Nobel Prize Internet Archive Calculators Currency Converter OnlineConversion.com Wolfram|Alpha Computational Knowledge Engine Dictionaries Oxford English Dictionary Merriam-Webster Dictionary DOD Dictionary of Military Terms Encyclopedias Britannica Online Columbia Encyclopedia Wikipedia Grants & Funding DOE Office of Science Grants & Contracts National Science Foundation National Institutes of Health Grants.Gov FedBizOpps.gov Los Alamos Info Los Alamos County Los Alamos Historical Society University of New Mexico - Los Alamos Campus Maps Atlapedia Online Perry-Casteneda Library Map Collection U.S. Gazetteer

154

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

155

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

156

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

157

Tips: References | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

References References Tips: References April 11, 2012 - 9:03am Addthis Tips: References The following resources were used to develop the Energy Savers Guide: Tips on Saving Money and Energy at Home: Alternative Fuels and Advanced Vehicles Data Center American Council for an Energy-Efficient Economy Cool Roof Rating Council Database of State Incentives for Renewables & Efficiency (DSIRE) DOE Building America DOE Building Technologies Program DOE Building Technologies Program, 2010 Buildings Energy Databook DOE Energy Information Administration Residential Energy Consumption Survey DOE/EPA Fuel Economy Guide DOE Federal Energy Management Program DOE Office of Electricity Delivery and Energy Reliability ENERGY STAR® Green Roofs for Healthy Cities National Renewable Energy Laboratory

158

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

159

RTP Customer Demand Response  

Science Journals Connector (OSTI)

This paper provides new evidence on customer demand response to hourly pricing from the largest and...real-time pricing...(RTP) program in the United States. RTP creates value by inducing load reductions at times...

Steven Braithwait; Michael O’Sheasy

2002-01-01T23:59:59.000Z

160

World Energy Demand  

Science Journals Connector (OSTI)

A reliable forecast of energy resources, energy consumption, and population in the future is a ... So, instead of absolute figures about future energy demand and sources worldwide, which would become...3.1 correl...

Giovanni Petrecca

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Low demand for nontraditional cookstove technologies  

Science Journals Connector (OSTI)

...alternatives in India—A review . Renew Sustain Energy...perspective . Biomass Bioenergy 33 ( 1 ): 70 – 78 . 10...Countries of Asia: A Literature Review ( Health Effects Institute , Boston...Bangladesh . Biomass Bioenergy 24 ( 4–5 ): 277...

Ahmed Mushfiq Mobarak; Puneet Dwivedi; Robert Bailis; Lynn Hildemann; Grant Miller

2012-01-01T23:59:59.000Z

162

Low demand for nontraditional cookstove technologies  

Science Journals Connector (OSTI)

...in India—A review . Renew Sustain...perspective . Biomass Bioenergy 33 ( 1 ): 70 – 78...Countries of Asia: A Literature Review ( Health Effects Institute , Boston...Bangladesh . Biomass Bioenergy 24 ( 4–5 ): 277...Institute for the Environment and the Shorenstein Asia-Pacific...

Ahmed Mushfiq Mobarak; Puneet Dwivedi; Robert Bailis; Lynn Hildemann; Grant Miller

2012-01-01T23:59:59.000Z

163

Home Network Technologies and Automating Demand Response  

E-Print Network [OSTI]

potential role of home automation networks in implementinghow existing and future home automation systems may providehome networks" and "home automation" are frequently used

McParland, Charles

2010-01-01T23:59:59.000Z

164

Home Network Technologies and Automating Demand Response  

E-Print Network [OSTI]

side. Table 1. US Energy Consumption by Sector (2009 -half of all energy consumption in the US. On a per customer

McParland, Charles

2010-01-01T23:59:59.000Z

165

252 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 1, JANUARY 2004 A CMOS Subbandgap Reference Circuit With 1-V Power Supply Voltage  

E-Print Network [OSTI]

252 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 1, JANUARY 2004 A CMOS Subbandgap Reference management circuits [1]. As process technologies go into the deep-submicron eras and the demand for battery) as well as design margin. To keep pace with supply voltage requirements of a state-of-the-art CMOS process

Ayers, Joseph

166

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

167

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

168

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

169

Poroelastic references  

SciTech Connect (OSTI)

This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

Christina Morency

2014-12-12T23:59:59.000Z

170

Poroelastic references  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

Christina Morency

171

Changing Energy Demand Behavior: Potential of Demand-Side Management  

Science Journals Connector (OSTI)

There is a great theoretical potential to save resources by managing our demand for energy. However, demand-side management (DSM) programs targeting behavioral patterns of...

Dr. Sylvia Breukers; Dr. Ruth Mourik…

2013-01-01T23:59:59.000Z

172

Integrated Predictive Demand Response Controller Research Project |  

Broader source: Energy.gov (indexed) [DOE]

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

173

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

174

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

175

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

176

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

177

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

178

Barrier Immune Radio Communications for Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Barrier Immune Radio Communications for Demand Response Barrier Immune Radio Communications for Demand Response Title Barrier Immune Radio Communications for Demand Response Publication Type Report LBNL Report Number LBNL-2294e Year of Publication 2009 Authors Rubinstein, Francis M., Girish Ghatikar, Jessica Granderson, Paul Haugen, Carlos Romero, and David S. Watson Keywords technologies Abstract Various wireless technologies were field-tested in a six-story laboratory building to identify wireless technologies that can scale for future DR applications through very low node density power consumption, and unit cost. Data analysis included analysis of the signal-to-noise ratio (SNR), packet loss, and link quality at varying power levels and node densities. The narrowband technologies performed well, penetrating the floors of the building with little loss and exhibiting better range than the wideband technology. 900 MHz provided full coverage at 1 watt and substantially complete coverage at 500 mW at the test site. 900 MHz was able to provide full coverage at 100 mW with only one additional relay transmitter, and was the highest-performing technology in the study. 2.4 GHz could not provide full coverage with only a single transmitter at the highest power level tested (63 mW). However, substantially complete coverage was provided at 2.4 GHz at 63 mW with the addition of one repeater node.

179

PUBLISH ON DEMAND Recasting the Textbook  

E-Print Network [OSTI]

of history helped students evaluate the sources of information and better understand the perspectives from which history is written? WHAT WE SET OUT TO DO We recast the history textbook as an edited on- demand- source documents and interactive technology. WHAT WE FOUND High school students accessed our database

Das, Rhiju

180

Demand Response In California  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

182

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

183

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

184

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

185

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

186

Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect (OSTI)

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

187

Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule  

SciTech Connect (OSTI)

Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

Konzek, G.J.; Smith, R.I.

1988-07-01T23:59:59.000Z

188

Milli-Q Reference Water Purification System  

E-Print Network [OSTI]

Milli-Q® Reference Water Purification System The reference for ultrapure water systems EMD the requirements of the most demanding norms. We've achieved all this with a new purification strategy. Water. This water is sent through a small recirculation loop to the POD pak, where a final purification step

Woodall, Jerry M.

189

International Energy Agency Technology Roadmap for Wind Energy | Open  

Open Energy Info (EERE)

Technology Roadmap for Wind Energy Technology Roadmap for Wind Energy Jump to: navigation, search Name International Energy Agency Technology Roadmap for Wind Energy Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Market analysis, Technology characterizations Resource Type Guide/manual Website http://www.iea.org/Papers/2009 References Technology Roadmap for Wind Energy[1] Summary "To achieve this ambitious goal, the IEA has undertaken an effort to develop a series of global technology roadmaps covering 19 technologies, under international guidance and in close consultation with industry. These technologies are evenly divided among demand side and supply side technologies. This wind roadmap is one of the initial roadmaps being

190

Improving aircraft composite inspections using optimized reference standards  

SciTech Connect (OSTI)

The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring this continued airworthiness. The FAA`s Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed.

Roach, D.; Dorrell, L. [Sandia National Labs., Albuquerque, NM (United States). FAA Airworthiness Assurance NDI Validation Center; Kollgaard, J. [Boeing Commercial Aircraft Co., Seattle, WA (United States); Dreher, T. [United Airlines (United States)

1998-10-01T23:59:59.000Z

191

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

192

Subject: References:  

Broader source: Energy.gov (indexed) [DOE]

Subject: Subject: References: DEAR 970.3102-2 Compensation for personal services DEAR 970.5204-13 Allowable costs and fixed-fee (Management and operating contracts) DEAR 970.5204-14 Allowable costs and fixed-fee (support contracts) When is this ~\.cquisition Letter (AL) Effective? This AL is effective 10 days from the date of issuance. This gui~ce supersedes any previous statutory cap on executive compensation. Existing contracts need to be reviewed to determine whether contract terms and conditions are consistent with the guidance in this AL, or whether contract modifications are necessary. When Does this AL Expire? This AL remain;; in effect until superseded or canceled. Whom do you Contact for More Information? Contact the Office of Procurement and Assistance Policy, for questions pertaining to the

193

Towards continuous policy-driven demand response in data centers  

Science Journals Connector (OSTI)

Demand response (DR) is a technique for balancing electricity supply and demand by regulating power consumption instead of generation. DR is a key technology for emerging smart electric grids that aim to increase grid efficiency, while incorporating ... Keywords: blink, power, renewable energy, storage

David Irwin; Navin Sharma; Prashant Shenoy

2011-08-01T23:59:59.000Z

194

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network [OSTI]

to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient...

Epstein, G. J.; Fuller, W. H.

195

EIA - AEO2010 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Gas Demand Gas Demand Annual Energy Outlook 2010 with Projections to 2035 Natural Gas Demand Figure 68. Regional growth in nonhydroelectric renewable electricity capacity including end-use capacity, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 69. Annual average lower 48 wellhead and Henry Hub spot market prices for natural gas, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 70. Ratio of low-sulfur light crude oil price to Henry Hub natural gas price on an energy equivalent basis, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 71. Annual average lower 48 wellhead prices for natural gas in three technology cases, 1990-2035. Click to enlarge » Figure source and data excel logo Figure 72. Annual average lower 48 wellhead prices for natural gas in three oil price cases, 1990-2035

196

Technology Selection Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio Behavior Based...

197

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

SciTech Connect (OSTI)

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

198

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network [OSTI]

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

199

A review of demand-side management policy in the UK  

Science Journals Connector (OSTI)

Abstract Demand-side management (DSM) refers to actions undertaken on the demand side of energy metres. A broad definition of DSM is proposed to include current policy objectives for emissions reduction, energy security and affordability, and encompasses energy efficiency, demand response, and on-site back-up generation and storage. The paper reviews the concept of DSM, outlines the historical impacts of DSM globally since the energy crises of the 1970s, analyses UK DSM policy, and examines the influence of EU Directives on UK DSM policy, as the country is currently deciding on how to include the demand-side in its Electricity Market Reform proposals and wider energy policy. Much of the focus of previous research has been on DSM technological trials and modelling studies rather than DSM policy and the paper contributes to filling this gap. Policy recommendations for the UK context are discussed, and it is clear that the success of DSM policies is determined primarily by regulatory support and utility financial incentives. It is important that policy clarity is provided and that current and new policies do not overlap.

Peter Warren

2014-01-01T23:59:59.000Z

200

10.1177/0092070304267108 ARTICLEJOURNAL OF THE ACADEMY OF MARKETING SCIENCE WINTER 2005Fibich et al. / PRICE ELASTICITY OF DEMAND The Dynamics of Price Elasticity  

E-Print Network [OSTI]

. / PRICE ELASTICITY OF DEMAND The Dynamics of Price Elasticity of Demand in the Presence of Reference Price derive an expression for the price elasticity of demand in the presence of reference price effects. The effectof reference price is most noticeable immediately after a price change, before consumers have had

Fibich, Gadi

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

202

Demand Response | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

203

Understanding and Analysing Energy Demand  

Science Journals Connector (OSTI)

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision making process of energy demand. It then provides a set of simple ... (such as price and inco...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

204

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

205

Marketing Demand-Side Management  

E-Print Network [OSTI]

they the only game in town, enjoying a captive market. Demand-side management (DSM) again surfaced as a method for increasing customer value and meeting these competitive challenges. In designing and implementing demand-side management (DSM) programs we... have learned a great deal about what it takes to market and sell DSM. This paper focuses on how to successfully market demand-side management. KEY STEPS TO MARKETING DEMAND-SIDE MANAGEMENT Management Commitment The first key element in marketing...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

206

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967"...

207

A Look Ahead at Demand Response in New England  

SciTech Connect (OSTI)

The paper describes the demand response programs developed and in operation in New England, and the revised designs for participation in the forward capacity market. This description will include how energy efficiency, demand-side resources, and distributed generation are eligible to participate in this new forward capacity market. The paper will also discuss various methods that can be used to configure and communicate with demand response resources and important concerns in specifying interfaces that accommodate multiple technologies and allow technology choice and evolution.

Burke, Robert B.; Henderson, Michael I.; Widergren, Steven E.

2008-08-01T23:59:59.000Z

208

Tips: References | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: References Tips: References Tips: References April 11, 2012 - 9:03am Addthis Tips: References The following resources were used to develop the Energy Savers Guide: Tips on Saving Money and Energy at Home: Alternative Fuels and Advanced Vehicles Data Center American Council for an Energy-Efficient Economy Cool Roof Rating Council Database of State Incentives for Renewables & Efficiency (DSIRE) DOE Building America DOE Building Technologies Program DOE Building Technologies Program, 2010 Buildings Energy Databook DOE Energy Information Administration Residential Energy Consumption Survey DOE/EPA Fuel Economy Guide DOE Federal Energy Management Program DOE Office of Electricity Delivery and Energy Reliability ENERGY STAR® Green Roofs for Healthy Cities National Renewable Energy Laboratory

209

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

210

ERCOT Demand Response Paul Wattles  

E-Print Network [OSTI]

ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

Mohsenian-Rad, Hamed

211

Pricing data center demand response  

Science Journals Connector (OSTI)

Demand response is crucial for the incorporation of renewable energy into the grid. In this paper, we focus on a particularly promising industry for demand response: data centers. We use simulations to show that, not only are data centers large loads, ... Keywords: data center, demand response, power network, prediction based pricing

Zhenhua Liu; Iris Liu; Steven Low; Adam Wierman

2014-06-01T23:59:59.000Z

212

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

213

Building Energy Software Tools Directory: Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Demand Modeling Energy Demand Modeling The software is intended to be used for Energy Demand Modeling. This can be utilized from regional to national level. A Graphical User Interface of the software takes the input from the user in a quite logical and sequential manner. These input leads to output in two distinct form, first, it develops a Reference Energy System, which depicts the flow of energy from the source to sink with all the losses incorporated and second, it gives a MATLAB script file for advance post processing like graphs, visualization and optimizations to develop and evaluate the right energy mix policy frame work for a intended region. Keywords Reference Energy System, Software, GUI, Planning, Energy Demand Model EDM, Energy Policy Planning Validation/Testing

214

Overview of Demand Response  

Broader source: Energy.gov (indexed) [DOE]

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

215

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

216

Opportunities for Automated Demand Response in Wastewater Treatment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities for Automated Demand Response in Wastewater Treatment Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study Title Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study Publication Type Report LBNL Report Number LBNL-6056E Year of Publication 2012 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2012 Publisher CEC/LBNL Keywords market sectors, technologies Abstract This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities.

217

NETL: Reference Shelf - Techline Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Oil & Natural Gas Technologies Reference Shelf NETL Oil & Natural Gas Technologies Reference Shelf Archive Reports 2012: December, 2012 Final Project Report DE-NT0006554 GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development [PDF-14.6MB] November, 2012 Final Project Report 08121-2902-02 Technologies of the Future for Pipeline Monitoring and Inspection [PDF-2.47MB] November, 2012 Final Project Report 07122-22 Petrophysical Studies of Unconventional Gas Reservoirs Using High-resolution Rock Imaging [PDF-27.7MB] November, 2012 Final Project Report 08122-35 The Environmentally Friendly Drilling Systems Program [PDF-4.33] October, 2012 Final Project Report DE-FE0003537 Next Generation Surfactants for Improved Chemical Flooding Technology [PDF-1.91MB] October, 2012 Final Project Report 08123-02 Field Demonstration of Alkaline Surfactant Polymer Floods in Mature Oil Reservoirs Brookshire Dome, Texas [PDF-5.06MB]

218

Definition: Interruptible Load Or Interruptible Demand | Open Energy  

Open Energy Info (EERE)

Interruptible Load Or Interruptible Demand Interruptible Load Or Interruptible Demand Jump to: navigation, search Dictionary.png Interruptible Load Or Interruptible Demand Demand that the end-use customer makes available to its Load-Serving Entity via contract or agreement for curtailment.[1] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition No reegle definition available. Also Known As non-firm service Related Terms transmission lines, electricity generation, transmission line, firm transmission service, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interruptible_Load_Or_Interruptible_Demand&oldid=502615"

219

Assisting Mexico in Developing Energy Supply and Demand Projections | Open  

Open Energy Info (EERE)

Assisting Mexico in Developing Energy Supply and Demand Projections Assisting Mexico in Developing Energy Supply and Demand Projections Jump to: navigation, search Name Assisting Mexico in Developing Energy Supply and Demand Projections Agency/Company /Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Software/modeling tools Website http://www.dis.anl.gov/news/Me Country Mexico UN Region Latin America and the Caribbean References Assisting Mexico in Developing Energy Supply and Demand Projections[1] "CEEESA and the team of experts from Mexico analyzed the country's entire energy supply and demand system using CEEESA's latest version of the popular ENPEP-BALANCE software. The team developed a system representation, a so-called energy network, using ENPEP's powerful graphical user

220

ELECTRICITY DEMAND AND SUPPLY PROJECTIONS IN IEA WORLD ENERGY SCENARIOS: HOW MUCH, HOW CLEAN?  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): The presentation will highlight and discuss projections for electricity demand up to 2050 based on the recent publication Energy Technology Perspectives 2012:...

Frankl, Paolo

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

222

Open Automated Demand Response for Small Commerical Buildings  

SciTech Connect (OSTI)

This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

2009-05-01T23:59:59.000Z

223

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

224

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

225

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

226

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

Levy, Roger

2014-01-01T23:59:59.000Z

227

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

228

Barrier Immune Radio Communications for Demand Response  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

Rubinstein, Francis

2010-01-01T23:59:59.000Z

229

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

230

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

231

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

232

Option Value of Electricity Demand Response  

E-Print Network [OSTI]

Table 1. “Economic” demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

233

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

234

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

235

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

236

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

237

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

238

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

239

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

240

Siemens Technology Accelerator | Open Energy Information  

Open Energy Info (EERE)

Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary Division ) References: Siemens Technology Accelerator1...

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ScopingStudyReport-AppxC-Homework-013105.doc -1 -DEMAND RESPONSE RESEARCH CENTER SCOPING  

E-Print Network [OSTI]

ScopingStudyReport-AppxC-Homework-013105.doc - 1 - DEMAND RESPONSE RESEARCH CENTER SCOPING STUDYStudyReport-AppxC-Homework-013105.doc - 2 - Preparing for the Roundtable Session (HOMEWORK ASSIGNMENT) The PIER Demand Response that advances the near-term adoption of Demand Response technologies, policies, programs, strategies

242

Pricing Data Center Demand Response Zhenhua Liu, Iris Liu, Steven Low, Adam Wierman  

E-Print Network [OSTI]

Pricing Data Center Demand Response Zhenhua Liu, Iris Liu, Steven Low, Adam Wierman California Institute of Technology Pasadena, CA, USA {zliu2,iliu,slow,adamw}@caltech.edu ABSTRACT Demand response- ularly promising industry for demand response: data centers. We use simulations to show that, not only

Wierman, Adam

243

ADB-Methods and Tools for Energy Demand Projection | Open Energy  

Open Energy Info (EERE)

ADB-Methods and Tools for Energy Demand Projection ADB-Methods and Tools for Energy Demand Projection Jump to: navigation, search Tool Summary Name: Methods and Tools for Energy Demand Projection Agency/Company /Organization: Asian Development Bank Sector: Energy Topics: Pathways analysis Resource Type: Presentation, Software/modeling tools Website: cdm-mongolia.com/files/2_Methods_Hoseok_16May2010.pdf Cost: Free Methods and Tools for Energy Demand Projection Screenshot References: Methods and Tools for Energy Demand Projection[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Methods and Tools for Energy Demand Projection" Retrieved from "http://en.openei.org/w/index.php?title=ADB-Methods_and_Tools_for_Energy_Demand_Projection&oldid=398945" Categories:

244

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma  

Broader source: Energy.gov (indexed) [DOE]

Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from 2010-2012. The objective is to engage customers in lowering peak demand using smart technologies in homes and businesses and to achieve greater efficiencies on the distribution system. The immediate goal: To defer two 165 MW power plants currently planned for

245

NETL: Carbon Storage - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

246

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

247

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

248

Honeywell Demonstrates Automated Demand Response Benefits for...  

Broader source: Energy.gov (indexed) [DOE]

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

249

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

250

Tank characterization reference guide  

SciTech Connect (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

251

COMMENTS OF THE DEMAND RESPONSE AND SMART GRID COALITION  

Broader source: Energy.gov (indexed) [DOE]

1 1 COMMENTS OF THE DEMAND RESPONSE AND SMART GRID COALITION Department of Energy Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy July 12, 2010 The Demand Response and Smart Grid Coalition (DRSG) 1 , the trade association for companies that provide products and services in the areas of demand response and smart grid technologies, respectfully submits its comments to the Department of Energy's Request for Information "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy."

252

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

253

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

254

China-Transportation Demand Management in Beijing: Mitigation of Emissions  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in

255

Sensor Characteristics Reference Guide  

SciTech Connect (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

256

Demand Response Research in Spain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

257

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

258

Full Rank Rational Demand Systems  

E-Print Network [OSTI]

as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. “Inferring the Rank of a Matrix. ” Journal of97-102. . “A Demand System Rank Theorem. ” Econometrica 57 (

LaFrance, Jeffrey T; Pope, Rulon D.

2006-01-01T23:59:59.000Z

259

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5..., 2009 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

260

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technology & Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

262

The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers  

E-Print Network [OSTI]

One of the most pressing issues in electric utility regulation today is the extent to which demand-side management (DSM) programs should be promoted by utilities. DSM refers to energy-efficiency or conservation measures, such as insulation, more...

Rosenblum, J. I.

263

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

264

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network [OSTI]

Demand Response Projects: Technical and Market Demonstrations Philip D. Lusk Deputy Director Energy Analyst #12;PLACE CAPTION HERE. #12;#12;#12;#12;City of Port Angeles Demand Response History energy charges · Demand charges during peak period only ­ Reduced demand charges for demand response

265

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

266

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network [OSTI]

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

267

Changing quantum reference frames  

E-Print Network [OSTI]

We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects including reference frames are necessarily quantum.

Matthew C. Palmer; Florian Girelli; Stephen D. Bartlett

2014-05-21T23:59:59.000Z

268

Dynamic Stochastic Inventory Management with Reference Price Effects  

E-Print Network [OSTI]

Dynamic Stochastic Inventory Management with Reference Price Effects Xin Chen Department in which demand depends on not only the current selling price but also a memory-based reference price. Pricing and inventory decisions are made simultane- ously at the beginning of each period. Assuming all

Chen, Xin

269

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

270

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

271

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

272

E-Print Network 3.0 - archival reference final Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the technological approach referred to as a distributed... during disaster recovery. In reference to data storage, it is an archive that cannot be accessed by any... , including...

273

Facilitating Renewable Integration by Demand Response  

Science Journals Connector (OSTI)

Demand response is seen as one of the resources ... expected to incentivize small consumers to participate in demand response. This chapter models the involvement of small consumers in demand response programs wi...

Juan M. Morales; Antonio J. Conejo…

2014-01-01T23:59:59.000Z

274

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

Joseph, Eto

2014-01-01T23:59:59.000Z

275

Value of Demand Response -Introduction Klaus Skytte  

E-Print Network [OSTI]

Value of Demand Response - Introduction Klaus Skytte Systems Analysis Department February 7, 2006 Energinet.dk, Ballerup #12;What is Demand Response? Demand response (DR) is the short-term response

276

World Energy Use — Trends in Demand  

Science Journals Connector (OSTI)

In order to provide adequate energy supplies in the future, trends in energy demand must be evaluated and projections of future demand developed. World energy use is far from static, and an understanding of the demand

Randy Hudson

1996-01-01T23:59:59.000Z

277

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

278

Balancing of Energy Supply and Residential Demand  

Science Journals Connector (OSTI)

Power demand of private households shows daily fluctuations and ... (BEV) and heat pumps. This additional demand, especially when it remains unmanaged, will ... to an increase in fluctuations. To balance demand,

Martin Bock; Grit Walther

2014-01-01T23:59:59.000Z

279

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

280

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

282

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

283

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

284

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's...

285

Sandia National Laboratories: demand response inverter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

286

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

287

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

288

Marketing & Driving Demand: Social Media Tools & Strategies ...  

Broader source: Energy.gov (indexed) [DOE]

Demand: Social Media Tools & Strategies - January 16, 2011 Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 January 16, 2011 Conference Call...

289

Marketing & Driving Demand Collaborative - Social Media Tools...  

Broader source: Energy.gov (indexed) [DOE]

Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the BetterBuildings...

290

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

291

Assessing the Control Systems Capacity for Demand Response in California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Control Systems Capacity for Demand Response in California the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type Report LBNL Report Number LBNL-5319E Year of Publication 2012 Authors Ghatikar, Girish, Aimee T. McKane, Sasank Goli, Peter L. Therkelsen, and Daniel Olsen Date Published 01/2012 Publisher CEC/LBNL Keywords automated dr, controls and automation, demand response, dynamic pricing, industrial controls, market sectors, openadr Abstract California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

292

Energy prices and the adoption of energy-saving technology  

E-Print Network [OSTI]

This paper investigates the link between factor prices, technology and factor demands. I estimate the effect of price-induced technology adoption on energy demand in the U.S. manufacturing sector, using plant data from the ...

Linn, Joshua

2006-01-01T23:59:59.000Z

293

Water demand management in Kuwait  

E-Print Network [OSTI]

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

294

LNG demand, shipping will expand through 2010  

SciTech Connect (OSTI)

The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

True, W.R.

1998-02-09T23:59:59.000Z

295

EIA - Annual Energy Outlook 2008 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand Natural Gas Demand Annual Energy Outlook 2008 with Projections to 2030 Natural Gas Demand Figure 72. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 73. Total natural gas consumption, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Fastest Increase in Natural Gas Use Is Expected for the Buildings Sectors In the reference case, total natural gas consumption increases from 21.7 trillion cubic feet in 2006 to a peak value of 23.8 trillion cubic feet in 2016, followed by a decline to 22.7 trillion cubic feet in 2030. The natural gas share of total energy consumption drops from 22 percent in 2006

296

Safeguards Education and Training: Short Term Supply vs. Demand  

SciTech Connect (OSTI)

Much has been written and discussed in the past several years about the effect of the aging nuclear workforce on the sustainability of the U.S. safeguards and security infrastructure. This paper discusses the 10-15 year supply and demand forecast for nuclear material control and accounting specialists. The demand side of the review includes control and accounting of the materials at U.S. DOE and NRC facilities, and the federal oversight of those MC&A programs. The cadre of experts referred to as 'MC&A Specialists' available to meet the demand goes beyond domestic MC&A to include international programs, regulatory and inspection support, and so on.

Mathews, Carrie E.; Crawford, Cary E.

2004-07-16T23:59:59.000Z

297

Future scenarios and trends in energy generation in brazil: supply and demand and mitigation forecasts  

Science Journals Connector (OSTI)

Abstract The structure of the Brazilian energy matrix defines Brazil as a global leader in power generation from renewable sources. In 2011, the share of renewable sources in electricity production reached 88.8%, mainly due to the large national water potential. Although the Brazilian energy model presents a strong potential for expansion, the total energy that could be used with most current renewable technologies often outweighs the national demand. The current composition of the national energy matrix has outstanding participation of hydropower, even though the country has great potential for the exploitation of other renewable energy sources such as wind, solar and biomass. This document therefore refers to the trend of evolution of the Brazilian Energy Matrix and exposes possible mitigation scenarios, also considering climate change. The methodology to be used in the modeling includes the implementation of the LEAP System (Long-range Energy Alternatives Planning) program, developed by the Stockholm Environment Institute, which allows us to propose different scenarios under the definition of socioeconomic scenarios and base power developed in the context of the REGSA project (Promoting Renewable Electricity Generation in South America). Results envision future scenarios and trends in power generation in Brazil, and the projected demand and supply of electricity for up to 2030.

José Baltazar Salgueirinho Osório De Andrade Guerra; Luciano Dutra; Norma Beatriz Camisão Schwinden; Suely Ferraz de Andrade

2014-01-01T23:59:59.000Z

298

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

299

Modeling supermarket refrigeration energy use and demand  

SciTech Connect (OSTI)

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

300

Demand responsive programs - an emerging resource for competitive electricity markets?  

SciTech Connect (OSTI)

The restructuring of regional electricity markets in the U.S. has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created significant new opportunities for technologies and business approaches that allow load serving entities and other aggregators, to control and manage the load patterns of their wholesale or retail end-users. These technologies and business approaches for manipulating end-user load shapes are known as Load Management or, more recently, Demand Responsive programs. Lawrence Berkeley National Laboratory (LBNL) is conducting case studies on innovative demand responsive programs and presents preliminary results for five case studies in this paper. These case studies illustrate the diversity of market participants and range of technologies and business approaches and focus on key program elements such as target markets, market segmentation and participation results; pricing scheme; dispatch and coordination; measurement, verification, and settlement; and operational results where available.

Heffner, Grayson C. Dr.; Goldman, Charles A.

2001-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrating Demand into the U.S. Electric Power System: Technical, Economic, and Regulatory Frameworks for Responsive Load  

E-Print Network [OSTI]

for Responsive/Adaptive Load by Jason W. Black Massachusetts Institute of Technology Submitted to the Engineering integration of demand response. Integrating demand into the US electricity system will allow the development, and market issues to determine a system structure that provides incentives for demand response. An integrated

de Weck, Olivier L.

302

Retail Demand Response in Southwest Power Pool  

Broader source: Energy.gov (indexed) [DOE]

LBNL-1470E LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

303

Coordination of Energy Efficiency and Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

044E 044E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Coordination of Energy Efficiency and Demand Response Charles Goldman, Michael Reid, Roger Levy and Alison Silverstein Environmental Energy Technologies Division January 2010 The work described in this report was funded by the Department of Energy Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes

304

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

305

Assessment of Demand Response and Advanced Metering  

E-Print Network [OSTI]

#12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

Tesfatsion, Leigh

306

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

307

Demand Side Management in Rangan Banerjee  

E-Print Network [OSTI]

Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

Banerjee, Rangan

308

AVTA: PHEV Demand and Energy Cost Demonstration Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report describes results from a demonstration with Tacoma Power on plug-in hybrid electric vehicle demand and energy cost, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

309

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

310

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

311

Incorporating Demand Response into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

Aggregator Programs. Demand Response Measurement andIncorporating Demand Response into Western Interconnection13 Demand Response Dispatch

Satchwell, Andrew

2014-01-01T23:59:59.000Z

312

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

313

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

314

Global energy demand to 2060  

SciTech Connect (OSTI)

The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

1989-01-01T23:59:59.000Z

315

On making energy demand and network constraints compatible in the last mile of the power grid  

Science Journals Connector (OSTI)

Abstract In the classical electricity grid power demand is nearly instantaneously matched by power supply. In this paradigm, the changes in power demand in a low voltage distribution grid are essentially nothing but a disturbance that is compensated for by control at the generators. The disadvantage of this methodology is that it necessarily leads to a transmission and distribution network that must cater for peak demand. So-called smart meters and smart grid technologies provide an opportunity to change this paradigm by using demand side energy storage to moderate instantaneous power demand so as to facilitate the supply-demand match within network limitations. A receding horizon model predictive control method can be used to implement this idea. In this paradigm demand is matched with supply, such that the required customer energy needs are met but power demand is moderated, while ensuring that power flow in the grid is maintained within the safe operating region, and in particular peak demand is limited. This enables a much higher utilisation of the available grid infrastructure, as it reduces the peak-to-base demand ratio as compared to the classical control methodology of power supply following power demand. This paper investigates this approach for matching energy demand to generation in the last mile of the power grid while maintaining all network constraints through a number of case studies involving the charging of electric vehicles in a typical suburban low voltage distribution network in Melbourne, Australia.

Iven Mareels; Julian de Hoog; Doreen Thomas; Marcus Brazil; Tansu Alpcan; Derek Jayasuriya; Valentin Müenzel; Lu Xia; Ramachandra Rao Kolluri

2014-01-01T23:59:59.000Z

316

Hawaii demand-side management resource assessment. Final report: DSM opportunity report  

SciTech Connect (OSTI)

The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

NONE

1995-08-01T23:59:59.000Z

317

High frequency reference electrode  

DOE Patents [OSTI]

A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

Kronberg, J.W.

1994-05-31T23:59:59.000Z

318

Quantifying flexibility of residential thermostatically controlled loads for demand response: a data-driven approach  

Science Journals Connector (OSTI)

Power systems are undergoing a paradigm shift due to the influx of variable renewable generation to the supply side. The resulting increased uncertainty has system operators looking to new resources, enabled by smart grid technologies, on the demand ... Keywords: demand response, inverse building model, load shedding, thermostatically controlled loads

Emre Can Kara; Michaelangelo D. Tabone; Jason S. MacDonald; Duncan S. Callaway; Sila Kiliccote

2014-11-01T23:59:59.000Z

319

NETL: Innovations for Existing Plants - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf Innovations for Existing Plants Reference Shelf Program Overview Overview Publications: IEP, Recent Accomplishments Report - [PDF-1.3MB] (Oct 2007) IEP Roadmap & Program Plan [PDF-1.2MB] (May 2006) DOE/NETL'S Innovations for Existing Plants R&D Program [PDF-42KB] (Feb 2005) Improving the Environmental Performance of Today's Coal-Fired Power Plants This paper provides an overview of the Innovations for Existing Plants (IEP) Program, managed by the DOE National Energy Technology Laboratory. IEP develops advanced low-cost environmental control technologies for the existing fleet of coal-fired power plants, specifically focusing on the development of advanced mercury, NOx, PM, and acid gas emission control technology. Research is also directed at the characterization and beneficial use of coal utilization byproducts as well as at emerging electric-utility and water issues.

320

Optical voltage reference  

DOE Patents [OSTI]

An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

Rankin, R.; Kotter, D.

1994-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The benefits of combining utility-controlled demand response with residential zoned cooling  

Science Journals Connector (OSTI)

This paper evaluates the effectiveness of combining direct load control with a residential zoned-cooling technology in meeting the objectives of reducing peak demand and maintaining home comfort level. In cont...

Wen Zhou; Dean C. Mountain

2014-12-01T23:59:59.000Z

322

Quantifying stock-price response to demand fluctuations Vasiliki Plerou,1  

E-Print Network [OSTI]

Quantifying stock-price response to demand fluctuations Vasiliki Plerou,1 Parameswaran Gopikrishnan, Boston University, Boston, Massachusetts 02215 2 Department of Economics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 Received 2 July 2001; revised manuscript received 13 May 2002

Stanley, H. Eugene

323

Quality-functions for an uniform and comparable analysis of demand side management algorithms  

Science Journals Connector (OSTI)

Due to renewable energies, the feed-in to the power grid will fluctuate increasingly. As long as no highly efficient storage technology is found, the importance of demand side management (DSM) will grow. Differen...

Daniel Hölker; Daniel Brettschneider…

2014-12-01T23:59:59.000Z

324

NETL: Gasification Systems Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shelf Shelf Gasification Systems Reference Shelf TABLE OF CONTENTS Brochures Conferences and Workshops Gasification Systems Projects National Map Gasification Systems Projects and Performers Gasification Systems Project Portfolio Gasifipedia Multi-phase Flow with Interphase eXchange (MFIX) Patents Program Presentations Project Information Projects Summary Table by State Solicitations Systems and Industry Analyses Studies Technical Presentations & Papers Technology Readiness Assessment (Comprehensive Report | Overview Report) Video, Images & Photos Gasification Plant Databases CD Icon Request Gasification Technologies Information on a CD. Gasification RSS Feed Subscribe to the Gasification RSS Feed to follow website updates. LinkedIn DOE Gasification Program Group Subscribe to the LinkedIn DOE Gasification Program group for more information and discussion.

325

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

326

Expert Panel: Forecast Future Demand for Medical Isotopes | Department of  

Broader source: Energy.gov (indexed) [DOE]

Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and stimulate biomedical research. The expert panel recommends that the U.S. government build this capability around either a reactor, an accelerator or a combination of both technologies as long as isotopes for clinical and research applications can be supplied reliably, with diversity in adequate

327

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

328

Evolution of the Demand Side Management in the Smart Grid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evolution of the Demand Side Management in the Smart Grid Evolution of the Demand Side Management in the Smart Grid Speaker(s): Nathan Ota Date: October 20, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page Smart grid technology has rapidly evolved over the course of the last five years. From a demand side management perspective this includes consumer-owned Home Area Networks (HAN), network-centric HAN gateways, and a leveraging of a multitier smart grid for a variety of DSM applications. In particular, smart meters enable the consumer with electricity price information and near-real time energy usage data, but they also are the devices that consumers will most often interact. The success or failure of the in-home device is therefore critical to the larger Smart Grid success. Today, distinct DSM product categories are leading to a variety of new

329

Customer Demand Issues in SmartGrids European Platform: Relevant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Customer Demand Issues in SmartGrids European Platform: Relevant Customer Demand Issues in SmartGrids European Platform: Relevant Initiatives Speaker(s): Carlos Alvarez-Bel Date: June 26, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette SmartGrids technological platform was created by the European Commission in order to develop and identify research topics and objectives to facilitate the implementation of future electric grids. Smart grid is, by definition, user-centric, which implies that enhancing and promoting customer participation in electricity markets and systems, from efficiency to demand response, is a key goal. Efficiency targets in Europe (20% energy reduction in 2020) will probably not be met and, on the contrary, the renewable generation share target of 20% for the same year seems affordable. These

330

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

331

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

widely differing control technologies, notification options,Electric  Reliability   Technology,  LBNL,  Joseph  Eto  E. Availability F. Technology Proposed Residential Large

Levy, Roger

2014-01-01T23:59:59.000Z

332

Sample References Business Student  

E-Print Network [OSTI]

and provide them with the job description/your resume Brand Yourself- the heading should be the same as your resume and cover letter Be Consistent- use the same fonts/sizes as your resume and cover letter Pay/advice-tools/resume-cover-letter/how-to-make-the-best-use-of-references Obtaining References http

333

Wilderness Preservation : a Reference Handbook  

E-Print Network [OSTI]

Preservation: A Reference Handbook By Kenneth A. RossenbergPreservation: A Reference Handbook. Santa Barbara: ABC-CLIO,Preservation: A Reference Handbook is a comprehensive

Zimmer, Peter

1996-01-01T23:59:59.000Z

334

Energy Efficiency Technologies  

Broader source: Energy.gov [DOE]

State, local, and tribal governments can work with building and facility owners, homeowners, industry, and city energy managers to implement cost-effective energy efficiency technologies that provide the same energy requirements and services as current technologies—but with less energy demand.

335

Application Protocol Reference Architecture Application Protocol Reference Architecture  

E-Print Network [OSTI]

Application Protocol Reference Architecture 165 Chapter 7 Application Protocol Reference Architecture This chapter proposes an alternative reference architecture for application protocols. The proposed reference architecture consists of the set of possible architectures for application protocols

van Sinderen, Marten

336

NEWTON's Botany References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Botany References Botany References Do you have a great botany reference link? Please click our Ideas page. Featured Reference Links: Dave's Garden - Plant Database Dave's Garden - Plant Database Visit Dave's Garden with information and photos for 185,359 different plants! United States Department of Agriculture Plant Database USDA PLANTS Database The PLANTS Database provides standardized information about the vascular plants, mosses, liverworts, hornworts, and lichens of the U.S. and its territories. Search over 40,000 plant images of US plants. Botany.com Botany.com Botany.com offers an encyclopedia of flowers and plants and resources to help people learn how to identify any different kinds of plants. Plant Kingdom This is a good reference for looking at the plant kingdom.

337

Skeleton Technologies Group | Open Energy Information  

Open Energy Info (EERE)

Technologies Group Place: Sweden Product: Manufacturers of supercapacitors and other composite materials. References: Skeleton Technologies Group1 This article is a stub. You...

338

Technologies | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You may also want to refer to our list of helpful resources for the technology transfer process. For additional information, contact the Office of Technology Commercialization...

339

AS Technology SRL | Open Energy Information  

Open Energy Info (EERE)

Technology SRL Jump to: navigation, search Name: AS Technology SRL Place: +39 0549 951168, San Marino Zip: 47894 Product: San Marino based module manufacturer. References: AS...

340

Pretreatment Technology Plan  

SciTech Connect (OSTI)

This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

Barker, S.A. [Westinghouse Hanford Co., Richland, WA (US); Thornhill, C.K.; Holton, L.K. Jr. [Pacific Northwest Lab., Richland, WA (US)

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

342

\\{HEMSs\\} and enabled demand response in electricity market: An overview  

Science Journals Connector (OSTI)

Abstract Traditional electricity grid offers demand side management (DSM) programs for industrial plants and commercial buildings; there is no such program for residential consumers because of the lack of effective automation tools and efficient information and communication technologies (ICTs). Smart Grid is, by definition, equipped with modern automation tools such as home energy management system (HEMS), and ICTs. HEMS is an intelligent system that performs planning, monitoring and control functions of the energy utilization within premises. It is intended to offer desirable demand response according to system conditions and price value signaled by the utility. HEMS enables smart appliances to counter demand response programs according to the comfort level and priority set by the consumer. Demand response can play a key role to ensure sustainable and reliable electricity supply by reducing future generation cost, electricity prices, CO2 emission and electricity consumption at peak times. This paper focuses on the review of \\{HEMSs\\} and enabled demand response (DR) programs in various scenarios as well as incorporates various DR architectures and models employed in the smart grid. A comprehensive case study along with simulations and numerical analysis has also been presented.

Aftab Ahmed Khan; Sohail Razzaq; Asadullah Khan; Fatima Khursheed; Owais

2015-01-01T23:59:59.000Z

343

Demand Response Programs Oregon Public Utility Commission  

E-Print Network [OSTI]

Demand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director;Demand Response Results, 2004 Load Control ­ Cool Keeper ­ ID Irrigation Load Control Price Responsive

344

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

345

ConservationandDemand ManagementPlan  

E-Print Network [OSTI]

; Introduction Ontario Regulation 397/11 under the Green Energy Act 2009 requires public agencies and implement energy Conservation and Demand Management (CDM) plans starting in 2014. Requirementsofthe ConservationandDemand ManagementPlan 2014-2019 #12

Abolmaesumi, Purang

346

Energy Demand Analysis at a Disaggregated Level  

Science Journals Connector (OSTI)

The purpose of this chapter is to consider energy demand at the fuel level or at the ... . This chapter first presents the disaggregation of energy demand, discusses the information issues and introduces framewor...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

347

Seasonal temperature variations and energy demand  

Science Journals Connector (OSTI)

This paper presents an empirical study of the relationship between residential energy demand and temperature. Unlike previous studies in this ... different regions and to the contrasting effects on energy demand ...

Enrica De Cian; Elisa Lanzi; Roberto Roson

2013-02-01T23:59:59.000Z

348

Decentralized demand management for water distribution  

E-Print Network [OSTI]

. Actual Daily Demand for Model 2 . . 26 4 Predicted vs. Actual Peak Hourly Demand for Model 1 27 5 Predicted vs. Actual Peak Hourly Demand for Model 2 28 6 Cumulative Hourly Demand Distribution 7 Bryan Distribution Network 8 Typical Summer Diurnal... locating and controlling water that has not been accounted for. The Ford Meter Box Company (1987) advises the testing and recalibration of existing water meters. Because operating costs in a distribution network can be quite substantial, a significant...

Zabolio, Dow Joseph

2012-06-07T23:59:59.000Z

349

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

with hydro power and wind integration, more DR may be neededload growth, wind power integration, and fish operations are

Kiliccote, Sila

2010-01-01T23:59:59.000Z

350

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

Center for the Study of Energy Markets Paper CSEMWP-105.OASIS SDO. 2010b. “Energy Market Information Exchange (eMIX)charges. • Wholesale energy market prices are volatile, and

Ghatikar, Girish

2010-01-01T23:59:59.000Z

351

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

meters are required for measurement and verification of DRare required for measurement and verification of DR

Kiliccote, Sila

2010-01-01T23:59:59.000Z

352

Smart Grid as advanced technology enabler of demand response  

Science Journals Connector (OSTI)

Numerous papers and articles presented worldwide at different conferences and meetings have already covered the goals, objectives, architecture, and business plans of Smart Grid. The number of electric utilities ...

Clark W. Gellings; Marek Samotyj

2013-11-01T23:59:59.000Z

353

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

significantly affect electricity costs for many facilities.lower operational electricity costs and reduce grid stress.to reduce their electricity costs. Standardized OpenADR

Ghatikar, Girish

2010-01-01T23:59:59.000Z

354

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Power Administration (BPA) in the Seattle City Light (SCL)times of the year. The project was funded by BPA and SCL.BPA is a U.S. Department of Energy agency headquartered in

Kiliccote, Sila

2010-01-01T23:59:59.000Z

355

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Bonneville Power Administration (BPA) in Seattle City Light’project was funded by BPA and SCL. This report summarizesPower Administration (BPA) and Seattle City Light (SCL) DR

Kiliccote, Sila

2010-01-01T23:59:59.000Z

356

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Facility Technician) Automated Logic Corporation: Ivanembedded in the Target’s Automated Logic Corporation (ALC)

Kiliccote, Sila

2010-01-01T23:59:59.000Z

357

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network [OSTI]

this problem is to move the loads from peak to off-peak periods without changing overall electricity consumption. By using cool storage systems, energy consumption for businesses and industry can be shifted, reducing electricity costs to the consumer...

Neely, J. E.; Kasprowicz, L. M.

358

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Air Volume VFD – Variable Frequency Drive XML – Extensiblepressure reset, variable frequency drive (VFD) position

Kiliccote, Sila

2010-01-01T23:59:59.000Z

359

Regulatory risks paralyzing power industry while demand grows  

SciTech Connect (OSTI)

2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

Maize, K.; Peltier, R.

2008-01-15T23:59:59.000Z

360

Demand Response Resources in Pacific Northwest  

E-Print Network [OSTI]

Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Leveraging gamification in demand dispatch systems  

Science Journals Connector (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

362

Demand Response and Ancillary Services September 2008  

E-Print Network [OSTI]

Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

363

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

364

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

365

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

The current world-wide increase of energy demand cannot be matched by energy production and power grid updateModeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators

Paris-Sud XI, Université de

366

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

367

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

368

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

369

Smart Buildings Using Demand Response March 6, 2011  

E-Print Network [OSTI]

Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Division Lawrence Berkeley National Laboratory Demand Response Research Center 1 #12;Presentation Outline Demand Response Research Center ­ DRRC Vision and Research Portfolio Introduction to Demand

Kammen, Daniel M.

370

Physically-based demand modeling  

E-Print Network [OSTI]

for d1fferent values of insulation or control tempera- ture. Also, the results of var1ous load management. scenarios may be evaluated. 26 REFERENCES LZ] D. P. Lijesen and J. Rosing, MAdaptive Forecasting of Hourly Loads Based on Load Measurement...) Terry Marshall Calloway, B. S, , Northeast Louisiana University B. S. , Louisiana Tech University Chairman of Advisory Committee: Dr. C. W. Brice, III This thesis proposes a new methodology for modeling short-term (one hour to one day) air...

Calloway, Terry Marshall

1980-01-01T23:59:59.000Z

371

Biomass Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Focus Area: Renewable Energy, Biomass Topics: Technology characterizations Website: web.worldbank.orgWBSITEEXTERNALTOPICSEXTENERGY2EXTRENENERGYTK0,, References: Biomass...

372

References to Astrophysics Papers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

References to Astrophysics Papers References to Astrophysics Papers References to Astrophysics Papers Edward Tufte claims the most common number of references to scientific papers is zero. My five papers in astrophysics published from 1992 to 1996 continue to receive citations. Major ones are listed below. Mineo, S.; Rappaport, S.; Steinhorn, B.; Levine, A.; Gilfanov, M.; Pooley, D., 2013, The Astrophysical Journal, Volume 771, Issue 2, article id. 133, 12 pp. Spatially Resolved Star Formation Image and the Ultraluminous X-Ray Source Population in NGC 2207/IC 2163 Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A 2013, Astronomy & Astrophysics, Volume 550, id.A91. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy.

373

NEWTON's References About Mathematics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Math References Math References Do you have a great math reference link? Please click our Ideas page. Featured Reference Links: Steve Marsden's Chemistry Resources Discovery Education's Mathematics Guide Discovery Educators have provided a Mathematics Guide for Educators. Included are numerous links to sites that touch on almost every mathematic topic that you are interested in. The Ultimate Math Portal The Ultimate Math Portal Whether you are confused by multiplication, need extra practice with geometry proofs, find yourself struggling to understand logarithms, or you just want to know more about pi, you are sure to find what you need with this great list of math facts and resources. MathIsFun.com MathIsFun.com Here, math is explained in easy language, for your students to understand. Plus, there are puzzles, games, quizzes, worksheets and a forum for more exploration. This site is designed for K-12 kids, teachers and parents to enjoy.

374

NEWTON's Material Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

375

NEWTON's Molecular Biology References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Biology References Molecular Biology References Do you have a great reference link? Please click our Ideas page. Featured Reference Links: The Vitual Museum of Bacteria The Vitual Museum of Bacteria Visit the virtual museum of bacteria to learn more about bacteria and germs! This site brings together many links on bacteria, bacteriology, and related topics available on the web. It also provides crystal-clear information about many aspects of bacteria. The American Society of Cell Biology Cell Biology Educational Resources This site, sponsered by the American Society of Cell Biology, provides additional web links to everything from, general educational sites, to biology course materials, to teaching tools and more. National Center for Biotechnology Information National Center for Biotechnology Information

376

REFERENCES Baines, W. D.  

Office of Scientific and Technical Information (OSTI)

was performed at Sandia National Laboratories, supported by the U. S. Department of Energy under contract number DE-AC04-76DP00789. REFERENCES Baines, W. D. a, Jd Peterson,...

377

Energy demand and population changes  

SciTech Connect (OSTI)

Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

Allen, E.L.; Edmonds, J.A.

1980-12-01T23:59:59.000Z

378

Bioconversion Technologies | Open Energy Information  

Open Energy Info (EERE)

Bioconversion Technologies Bioconversion Technologies Jump to: navigation, search Name Bioconversion Technologies Place United Kingdom Sector Biofuels Product Second-generation biofuels technology developer References Bioconversion Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bioconversion Technologies is a company located in United Kingdom . References ↑ "Bioconversion Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Bioconversion_Technologies&oldid=342770" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

379

Precision displacement reference system  

DOE Patents [OSTI]

A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

Bieg, Lothar F. (Albuquerque, NM); Dubois, Robert R. (Albuquerque, NM); Strother, Jerry D. (Edgewood, NM)

2000-02-22T23:59:59.000Z

380

An Open Architecture Platform for Demand Resources from AutoDR and MBCx:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Open Architecture Platform for Demand Resources from AutoDR and MBCx: An Open Architecture Platform for Demand Resources from AutoDR and MBCx: National Virtual Power Plant Speaker(s): Jung In Choi Date: December 20, 2013 - 2:00pm - 3:00pm Location: 90-3122 Seminar Host/Point of Contact: Philip Haves The presentation lays out the technology and business model for National Virtual Power Plant (NVPP). NAPP is a Korean initiative to develop a cluster of demand resources from consumers by peak reduction or energy saving. Demand resources from NVPP are collectively traded in the open architecture platform for energy market. The platform enables 3rd parties to develop new business models and applications through open API s. It will bring a long tail market for demand response and energy efficiency in small and medium size buildings as well as large ones. Automated Demand

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

382

Electricity demand analysis - unconstrained vs constrained scenarios  

Science Journals Connector (OSTI)

In India, the electricity systems are chronically constrained by shortage of both capital and energy resources. These result in rationing and interruptions of supply with a severely disrupted electricity usage pattern. From this background, we try to analyse the demand patterns with and without resource constraints. Accordingly, it is necessary to model appropriately the dynamic nature of electricity demand, which cannot be captured by methods like annual load duration curves. Therefore, we use the concept - Representative Load Curves (RLCs) - to model the temporal and structural variations in demand. As a case study, the electricity system of the state of Karnataka in India is used. Four years demand data, two unconstrained and two constrained, are used and RLCs are developed using multiple discriminant analysis. It is found that these RLCs adequately model the variations in demand and bring out distinctions between unconstrained and constrained demand patterns. The demand analysis attempted here helped to study the differences in demand patterns with and without constraints, and the success of rationing measures in reducing demand levels as well as greatly disrupting the electricity usage patterns. Multifactor ANOVA analyses are performed to find out the statistical significance of the ability of logically obtained factors in explaining overall variations in demand. The results showed that the factors that are taken into consideration accounted for maximum variations in demand at very high significance levels.

P. Balachandra; V. Chandru; M.H. Bala Subrahmanya

2003-01-01T23:59:59.000Z

383

Measurement and Verification for Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Measurement and Verification for Measurement and Verification for Demand Response Prepared for the National Forum on the National Action Plan on Demand Response: Measurement and Verification Working Group AUTHORS: Miriam L. Goldberg & G. Kennedy Agnew-DNV KEMA Energy and Sustainability National Forum of the National Action Plan on Demand Response Measurement and Verification for Demand Response was developed to fulfill part of the Implementation Proposal for The National Action Plan on Demand Response, a report to Congress jointly issued by the U.S. Department of Energy (DOE) and the Federal Energy Regulatory Commission (FERC) in June 2011. Part of that implementation proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given that demand response has matured, DOE and FERC decided that a "virtual" project

384

Commercial Reference Building: Hospital | OpenEI  

Open Energy Info (EERE)

09 09 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278309 Varnish cache server Commercial Reference Building: Hospital Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Hospital for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

385

Transportation Demand Management in Beijing - Mitigation of emissions in  

Open Energy Info (EERE)

Beijing - Mitigation of emissions in Beijing - Mitigation of emissions in urban transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in Beijing to enable them to calculate baselines and assess reduction

386

Optimal combined scheduling of generation and demand response with demand resource constraints  

Science Journals Connector (OSTI)

Demand response (DR) extends customer participation to power systems and results in a paradigm shift from simplex to interactive operation in power systems due to the advancement of smart grid technology. Therefore, it is important to model the customer characteristics in DR. This paper proposes customer information as the registration and participation information of DR, thus providing indices for evaluating customer response, such as DR magnitude, duration, frequency and marginal cost. The customer response characteristics are modeled from this information. This paper also introduces the new concept of virtual generation resources, whose marginal costs are calculated in the same manner as conventional generation marginal costs, according to customer information. Finally, some of the DR constraints are manipulated and expressed using the information modeled in this paper with various status flags. Optimal scheduling, combined with generation and DR, is proposed by minimizing the system operation cost, including generation and DR costs, with the generation and DR constraints developed in this paper.

Hyung-Geun Kwag; Jin-O Kim

2012-01-01T23:59:59.000Z

387

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes  

E-Print Network [OSTI]

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

Sastry, S. Shankar

388

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network [OSTI]

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

389

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Wind Technologies Market Report References Acker, T. 2007.Industry Annual Market Report: Year Ending 2009. Washington,AWEA Mid-Year 2010 Market Report. Washington, DC: American

Wiser, Ryan

2010-01-01T23:59:59.000Z

390

Rubicon Technology | Open Energy Information  

Open Energy Info (EERE)

for use in LEDs and radio frequency integrated circuits (RFICs) among other optoelectronic devices. References: Rubicon Technology1 This article is a stub. You can help...

391

Minerals Technologies | Open Energy Information  

Open Energy Info (EERE)

Place: Bethlehem, PA Website: http:www.mineralstechnologie References: Minerals Technologies1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

392

Siluria Technologies | Open Energy Information  

Open Energy Info (EERE)

of biological nanotechnology-enabled products for clean energy products such as solar cells and light emitting devices. References: Siluria Technologies1 This article...

393

Opportunities for Energy Efficiency and Demand Response in the California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities for Energy Efficiency and Demand Response in the California Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Title Opportunities for Energy Efficiency and Demand Response in the California Cement Industry Publication Type Report LBNL Report Number LBNL-4849E Year of Publication 2010 Authors Olsen, Daniel, Sasank Goli, David Faulkner, and Aimee T. McKane Date Published 12/2010 Publisher CEC/LBNL Keywords cement industry, cement sector, demand response, electricity use, energy efficiency, market sectors, mineral manufacturing, technologies Abstract This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

394

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

395

Behavioral Economics Applied to Energy Demand Analysis: A Foundation  

Reports and Publications (EIA)

Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to the framework. In real life, however, such strong assumptions tend to be less than fully valid. Behavioral economics refers to the study and formalizing of theories regarding deviations from traditionally-modeled economic decision-making in the behavior of individuals. The U.S. Energy Information Administration (EIA) has an interest in behavioral economics as one influence on energy demand.

2014-01-01T23:59:59.000Z

396

Summer Peer Advisor Reference Form Undergraduate Advising & Learning Communities--Summer Orientation  

E-Print Network [OSTI]

Summer Peer Advisor Reference Form Undergraduate Advising & Learning Communities & Learning Communities as a summer orientation Peer Advisor. This position involves a high level of interaction with new students and faculty or staff advisors. This experience can be demanding, both personally

Massachusetts at Amherst, University of

397

Summer Peer Advisor Reference Form Undergraduate Advising & Learning Communities--Summer Orientation  

E-Print Network [OSTI]

Summer Peer Advisor Reference Form Undergraduate Advising & Learning Communities as a summer orientation Peer Advisor. This position involves a high level of interaction with new students and faculty or staff advisors. This experience can be demanding, both personally and professionally

Massachusetts at Amherst, University of

398

Findings from the 2004 Fully Automated Demand Response Tests in Large  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the 2004 Fully Automated Demand Response Tests in Large the 2004 Fully Automated Demand Response Tests in Large Facilities Title Findings from the 2004 Fully Automated Demand Response Tests in Large Facilities Publication Type Report LBNL Report Number LBNL-58178 Year of Publication 2005 Authors Piette, Mary Ann, David S. Watson, Naoya Motegi, and Norman Bourassa Date Published 10/18/2005 Keywords market sectors, technologies Abstract This report describes the results of the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of time dependant activities that reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and provide systems that encourage load shifting or shedding during times when the electric grid is near its capacity or electric prices are high. Demand Response is a subset of demand side management, which also includes energy efficiency and conservation. The overall goal of this research project was to support increased penetration of DR in large facilities through the use of automation and better understanding of DR technologies and strategies in large facilities. To achieve this goal, a set of field tests were designed and conducted. These tests examined the performance of Auto-DR systems that covered a diverse set of building systems, ownership and management structures, climate zones, weather patterns, and control and communication configurations.

399

Quality Assurance REFERENCE GUIDE  

Broader source: Energy.gov (indexed) [DOE]

Quality Assurance Quality Assurance Qualification Standard DOE-STD-1150-2002 July 2012 Reference Guide The Functional Area Qualification Standard References Guides are developed to assist operators, maintenance personnel, and the technical staff in the acquisition of technical competence and qualification within the Technical Qualification Program. Please direct your questions or comments related to this document to the Office of Leadership and Career Management, Technical Qualification Program (TQP) Manager, Albuquerque Complex. This page is intentionally blank. Table of Contents i FIGURES ....................................................................................................................................... ii TABLES ........................................................................................................................................ iii

400

Application-oriented modelling of domestic energy demand  

Science Journals Connector (OSTI)

Abstract Detailed residential energy consumption data can be used to offer advanced services and provide new business opportunities to all participants in the energy supply chain, including utilities, distributors and customers. The increasing interest in the residential consumption data is behind the roll-out of smart meters in large areas and led to intensified research efforts in new data acquisition technologies for the energy sector. This paper introduces a novel model for generation of residential energy consumption profiles based on the energy demand contribution of each household appliance and calculated by using a probabilistic approach. The model takes into consideration a wide range of household appliances and its modular structure provides a high degree of flexibility. Residential consumption data generated by the proposed model are suitable for development of new services and applications such as residential real-time pricing schemes or tools for energy demand prediction. To demonstrate the main features of the model, an individual household consumption was created and the effects of a possible change in the user behaviour and the appliance configuration presented. In order to show the flexibility offered in creation of the aggregated demand, the detailed simulation results of an energy demand management algorithm applied to an aggregated user group are used.

J.K. Gruber; S. Jahromizadeh; M. Prodanovi?; V. Rako?evi?

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS  

E-Print Network [OSTI]

i OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS John R. Mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v SECTION ONE - OUTDOOR RECREATION DEMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Recreation Demand Methods

O'Laughlin, Jay

402

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

C. McParland, Open Automated Demand Response Communicationsand Open Automated Demand Response", Grid Interop Forum,Testing of Automated Demand Response for Integration of

Kiliccote, Sila

2014-01-01T23:59:59.000Z

403

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

404

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

405

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network [OSTI]

and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

406

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network [OSTI]

of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

Dudley, June Han

2009-01-01T23:59:59.000Z

407

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

Koch, Ed

2009-01-01T23:59:59.000Z

408

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

409

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

410

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

411

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

412

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

McKane, Aimee T.

2009-01-01T23:59:59.000Z

413

The Role of Demand Response in Default Service Pricing  

E-Print Network [OSTI]

THE ROLE OF DEMAND RESPONSE IN DEFAULT SERVICE PRICING Galenfor providing much-needed demand response in electricitycompetitive retail markets, demand response often appears to

Barbose, Galen; Goldman, Chuck; Neenan, Bernie

2006-01-01T23:59:59.000Z

414

The Role of Demand Response in Default Service Pricing  

E-Print Network [OSTI]

and coordinated by the Demand Response Research Center onThe Role of Demand Response in Default Service Pricing Galenfor providing much-needed demand response in electricity

Barbose, Galen; Goldman, Charles; Neenan, Bernie

2008-01-01T23:59:59.000Z

415

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

Piette, Mary Ann

2009-01-01T23:59:59.000Z

416

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

417

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

418

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

419

Distributed Intelligent Automated Demand Response (DIADR) Building  

Broader source: Energy.gov (indexed) [DOE]

Distributed Intelligent Automated Demand Distributed Intelligent Automated Demand Response (DIADR) Building Management System Distributed Intelligent Automated Demand Response (DIADR) Building Management System The U.S. Department of Energy (DOE) is currently conducting research into distributed intelligent-automated demand response (DIADR) building management systems. Project Description This project aims to develop a DIADR building management system with intelligent optimization and control algorithms for demand management, taking into account a multitude of factors affecting cost including: Comfort Heating, ventilating, and air conditioning (HVAC) Lighting Other building systems Climate Usage and occupancy patterns. The key challenge is to provide the demand response the ability to address more and more complex building systems that include a variety of loads,

420

Powerball Technologies | Open Energy Information  

Open Energy Info (EERE)

Powerball Technologies Powerball Technologies Jump to: navigation, search Name Powerball Technologies Place West Valley City, Utah Product In light of its expansion of operations to include oil & gas exploration, production, and transportation, Powerball began doing business as "Apollo Resources International" from Jan 4, 2005. References Powerball Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Powerball Technologies is a company located in West Valley City, Utah . References ↑ "Powerball Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Powerball_Technologies&oldid=349885" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nonresident Alien Reference Guide  

E-Print Network [OSTI]

- 1 - Nonresident Alien Reference Guide #12;- 2 - Definition Nonresident Alien (NRA) is defined as any employee who is NOT a United States Citizen or a Permanent Resident (Resident Alien or Green Card status. These are NOT Immigration categories. United States Citizen Permanent Resident Alien Resident

Adali, Tulay

422

(Nonresident Alien) Reference Guide  

E-Print Network [OSTI]

- 1 - NRA (Nonresident Alien) Reference Guide #12;- 2 - UMBC'S OFFICES ASSISTING THE NONRESIDENT ALIEN (NRA) Office of International Education Administration Building 2nd floor Arlene Wergin Ext: 5 - Definition Nonresident Alien (NRA) is defined as any employee who is NOT a United States Citizen

Adali, Tulay

423

Grant Reference Lead / Sole  

E-Print Network [OSTI]

Rank Overall Score Grant Reference Lead / Sole Grant Grant Holder Research Organisation Project sediment-concentration and velocity data for submarine turbidity currents Standard Grant DEC12 1 9 NE-concentration and velocity data for submarine turbidity currents Standard Grant DEC12 2 8 NE/K015184/1 Y Alistair Pike

424

References: Elmasri/Navathe  

E-Print Network [OSTI]

2. Disks and the Bu#er Cache 2­1 Part 2: Disks and Caching References: . Elmasri Implementierung. . Mark Gurry , Peter Corrigan: Oracle Performance Tuning, 2nd Edition (with disk). . Oracle 8i.com/] . Wikipedia (RAID systems): [http://en.wikipedia.org/wiki/Redundant Array of Independent Disks] . The PC Guide

Brass, Stefan

425

Diesel engine reference book  

SciTech Connect (OSTI)

This book is a reference on the design, operation, and maintenance of all types of diesel engines, ranging from the smallest automotive and ancillary engines to the largest marine diesels. Nearly 900 line drawings, graphs and photos illustrate the book. Major Sections: Theory; Engine Design Practice; Lubrication; Environmental Pollution; Crankcase Explosions; Engine Types; Engine Testing; Maintenance; Index.

Lilly, I.R.C.

1984-01-01T23:59:59.000Z

426

The Retail Planning Problem under Demand Uncertainty.  

E-Print Network [OSTI]

and Rajaram K. , (2000), “Accurate Retail Testing of FashionThe Retail Planning Problem Under Demand Uncertainty GeorgeAbstract We consider the Retail Planning Problem in which

Georgiadis, G.; Rajaram, K.

2012-01-01T23:59:59.000Z

427

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

17 6. Barriers to Retail23 ii Retail Demand Response in SPP List of Figures and6 Table 3. SPP Retail DR Survey

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

428

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

Goldman, Charles

2010-01-01T23:59:59.000Z

429

Demand Response (transactional control) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest National Laboratory Contact PNNL About...

430

Topics in Residential Electric Demand Response.  

E-Print Network [OSTI]

??Demand response and dynamic pricing are touted as ways to empower consumers, save consumers money, and capitalize on the “smart grid” and expensive advanced meter… (more)

Horowitz, Shira R.

2012-01-01T23:59:59.000Z

431

Maximum-Demand Rectangular Location Problem  

E-Print Network [OSTI]

Oct 1, 2014 ... Demand and service can be defined in the most general sense. ... Industrial and Systems Engineering, Texas A&M University, September 2014.

Manish Bansal

2014-10-01T23:59:59.000Z

432

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

433

Basic Theory of Demand-Side Management  

Science Journals Connector (OSTI)

Demand-Side Management (DSM) is pivotal in Integrated Resource ... to realize sustainable development, and advanced energy management activity. A project can be implemented only...

Zhaoguang Hu; Xinyang Han; Quan Wen

2013-01-01T23:59:59.000Z

434

Demand response at the Naval Postgraduate School .  

E-Print Network [OSTI]

??The purpose of this MBA project is to assist the Naval Postgraduate School's Public Works department to assimilate into a Demand Response program that will… (more)

Stouffer, Dean

2008-01-01T23:59:59.000Z

435

Demand response exchange in a deregulated environment .  

E-Print Network [OSTI]

??This thesis presents the development of a new and separate market for trading Demand Response (DR) in a deregulated power system. This market is termed… (more)

Nguyen, DT

2012-01-01T23:59:59.000Z

436

Demand response exchange in a deregulated environment.  

E-Print Network [OSTI]

??This thesis presents the development of a new and separate market for trading Demand Response (DR) in a deregulated power system. This market is termed… (more)

Nguyen, DT

2012-01-01T23:59:59.000Z

437

Geographically Based Hydrogen Demand and Infrastructure Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

438

Adopting New Technologies for  

E-Print Network [OSTI]

Readiness 6 Organizational Readiness 8 Motivational Readiness 10 Microcultures 12 Conclusion 13 References. The main purpose of IPAS technologies is not to increase administrative efficiency or information. Many authors writing about organizational behavior have sought to understand why particular innova

Qian, Ning

439

Commercial Reference Building: Warehouse | OpenEI  

Open Energy Info (EERE)

Warehouse Warehouse Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Warehouse for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for three categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

440

Commercial Reference Building: Supermarket | OpenEI  

Open Energy Info (EERE)

Supermarket Supermarket Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Supermarket for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for each of the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mass Market Demand Response and Variable Generation Integration Issues: A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response and Variable Generation Integration Issues: A Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Title Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Cappers, Peter, Andrew D. Mills, Charles A. Goldman, Ryan H. Wiser, and Joseph H. Eto Pagination 76 Date Published 10/2011 Publisher LBNL City Berkeley Keywords demand response, electricity markets and policy group, energy analysis and environmental impacts department, renewable generation integration, smart grid Abstract The penetration of renewable generation technology (e.g., wind, solar) is expected to dramatically increase in the United States during the coming years as many states are implementing policies to expand this sector through regulation and/or legislation. It is widely understood, though, that large scale deployment of certain renewable energy sources, namely wind and solar, poses system integration challenges because of its variable and often times unpredictable production characteristics (NERC, 2009). Strategies that rely on existing thermal generation resources and improved wind and solar energy production forecasts to manage this variability are currently employed by bulk power system operators, although a host of additional options are envisioned for the near future. Demand response (DR), when properly designed, could be a viable resource for managing many of the system balancing issues associated with integrating large-scale variable generation (VG) resources (NERC, 2009). However, demand-side options would need to compete against strategies already in use or contemplated for the future to integrate larger volumes of wind and solar generation resources. Proponents of smart grid (of which Advanced Metering Infrastructure or AMI is an integral component) assert that the technologies associated with this new investment can facilitate synergies and linkages between demand-side management and bulk power system needs. For example, smart grid proponents assert that system-wide implementation of advanced metering to mass market customers (i.e., residential and small commercial customers) as part of a smart grid deployment enables a significant increase in demand response capability.1 Specifically, the implementation of AMI allows electricity consumption information to be captured, stored and utilized at a highly granular level (e.g., 15-60 minute intervals in most cases) and provides an opportunity for utilities and public policymakers to more fully engage electricity customers in better managing their own usage through time-based rates and near-real time feedback to customers on their usage patterns while also potentially improving the management of the bulk power system. At present, development of time-based rates and demand response programs and the installation of variable generation resources are moving forward largely independent of each other in state and regional regulatory and policy forums and without much regard to the complementary nature of their operational characteristics.2 By 2020, the electric power sector is expected to add ~65 million advanced meters3 (which would reach ~47% of U.S. households) as part of smart grid and AMI4 deployments (IEE, 2010) and add ~40-80 GW of wind and solar capacity (EIA, 2010). Thus, in this scoping study, we focus on a key question posed by policymakers: what role can the smart grid (and its associated enabling technology) play over the next 5-10 years in helping to integrate greater penetration of variable generation resources by providing mass market customers with greater access to demand response opportunities? There is a well-established body of research that examines variable generation integration issues as well as demand response potential, but the nexus between the two has been somewhat neglected by the industry. The studies that have been conducted are informative concerning what could be accomplished with strong broad-based support for the expansion of demand response opportunities, but typically do not discuss the many barriers that stand in the way of reaching this potential. This study examines how demand side resources could be used to integrate wind and solar resources in the bulk power system, identifies barriers that currently limit the use of demand side strategies, and suggests several factors that should be considered in assessing alternative strategies that can be employed to integrate wind and solar resources in the bulk power system. It is difficult to properly gauge the role that DR could play in managing VG integration issues in the near future without acknowledging and understanding the entities and institutions that govern the interactions between variable generation and mass market customers (see Figure ES-1). Retail entities, like load-serving entities (LSE) and aggregators of retail customers (ARC), harness the demand response opportunities of mass market customers through tariffs (and DR programs) that are approved by state regulatory agencies or local governing entities (in the case of public power). The changes in electricity consumption induced by DR as well as the changes in electricity production due to the variable nature of wind and solar generation technologies is jointly managed by bulk power system operators. Bulk power system operators function under tariffs approved by the Federal Energy Regulatory Commission (FERC) and must operate their systems in accordance with rules set by regional reliability councils. These reliability rules are derived from enforceable standards that are set by the North American Electric Reliability Corporation (NERC) and approved by federal regulators. Thus, the role that DR can play in managing VG integration issues is contingent on what opportunities state and local regulators are willing to approve and how customers' response to the DR opportunities can be integrated into the bulk power system both electrically (due to reliability rules) and financially (due to market rules).

442

The impact of future energy demand on renewable energy production – Case of Norway  

Science Journals Connector (OSTI)

Abstract Projections of energy demand are an important part of analyses of policies to promote conservation, efficiency, technology implementation and renewable energy production. The development of energy demand is a key driver of the future energy system. This paper presents long-term projections of the Norwegian energy demand as a two-step methodology of first using activities and intensities to calculate a demand of energy services, and secondly use this as input to the energy system model TIMES-Norway to optimize the Norwegian energy system. Long-term energy demand projections are uncertain and the purpose of this paper is to illustrate the impact of different projections on the energy system. The results of the analyses show that decreased energy demand results in a higher renewable fraction compared to an increased demand, and the renewable energy production increases with increased energy demand. The most profitable solution to cover increased demand is to increase the use of bio energy and to implement energy efficiency measures. To increase the wind power production, an increased renewable target or higher electricity export prices have to be fulfilled, in combination with more electricity export.

Eva Rosenberg; Arne Lind; Kari Aamodt Espegren

2013-01-01T23:59:59.000Z

443

Photovoltaic-based Demand Response and Ancillary Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photovoltaic-based Demand Response and Ancillary Services Photovoltaic-based Demand Response and Ancillary Services Speaker(s): Bill Vogel Date: June 22, 2012 - 1:00pm Location: 90-1099 Seminar Host/Point of Contact: David S. Watson This presentation describes innovations in intelligent micro inverters for use with photovoltaic (PV) systems. The micro-inverters enable remotely adjustable phase angles (+/- up to 45 degrees). The technology includes dynamic impedance matching and ultra-low cost dynamic reactive power management of digital power sources. These attributes can help mitigate grid balancing challenges introduced by most renewable generation resources as we strive to reach aggressive renewable portfolio standards and their associated needs for voltage support and ancillary services. The software-enabled device eliminates several pieces of heavy equipment needed

444

Effects of Demand Response on Retail and Wholesale Power Markets  

SciTech Connect (OSTI)

Demand response has grown to be a part of the repertoire of resources used by utilities to manage the balance between generation and load. In recent years, advances in communications and control technology have enabled utilities to consider continuously controlling demand response to meet generation, rather than the other way around. This paper discusses the economic applications of a general method for load resource analysis that parallels the approach used to analyze generation resources and uses the method to examine the results of the US Department of Energy’s Olympic Peninsula Demonstration Testbed. A market-based closed-loop system of controllable assets is discussed with necessary and sufficient conditions on system controllability, observability and stability derived.

Chassin, David P.; Kalsi, Karanjit

2012-07-26T23:59:59.000Z

445

China's Present Situation of Coal Consumption and Future Coal Demand Forecast  

Science Journals Connector (OSTI)

This article analyzes China's coal consumption changes since 1991 and proportion change of coal consumption to total energy consumption. It is argued that power, iron and steel, construction material, and chemical industries are the four major coal consumption industries, which account for 85% of total coal consumption in 2005. Considering energy consumption composition characteristics of these four industries, major coal demand determinants, potentials of future energy efficiency improvement, and structural changes, etc., this article makes a forecast of 2010s and 2020s domestic coal demand in these four industries. In addition, considering such relevant factors as our country's future economic growth rate and energy saving target, it forecasts future energy demands, using per unit GDP energy consumption method and energy elasticity coefficient method as well. Then it uses other institution's results about future primary energy demand, excluding primary coal demand, for reference, and forecasts coal demands in 2010 and 2020 indirectly. After results comparison between these two methods, it is believed that coal demands in 2010 might be 2620–2850 million tons and in 2020 might be 3090–3490 million tons, in which, coal used in power generation is still the driven force of coal demand growth.

Wang Yan; Li Jingwen

2008-01-01T23:59:59.000Z

446

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

447

NEWTON's Botany References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Botany References Botany References Do you have a great botany video? Please click our Ideas page. Featured Videos: AOL News AOL News - Botany Videos AOL news provides hundreds of botany videos from around the world. View informational and instructional videos as well as interviews about the latest botany topics and discoveries. NeoK12 Plant Videos NeoK12 - Every Plant Topic Imaginable Explore videos encompassing every category dealing with plants. Learn about photosynthesis, plant evolution, reproduction, and many more plant related videos. Fungus Image Fungi Videos BBC Nature provides informational videos about fugni and other organisms. Learn and explore a wide variety of topics concerning the fungus kingdom. Other Botany Videos: Botany Videos for Kids Look at various botany videos geared towards a younger audience.

448

OSH technical reference manual  

SciTech Connect (OSTI)

In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

Not Available

1993-11-01T23:59:59.000Z

449

Demand Response and Electric Grid Reliability  

E-Print Network [OSTI]

Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

Wattles, P.

2012-01-01T23:59:59.000Z

450

A Vision of Demand Response - 2016  

SciTech Connect (OSTI)

Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

Levy, Roger

2006-10-15T23:59:59.000Z

451

SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

452

Economy and Electricity Demand Growth Linked but ƒƒƒ.  

Gasoline and Diesel Fuel Update (EIA)

Economy and Electricity Demand Economy and Electricity Demand Growth Linked but ... for International Utility Conference, Demand Trends Panel March 12, 2013 | London, UK by Adam Sieminski, Administrator U. S. electricity use and economic growth, 1950-2040 Adam Sieminski, EEI Demand Trends, March 12, 2013 2 -2% 0% 2% 4% 6% 8% 10% 12% 14% 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 Percent growth, 3-year rolling average Source: EIA, Annual Energy Outlook 2013 Early Release History Projections 2011 Electricity Use GDP 2.4% 0.9% 2011 - 2040 average Annual energy use of a new refrigerator, 1950-2008 Adam Sieminski, EEI Demand Trends, March 12, 2013 3 Kilowatthours per year Source: DOE / EERE - Building Technologies Office 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

453

Comments of the Demand Response and Smart Grid Coalition on DOE's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Demand Response and Smart Grid Coalition on DOE's the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy The Demand Response and Smart Grid Coalition (DRSG), the trade association for companies that provide products and services in the areas of demand response and smart grid technologies, respectfully submits its comments to the Department of Energy's Request for Information "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy."

454

Incorporating Demand Response into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

response DSM – Demand Side Management EE – energy efficiencywith the development of demand-side management (DSM)-related

Satchwell, Andrew

2014-01-01T23:59:59.000Z

455

Water Power Technologies Office FY 2015 Budget At-A-Glance  

Energy Savers [EERE]

Water Power Technologies Office leads efforts in developing innovative water power technologies to help the United States meet its growing energy demand. The Office is pioneering...

456

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Fredrich  

E-Print Network [OSTI]

GEA Refrigeration Technologies / GEA Refrigeration Germany GmbH Wolfgang Dietrich / Dr. Ole Technologies3 Achema 2012 // heat pumps using ammonia Industrial demand on heat in Germany Heatdemandin

Oak Ridge National Laboratory

457

NIST Special Publication 260-173 Standard Reference Materials  

E-Print Network [OSTI]

NIST Special Publication 260-173 Standard Reference Materials: SRM 1450d, Fibrous-Glass Board #12;#12;NIST Special Publication 260-173 Standard Reference Materials: SRM 1450d, Fibrous-Glass Board Laboratory Building Environment Division Stefan D. Leigh Information Technology Laboratory Statistical

458

Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems  

Science Journals Connector (OSTI)

Heat pumps are seen as a promising technology for load management in the built environment, in combination with the smart grid concept. They can be coupled with thermal energy storage (TES) systems to shift electrical loads from high-peak to off-peak hours, thus serving as a powerful tool in demand-side management (DSM). This paper analyzes heat pumps with radiators or underfloor heating distribution systems coupled with TES with a view to showing how a heat pump system behaves and how it influences the building occupants' thermal comfort under a DSM strategy designed to flatten the shape of the electricity load curve by switching off the heat pump during peak hours (16:00–19:00). The reference scenario for the analysis was Northern Ireland (UK). The results showed that the heat pump is a good tool for the purposes of DSM, also thanks to the use of TES systems, in particular with heating distribution systems that have a low thermal inertia, e.g. radiators. It proved possible to achieve a good control of the indoor temperature, even if the heat pump was turned off for 3 h, and to reduce the electricity bill if a “time of use” tariff structure was adopted.

A. Arteconi; N.J. Hewitt; F. Polonara

2013-01-01T23:59:59.000Z

459

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

460

Strategies for Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development and Validation of Aggregated Models for Thermostatic Controlled Loads with Demand Response  

SciTech Connect (OSTI)

Demand response is playing an increasingly important role in smart grid research and technologies being examined in recently undertaken demonstration projects. The behavior of load as it is affected by various load control strategies is important to understanding the degree to which different classes of end-use load can contribute to demand response programs at various times. This paper focuses on developing aggregated control models for a population of thermostatically controlled loads. The effects of demand response on the load population dynamics are investigated.

Kalsi, Karanjit; Elizondo, Marcelo A.; Fuller, Jason C.; Lu, Shuai; Chassin, David P.

2012-01-04T23:59:59.000Z

462

Encryption-on-Demand, [EOD-g8516] Page #-1 Encryption-On-Demand  

E-Print Network [OSTI]

Encryption-on-Demand, [EOD-g8516] Page #-1 Encryption-On-Demand: Practical and Theoretical be served by an 'encryption-on-demand' (EoD) service which will enable them to communicate securely with no prior preparations, and no after effects. We delineate a possible EoD service, and describe some of its

463

Headquarters Security Quick Reference Book  

Broader source: Energy.gov [DOE]

This quick reference book provides an overview of Department of Energy (DOE) Headquarters (HQ) security programs.

464

Coordination of Energy Efficiency and Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

465

Reducing Energy Demand in Buildings Through State Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

466

Reducing Energy Demand in Buildings Through State Energy Codes  

Broader source: Energy.gov (indexed) [DOE]

Codes Assistance Project Codes Assistance Project Maureen Guttman, AIA Executive Director, BCAP Alliance to Save Energy 202-530-2211 mguttman@ase.org Tuesday, April 2, 2013 - Thursday, April 4, 2013 Reducing Energy Demand in Buildings Through State Energy Codes - Providing Technical Support and Assistance to States - 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Buildings = largest sector of energy consumption in America * Energy codes are a ready-made regulatory mechanism * States need support for implementation Impact of Project:

467

Demand Response This is the first of the Council's power plans to treat demand response as a resource.1  

E-Print Network [OSTI]

Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

468

New Generating Technology to Reduce Greenhouse Gas Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

Generating Technology to Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40% of total energy-related GHG emissions. * Based on projected annual electricity demand growth of 1.1%. Stuntz, Davis & Staffier, P.C. 3 The Target Cont'd * 16.4 GW of new nuclear + 2.7 GW Uprates of existing plants less 4.5 GW of retirements. * Coal responsible for 54% of generation in 2030.

469

Health Care Demand, Empirical Determinants of  

Science Journals Connector (OSTI)

Abstract Economic theory provides a powerful but incomplete guide to the empirical determinants of health care demand. This article seeks to provide guidance on the selection and interpretation of demand determinants in empirical models. The author begins by introducing some general rules of thumb derived from economic and statistical principles. A brief review of the recent empirical literature next describes the range of current practices. Finally, a representative example of health care demand is developed to illustrate the selection, use, and interpretation of empirical determinants.

S.H. Zuvekas

2014-01-01T23:59:59.000Z

470

Reference Handbook: Pressure detectors  

SciTech Connect (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with the information necessary to understand pressure detection. Upon completion of this handbook you should be able to do the following: Define pressure in terms of force and area. Describe the basic operating principles of the U-Tube Manometer. Demonstrate proper techniques for reading Manometers. Describe the basic operating principles of the three types of Bourdon Tubes. Explain the difference between diaphragm. and bellows-type pressure measurement devices. This handbook is designed for use by experienced Rocky Flats operators to reinforce and improve their current knowledge level, and by entry-level operators to ensure that they possess a minimum level of fundamental knowledge. Pressure Detectors is applicable to many job classifications and can be used as a reference for classroom work or for self-study. Although this reference handbook is by no means all-encompassing, you will gain enough information about this subject area to assist you in contributing to the safe operations of Rocky Flats Plant.

Not Available

1990-11-09T23:59:59.000Z

471

International Transportation Energy Demand Determinants (ITEDD...  

U.S. Energy Information Administration (EIA) Indexed Site

type Commercial Vehicle Sales Comm Sales by Technology Type Personal Vehicle Sales Private Sales by Technology Type Stock Accounting by Vehicle and Techn Type Policy...

472

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

473

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

474

NCEP_Demand_Response_Draft_111208.indd  

Broader source: Energy.gov (indexed) [DOE]

National Council on Electricity Policy: Electric Transmission Series for State Offi National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the

475

Solar in Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

476

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

477

Demand Controlled Ventilation and Classroom Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ï‚· The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs). ï‚· Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

478

China End-Use Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

479

Software demonstration: Demand Response Quick Assessment Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. The Demand Response Quick Assessment Tools developed at LBNL will be demonstrated. The tool is built on EnergyPlus simulation and is able to evaluate and compare different DR strategies, such as global temperature reset, chiller cycling, supply air temperature reset, etc. A separate EnergyPlus plotting tool will also be demonstrated during this seminar. Users can use the tool to test EnergyPlus models, conduct parametric analysis, or compare multiple EnergyPlus simulation

480

Power Consumption Analysis of Architecture on Demand  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): Recently proposed Architecture on Demand (AoD) node shows considerable flexibility benefits against traditional ROADMs. We study the power consumption of AoD...

Garrich, Miquel; Amaya, Norberto; Zervas, Georgios; Giaccone, Paolo; Simeonidou, Dimitra

Note: This page contains sample records for the topic "demand technology reference" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of...

482

Capitalize on Existing Assets with Demand Response  

E-Print Network [OSTI]

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

Collins, J.

2008-01-01T23:59:59.000Z

483

SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY  

Broader source: Energy.gov [DOE]

As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

484

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

485

Demand Controlled Ventilation and Classroom Ventilation  

E-Print Network [OSTI]

columns indicate the energy and cost savings for  demand class size.   (The energy costs  of classroom ventilation Total Increase in Energy Costs ($) Increased State Revenue

Fisk, William J.

2014-01-01T23:59:59.000Z

486

Transportation energy demand: Model development and use  

Science Journals Connector (OSTI)

This paper describes work undertaken and sponsored by the Energy Commission to improve transportation energy demand forecasting and policy analysis for California. Two ... , the paper discusses some of the import...

Chris Kavalec

1998-06-01T23:59:59.000Z

487

E-Print Network 3.0 - academic reference works Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mathematics ; Computer Technologies and Information Sciences 42 CS2ME3: Software Design Fundamentals Winter 2009 Summary: please refer to the Academic Integrity Policy,...

488

Measuring the capacity impacts of demand response  

SciTech Connect (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

489

Electric Utility Demand-Side Evaluation Methodologies  

E-Print Network [OSTI]

"::. ELECTRIC UTILITY DEMAND-SIDE EVALUATION METHODOLOGIES* Nat Treadway Public Utility Commission of Texas Austin, Texas ABSTRACT The electric. util ity industry's demand-side management programs can be analyzed ?from various points... of view using a standard benefit-cost methodology. The methodology now in use by several. electric utilities and the Public Utility Commlsslon of Texas includes measures of efficiency and equity. The nonparticipant test as a measure of equity...

Treadway, N.

490

Aviation fuel demand development in China  

Science Journals Connector (OSTI)

Abstract This paper analyzes the core factors and the impact path of aviation fuel demand in China and conducts a structural decomposition analysis of the aviation fuel cost changes and increase of the main aviation enterprises’ business profits. Through the establishment of an integrated forecast model for China’s aviation fuel demand, this paper confirms that the significant rise in China’s aviation fuel demand because of increasing air services demand is more than offset by higher aviation fuel efficiency. There are few studies which use a predictive method to decompose, estimate and analyze future aviation fuel demand. Based on a structural decomposition with indirect prediction, aviation fuel demand is decomposed into efficiency and total amount (aviation fuel efficiency and air transport total turnover). The core influencing factors for these two indexes are selected using path analysis. Then, univariate and multivariate models (ETS/ARIMA model and Bayesian multivariate regression) are used to analyze and predict both aviation fuel efficiency and air transport total turnover. At last, by integrating results, future aviation fuel demand is forecast. The results show that the aviation fuel efficiency goes up by 0.8% as the passenger load factor increases 1%; the air transport total turnover goes up by 3.8% and 0.4% as the urbanization rate and the per capita GDP increase 1%, respectively. By the end of 2015, China’s aviation fuel demand will have increased to 28 million tonnes, and is expected to be 50 million tonnes by 2020. With this in mind, increases in the main aviation enterprises’ business profits must be achieved through the further promotion of air transport.

Jian Chai; Zhong-Yu Zhang; Shou-Yang Wang; Kin Keung Lai; John Liu

2014-01-01T23:59:59.000Z

491

Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and  

Open Energy Info (EERE)

Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Authors Ormat Technologies and Inc. Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Citation Ormat Technologies, Inc.. Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results [Internet]. [updated 2013;cited 2013]. Available from: http://www.ormat.com/news/latest-items/ormat-technologies-reports-2012-fourth-quarter-and-year-end-results

492

Green Technology Institute at UCLA | Open Energy Information  

Open Energy Info (EERE)

California-based institute to reduce America's dependence on foreign oil and developing energy efficient technologies. References: Green Technology Institute at UCLA1 This...

493

Energy and American Society : a Reference Handbook  

E-Print Network [OSTI]

American Society: A Reference Handbook By E. Willard MillerSOCIETY: A REFERENCE HANDBOOK (Contemporary World IssuesSOCIETY: A REFERENCE HANDBOOK is an important reference work

Li, Haipeng

1996-01-01T23:59:59.000Z

494

Technical Reference OVERVIEW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Page 1 Parking and the ENERGY STAR Score in the United States and Canada Technical Reference OVERVIEW The ENERGY STAR score provides a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. Parking areas are not eligible to earn the ENERGY STAR score. However, because parking is a common amenity at other commercial building types (i.e., office and hotels), the ENERGY STAR score does make adjustments to accommodate for the presence of parking.

495

Nuclear Science References Database  

E-Print Network [OSTI]

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

B. Pritychenko; E. B?ták; B. Singh; J. Totans

2014-07-08T23:59:59.000Z

496

Long life reference electrode  

DOE Patents [OSTI]

An external, reference electrode is provided for long term use with a high temperature, high pressure system. The electrode is arranged in a vertical, electrically insulative tube with an upper portion serving as an electrolyte reservoir and a lower portion in electrolytic communication with the system to be monitored. The lower end portion includes a flow restriction such as a porous plug to limit the electrolyte release into the system. A piston equalized to the system pressure is fitted into the upper portion of the tube to impart a small incremental pressure to the electrolyte. The piston is selected of suitable size and weight to cause only a slight flow of electrolyte through the porous plug into the high pressure system. This prevents contamination of the electrolyte but is of such small flow rate that operating intervals of a month or more can be achieved. 2 figs.

Yonco, R.M.; Nagy, Z.

1987-07-30T23:59:59.000Z

497

Climate, extreme heat, and electricity demand in California  

SciTech Connect (OSTI)

Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

2008-04-01T23:59:59.000Z

498

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

499

Modelling future private car energy demand in Ireland  

Science Journals Connector (OSTI)

Targeted measures influencing vehicle technology are increasingly a tool of energy policy makers within the EU as a means of meeting energy efficiency, renewable energy, climate change and energy security goals. This paper develops the modelling capacity for analysing and evaluating such legislation, with a focus on private car energy demand. We populate a baseline car stock and car activity model for Ireland to 2025 using historical car stock data. The model takes account of the lifetime survival profile of different car types, the trends in vehicle activity over the fleet and the fuel price and income elasticities of new car sales and total fleet activity. The impacts of many policy alternatives may only be simulated by such a bottom-up approach, which can aid policy development and evaluation. The level of detail achieved provides specific insights into the technological drivers of energy consumption, thus aiding planning for meeting climate targets. This paper focuses on the methodology and baseline scenario. Baseline results for Ireland forecast a decline in private car energy demand growth (0.2%, compared with 4% in the period 2000–2008), caused by the relative growth in fleet efficiency compared with activity.

Hannah E. Daly; Brian P. Ó Gallachóir

2011-01-01T23:59:59.000Z

500

ENRAF gauge reference level calculations  

SciTech Connect (OSTI)

This document describes the method for calculating reference levels for Enraf Series 854 Level Detectors as installed in the tank farms. The reference level calculation for each installed level gauge is contained herein.

Huber, J.H., Fluor Daniel Hanford

1997-02-06T23:59:59.000Z