Powered by Deep Web Technologies
Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal energy storage for space cooling. Technology for reducing on-peak electricity demand and cost  

DOE Green Energy (OSTI)

Cool storage technology can be used to significantly reduce energy costs by allowing energy intensive, electrically driven cooling equipment to be predominantly operated during off-peak hours when electricity rates are lower. In addition, some system configurations may result in lower first costs and/or lower operating costs. Cool storage systems of one type or another could potentially be cost-effectively applied in most buildings with a space cooling system. A survey of approximately 25 manufacturers providing cool storage systems or components identified several thousand current installations, but less than 1% of these were at Federal facilities. With the Federal sector representing nearly 4% of commercial building floor space and 5% of commercial building energy use, Federal utilization would appear to be lagging. Although current applications are relatively few, the estimated potential annual savings from using cool storage in the Federal sector is $50 million. There are many different types of cool storage systems representing different combinations of storage media, charging mechanisms, and discharging mechanisms. The basic media options are water, ice, and eutectic salts. Ice systems can be further broken down into ice harvesting, ice-on-coil, ice slurry, and encapsulated ice options. Ice-on-coil systems may be internal melt or external melt and may be charged and discharged with refrigerant or a single-phase coolant (typically a water/glycol mixture). Independent of the technology choice, cool storage systems can be designed to provide full storage or partial storage, with load-leveling and demand-limiting options for partial storage. Finally, storage systems can be operated on a chiller-priority or storage priority basis whenever the cooling load is less than the design conditions. The first section describes the basic types of cool storage technologies and cooling system integration options. The next three sections define the savings potential in the Federal sector, present application advice, and describe the performance experience of specific Federal users. A step-by-step methodology illustrating how to evaluate cool storage options is presented next, followed by a case study of a GSA building using cool storage. Latter sections list manufacturers, selected Federal users, and reference materials. Finally, the appendixes give Federal life-cycle costing procedures and results for a case study.

None

2000-12-01T23:59:59.000Z

2

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

3

Tape storage solutions: meeting growing data demands  

Science Conference Proceedings (OSTI)

The exponential data growth caused by content-rich applications and new data compliance regulations has led to an increased demand for tape storage due to tape's low cost per GB and long shelf-life. However, tape technology suffers from several disadvantages: ...

Xianbo Zhang / David H. Du

2006-01-01T23:59:59.000Z

4

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

5

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

6

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

7

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

8

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

9

Sorption Storage Technology Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Technology Summary DOE H2 Storage Workshop, Feb 14-15, 2011, Washington, DC 1 Compressed & Cryo-Compressed Hydrogen Storage Workshop February 14 - 15, 2011, Washington, DC...

10

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

11

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

12

Chilled Water Storage System and Demand Response at the University...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chilled Water Storage System and Demand Response at the University of California at Merced Title Chilled Water Storage System and Demand Response at the University of California at...

13

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

14

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

15

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

16

Poster: Thermal Energy Storage for Electricity Peak-demand Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Poster: Thermal Energy Storage for Electricity Peak-demand Mitigation: A Solution in Developing and Developed World Alike Title Poster: Thermal Energy Storage for Electricity...

17

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

18

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

19

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

networks_in_the_home_the_new_growth_market.htm [12] NationalHome Network Technologies and Automating Demand Responsethe University of California. Home Network Technologies and

McParland, Charles

2010-01-01T23:59:59.000Z

20

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response  

DOE Green Energy (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

2012-02-14T23:59:59.000Z

22

Automated Demand Response Technology Demonstration Project for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings...

23

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

24

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

25

NREL: Energy Storage - Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Basics Photo of an ultracapacitor. Electrochemical energy storage devices provide the power for many everyday devices-from cars, trains, and laptops to personal digital...

26

Electricity Energy Storage Technology Options  

Science Conference Proceedings (OSTI)

A confluence of industry drivers8212including increased deployment of renewable generation, the high capital cost of managing grid peak demands, and large capital investments in grid infrastructure for reliability8212is creating new interest in electric energy storage systems. New EPRI research offers a current snapshot of the storage landscape and an analytical framework for estimating the benefits of applications and life-cycle costs of energy storage systems. This paper describes in detail 10 key appl...

2010-12-23T23:59:59.000Z

27

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

28

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) More Documents & Publications Webinar Presentation: Energy Storage Solutions for Microgrids (November...

29

Energy Storage Technologies Available for Licensing ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage ...

30

Fuel Cell Technologies Office: Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Storage Search Search Help Hydrogen Storage EERE Fuel Cell Technologies Office Hydrogen Storage Printable Version Share this resource Send...

31

Policy Questions on Energy Storage Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant...

32

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here you’ll find marketing summaries of energy storage technologies available for licensing from U.S. Department of ...

33

Energy Storage Technologies Available for Licensing - Energy ...  

Energy Storage Technologies Available for Licensing U.S. Department of Energy laboratories and participating research institutions have energy storage technologies ...

34

Energy Storage Technologies - Energy Innovation Portal  

Energy Storage Technology Marketing Summaries Here you’ll find marketing summaries of energy storage technologies available for licensing from U.S. ...

35

Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)  

DOE Green Energy (OSTI)

Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

Neubauer, J.; Simpson, M.

2013-10-01T23:59:59.000Z

36

storage technology barriers. The...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Power to build a 400-megawatt (MW) coal-fired power plant with carbon capture and storage (CCS) in Britain. The companies will submit the Caledonia Clean Energy Project to...

37

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

E-Print Network (OSTI)

and Techniques for Demand Response. California EnergyTest Results of Automated Demand Response in a Large OfficeStorage System and Demand Response at the University of

Granderson, Jessica

2010-01-01T23:59:59.000Z

38

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

39

Transmaterialization: technology and materials demand cycles  

SciTech Connect

Recently concern has risen worldwide regarding the issue of declining materials demand which has been termed dematerialization. A summary of the issues involved appears in the proceedings of the recent conference on metals demand published in Materials and Society (1986). Dematerialization refers to the constant decline in use of materials as a percentage of total production. Dematerialization implies a structural change in an economy, indicating a reduced demand for materials and, therefore, a decline in overall industrial growth. This paper proposes that, instead of dematerialization in the US material markets, the demand change that has been occurring can be more aptly described as transmaterialization. Transmaterialization implies a recurring industrial transformation in the way that economic societies use materials, a process that has occurred regularly or cyclically throughout history. Instead of a once and for all structural change as implied by dematerialization, transmaterialization suggests that minerals demand experiences phases in which old, lower-quality materials linked to mature industries undergo replacement periodically by higher-quality or technologically-more-appropriate materials. The latter, as of recent, tend to be lighter materials with more robust technical properties than those being replaced.

Waddell, L.M.; Labys, W.C.

1988-01-01T23:59:59.000Z

40

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network (OSTI)

Utility managements have two primary responsibilities. They must supply reliable electric service to meet the needs of their customers at the most efficient price possible while at the same time generating the maximum rate of return possible for their shareholders. Regulator hostility towards the addition of generating capacity has made it difficult for utilities to simultaneously satisfy both the needs of their ratepayers and the needs of their shareholders. Recent advances in thermal energy storage may solve the utilities' paradox. Residential thermal energy storage promises to provide the ratepayers significantly lower electricity rates and greater comfort levels. Utilities benefit from improved load factors, peak capacity additions at low cost, improved shareholder value (ie. a better return on assets), improved reliability, and a means of satisfying growing demand without the regulatory and litigious nightmares associated with current supply side solutions. This paper discusses thermal energy storage and its potential impact on the electric utilities and introduces the demand side plant concept.

Michel, M.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

42

Subsea Pumped Hydro Storage -A Technology Assessment.  

E-Print Network (OSTI)

??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Falk, Johan

2013-01-01T23:59:59.000Z

43

Fuel Cell Technologies Office: Hydrogen Compression, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Compression, Storage, and Dispensing Cost...

44

Overview of current and future energy storage technologies for electric power applications  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515 4. Supercapacitor storage technologies

Bahrami, Majid

45

Advanced Energy Technologies: Solar Energy and Storage  

Science Conference Proceedings (OSTI)

Advanced Energy Technologies: Solar Energy and Storage (+18 FTE, +$7,500,000). image: Shutterstock, copyright Chayne Gregg. Challenge. ...

2011-10-11T23:59:59.000Z

46

Home Network Technologies and Automating Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in...

47

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

freed from this communications technology constraint. Homeinvestigating several communications technologies capable ofdedicated-wire communications technologies as impractical

McParland, Charles

2010-01-01T23:59:59.000Z

48

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

49

Flywheel Energy Storage technology workshop  

DOE Green Energy (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

50

The Role of Enabling Technologies in Demand Response  

Science Conference Proceedings (OSTI)

The report provides a study of the technologies that are crucial to the success of demand response programs. It takes a look at the historical development of demand response programs and analyzes how new technology is needed to enable demand response to make the transition from a small scale pilot operation to a mass market means of improving grid reliability. Additionally, the report discusses the key technologies needed to enable a large scale demand response effort and evaluates current efforts to develop and integrate these technologies. Finally, the report provides profiles of leading developers of these key technologies.

NONE

2007-09-15T23:59:59.000Z

51

Northwest Open Automated Demand Response Technology Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA)...

52

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

DOE Green Energy (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

53

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

demand shifting are thermal energy storage systems, whichlockout, pre-cooling, thermal energy storage, cooling loadlockout • Pre-cooling • Thermal energy storage • Cooling

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

54

Away-from-reactor storage of spent nuclear fuel: factors affecting demand  

SciTech Connect

This report analyzes factors that affect the magnitude and timing of demand for government AFRs, relative to the demand for other storage options, to assist policymakers in predicting this demand. Past predictions of AFT demand range widely and often appear to conflict. This report helps to explain the apparent conflicts among existing demand predictions by demonstrating their sensitivity to changes in key assumptions. Specifically, the report analyzes factors affecting the demand for government AFR storage facilities; illustrates why demand estimates may vary; and identifies actions that may be undertaken by groups, within and outside the government, to influence the level and timing of demands.

Dinneen, P.M.; Solomon, K.A.; Triplett, M.B.

1980-10-01T23:59:59.000Z

55

Energy Storage Technologies - Energy Innovation Portal  

Hydrogen Electrochemical Energy Storage Device. The hydrogen fuel cell market is still in the early stages of development. However, with advances in technology the ...

56

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network (OSTI)

There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand response-enabling technologies, which can help an industrial plant effectively address demand response needs. Finally, the paper is concluded with a discussion of case study projects that illustrate application of some of these demand response enabling technologies for process operations. These case studies, illustrating some key projects from the NYSERDA Peak Load Reduction program, will describe the technologies and approaches deployed to achieve the demand reduction at the site, the quantitative impact of the project, and a discussion of the overall successes at each site.

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

57

Demand responsive public transportation using wireless technologies  

Science Conference Proceedings (OSTI)

Air pollution has been the bane of society for which we still have not got a satisfying solution. The air pollution due to automobiles constitutes around 60--90% of the total air pollution in the urban area. To curtail this, the mass transportation, ... Keywords: Djiktra's algorithm, on-demand public transportation, routing algorithms, wireless client-server backbone

S. Prashanth; Sp Geetha; Ga Shanmugha Sundaram

2011-12-01T23:59:59.000Z

58

Home Network Technologies and Automating Demand Response  

Science Conference Proceedings (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

59

Demonstration of Demand Control Ventilation Technology  

Science Conference Proceedings (OSTI)

Demand Control Ventilation (DCV) is one of the control strategies that can be used modulate the amount of ventilation air for space conditioning in commercial buildings. DCV modulates the amount of ventilation air introduced into the heating, ventilation and air conditioning (HVAC) system based on carbon dioxide levels sensed in the areas served. The carbon dioxide level is a proxy for the number of people within the space, from which the required quantity of ventilation air is determined. By using this ...

2011-12-30T23:59:59.000Z

60

Integrated Building Energy Systems Design Considering Storage Technologies  

Science Conference Proceedings (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

2009-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

62

Modeling the Benefits of Storage Technologies to Wind Power  

DOE Green Energy (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

63

Rates and technologies for mass-market demand response  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and technologies for mass-market demand response Rates and technologies for mass-market demand response Title Rates and technologies for mass-market demand response Publication Type Conference Paper LBNL Report Number LBNL-50626 Year of Publication 2002 Authors Herter, Karen, Roger Levy, John Wilson, and Arthur H. Rosenfeld Conference Name 2002 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response, demand response and distributed energy resources center, demand response research center, rate programs & tariffs Abstract Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

64

Energy packet networks: smart electricity storage to meet surges in demand  

Science Conference Proceedings (OSTI)

When renewable energy is used either as a primary source, or as a back-up source to meet excess demand, energy storage becomes very useful. Simple examples of energy storage units include electric car batteries and uninterruptible power supplies. More ... Keywords: energy packet networks, network control of energy flow, on-demand energy dispatching, smart grid, store and forward energy, storing renewable energy

Erol Gelenbe

2012-03-01T23:59:59.000Z

65

Technology fluidity and on-demand webcasting adoption  

Science Conference Proceedings (OSTI)

The Internet, a truly ''on-demand'' medium and not bound by geographic location, is a natural sphere for local broadcasters to obtain further branding advantages and additional advertising revenues by providing entertainment, infotainment and shopping ... Keywords: Gratification expectation, Media substitution, On-Demand media, Pointcasting, Technology fluidity, Webcasting

Carolyn A. Lin

2008-05-01T23:59:59.000Z

66

Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

Tuffner, Francis K.; Bonebrake, Christopher A.

2012-02-14T23:59:59.000Z

67

Demand Response Opportunities and Enabling Technologies for Data Centers:  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities and Enabling Technologies for Data Centers: Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Title Demand Response Opportunities and Enabling Technologies for Data Centers: Findings From Field Studies Publication Type Report LBNL Report Number LBNL-5763E Year of Publication 2012 Authors Ghatikar, Girish, Venkata Ganti, Nance Matson, and Mary Ann Piette Publisher PG&E/SDG&E/CEC/LBNL Keywords communication and standards, control systems, data centers, demand response, enabling technologies, end-use technologies, load migration, market sectors, technologies Abstract The energy use in data centers is increasing and, in particular, impacting the data center energy cost and electric grid reliability during peak and high price periods. As per the 2007 U.S. Environmental Protection Agency (EPA), in the Pacific Gas and Electric Company territory, data centers are estimated to consume 500 megawatts of annual peak electricity. The 2011 data confirm the increase in data center energy use, although it is slightly lower than the EPA forecast. Previous studies have suggested that data centers have significant potential to integrate with supply-side programs to reduce peak loads. In collaboration with California data centers, utilities, and technology vendors, this study conducted field tests to improve the understanding of the demand response opportunities in data centers. The study evaluated an initial set of control and load migration strategies and economic feasibility for four data centers. The findings show that with minimal or no impact to data center operations a demand savings of 25% at the data center level or 10% to 12% at the whole building level can be achieved with strategies for cooling and IT equipment, and load migration. These findings should accelerate the grid-responsiveness of data centers through technology development, integration with the demand response programs, and provide operational cost savings.

68

Energy Storage and Distributed Generation Technology Assessment  

Science Conference Proceedings (OSTI)

Energy storage continues to hold a great deal of interest to utilities and other stakeholders in the electric power enterprise. Storage can be used to shift load or energy from one time to another, to provide ancillary services and grid support, and is an enabling technology for smart grid technologies. This report investigates the current state of the art of advanced lead-acid batteries and zinc-air batteries, specifically where pertinent to stationary applications. It focuses on those developments and ...

2009-12-22T23:59:59.000Z

69

Demand Response and Storage Integration Study: Markets Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Background Tools and techniques have been developed to help characterize demand response (DR) resources Given diversity in types of DR programs and relative...

70

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

71

Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage (Text Storage (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

72

New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide Demand Ventilation Carbon Dioxide Demand Ventilation Control New and Underutilized Technology: Carbon Dioxide Demand Ventilation Control October 4, 2013 - 4:23pm Addthis The following information outlines key deployment considerations for carbon dioxide (CO2) demand ventilation control within the Federal sector. Benefits Demand ventilation control systems modulate ventilation levels based on current building occupancy, saving energy while still maintaining proper indoor air quality (IAQ). CO2 sensors are commonly used, but a multiple-parameter approach using total volatile organic compounds (TVOC), particulate matter (PM), formaldehyde, and relative humidity (RH) levels can also be used. CO2 sensors control the outside air damper to reduce the amount of outside air that needs to be conditioned and supplied to the building when

73

Automated Demand Response Technologies and Demonstration in New York City  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Demonstration in New York City Technologies and Demonstration in New York City using OpenADR Title Automated Demand Response Technologies and Demonstration in New York City using OpenADR Publication Type Report LBNL Report Number LBNL-6470E Year of Publication 2013 Authors Kim, Joyce Jihyun, Sila Kiliccote, and Rongxin Yin Date Published 09/2013 Publisher LBNL/NYSERDA Abstract Demand response (DR) - allowing customers to respond to reliability requests and market prices by changing electricity use from their normal consumption pattern - continues to be seen as an attractive means of demand-side management and a fundamental smart-grid improvement that links supply and demand. Since October 2011, the Demand Response Research Center at Lawrence Berkeley National Laboratory and New York State Energy Research and Development Authority have conducted a demonstration project enabling Automated Demand Response (Auto-DR) in large commercial buildings located in New York City using Open Automated Demand Response (OpenADR) communication protocols. In particular, this project focuses on demonstrating how OpenADR can automate and simplify interactions between buildings and various stakeholders in New York State including the independent system operator, utilities, retail energy providers, and curtailment service providers. In this paper, we present methods to automate control strategies via building management systems to provide event-driven demand response, price response and demand management based on OpenADR signals. We also present cost control opportunities under day-ahead hourly pricing for large customers and Auto-DR control strategies developed for demonstration buildings. Lastly, we discuss the communication architecture and Auto-DR system designed for the demonstration project to automate price response and DR participation.

74

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

NLE Websites -- All DOE Office Websites (Extended Search)

| Chart credit ENERGY STAR Estimating the Cost and Energy Efficiency of a Solar Water Heater Diagram of a tankless water heater. Tankless or Demand-Type Water Heaters Water...

75

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE hydrogen storage activity focuses primarily on the applied research and development (R&D) of low-pressure, materials-based technologies to allow for a driving range of more than 300 miles (500 km) while meeting packaging, cost, safety, and performance requirements to be competitive with current vehicles. While automakers have recently demonstrated progress with some prototype vehicles traveling more than 300 miles on a single fill, this driving range must be achievable across different vehicle models and without compromising space, performance, or cost. In addition, hydrogen storage will be needed for both other niche vehicular applications and off-board uses such as for stationary power generation and for hydrogen delivery and refueling infrastructure.

76

Automated Demand Response Technology Demonstration Project for Small and  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Demonstration Project for Small and Technology Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings Publication Type Report LBNL Report Number LBNL-4982E Year of Publication 2011 Authors Page, Janie, Sila Kiliccote, Junqiao Han Dudley, Mary Ann Piette, Albert K. Chiu, Bashar Kellow, Edward Koch, and Paul Lipkin Date Published 07/2011 Publisher CEC/LBNL Keywords demand response, emerging technologies, market sectors, medium commercial business, openadr, small commercial, small commercial business, technologies Abstract Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

77

Chilled Water Storage System and Demand Response at the University of California at Merced  

NLE Websites -- All DOE Office Websites (Extended Search)

53E 53E Chilled Water Storage System and Demand Response at the University of California at Merced J. Granderson, J.H. Dudley, S. Kiliccote, M.A. Piette Environmental Energy Technologies Division September 2009 Presented at the 9 th International Conference for Enhanced Building Operations, Austin, TX, November 17-18, 2009, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

78

Energy Storage Technologies: State of Development for Stationary and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

79

Technical Progress Report for the Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2005 through September 30, 2005. During this time period efforts were directed toward (1) receiving proposals in response to the RFP, and (2) organizing and hosting the proposal selection meeting on August 30-31, 2005.

Joel L. Morrison

2005-10-24T23:59:59.000Z

80

Technical Progress Report for the Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of October 1, 2005 through December 31, 2005. Activities during this time period were: (1) Nomination and election of Executive Council members for 2006-07 term, (2) Release the 2006 GSTC request-for-proposals (RFP), (3) Recruit and invoice membership for FY2006, (4) Improve communication efforts, and (5) Continue planning the GSTC spring meeting in San Diego, CA on February 21-22, 2006.

Joel L. Morrison; Sharon L. Elder

2006-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

82

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

14 Peak Demand Baselinewinter morning electric peak demand in commercial buildings.California to reduce peak demand during summer afternoons,

Kiliccote, Sila

2010-01-01T23:59:59.000Z

83

Demand Response and Storage Integration Study: Markets Report Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Andy Satchwell Andy Satchwell Scientific Engineering Associate Lawrence Berkeley National Laboratory National Association of Regulatory Utility Commissioners, ER&E Committee Meeting, July 24, 2012 Portland, OR Tools and Methods Working Group Energy Analysis and Environmental Impacts Department Outline of Presentation  Introduction and background: DR Estimation Tools and Methods Working Group  Working group members  Work plan  Identification of estimation tools and methods needs  Preliminary gap analysis  Next steps 2 Energy Analysis and Environmental Impacts Department Introduction and Background  Tools and techniques have been developed to help characterize demand response (DR) resources  Given diversity in types of DR programs and relative

84

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

Science Conference Proceedings (OSTI)

The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

2009-10-08T23:59:59.000Z

85

Impact of selected energy conservation technologies on baseline demands  

SciTech Connect

This study is an application of the modeling and demand projection capability existing at Brookhaven National Laboratory to specific options in energy conservation. Baseline energy demands are modified by introducing successively three sets of conservation options. The implementation of improved building standards and the use of co-generation in industry are analyzed in detail and constitute the body of this report. Two further sets of energy demands are presented that complete the view of a low energy use, ''conservation'' scenario. An introduction to the report covers the complexities in evaluating ''conservation'' in view of the ways it is inextricably linked to technology, prices, policy, and the mix of output in the economy. The term as used in this report is narrowly defined, and methodologies are suggested by which these other aspects listed can be studied in the future.

Doernberg, A

1977-09-01T23:59:59.000Z

86

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

www.electricitystorage.org/tech/technologies_comparisons_Chandran (2008), “Optimal Technology Selection and Operationand Thermal Storage Technologies,” ACEEE 2008 Summer Study

Stadler, Michael

2009-01-01T23:59:59.000Z

87

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

E-Print Network (OSTI)

University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods, further complicating demand response scenarios. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced is described and its participation in a demand response event during 2008 is detailed. Second, a set of demand response strategies were pre-programmed into the campus control system to enable semi-automated demand response during a 2009 event, which is also evaluated. Finally, demand savings results are applied to the utility’s DR incentives structure to calculate the financial savings under various DR programs and tariffs.

Granderson, J.; Dudley, J. H.; Kiliccote, S.; Piette, M. A.

2009-11-01T23:59:59.000Z

88

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters June 14, 2012 - 7:38pm Addthis A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. A water heater's energy efficiency is determined by the energy factor (EF), which is based on the amount of hot water produced per unit of fuel consumed over a typical day. The higher the energy factor, the more efficient the water heater. What does this mean for me? Estimate the annual operating costs and compare several water heaters to determine whether it is worth investing in a more efficient

89

Hydrogen storage technology for metal hydrides  

DOE Green Energy (OSTI)

The advantages of using hydrogen as a secondary energy carrier are stated, and numerous factors pertinent to the technology of hydrogen storage via metal hydrides are briefly described. The technology is centered on iron-titanium hydride, FeTiH/sub x/, as the most practical choice for the safe and compact storage of hydrogen. Uses of hydride hydrogen as a fuel or energy carrier are given. The features of hydride reservoir designs are explained, and some performance data are given for two reservoirs constructed at BNL. Results of tests on the long-term behavior of FeTiH/sub x/ are presented along with information on pressure drop in a hydride bed. Two methods of accommodating hydride expansion are described. Other topics include: container materials selection, safety testing of FeTiH/sub x/, hydride materials development, storage systems work at BNL, the proposed Hydrogen-Halogen Energy Storage System, a proposed technique of storing hydrogen in hollow glass microspheres at very high pressure, and information on the commercial availability of materials and equipment for hydride hydrogen. Current development needs are included in the various sections.

Strickland, G

1978-06-01T23:59:59.000Z

90

Fuel Cell Technologies Office: Hydrogen Storage Materials Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage Materials Requirements (Text Version) on Facebook Tweet about Fuel Cell Technologies...

91

Fuel Cell Technologies Office: Hydrogen Storage Workshop Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage Workshop Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen...

92

Rates and technologies for mass-market demand response  

E-Print Network (OSTI)

Roger. 2002. Using Demand Response to Link Wholesale andfor advanced metering, demand response, and dynamic pricing.EPRI. 2001. Managing Demand-Response To Achieve Multiple

Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

2002-01-01T23:59:59.000Z

93

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

94

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

95

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

5. Average, minimum, and maximum demand reduction at eachshow the minimum and maximum demand reduction during the7. Average, minimum, and maximum demand reduction at each

Kiliccote, Sila

2010-01-01T23:59:59.000Z

96

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

97

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

98

Energy Storage Technologies: State of Development for Stationary and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 3

99

Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models  

E-Print Network (OSTI)

carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 power generation technologies are: 1) a natural gas combined cycle technology (advanced gas) without eight of technologies in the electric power sector: conventional fossil fuel, natural gas combined cycle

100

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

Electrical Peak Demands in Commercial Buildings” Center for Analysis and Dissemination of Demonstrated Energy Technologies (CADDET), IEA/OECD Analyses

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow Cells for Energy Flow Cells for Energy Storage Workshop to someone by E-mail Share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Facebook Tweet about Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Twitter Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Google Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Delicious Rank Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Digg Find More places to share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings

102

Commercialization of aquifer thermal energy storage technology  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) conducted this study for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. The purpose of the study was to develop and screen a list of potential entry market applications for aquifer thermal energy storage (ATES). Several initial screening criteria were used to identify promising ATES applications. These include the existence of an energy availability/usage mismatch, the existence of many similar applications or commercial sites, the ability to utilize proven technology, the type of location, market characteristics, the size of and access to capital investment, and the number of decision makers involved. The in-depth analysis identified several additional screening criteria to consider in the selection of an entry market application. This analysis revealed that the best initial applications for ATES are those where reliability is acceptable, and relatively high temperatures are allowable. Although chill storage was the primary focus of this study, applications that are good candidates for heat ATES were also of special interest. 11 refs., 3 tabs.

Hattrup, M.P.; Weijo, R.O.

1989-09-01T23:59:59.000Z

103

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

as 15-minute minimum and maximum demand values are provided.8. Hourly average and maximum demand savings of McKinstry on9. Hourly average and maximum demand savings of McKinstry on

Kiliccote, Sila

2010-01-01T23:59:59.000Z

104

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

if the customer’s maximum demand has exceeded 999 kilowattswhose meter indicates a maximum demand of 200 kW or greater2) the customer's maximum billing demand has exceeded 499

Ghatikar, Girish

2010-01-01T23:59:59.000Z

105

Energy Storage Technology and Application Cost and Performance Data Base-2012: Bulk Energy Storage Systems  

Science Conference Proceedings (OSTI)

This report updates EPRI reports 1020071, Energy Storage Technology and Application Cost and Performance Data Base-2010, and 1021932, Energy Storage Technology and Application Cost and Performance Data Base-2011, which presents 2011 updated data on the cost, performance, and capabilities of energy storage systems only for bulk energy storage applications in a Excel workbook database. The distributed options detailed in the index can be found in the 2011 product, 1021932. The goal of this research was to ...

2012-02-27T23:59:59.000Z

106

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

107

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Storage Technology Advancement Partnership (ESTAP) is a cooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

108

Fuel Cell Technologies Office: Hydrogen Storage Materials Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage Materials Database Demonstration Webinar (Text Version) on Facebook Tweet about Fuel...

109

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

SciTech Connect

This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

2010-08-02T23:59:59.000Z

110

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

summer peak demand, with hydro power and wind integration,of its hydro system, continued load growth, wind power

Kiliccote, Sila

2010-01-01T23:59:59.000Z

111

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

112

Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FUEL CELL TECHNOLOGIES PROGRAM FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up a significant amount of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required

113

Comparison of Storage Technologies for Distributed Resource Applications  

Science Conference Proceedings (OSTI)

This report summarizes six electricity storage technologies by describing operating principles, technical characteristics, field experience, and capital and operating costs: o sodium sulfur (NaS) battery o polysulfide-bromine (PSB) battery ("Regensys") o vanadium redox battery (VRB) o compressed air energy storage (CAES) o flywheels electrochemical capacitors In addition, the data is used to compare storage technologies in four applications: (1) peak shaving on the customer side of the meter; (2) peak sh...

2003-03-05T23:59:59.000Z

114

Status and Challenges in Electrochemical Energy Storage Technologies for Stationary Applications  

DOE Green Energy (OSTI)

There are a number of EES technologies that exist and are potential candidates for the stationary applications. Among the most promising ones are batteries that store electrical energy via electrochemical conversion and release it according to demands. But all the exiting battery technologies are facing challenges in cost and performance for the particular applications. To advance the technology and accelerate market penetration requires substantial progress in advanced materials and chemistries, along with design and engineering. Given this is a relative new field to the materials community, this issue JOM includes a topic on the stationary electrical energy storage, with focus on the needs, requirements and status and challenges in technologies.

Yang, Zhenguo

2010-08-06T23:59:59.000Z

115

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect

Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology demonstration and evaluation for Bonneville Power Administration (BPA) in Seattle City Light's (SCL) service territory. This report summarizes the process and results of deploying open automated demand response (OpenADR) in Seattle area with winter morning peaking commercial buildings. The field tests were designed to evaluate the feasibility of deploying fully automated demand response (DR) in four to six sites in the winter and the savings from various building systems. The project started in November of 2008 and lasted 6 months. The methodology for the study included site recruitment, control strategy development, automation system deployment and enhancements, and evaluation of sites participation in DR test events. LBNL subcontracted McKinstry and Akuacom for this project. McKinstry assisted with recruitment, site survey collection, strategy development and overall participant and control vendor management. Akuacom established a new server and enhanced its operations to allow for scheduling winter morning day-of and day-ahead events. Each site signed a Memorandum of Agreement with SCL. SCL offered each site $3,000 for agreeing to participate in the study and an additional $1,000 for each event they participated. Each facility and their control vendor worked with LBNL and McKinstry to select and implement control strategies for DR and developed their automation based on the existing Internet connectivity and building control system. Once the DR strategies were programmed, McKinstry commissioned them before actual test events. McKinstry worked with LBNL to identify control points that can be archived at each facility. For each site LBNL collected meter data and trend logs from the energy management and control system. The communication system allowed the sites to receive day-ahead as well as day-of DR test event signals. Measurement of DR was conducted using three different baseline models for estimation peak load reductions. One was three-in-ten baseline, which is based on the site electricity consumption from 7 am to 10 am for the three days with the highest consumption of the previous ten business days. The second model, the LBNL outside air temperature (OAT) regression baseline model, is based on OAT data and site electricity consumption from the previous ten days, adjusted using weather regressions from the fifteen-minute electric load data during each DR test event for each site. A third baseline that simply averages the available load data was used for sites less with less than 10 days of historical meter data. The evaluation also included surveying sites regarding any problems or issues that arose during the DR test events. Question covered occupant comfort, control issues and other potential problems.

Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann

2009-08-01T23:59:59.000Z

116

Advanced Gas Storage Concepts: Technologies for the Future  

Science Conference Proceedings (OSTI)

This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

Freeway, Katy (PB-KBB Inc.) [PB-KBB Inc.; Rogers, R.E. (Mississippi State University) [Mississippi State University; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC) [RESPEC

2000-02-01T23:59:59.000Z

117

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

Science Conference Proceedings (OSTI)

The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.

Stadler , Michael; Siddiqui, Afzal; Marnay, Chris; ,, Hirohisa Aki; Lai, Judy

2009-05-26T23:59:59.000Z

118

Abstract--Smart Grid technology appears necessary to succeed in activating the demand through demand side management  

E-Print Network (OSTI)

1 Abstract--Smart Grid technology appears necessary to succeed in activating the demand through recommendations regarding the instruments that should be implemented to maximize the benefits of smart grids by the European Union. The development of smart grids (SG) is a possible solution for achieving these goals [1

119

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

hydrogen in storage varies between the various energy storagethe energy storage characteristics of the various hydrogenthat the energy densities of hydrogen storage technologies

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

120

Fuel Cell Technologies Office: Hydrogen Compression, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy's (DOE's) Argonne National Laboratory (ANL) held a Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop on March 20-21, 2013, in Argonne, Illinois....

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Rates and technologies for mass-market demand response  

SciTech Connect

Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory, system-operator controlled, contingency program, and (2) a voluntary, customer controlled, bill management program with rate-based incentives. Any demand response program based on this system could consist of either or both of these components. Ideally, these programs would be bundled, providing automatic load management through customer-programmed price response, plus up to 10 GW of emergency load shedding capability in California. Finally, we discuss options for and barriers to implementation of such a program in California.

Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

2002-07-21T23:59:59.000Z

122

Fuel Cell Technologies Office: Storage Systems Analysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Systems Analysis Working Group Storage Systems Analysis Working Group The Storage Systems Analysis Working Group, launched in March 2005, provides a forum to facilitate research and communication of hydrogen storage-related analysis activities among researchers actively engaged in hydrogen storage systems analyses. The working group includes members from DOE, the national laboratories, industry, and academia. Description Technical Targets Meetings Contacts Description Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in transportation, stationary, and portable power applications. One of the most challenging technical barriers known is how to efficiently store hydrogen on-board a vehicle to meet customer expectations of a driving range greater than 300 miles-as well as performance, safety, and cost-without impacting passenger or cargo space. The Department of Energy's hydrogen storage activity is coordinated through the "National Hydrogen Storage Project," with multiple university, industry, and federal laboratory partners focused on research and development of on-board vehicular hydrogen storage technologies. This research also has components applicable to off-board storage of hydrogen for refueling infrastructure and the off-board regeneration of chemical hydrogen carriers applicable to hydrogen delivery.

123

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

Comes to Demand Response is FERC is own Worst Enemy? ” The2009. Report No. 1018895. FERC. 2009. A National AssessmentLast accessed: 6/22/10. FERC. 2010. National Action Plan on

Ghatikar, Girish

2010-01-01T23:59:59.000Z

124

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network (OSTI)

oasis. Last accessed: Con Edison. 2010. “Demand Response/is Southern California Edison’s real-time pricing tariff. 2.and Southern California Edison’s Critical Peak Pricing

Ghatikar, Girish

2010-01-01T23:59:59.000Z

125

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

profile (Figure 10), the load profile over the test day isbelow as well as the load profile of the aggregate demandbelow as well as the load profile of the aggregate demand

Kiliccote, Sila

2010-01-01T23:59:59.000Z

126

Discussion Paper Prepared for: Deploying Demand Side Energy Technologies workshop  

E-Print Network (OSTI)

The IEA study Energy Technology Perspectives 2006 (ETP 2006) demonstrates how energy technologies can contribute to a stabilization of CO2 emissions at today’s level by 2050. The results of the scenario analysis showed that no fundamental technology breakthroughs are needed. Technologies that are available today or that are under development today will

Cecilia Tam; Dolf Gielen

2007-01-01T23:59:59.000Z

127

Load Reduction, Demand Response and Energy Efficient Technologies and Strategies  

SciTech Connect

The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

2008-11-19T23:59:59.000Z

128

Technical Assessment Guide (TAG) -- Power Generation and Storage Technology Options: 2012 Topics  

Science Conference Proceedings (OSTI)

This report provides cost and performance data and analysis for energy company decision makers to optimize capital investments in the power generation and energy storage infrastructure. The 2012 TAG has been significantly enhanced to reflect current topics of interest to members, which included market trends and integration and implementation of technologies from a planning perspective. In 2012, these topics included projected demand for large combustion turbine (CT) and combustion turbine ...

2013-03-06T23:59:59.000Z

129

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

130

Technology Assessment of Li-Ion Energy Storage Technology for Stationary Electric Utility Applications  

Science Conference Proceedings (OSTI)

Emerging Lithium-ion (Li-ion) energy storage technology, which is being developed and applied in the transportation sector, could have a profound impact in the electric sector by serving applications for distributed energy storage (DES). An earlier EPRI Report, Technology Review and Assessment of Distributed Energy Resources: Distributed Energy Storage (1012983, February 2006), identified Li-ion batteries as a potential disruptive technology for the electric power sector. EPRI undertook this project to a...

2008-03-13T23:59:59.000Z

131

Rates and technologies for mass-market demand response  

Science Conference Proceedings (OSTI)

Demand response programs are often quickly and poorlycrafted in reaction to an energy crisis and disappear once the crisissubsides, ensuring that the electricity system will be unprepared whenthe next crisis hits. In this paper, we propose to eliminate theevent-driven nature of demand response programs by considering demandresponsiveness a component of the utility obligation to serve. As such,demand response can be required as a condition of service, and theoffering of demand response rates becomes a requirement of utilities asan element of customer service. Using this foundation, we explore thecosts and benefits of a smart thermostat-based demand response systemcapable of two types of programs: (1) a mandatory, system-operatorcontrolled, contingency program, and (2) a voluntary, customercontrolled, bill management program with rate-based incentives. Anydemand response program based on this system could consist of either orboth of these components. Ideally, these programs would be bundled,providing automatic load management through customer-programmed priceresponse, plus up to 10 GW of emergency load shedding capability inCalifornia. Finally, we discuss options for and barriers toimplementation of such a program in California.

Herter, Karen; Levy, Roger; Wilson, John; Rosenfeld, Arthur

2002-07-21T23:59:59.000Z

132

The State of Distributed Energy Storage Technology and the Stem...  

NLE Websites -- All DOE Office Websites (Extended Search)

State of Distributed Energy Storage Technology and the Stem Energy System Speaker(s): Ben Kearns David Erhart Date: March 1, 2013 - 12:00pm Location: 90-3122 Seminar HostPoint of...

133

Grid Scale Energy Storage: Linchpin Technology for our Clean...  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Scale Energy Storage: Linchpin Technology for our Clean and Secure Energy Future Speaker(s): Bill Gray Date: March 17, 2009 - 12:00pm Location: 90-3122 Seminar HostPoint of...

134

NREL: TroughNet - Parabolic Trough Thermal Energy Storage Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage Technology One advantage of parabolic trough power plants is their potential for storing solar thermal energy to use during non-solar periods and to dispatch...

135

Applications of cogeneration with thermal energy storage technologies  

DOE Green Energy (OSTI)

The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

Somasundaram, S.; Katipamula, S.; Williams, H.R.

1995-03-01T23:59:59.000Z

136

Chilled Water Thermal Storage System and Demand Response at the University of California at Merced  

E-Print Network (OSTI)

In 2008 the maximum and average demand reduction throughoutthe table, average and maximum absolute demand reduction arethe average and maximum percent demand reductions, relative

Granderson, Jessica

2010-01-01T23:59:59.000Z

137

Envelope & Lighting Technologies to Reduce Electric Demand in...  

NLE Websites -- All DOE Office Websites (Extended Search)

of light shelf reflectors. Deploying Integrated Systems Realizing the full energy-saving potential of envelope and lighting technologies for commercial buildings means...

138

Energy storage technology-environmental implications of large scale utilization  

SciTech Connect

Environmental impacts for several energy storage technologies have been identified. State-of-the-art control technology options were similarly identified. Recommendations for research and development on new control technology were made where present controls were either deemed inadequate or non-existent. Specifically, the energy storage technologies under study included: advanced lead-acid battery, compressed air, underground pumped hydroelectric, flywheel, superconducting magnet and various thermal systems (sensible, latent heat and reversible chemical reaction). In addition, a preliminary study was conducted on fuel cell technology. Although not strictly classified as an energy storage system, fuel cells in conjunction with product recycling units can serve an energy storage function. A very large number of potential environmental impacts can be identified for all of these technologies. However, not all are of primary importance. Detailed discussions of a number of environmental impacts from the latest LASL study as they relate to primarily operational situations are emphasized. In addition, a brief discussion on new application for energy storage technologies and the additional costs of controls to be used for mitigation of specific impacts are also presented.

Krupka, M.C.; Moore, J.E.; Keller, W.E.; Baca, G.A.; Brasier, R.I.; Bennett, W.S.

1979-01-01T23:59:59.000Z

139

storage (CCS) technologies. CCSI will util  

NLE Websites -- All DOE Office Websites (Extended Search)

(CCS) technologies. CCSI will utilize a software infrastructure (CCS) technologies. CCSI will utilize a software infrastructure to accelerate the development and deployment of new, cost-effective CCS technologies. This will be achieved by identifying promising concepts through rapid computational screening of devices and processes; reducing the time and expense to design and troubleshoot new devices and processes through science-based optimal designs;

140

The geothermal analog of pumped storage for electrical demand load following  

Science Conference Proceedings (OSTI)

A 6 day cycle Load-Following Experiment, conducted in July 1995 at the Fenton Hill Hot Dry Rock (HDR) test site in New Mexico, has verified that an HDR geothermal reservoir has the capability for a significant, rapid increase in thermal power output upon demand. The objective was to study the behavior of the HDR reservoir in a high-production- backpressure (2200 psi) baseload operating condition when there was superimposed a demand for significantly increased power production for a 4 hour period each day. In practice, this enhanced production, an increase of 65%, was accomplished by a programmed decrease in the production well backpressure over 4 hours, from an initial 2200 psi down to 500 psi. The rapid depressurization of the wellbore during the period of enhanced production resulted in the draining of a portion of the fluid stored in the pressure dilated joints surrounding the production well. These joints were then gradually reinflated during the following 20-hour period of high backpressure baseload operation. In essence, the HDR reservoir was acting as a fluid capacitor, being discharged for 4 hours and then slowly recharged during the subsequent 20 hours of baseload operation. In this mode, there would be no increase in the reservoir size of number of wells (the {ital in situ} capital investment) for a significant amount of peaking power production for a few hours each day. Thus, one of the advantages of geothermal load following over utility options such as pumped storage or compressed air storage is that the HDR power plant would be operated during off-peak hours in a baseline mode, with an augmented return on investment compared to these other peaking systems which would normally not be operated during off-peak periods. The surface power plant and the geofluid reinjection pumps would need to be sized for the peak rate of thermal energy production, adding somewhat to the overall HDR system capital costs when compared to a simple baseload power plant design.

Brown, D.W.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New coal plant technologies will demand more water  

Science Conference Proceedings (OSTI)

Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

2008-04-15T23:59:59.000Z

142

Demand-Side and Supply-Side Load Management: Optimizing with Thermal Energy Storage (TES) for the Restructuring Energy Marketplace  

E-Print Network (OSTI)

The current and future restructuring energy marketplace represents a number of challenges and opportunities to maximize value through the management of peak power. This is true both on the demand-side regarding peak power use and on the supply-side regarding power generation. Thermal Energy Storage (TES) can provide the flexibility essential to the economical management of power. In large industrial applications, the added value of TES has been demonstrated, not only in managing operating costs, but also in delivering a net saving in capital cost versus conventional, non-storage approaches. This capital cost saving is often realized in situations where investments in chiller plant capacity, or in on-site power generating capacity, are required. On the demand-side, TES has long been used to shift air-conditioning loads and process cooling loads from on-peak to off-peak periods. In today's and tomorrow's restructuring energy markets, price spikes are increasingly likely during periods of peak power demand. TES is performing an important role, especially when coupled with a proper understanding of modern TES technology options. The inherent advantages and limitations of the available TES technology options are briefly reviewed and discussed. Examples of existing large TES installations are presented, identifying the TES technology types they utilize. The applications include industrial facilities, as well as universities, hospitals, government, and District Cooling utility systems. The power management impact and the economic benefits of TES are illustrated through a review of several TES case studies. Combustion Turbines (CTs) are a common choice for modern on-site and utility power generation facilities. Inlet air cooling of CTs enhances their hot weather performance and has been successfully accomplished for many years, using a variety of technologies. In many instances, TES can and does provide a uniquely advantageous method of optimizing the economics of CT Inlet Cooling (CTIC) systems. TES systems can achieve low inlet air temperatures, with resulting high levels of power augmentation. The TES approach also minimizes the installed capacity (and capital cost) of cooling systems, as well as limiting the parasitic loads occurring during periods of peak power demand and peak power value. Chilled water, ice, and low temperature fluid TES systems are all applicable to CTIC. The inherent pros and cons of each TES type are discussed. Sensitivity analyses are presented to explore the impact of cooling hours per day on capital cost per kW of power enhancement. Case histories illustrate the beneficial impact of TES-based CTIC on both capital cost and operating cost of CT power plants. TES-based CTIC is advantageous as an economical, peaking power enhancement for either peaking or base-load plants. It is applied to both new and existing CTs. TES is projected to have even greater value in future restructuring energy markets.

Andrepont, J. S.

2002-04-01T23:59:59.000Z

143

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

144

Buildings sector demand-side efficiency technology summaries  

SciTech Connect

This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

Koomey, J.G.; Johnson, F.X.; Schuman, J. [and others

1994-03-01T23:59:59.000Z

145

Program on Technology Innovation: Technology Assessment Presentation on Li-Ion Energy Storage Technology for Stationary Electric Uti lity Applications  

Science Conference Proceedings (OSTI)

Emerging Li-ion (Li-ion) energy storage technology, which is being developed and applied in the transportation sector, could have a profound impact to in the electric sector by serving applications for distributed energy storage (DES). An earlier EPRI Report, Technology Review and Assessment of Distributed Energy ResourcesDistributed Energy Storage (1012983), identified Li-ion batteries as a potential disruptive technology for the electric power sector. This project was undertaken to assess the potential...

2008-05-20T23:59:59.000Z

146

Sandia Researchers Develop Promising Chemical Technology for Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Researchers Develop Promising Chemical Technology for Energy Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am Addthis DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three times more energy than today's batteries. The new family of liquid salt electrolytes, called MetILs, might enable economical and reliable incorporation of large-scale intermittent energy sources, like solar and wind, into the nation's electric grid. The research team is funded by the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE). Imre Gyuk, OE's energy storage systems program manager, notes that the new solution could "lead to

147

Available Technologies: Improving Long Term Storage of ...  

Researchers at the Joint BioEnergy Institute (JBEI) have developed technology to reduce the hydrocarbon double bonds in isoprenoid-based biofuels, bonds that make ...

148

Demand Response-Ready Technology Capabilities: A Summary of Multi-Stakeholder Workshop and Survey Perspectives  

Science Conference Proceedings (OSTI)

This technical update describes technology capabilities that support more automated and ubiquitous demand response. It begins by describing the Demand Response-Ready (DR-Ready) concept and related industry activities that support realization of the concept. In the DR-Ready vision, consumers receive DR-Ready end-use products at the point of purchase, thus eliminating the need for utility truck service visits to retrofit equipment and significantly reducing the cost of deploying DR-enabling technologies. ...

2012-04-06T23:59:59.000Z

149

Application of Storage Technology for Transmission System Support: Interim Report  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) research in 2011 explored the potential use of battery storage to increase transmission capability in thermal limited transmission paths, an application of energy storage technology that has not been investigated in detail in prior research (see EPRI report 1024586). Researchers performed a conceptual analysis of how batteries connected at either the sending or the receiving end of a congested corridor can be used to increase the transmission capability ...

2012-12-31T23:59:59.000Z

150

Technical Assessment Guide (TAG) - Power Generation and Storage Technology Options  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG)Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in power generation and energy storage infrastructure. The 2009 TAG has been significantly enhanced. The following topics are among those that are new or enhanced: several options on CO2 capture controls and costs for existing retrofits and for new Pulverized Coal and Combustion Turbine Combined Cycle plants; several options on hybrid and dry cooling f...

2009-12-11T23:59:59.000Z

151

Community Energy Storage Demonstration at the Solar Technology Acceleration Center  

Science Conference Proceedings (OSTI)

Advanced electrical energy storage technologies have the potential to improve the reliability and efficiency of the energy delivery network, and also pave the way for greater additions of variable renewable resources onto the grid. Numerous electric utilities are currently engaged in field trial initiatives to assess and demonstrate a variety of distributed energy storage system options sited near a pad-mounted transformer or on the customer side of the meter (sometimes referred to in the literature ...

2012-12-12T23:59:59.000Z

152

Energy Storage Technology Valuation Primer: Techniques for Financial Modeling  

Science Conference Proceedings (OSTI)

Unlike other energy forms, electricity cannot be easily bottled or boxed, warehoused when demand is low, and dispensed to meet customer demand. Without an "inventory" to draw on, utilities have little flexibility in managing electricity production and delivery. Likewise, intermittent renewable resources — such as solar and wind — cannot be relied on for hourly electricity supply. Although some advanced technologies now exist to stock electricity by converting and storing it in another energy ...

2004-12-20T23:59:59.000Z

153

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy States Alliance Clean Energy States Alliance Batteries, flywheels, above-ground compressed air, micro pumped hydro, and other forms of energy storage may be able to provide significant support to the integration of renewable energy in the United States. Public funding and support are critical to accelerate progress, achieve cost reductions, and encourage widespread deployment of these technologies. Overview The Energy Storage Technology Advancement Partnership (ESTAP) is a new, cooperative funding and information-sharing partnership between the U.S. Department of Energy (DOE) and interested states that aims to accelerate the commercialization and deployment of energy storage technologies in the United States via joint funding and coordination. Facilitated by the Clean Energy States Alliance, ESTAP is funded by Sandia National

154

An Integrated Modeling Framework for Carbon Capture and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen L. cohen Karen L. cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Edward s. Rubin Carnegie Mellon University 5000 Forbes Avenue 128A Baker Hall Pittsburgh, PA 15213 412-268-5897 rubin@cmu.edu An IntegrAted ModelIng FrAMework For CArbon CApture And StorAge teChnologIeS Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is developing safe, lower-cost methods of carbon dioxide (CO 2 ) capture and storage (CCS) as a potential option for climate change mitigation. In addition to technology development, there is a need for modeling and assessment tools to evaluate and compare the cost and effectiveness of CCS methods. Analytical

155

Compressed air energy storage technology program. Annual report for 1979  

DOE Green Energy (OSTI)

The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

Loscutoff, W.V.

1980-06-01T23:59:59.000Z

156

A tale of two houses: the human dimension of demand response enabling technology from a case study of an adaptive wireless thermostat.  

E-Print Network (OSTI)

and Ed Arens. 2008. Demand Response-Enabled ResidentialEfficiency and Demand Response Programs for 2005/2006.The Human Dimension of Demand Response Enabling Technology

Peffer, Therese; Arens, Edward A; Chen, Xue; Jang, Jaehwi; Auslander, David M.

2008-01-01T23:59:59.000Z

157

Incorporating carbon capture and storage technologies in integrated assessment models  

E-Print Network (OSTI)

and storage of CO2 from electric power plants. The electric power sector accounts for a substant of realistic technology adoption rates. The specification of input substitution, relative costs, and plant change has accounted for a significant portion of economic growth and is, in part, responsible

158

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Science Conference Proceedings (OSTI)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

2009-11-01T23:59:59.000Z

159

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect

The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

160

Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

Piette, Mary Ann; Kiliccote, Sila

2006-09-01T23:59:59.000Z

162

Remote power systems with advanced storage technologies for Alaskan villages  

DOE Green Energy (OSTI)

Remote Alaskan communities pay economic and environmental penalties for electricity, because they must import diesel as their primary fuel for electric power production, paying heavy transportation costs and potentially causing environmental damage with empty drums, leakage, and spills. For these reasons, remote villages offer a viable niche market where sustainable energy systems based on renewable resources and advanced energy storage technologies can compete favorably on purely economic grounds, while providing environmental benefits. These villages can also serve as a robust proving ground for systematic analysis, study, improvement, and optimization of sustainable energy systems with advanced technologies. This paper presents an analytical optimization of a remote power system for a hypothetical Alaskan village. The analysis considers the potential of generating renewable energy (e.g., wind and solar), along with the possibility of using energy storage to take full advantage of the intermittent renewable sources available to these villages. Storage in the form of either compressed hydrogen or zinc pellets can then provide electricity from hydrogen or zinc-air fuel cells when renewable sources are unavailable.The analytical results show a great potential to reduce fossil fuel consumption and costs basing renewable energy combined with advanced energy storage devices. The best solution for our hypothetical village appears to be a hybrid energy system, which can reduce consumption of diesel fuel by over 50% with annualized cost savings by over 30% by adding wind turbines to the existing diesel generators. When energy storage devices are added, diesel fuel consumption and costs can be reduced substantially more. With optimized energy storage, use of the diesel generatorss can be reduced to almost zero, with the existing equipment only maintained for added reliability. However about one quarter of the original diesel consumption is still used for heating purposes. (We use the term diesel to encompass the fuel, often called heating or fuel oil, of similar or identical properties.)

Isherwood, W.; Smith, R.; Aceves, S.; Berry, G.; Clark, W.; Johnson, R.; Das, D.; Goering, D.; Seifert, R.

1997-12-01T23:59:59.000Z

163

Standardized Testing Program for Solid-State Hydrogen Storage Technologies  

DOE Green Energy (OSTI)

In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to established and qualified standards. Working with industry, academia, and the U.S. government, SwRI set out to develop an accepted set of evaluation standards and analytical methodologies. Critical measurements of hydrogen sorption properties in the Laboratory have been based on three analytical capabilities: 1) a high-pressure Sievert-type volumetric analyzer, modified to improve low-temperature isothermal analyses of physisorption materials and permit in situ mass spectroscopic analysis of the sample’s gas space; 2) a static, high-pressure thermogravimetric analyzer employing an advanced magnetic suspension electro-balance, glove-box containment, and capillary interface for in situ mass spectroscopic analysis of the sample’s gas space; and 3) a Laser-induced Thermal Desorption Mass Spectrometer (LTDMS) system for high thermal-resolution desorption and mechanistic analyses. The Laboratory has played an important role in down-selecting materials and systems that have emerged from the MCoEs.

Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

2012-07-30T23:59:59.000Z

164

Program on Technology Innovation: Evaluation of Concentrating Solar Thermal Energy Storage Systems  

Science Conference Proceedings (OSTI)

Adding solar thermal energy storage to concentrating solar thermal power plants expands both the amount of power and the timing of production. With thermal energy storage, plant power output can be firmed and shaped to better match consumer demand for electricity. Thermal storage associated with these plants is typically much more efficient and cost-effective than electrical or mechanical forms of storage. In many cases, the addition of thermal energy storage can lower the levelized electricity productio...

2009-03-31T23:59:59.000Z

165

Materials for Energy How pressing needs for innovative technologies demand new ways of creating materials and putting them together  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Littlewood Littlewood Associate Lab Director, Physical Sciences and Engineering Argonne National Laboratory Secretary of Energy Advisory Board 17 April 2012 Materials for Energy How pressing needs for innovative technologies demand new ways of creating materials and putting them together The scale of the challenge: Energy usage per m 2 Courtesy D J Mackay, UK DECC Renewable deployments are country-sized Courtesy D J Mackay, UK DECC Challenges of Geography, Efficiency, and Cost Power density Watt/m 2 Full insolation Arizona desert 300 Concentrated solar power (desert) 15-20 Solar photovoltaic 5-20 Biomass 1-2 Tidal pools/tidal stream 3-8 Wind 2-8 Rainwater (highland) 0.3 US energy consumption (all sources) 0.3 In the US: Solar + wind + storage + grid infrastructure= sustainable economy

166

Storage optimization for a peer-to-peer video-on-demand network  

Science Conference Proceedings (OSTI)

This paper explores requirements for efficient pre-seeding of video-on-demand (VoD) movie data onto numerous customer set-top boxes in a cable ISP environment. The pre-seeded content will then be distributed to other set-top boxes in the same cable community ... Keywords: bittorrent, experimental systems, multimedia streaming, nonlinear programming, peer-to-peer, video-on-demand

Jagadeesh M. Dyaberi; Karthik Kannan; Vijay S. Pai

2010-02-01T23:59:59.000Z

167

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

that growth in electricity demand in developed countriesof displacement of electricity demand by heat-activatedconsidered. Finally, the electricity demand coincides with

Stadler, Michael

2009-01-01T23:59:59.000Z

168

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy costs during the cooling season as well as the heating season. To achieve air conditioning savings, the system separates dehumidification from sensible cooling; dehumidifies by desiccant absorption, using heat from storage to dry the desiccant; and then cools at an elevated temperature improving overall system efficiency. Efficient heat for desiccant regeneration is provided by a selective-energy system coupled with thermal storage. The selective-energy system incorporates diesel cogeneration, solar energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility energy for refrigeration; 10 to 20% in refrigeration equipment; and space savings due to smaller ductwork and equipment.

Meckler, G.

1985-01-01T23:59:59.000Z

169

Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Progress Report FY 2012 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2012 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

170

Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Progress Report 11 Progress Report for Energy Storage R&D to someone by E-mail Share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Facebook Tweet about Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Twitter Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Google Bookmark Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Delicious Rank Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on Digg Find More places to share Vehicle Technologies Office: FY 2011 Progress Report for Energy Storage R&D on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports

171

(Thermal energy storage technologies for heating and cooling applications)  

DOE Green Energy (OSTI)

Recent results from selected TES research activities in Germany and Sweden under an associated IEA annex are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 IEA Executive Committee deliberations on TES is presented.

Tomlinson, J.J.

1990-12-19T23:59:59.000Z

172

Compressed air energy storage technology program. Annual report for 1980  

DOE Green Energy (OSTI)

All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

Kannberg, L.D.

1981-06-01T23:59:59.000Z

173

Program on Technology Innovation: Tracking the Demand for Electricity from Grid Services  

Science Conference Proceedings (OSTI)

To help address the many challenges facing the electric power industry in the next 20 years, an effective process of technology research and development (R&D) planning is needed. Based on input from a broad range of stakeholders and using a proven scenario planning process, this report represents an attempt to monitor one of three key drivers, namely, the demand for electricity from grid services, which may impact the industry in the future. Collectively, these drivers form the basis of a ...

2013-05-17T23:59:59.000Z

174

A cost allocation model for assessing the impact of energy storage technologies upon electric utilities  

Science Conference Proceedings (OSTI)

In order to assist the Division of Energy Storage Systems in the U.S. Department of Energy in prioritizing, developing, and commercializing storage technologies a computer simulation code has been developed by Argonne National Laboratory to assess the ...

R. Giese; L. Holt; R. Scheithauer

1978-12-01T23:59:59.000Z

175

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

Science Conference Proceedings (OSTI)

Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

2011-07-01T23:59:59.000Z

176

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Energy. “Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

177

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilities”.also provided through the Demand Response Research Center (of Fully Automated Demand Response in Large Facilities”

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

178

California DREAMing: the design of residential demand responsive technology with people in mind  

E-Print Network (OSTI)

Efficiency and Demand Response Programs for 2005/2006. fromEngaging our Customers in Demand Response. Retrieved OctoberAdvanced Metering and Demand Response in Electricity

Peffer, Therese E.

2009-01-01T23:59:59.000Z

179

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

E-Print Network (OSTI)

2010 Assessment of Demand Response and  Advanced Metering:  Development for Demand Response  Calculation ? Findings and Energy  Efficiency and  Demand Response with Communicating 

Page, Janie

2012-01-01T23:59:59.000Z

180

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

E-Print Network (OSTI)

for Automated Demand Response in Commercial Buildings. ” In2010. “Open Automated Demand Response Dynamic Pricing2009. “Open Automated Demand Response Communications

Ghatikar, Girish

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The role of building technologies in reducing and controlling peak electricity demand  

E-Print Network (OSTI)

AND CONTROLLING PEAK ELECTRICITY DEMAND Jonathan Koomey* andData to Improve Electricity Demand Forecasts–Final Report.further research. Electricity demand varies constantly. At

Koomey, Jonathan; Brown, Richard E.

2002-01-01T23:59:59.000Z

182

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Contribution to Peak Demand?..5 3.potential to reduce peak demand in commercial buildingsbuildings’ contribution to peak demand and the use of energy

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

183

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

Figure 5. Low Storage and PV Price (run 3) Diurnal Heat6. Low Storage and PV Price (run 3) Diurnal ElectricityFigure 9. Low Storage and PV Price (run 3) Diurnal Heat

Stadler, Michael

2009-01-01T23:59:59.000Z

184

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

FutureGen FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production Office of Fossil Energy U. S. Department of Energy Washington, DC June 2, 2003 Lowell Miller, Director, Office of Coal & Power Systems 24-Jun-03 Slide 2 Office of Fossil Energy Presentation Agenda * FE Hydrogen Program * FutureGen * Carbon Sequestration Leadership Forum (CSLF) 24-Jun-03 Slide 3 Office of Fossil Energy Key Drivers * Decreasing domestic supply will lead to increased imports from less stable regions * Conventional petroleum is finite; production will peak and irreversibly decline due to continually increasing demand * Improving environmental quality - Meeting air emission regulations - Greenhouse gas emissions 0 2 4 6 8 10 12 14 16 18 20 1970 1975 1980 1985 1990 1995 2000 2005

185

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

Science Conference Proceedings (OSTI)

We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

2010-06-02T23:59:59.000Z

186

ESS 2012 Peer Review - State & Federal Energy Storage Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

leading U.S. public clean energy programs. ESTAP* Overview Purpose: Create new DOE-state energy storage partnerships and advance energy storage, with technical assistance from...

187

Forecourt Storage and Compression Options  

E-Print Network (OSTI)

pressure, capacity ­ Compressor output, power, electric demand ­ Station and dispenser load profiles Pro > Station demand profiles > Operational analysis results ­ Compressor-storage relationships and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology

188

A Framework for viewing theoretical, technological, economic and market potential of carbon dioxide capture and storage  

SciTech Connect

Paper presents an intelectual framework for viewing how the theoretical, technological, economic and market potentials of carbon dioxide capture and storage are related to each other.

Dooley, James J.

2004-10-04T23:59:59.000Z

189

Smart Finite State Devices: A Modeling Framework for Demand Response Technologies  

E-Print Network (OSTI)

We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following four types: (a) optional loads that can be shed, e.g. light dimming; (b) deferrable loads that can be delayed, e.g. dishwashers; (c) controllable loads with inertia, e.g. thermostatically-controlled loads, whose task is to maintain an auxiliary characteristic (temperature) within pre-defined margins; and (d) storage devices that can alternate between charging and generating. Our analysis of the devices seeks to find their optimal price-taking control strategy under a given stochastic model of the distribution market.

Turitsyn, Konstantin; Ananyev, Maxim; Chertkov, Michael

2011-01-01T23:59:59.000Z

190

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

equipment lockout, pre-cooling, thermal energy storage,Equipment lockout • Pre-cooling • Thermal energy storage •

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

191

Technology Base Research Project for electrochemical energy storage  

DOE Green Energy (OSTI)

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

192

Technology Base Research Project for electrochemical energy storage  

SciTech Connect

The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

Kinoshita, Kim (ed.)

1991-06-01T23:59:59.000Z

193

Energy Storage Market Opportunities: Application Value Analysis and Technology Gap Assessment  

Science Conference Proceedings (OSTI)

A confluence of industry drivers including increased deployment of renewable generation, high capital costs for managing grid peak demands, grid infrastructure for reliability, and smart grid initiatives are creating a new interest in electric energy storage systems. Electricity storage systems may play a pivotal role in addressing these industry drivers. Utilities and industry stakeholders need cost and value information to support the business case for energy storage system investments. However, tradit...

2009-12-22T23:59:59.000Z

194

6.25 KHZ -MAXIMUM SPECTRUM EFFICIENCY The demand for wireless connectivity is increasing. Emerging technologies create  

E-Print Network (OSTI)

6.25 KHZ - MAXIMUM SPECTRUM EFFICIENCY The demand for wireless connectivity is increasing. Emerging technologies create applications that require instant information. Wireless SCADA solutions demand RF channels is ready today to utilize the existing spectrum for maximum efficiency. Until now, 6.25 kHz bandwidth

Allen, Gale

195

Electricity demand-side management for an energy efficient future in China : technology options and policy priorities  

E-Print Network (OSTI)

The main objective of this research is to identify robust technology and policy options which achieve substantial reductions in electricity demand in China's Shandong Province. This research utilizes a scenario-based ...

Cheng, Chia-Chin

2005-01-01T23:59:59.000Z

196

technology offer SandTES -High Temperature Sand Thermal Energy Storage  

E-Print Network (OSTI)

technology offer SandTES - High Temperature Sand Thermal Energy Storage key words: High Temperature together with Dr. Eisl of ENRAG GmbH. Background Thermal energy storage (TES) systems are essential Energy Storage | Fluidized Bed | Sand | The invention consists of a fluidized bed with internal heat

Szmolyan, Peter

197

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network (OSTI)

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs · Demonstrate 10,000 psi storage tanks Approach

198

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

199

Use of superconductive technology for energy storage and power transmission for large power systems: power parks  

DOE Green Energy (OSTI)

A general review and technology assessment of superconducting magnets for energy storage and superconducting cables for power transmission are presented. It is concluded that the technology is now available for applying superconductivity in the power industry. (TFD)

Keller, W.E.

1977-01-01T23:59:59.000Z

200

Olive Oil: Chemistry and Technology, 2nd EditionChapter 11 Storage & Packing  

Science Conference Proceedings (OSTI)

Olive Oil: Chemistry and Technology, 2nd Edition Chapter 11 Storage & Packing Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf...

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

East Penn Manufacturing East Penn Manufacturing American Recovery and Reinvestment Act (ARRA) Grid-Scale Energy Storage Demonstration Using UltraBattery ® Technology Demonstrating new lead-acid battery and capacitor energy storage technology to improve grid performance East Penn Manufacturing, through its subsidiary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery ® modules integrated in a turnkey battery energy storage system. The UltraBattery ® technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. The system is selling up to 3 MW of frequency regulation to PJM Interconnection's grid.

202

Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities  

Science Conference Proceedings (OSTI)

Thermal energy storage reduces electric costs by shifting chilling activities to off-peak times. Water is chilled or ice is made during the night to either replace or augment operation of cooling equipment during the day. Off-peak demand and consumption rates produce significant dollar savings. TES requires favorable electric rate structures, available space to house the associated equipment, and either variation in buildings cooling loads or favorable climatic conditions. TES can be implemented anywhere cooling loads can be shifted to off-peak hours with the best applications being office buildings, hospitals, and schools. Most TES projects are implemented in conjunction with an existing cooling system expansion, replacement of older cooling equipment, or new construction, thus reducing energy costs, consumption, and demand. Various options are available for funding TES projects in Federal facilities, including direct agency funding, capital improvement funds, utility financing, and alternative financing. The Federal Energy Management Program (FEMP) should promote TES through demonstrations, success stories, and by distributing the FEMP Technology Alert (March 2000). Federal Facilities should, as standard practice, evaluate TES options whenever a chiller retrofit or replacement is performed.

Chvala, William D.

2002-01-01T23:59:59.000Z

203

Fuel Cell Technologies Office: Flow Cells for Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow Cells for Energy Storage Workshop The U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (LBNL) held a Flow Cells for Energy Storage Workshop on March...

204

Carbon Capture and Storage Initiative Aims to Bring Technologies to Market  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Initiative Aims to Bring Technologies to Carbon Capture and Storage Initiative Aims to Bring Technologies to Market Faster Carbon Capture and Storage Initiative Aims to Bring Technologies to Market Faster March 16, 2011 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has begun research under the Carbon Capture Simulation Initiative (CCSI), partnering with other national laboratories, universities, and industry to develop state-of-the-art computational modeling and simulation tools to accelerate commercialization of carbon capture and storage (CCS) technologies. CCSI is one of three areas of research under the Carbon Capture and Storage Simulation Initiative announced late last year by Energy Secretary Steven Chu. The others involve developing validation data and experimental work,

205

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

5. a ZNEB low storage and low PV price run, with low storagelow storage and low PV price equipment 100 kW reciprocatingZNEB low storage and low PV price run 4a relaxed ZNEB invest

Stadler, Michael

2009-01-01T23:59:59.000Z

206

Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications  

SciTech Connect

PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

Ronnebro, Ewa

2012-06-16T23:59:59.000Z

207

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

12 Table 4. Average and Maximum Demand Savings Results fromall the test days and maximum demand savings for the best4. Table 4. Average and Maximum Demand Savings Results from

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

208

Advanced Control Technologies and Strategies Linking Demand Response and Energy Efficiency  

E-Print Network (OSTI)

and M.A. Piette, J. Braun “Peak Demand Reduction from Pre-to reduce Electrical Peak Demands in Commercial Buildings”Management (Daily) - TOU - Peak Demand Charges - Grid Peak -

Kiliccote, Sila; Piette, Mary Ann

2005-01-01T23:59:59.000Z

209

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

electricity ($/kWh) demand ($/kW) natural gas 0.035 forelectricity ($/kWh) demand ($/kW) natural gas $/kWh $/thermnatural gas tariff combined with the almost constant demand

Stadler, Michael

2009-01-01T23:59:59.000Z

210

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

211

Machine to machine (M2M) technology in demand responsive commercial buildings  

SciTech Connect

Machine to Machine (M2M) is a term used to describe the technologies that enable computers, embedded processors, smart sensors, actuators and mobile devices to communicate with one another, take measurements and make decisions--often without human intervention. M2M technology was applied to five commercial buildings in a test. The goal was to reduce electric demand when a remote price signal rose above a predetermine price. In this system, a variable price signal was generated from a single source on the Internet and distributed using the meta-language, XML (Extensible Markup Language). Each of five commercial building sites monitored the common price signal and automatically shed site-specific electric loads when the price increased above predetermined thresholds. Other than price signal scheduling, which was set up in advance by the project researchers, the system was designed to operate without human intervention during the two-week test period. Although the buildings responded to the same price signal, the communication infrastructures used at each building were substantially different. This study provides an overview of the technologies used at each building site, the price generator/server, and each link in between. Network architecture, security, data visualization and site-specific system features are characterized. The results of the test are discussed, including: functionality at each site, measurement and verification techniques, and feedback from energy managers and building operators. Lessons learned from the test and potential implications for widespread rollout are provided.

Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

2004-08-01T23:59:59.000Z

212

Gas Storage for Power Generation -- Critical New Bridge Between Power Demand and Gas Supply: Report Series on Natural Gas and Power Reliability  

Science Conference Proceedings (OSTI)

Natural gas storage is a "sleeper" issue for the power industry that will demand a great deal of attention very soon as the building boom of gas-fired capacity draws to a close and these plants begin to operate. While an entire industry has emerged in recent years to develop high-deliverability gas storage, the new facilities are likely the tip of an iceberg. Pipelines will be taxed to meet fluctuating requirements of new units, and companies will turn to gas storage for reliability at an affordable cost...

2002-11-11T23:59:59.000Z

213

Assessment of Alternatives to Substation Batteries: Characterization of Energy Storage Technologies: Interim Report: Task 3  

Science Conference Proceedings (OSTI)

Backup power systems in electric company substations play a critical role in substation reliability. This product is intended to characterize energy storage technologies that can offer high reliability, measurable capacity, and low maintenance for substation backup power applications. Both new technologies, and better application of existing, energy storage technologies are covered. Reliability is the number one success criterion, while better condition monitoring and simplified maintenance requirements ...

2004-07-28T23:59:59.000Z

214

"Technologies to Ensure Permanent Geologic Carbon Storage,"  

NLE Websites -- All DOE Office Websites (Extended Search)

of carbon dioxide (CO of carbon dioxide (CO 2 ). DE-FOA-0000652, titled, "Technologies to Ensure Permanent Geologic Carbon Storage," addresses key geologic storage challenges and uncertainties that include improving and validating containment, improving injection operations, increasing reservoir storage efficiency, and mitigating potential releases of CO 2 from the engineered containment system. The following four technical areas of interest are addressed: Area of Interest 1 - Studies of Existing Wellbores Exposed to CO 2 ; Area of Interest 2 - Advanced Wellbore Integrity Technologies; Area of Interest 3 - Field Methods to Optimize Capacity and Ensure Storage Containment; and Area of Interest 4 - Enhanced Simulation Tools to Improve Predictions and

215

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

an average efficiency of 0.5 for solar thermal and 0.13 forefficiency, heat storage, micro-generation systems, photovoltaic, software, solar thermal

Stadler, Michael

2009-01-01T23:59:59.000Z

216

Energy Storage Technologies: State of Development for Stationary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage...

217

24M Technologies: Using Innovation to Solve the Energy Storage Challenge |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4M Technologies: Using Innovation to Solve the Energy Storage 4M Technologies: Using Innovation to Solve the Energy Storage Challenge 24M Technologies: Using Innovation to Solve the Energy Storage Challenge February 1, 2011 - 3:30pm Addthis Photo of the 24M Technologies team (from left, Yet-Ming-Chiang, W. Craig Carter, and Throop Wilder.) | Courtesy of 24M. Photo of the 24M Technologies team (from left, Yet-Ming-Chiang, W. Craig Carter, and Throop Wilder.) | Courtesy of 24M. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs The folks at 24M Technologies are the kind of new energy innovators President Obama spoke of in the State of the Union address last week. Throop Wilder, president of the emerging technology start-up, and his fellow co-founders Yet-Ming Chiang and W. Craig Carter (both scientists at

218

Technology transfer for the US Department of Energy's Energy Storage Program: Volume 1, Recommendations  

DOE Green Energy (OSTI)

Technologies developed by the US Department of Energy's (DOE) Energy Storage (STOR) Program must be converted into products, processes, or services that benefit the private sector. The process of technology transfer is the primary means of accomplishing this. The purpose of this report is to examine the technology transfer activities of the STOR Program and suggest mechanisms that might make the transfer of technologies from national laboratories and universities to the private sector more effective. A brief summary of recommendations that would improve the effectiveness of the transfer of energy storage technologies from the national laboratories to the private sector is discussed. 33 refs., 2 figs.

Bruneau, C.L.; Fassbender, L.L.

1988-10-01T23:59:59.000Z

219

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial follow up to the DOE and Department of Transportation (DOT) International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009. Here you will find information about Workshop proceedings including all presentations. Agenda and Notes The following agenda and notes provide summary information about the workshop.

220

NETL: News Release - DOE, Penn State To Establish Gas Storage Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

September 11, 2003 September 11, 2003 DOE, Penn State To Establish Gas Storage Technology Consortium Goal is to Improve Performance of the Nation's Underground Gas Storage Infrastructure Map of U.S. natural gas storage sites - click for larger image FOSSIL FACT: The nation's gas industry stores natural gas in more than 400 underground storage reservoirs and salt caverns throughout the country. Click here for larger image UNIVERSITY PARK , PA - The Pennsylvania State University has been selected by the U.S. Department of Energy to establish and operate an underground gas storage technology consortium. The agreement between Penn State and DOE's National Energy Technology Laboratory Strategic Center for Natural Gas will last four-and-a-half years at a total cost of $3 million. The first phase of the agreement will last

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

be acquired. Battery storage costs are roughly consistentcosts ($/kW or $/kWh) lifetime (a) thermal storage 15 flow batterycosts, carbon emissions, or other objectives, and delivers optimal schedules. Recently, electrical (conventional lead/acid battery) and

Stadler, Michael

2009-01-01T23:59:59.000Z

222

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

and achieve demand response. For example, on a hot August after- noon during the energy crisis, high demand-in trans- former used for everything from cell phones to computers could be up to 50 percent more efficient

223

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

on minimized costs, energy efficiency, and CO 2 emissions (energy costs vary when electrical, thermal storage, efficiency

Stadler, Michael

2009-01-01T23:59:59.000Z

224

Fuel Cell Technologies Office: Storage Systems Analysis Working...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

225

Study of storage yard PRIC key technologies based on modern measurement and control  

Science Conference Proceedings (OSTI)

Pattern recognition and intelligent control (PRIC) based on modern measure and control is developing with the important challenge that machine how to percept external environment information. At the same time, storage yard automation guarantee the efficiency ... Keywords: PRIC technology, embedded system, fuzzy theory, image matching, storage yard

Changan Ji; Xiubin Zhang; Junhao Ying; Yi Wang; Guohui Zeng

2006-04-01T23:59:59.000Z

226

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network (OSTI)

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

227

Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)  

SciTech Connect

Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

Steward, D.

2010-02-11T23:59:59.000Z

228

Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)  

DOE Green Energy (OSTI)

Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

Steward, D.

2010-02-11T23:59:59.000Z

229

Assessing early investments in low carbon technologies under uncertainty : the case of Carbon Capture and Storage  

E-Print Network (OSTI)

Climate change is a threat that could be mitigated by introducing new energy technologies into the electricity market that emit fewer greenhouse gas (GHG) emissions. We face many uncertainties that would affect the demand ...

Ereira, Eleanor Charlotte

2010-01-01T23:59:59.000Z

230

Integrated Building Energy Systems Design Considering Storage Technologies  

E-Print Network (OSTI)

DC, USA, October 28th 2008. Microgrid Symposium. Held atStorage and Reliability on Microgrid Viability: A Study ofand CO 2 emissions, a microgrid’s distributed energy

Stadler, Michael

2009-01-01T23:59:59.000Z

231

Fuel Cell Technologies Office: Hydrogen Storage Workshop Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Thoughts on Fundamentals (PDF 255 KB), P. Teagan and M. Rona, TIAX Hydrogen Storage in Carbon Nanotubes (PDF 1.19 MB), Jack E. Fischer, University of Pennsylvania Advanced...

232

Technical Assessment Guide (TAG) -- Power Generation and Storage Technology Options: 2010 Topics  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG )151Power Generation and Storage Technology Options helps energy company decision makers optimize capital investments in the power generation and energy storage infrastructure. The 2010 TAG has been significantly enhanced to reflect current market conditions and technology trends, with cost and performance updates for pulverized coal (PC), large combustion turbine (CT) and combustion turbine combined-cycle (CTCC), nuclear, solar thermal (ST), photovoltaic (PV), b...

2010-12-21T23:59:59.000Z

233

Technical Assessment Guide (TAG) -- Power Generation and Storage Technology Options: 2011 Update  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide (TAG) Power Generation and Storage Technology Options provides cost and performance data and analysis for energy company decision makers to optimize capital investments in the power generation and energy storage infrastructure. The 2011 TAG has been significantly enhanced to reflect current market conditions and technology trends, with cost and performance updates for pulverized coal (PC), large combustion turbine (CT), nuclear, solar thermal (ST), photovoltaic (PV), b...

2011-12-30T23:59:59.000Z

234

Technical Assessment Guide (TAG) - Power Generation and Storage Technology Options: 2013 Topics (DRAFT)  

Science Conference Proceedings (OSTI)

The EPRI Technical Assessment Guide™ (TAG®)—Power Generation and Storage Technology Options report provides cost and performance data and analysis for energy company decision makers to optimize capital investments in the power generation and energy storage infrastructure. The topics chosen by the TAG® members in 2013 reflect the transition of the industry in the last few years from a heavily coal and nuclear technologies-based generation to natural ...

2013-12-12T23:59:59.000Z

235

Electricity Energy Storage Technology Options 2012 System Cost Benchmarking  

Science Conference Proceedings (OSTI)

This report provides an update on the current capital and lifecycle costs estimates of electric energy storage options for a variety of grid and end-user applications. Data presented in this report update 2010 data provided in EPRI Technical Report 1020676. The goal of this research was to develop objective and consistent installed costs and operational and maintenance costs for a set of selected energy storage systems in the identified applications. Specific objectives included development of ...

2012-12-10T23:59:59.000Z

236

Machine to machine (M2M) technology in demand responsive commercial buildings  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

2004-01-01T23:59:59.000Z

237

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

238

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

239

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

a Microgrid,” Journal of Energy Engineering 131(1): 2-25. Toand Storage,” Journal of Energy Engineering 133(3): 181-210.

Stadler, Michael

2009-01-01T23:59:59.000Z

240

California DREAMing: the design of residential demand responsive technology with people in mind  

E-Print Network (OSTI)

to inform people of their energy usage. We tested the systemcertain quality and energy usage standards of variousprice and household energy usage to enable demand response

Peffer, Therese E.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

cooling offset by absorption cooling, but mostly extensivecooling demand increases, this can constitute a stable heat sink if waste heat for absorption

Stadler, Michael

2009-01-01T23:59:59.000Z

242

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

243

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

244

New York Battery and Energy Storage Technology Consortium NY BEST | Open  

Open Energy Info (EERE)

Storage Technology Consortium NY BEST Storage Technology Consortium NY BEST Jump to: navigation, search Name New York Battery and Energy Storage Technology Consortium (NY-BEST) Place Albany, New York Zip 12203 Product Albany-based project of NYSERDA promoting battery and energy storage in New York. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Hydrogen storage for vehicular applications: Technology status and key development areas  

DOE Green Energy (OSTI)

The state-of-the-art of hydrogen storage technology is reviewed, including gaseous, liquid, hydride, surface adsorbed media, glass microsphere, chemical reaction, and liquid chemical technologies. The review of each technology includes a discussion of advantages, disadvantages, likelihood of success, and key research and development activities. A preferred technological path for the development of effective near-term hydrogen storage includes both cur-rent DOT qualified and advanced compressed storage for down-sized highly efficient but moderate range vehicles, and liquid storage for fleet vehicle applications. Adsorbate media are also suitable for fleet applications but not for intermittent uses. Volume-optimized transition metal hydride beds are also viable for short range applications. Long-term development of coated nanoparticulate or metal matrix high conductivity magnesium alloy, is recommended. In addition, a room temperature adsorbate medium should be developed to avoid cryogenic storage requirements. Chemical storage and oxidative schemes present serious obstacles which must be addressed for these technologies to have a future role.

Robinson, S.L.; Handrock, J.L.

1994-04-01T23:59:59.000Z

246

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

247

Bulk Energy Storage Technologies, 2013: Performance Potential, Grid Services, and Cost Expectations  

Science Conference Proceedings (OSTI)

Bulk energy storage (BES) is a valuable technology option that can enhance grid flexibility, facilitate better utilization of existing grid assets, enhance wind farm economics, and facilitate higher penetration of renewables. Significant changes are now occurring that are enhancing the economic viability of BES, including technology advancements, new market products, regulatory incentives, generator retirements, and improved evaluation of BES revenues. As a result, a wide variety of BES technologies ...

2013-12-12T23:59:59.000Z

248

VRF Technology: Assessment of the Daikin A/C with Ice Storage  

Science Conference Proceedings (OSTI)

Variable refrigerant flow (VRF) technology uses smart integrated controls, variable speed drives, and refrigerant piping to provide energy efficiency, flexible operation, ease of installation, low noise, zone control, and comfort through all-electric technology. This report describes and documents the construction, performance, and application of a heat pump air conditioning system that uses VRF technology and integrated ice storagethe Daikin IS-VRV® system. This ice storage variable refrigerant volu...

2009-08-21T23:59:59.000Z

249

Peak Load Management of Thermal Loads Using Advanced Thermal Energy Storage Technologies  

Science Conference Proceedings (OSTI)

Almost 50% of electric energy delivered to residences is converted into some sort of thermal energy—hot water, air conditioning, and refrigeration. Storing energy in thermal form is cheaper especially when the medium used to store the energy is an end-use medium for example, hot water. This technical update evaluates two different technologies for storing energy—in cold water and in hot water.GreenPeak technology, a storage condensing unit (SCU) from IE Technologies, uses an ...

2013-12-20T23:59:59.000Z

250

Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response  

E-Print Network (OSTI)

Heat and Power Adoption by a Microgrid,” Journal of EnergyStorage and Reliability on Microgrid Viability: A Study ofa cost- or carbon-minimizing microgrid that is able to adopt

Stadler, Michael

2009-01-01T23:59:59.000Z

251

Smart finite state devices: A modeling framework for demand response technologies  

E-Print Network (OSTI)

We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the ...

Turitsyn, Konstantin

252

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

E-Print Network (OSTI)

of communicating real-time prices to electricity customers.and demand conditions. Real-time prices can be set with day-e.g. , mapping real-time prices to “normal, moderate, or

Ghatikar, Girish

2010-01-01T23:59:59.000Z

253

Demand Subsidies versus R&D: Comparing the Uncertain Impacts of Policy on a Pre-Commercial Low-Carbon Energy Technology  

E-Print Network (OSTI)

We combine an expert elicitation and a bottom-up manufacturing cost model to compare the effects of R&D and demand subsidies. We model their effects on the future costs of a low-carbon energy technology that is not currently commercially available, purely organic photovoltaics (PV). We find that: (1) successful R&D enables PV to achieve a cost target of 4c/kWh, (2) the cost of PV does not reach the target when only subsidies, and not R&D, are implemented, and (3) production-related effects on technological advance—learning-by-doing and economies of scale—are not as critical to the long-term potential for cost reduction in organic PV than is the investment in and success of R&D. These results are insensitive to two levels of policy intensity, the level of a carbon price, the availability of storage technology, and uncertainty in the main parameters used in the model. However, a case can still be made for subsidies: comparisons of stochastic dominance show that subsidies provide a hedge against failure in the R&D program. 1.

Gregory F. Nemet; Erin Baker

2008-01-01T23:59:59.000Z

254

Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling  

E-Print Network (OSTI)

This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric power needs. This paper provides projections of unit sales expected in 5-year intervals for the years 1995, 2000, 2005, and 2010, Such projections help to determine the maximum amount o f energy that could be displaced by this technology in the future. This study also found that price incentives offered to households must be varied dramatically by region for residential cool storage systems to be economically competitive relative to conventional systems. Under the most likely scenario, this analysis estimated that residential cool storage units will eventually capture about one-half of the central air conditioning (A/C) market.

Weijo, R. O.; and Brown, D. R.

1988-01-01T23:59:59.000Z

255

Estimating the market penetration of residential cool storage technology using economic cost modeling  

DOE Green Energy (OSTI)

This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric power needs. This paper provides projections of unit sales expected in 5-year intervals for the years 1995, 2000, 2005, and 2010. Such projections help to determine the maximum amount of energy that could be displaced by this technology in the future. This study also found that price incentives offered to households must be varied dramatically by region for residential cool storage systems to be economically competitive relative to conventional systems. Under the most likely scenario, this analysis estimated that residential cool storage units will eventually capture about one-half of the central air conditioning (A/C) market. 14 refs., 2 figs., 8 tabs.

Weijo, R.O.; Brown, D.R.

1988-06-01T23:59:59.000Z

256

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Science Conference Proceedings (OSTI)

A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

M. D. Staiger

1999-06-01T23:59:59.000Z

257

The Program on Technology Innovation: Tracking the Demand for Electricity From Grid-Related Services – Preliminary Delphi Panel Resu lts  

Science Conference Proceedings (OSTI)

In order to develop a robust research and development portfolio under a variety of future scenarios, EPRI's research has identified three critical drivers which can substantially influence the technologies needed to provide society with clean, reliable and affordable electricity in the decades ahead. These drivers include the price of natural gas, the demand for electricity from grid services, and the potential for change in environmental and energy policy.In its scenario planning ...

2013-10-18T23:59:59.000Z

258

Towards continuous policy-driven demand response in data centers  

Science Conference Proceedings (OSTI)

Demand response (DR) is a technique for balancing electricity supply and demand by regulating power consumption instead of generation. DR is a key technology for emerging smart electric grids that aim to increase grid efficiency, while incorporating ... Keywords: blink, power, renewable energy, storage

David Irwin; Navin Sharma; Prashant Shenoy

2011-08-01T23:59:59.000Z

259

Analysis of novel, above-ground thermal energy storage concept utilizing low-cost, solid medium  

E-Print Network (OSTI)

Clean energy power plants cannot effectively match peak demands without utilizing energy storage technologies. Currently, several solutions address short term demand cycles, but little work has been done to address seasonal ...

Barineau, Mark Michael

2010-01-01T23:59:59.000Z

260

Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II  

Science Conference Proceedings (OSTI)

This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

metering technology makes it possible to differentiate electricity usage patterns of buildings on an hourly or sub-

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

262

Diurnal cool thermal energy storage: Research programs, technological developments, and commercial status  

DOE Green Energy (OSTI)

This report presents an overview of the major federal and private research and development efforts in diurnal cool thermal energy storage for electric load management in buildings. Included are brief technical descriptions and research histories of the technologies and applications of cool thermal storage. The goals, accomplishments, and funding levels of major thermal storage research programs also are summarized. The report concludes with the results of recent field performance evaluations of cool thermal storage installations and a discussion of the current commercial status of thermal storage equipment, including utility participation programs. This report was sponsored by the Technology and Consumer Products (TCP) Division within the Office of Conservation of the US Department of Energy. This report is part of TCP's ongoing effort to examine and evaluate technology developments and research efforts in the areas of lighting, space heating and cooling, water heating, refrigeration, and other building energy conversion equipment. Information obtained through this effort is used as an input in developing the US research agenda in these areas.

Wise, M A

1992-01-01T23:59:59.000Z

263

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

264

Development of the sodium/sulfur technology for energy storage  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) has supported the development of the sodium-sulfur technology since 1973. The programs have focused on progressing core aspects of the technology and completing initial battery engineering for both mobile and stationary applications. An overview of the Office of Energy Management (OEM) activities is contained in this paper. Two major development programs have been active: the first with Ford Aerospace and Communications Corporation (1975 to 1985), and the second with Chloride Silent Power Limited (1985 to 1990). With the completion this year of the qualification of a cell suitable for initial Solar Energy Systems (SES) applications, the emphasis of future DOE/OEM sodium/sulfur programs will shift to SES-battery engineering and development. The initial effort will resolve a number of issues related to the feasibility of utilizing the sodium/sulfur technology in these large-scale applications. This multi-year activity will represent the initial phase of an integrated long-term DOE-supported program to produce a commercially viable battery system.

Landgrebe, A. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of Energy Management); Magnani, N.J. (Sandia National Labs., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

265

Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid  

E-Print Network (OSTI)

Signals. ” SGIP NIST Smart Grid Collaboration Site. http://emix/. Last accessed: Open Smart Grid Users Group. “OpenADROpenADR technologies and Smart Grid standards activities.

Ghatikar, Girish

2010-01-01T23:59:59.000Z

266

Technologies for energy storage flywheels and super conducting magnetic energy storage  

DOE Green Energy (OSTI)

A flywheel is an electromechanical storage system in which energy is stored in the kinetic energy of a rotating mass. Flywheel systems under development include those with steel flywheel rotors and resin/glass or resin/carbon-fiber composite rotors. The mechanics of energy storage in a flywheel system are common to both steel- and composite-rotor flywheels. In both systems, the momentum of the rotating rotor stores energy. The rotor contains a motor/generator that converts energy between electrical and mechanical forms. In both types of systems, the rotor operates in a vacuum and spins on bearings to reduce friction and increase efficiency. Steel-rotor systems rely mostly on the mass of the rotor to store energy while composite flywheels rely mostly on speed. During charging, an electric current flows through the motor increasing the speed of the flywheel. During discharge, the generator produces current flow out of the system slowing the wheel down. The basic characteristics of a Flywheel system are shown. Steel flywheel systems are currently being marketed in the US and Germany and can be connected in parallel to provide greater power if required. Sizes range from 40kW to 1.6MW for times of 5--120 seconds. At this time sales are limited but growing. The suppliers of the composite type flywheel systems are currently in the prototype stages of development. Flywheel systems offer several potential advantages. FES systems, as their developers envision them will have exceptionally long service lives and low life-cycle costs as a result of minimal O and M requirements. FES systems are compact and self-contained allowing them to be placed in tight quarters, and they contain no hazardous chemicals nor do they produce flammable gases.

BOYES,JOHN D.

2000-04-26T23:59:59.000Z

267

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

Staiger, Merle Daniel; M. C. Swenson

2005-01-01T23:59:59.000Z

268

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Science Conference Proceedings (OSTI)

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger M. C. Swenson

2007-06-01T23:59:59.000Z

269

CO{sub 2} mitigation potential of efficient demand-side technologies: The case of Thailand  

SciTech Connect

This study assesses the techno-economic potential of selected demand-side efficient appliances to mitigate CO{sub 2} emission from the power sector in Thailand under national, consumer, and utility perspectives. A key finding of this study is that about 5.5--7% of the total annual CO{sub 2} emission from the electricity sector of the country can be reduced during 1996--2011 from the national perspective.

Shrestha, R.M.; Biswas, W.K.; Timilsina, G.R. [Asian Inst. of Tech., Pathumthani (Thailand). Energy Program; Khummongkol, P.; Sinbanchongjit, S. [King Mongkut`s Inst. of Tech., Bangkok (Thailand)

1998-05-01T23:59:59.000Z

270

Current trends in commercial cool storage. Final report. [Use of chilled water and ice storage to reduce demand charges and electric bills; 85 projects  

DOE Green Energy (OSTI)

The objectives of this study were to identify, by means of a phone-and-mail survey, recent installations of off-peak cool storage air conditioning systems in commercial buildings; to monitor new developments; and to indicate trends. This report contains descriptions of over 80 systems installed since 1981, plus findings and conclusions based on site-specific information. Analysis of the findings suggests that storage cooling systems in commercial buildings can, in many cases, offer technical and cost advantages over nonstorage systems. The detailed information should be of value to potential customers and HVAC engineers in making cooling equipment decisions that would be advantageous to customer, utility, and HVAC industry alike. 20 refs.

Hersh, H.N.

1985-07-01T23:59:59.000Z

271

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

272

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer (OSTI)

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. As of April 2011, the database contained 254 CCS projects worldwide. The 254 projects include 65 capture, 61 storage, and 128 for capture and storage in more than 27 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 20 are actively capturing and injecting CO2. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.[copied from http://www.netl.doe.gov/technologies/carbon_seq/global/database/index.html

273

NEW AND NOVEL FRACTURE STIMULATION TECHNOLOGIES FOR THE REVITALIZATION OF EXISTING GAS STORAGE WELLS  

SciTech Connect

Gas storage wells are prone to continued deliverability loss at a reported average rate of 5% per annum (in the U.S.). This is a result of formation damage due to the introduction of foreign materials during gas injection, scale deposition and/or fines mobilization during gas withdrawal, and even the formation and growth of bacteria. As a means to bypass this damage and sustain/enhance well deliverability, several new and novel fracture stimulation technologies were tested in gas storage fields across the U.S. as part of a joint U.S. Department of Energy and Gas Research Institute R&D program. These new technologies include tip-screenout fracturing, hydraulic fracturing with liquid CO{sub 2} and proppant, extreme overbalance fracturing, and high-energy gas fracturing. Each of these technologies in some way address concerns with fracturing on the part of gas storage operators, such as fracture height growth, high permeability formations, and fluid sensitivity. Given the historical operator concerns over hydraulic fracturing in gas storage wells, plus the many other unique characteristics and resulting stimulation requirements of gas storage reservoirs (which are described later), the specific objective of this project was to identify new and novel fracture stimulation technologies that directly address these concerns and requirements, and to demonstrate/test their potential application in gas storage wells in various reservoir settings across the country. To compare these new methods to current industry deliverability enhancement norms in a consistent manner, their application was evaluated on a cost per unit of added deliverability basis, using typical non-fracturing well remediation methods as the benchmark and considering both short-term and long-term deliverability enhancement results. Based on the success (or lack thereof) of the various fracture stimulation technologies investigated, guidelines for their application, design and implementation have been developed. A final research objective was to effectively deploy the knowledge and experience gained from the project to the gas storage industry at-large.

Unknown

1999-12-01T23:59:59.000Z

274

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

275

Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities  

DOE Green Energy (OSTI)

Thermal energy storage (TES) reduces electric costs by shifting chilling activities to off-peak times. Water is chilled or ice is made during the night to either replace or augment operation of cooling equipment during the day. Off-peak demand and consumption rates produce significant dollar savings. TES requires favorable electric rate structures, available space to house the associated equipment, and either variation in buildings cooling loads or favorable climatic conditions. TES can be implemented anywhere cooling loads can be shifted to off-peak housrs with the best applications being office buildings, hospitals, and schools. Most TES projects are implemented inconjunction with an existing cooling system expansion, replacement of older cooling equipment, or new construction, thus reducing energy costs, consumption, and demand.

Chvala, William D.

2002-07-08T23:59:59.000Z

276

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

6719 6719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-560-46719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden Prepared under Task No. H278.3400 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

277

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

278

Application of new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells  

SciTech Connect

Based on the information presented in this report, our conclusions regarding the potential for new and novel fracture stimulation technologies to enhance the deliverability of gas storage wells are as follows: New and improved gas storage well revitalization methods have the potential to save industry on the order of $20-25 million per year by mitigating deliverability decline and reducing the need for costly infill wells Fracturing technologies have the potential to fill this role, however operators have historically been reluctant to utilize this approach due to concerns with reservoir seal integrity. With advanced treatment design tools and methods, however, this risk can be minimized. Of the three major fracturing classifications, namely hydraulic, pulse and explosive, two are believed to hold potential to gas storage applications (hydraulic and pulse). Five particular fracturing technologies, namely tip-screenout fracturing, fracturing with liquid carbon dioxide, and fracturing with gaseous nitrogen, which are each hydraulic methods, and propellant and nitrogen pulse fracturing, which are both pulse methods, are believed to hold potential for gas storage applications and will possibly be tested as part of this project. Field evidence suggests that, while traditional well remediation methods such as blowing/washing, mechanical cleaning, etc. do improve well deliverability, wells are still left damaged afterwards, suggesting that considerable room for further deliverability enhancement exists. Limited recent trials of hydraulic fracturing imply that this approach does in fact provide superior deliverability results, but further RD&D work is needed to fully evaluate and demonstrate the benefits and safe application of this as well as other fracture stimulation technologies.

NONE

1995-04-01T23:59:59.000Z

279

Evaluation of battery/microturbine hybrid energy storage technologies at the University of Maryland :a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

This study describes the technical and economic benefits derived from adding an energy storage component to an existing building cooling, heating, and power system that uses microturbine generation to augment utility-provided power. Three different types of battery energy storage were evaluated: flooded lead-acid, valve-regulated lead-acid, and zinc/bromine. Additionally, the economic advantages of hybrid generation/storage systems were evaluated for a representative range of utility tariffs. The analysis was done using the Distributed Energy Technology Simulator developed for the Energy Storage Systems Program at Sandia National Laboratories by Energetics, Inc. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with the University of Maryland's Center for Environmental Energy Engineering.

De Anda, Mindi Farber (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2005-03-01T23:59:59.000Z

280

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

282

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

283

Energy Department Awards More Than $7 Million for Innovative Hydrogen Storage Technologies in Fuel Cell Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy today announced more than $7 million to fund four projects in California, Washington and Oregon to advance hydrogen storage technologies to be used in fuel cell electric vehicles.

284

Storage of spent fuel from the nation`s nuclear reactors: Status, technology, and policy options  

SciTech Connect

Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the ``spent fuel`` elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

1989-10-01T23:59:59.000Z

285

Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994  

DOE Green Energy (OSTI)

The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

Kinoshita, K. [ed.

1995-09-01T23:59:59.000Z

286

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

Storage of Hydrogen in Microspheres, 15 th World Hydrogen Energyhydrogen in storage varies between the various energy storagethe energy storage characteristics of the various hydrogen

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

287

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

that growth in electricity demand in developed countriesof displacement of electricity demand by heat- activatedmeets all of its electricity demand via utility purchases

Stadler, Michael

2008-01-01T23:59:59.000Z

288

Energy Basics: Tankless Demand Water Heaters  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

only as needed and without the use of a storage tank. They don't produce the standby energy losses associated with storage water heaters. How Demand Water Heaters Work Demand...

289

Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

NONE

1995-06-01T23:59:59.000Z

290

Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)  

DOE Green Energy (OSTI)

The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc. in Illinois are described. This technology assessment discusses the need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, and compares the costs, environmental impacts and licensing requirements of CAES with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage; the overall environmental impact of a CAES plant is minimal, and that there should be no great difficulties with CAES licensing. (LCL)

Not Available

1982-01-01T23:59:59.000Z

291

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

292

Advanced technology thermal energy storage and heat exchange systems for solar applications: a survey of current research  

DOE Green Energy (OSTI)

A survey is presented of the advanced research and development projects underway in the U.S. in all of the known media and methods for storing and transferring thermal energy in solar applications. The technologies reviewed include innovative heat exchange and heat transport methods, advanced sensible heat storage in water, rocks, earth and combinations of these for both short term and annual storage, phase change materials, and reversible chemical reactions. This survey is presented in a structure of categories and subcategories of thermal energy storage and heat transfer technology. Within a given subcategory the project descriptions are listed under the name of the organizations conducting the work, arranged in alphabetical order.

Michaels, A. I.

1978-01-01T23:59:59.000Z

293

Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants  

Science Conference Proceedings (OSTI)

The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

Balat, M.; Balat, H.; Oz, C. [University of Mahallesi, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

294

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report  

DOE Green Energy (OSTI)

This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

Not Available

1994-03-01T23:59:59.000Z

295

Exploratory technology research program for electrochemical energy storage. Annual report for 1995  

DOE Green Energy (OSTI)

The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

Kinoshita, Kim [ed.

1996-06-01T23:59:59.000Z

296

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

297

Abstract --Demand Response (DR) programs are not a new concept; moreover, the key technologies for their implementation  

E-Print Network (OSTI)

. III. DEMAND RESPONSE PROGRAMS UNDER SMARTGRID PARADIGM AND MARKET INTEGRATION. The demand response as SmartGrid). While many of the DR programs under SmartGrid are directed to the distribution sector, DR

Dixon, Juan

298

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Generation Renewable Electricity Generation and Storage Technologies Volume 2 of 4 Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U.S. Department of Energy DeMeo, E. Renewable Energy Consulting Services, Inc. Reilly, J.M. Massachusetts Institute of Technology Mai, T. National Renewable Energy Laboratory Arent, D. Joint Institute for Strategic Energy Analysis Porro, G. National Renewable Energy Laboratory Meshek, M. National Renewable Energy Laboratory Sandor, D. National Renewable

299

Exploratory technology research program for electrochemical energy storage, annual report for 1997  

SciTech Connect

The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

Kinoshita, K. [ed.

1998-06-01T23:59:59.000Z

300

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS  

DOE Green Energy (OSTI)

As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utility’s transmission system and to the reliability of the nation’s electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

CHARLES M. WEBER

2008-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

DOE Green Energy (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

302

Technical Specification for a Transportable Lithium-Ion Energy Storage System for Grid Support Using Commercially Available Lithium- Ion Technology  

Science Conference Proceedings (OSTI)

The impressive global scale of lithium-ion battery production and investment in R&D is driving cost reduction and performance improvements that could make lithium-ion technology desirable for certain grid-scale storage applications in the near term. Although many stationary grid market applications can be configured using lithium-ion batteries, Electric Power Research Institute (EPRI) research identified a 1-MW, 2-hour containerized substation grid support storage system as a key electric utility product...

2012-07-31T23:59:59.000Z

303

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

investment; 3. a low storage and PV price run; 4. to assessFigure 5. Low Storage and PV Price (run 3) Diurnal Heat6. Low storage and PV Price (run 3) Diurnal Electricity

Stadler, Michael

2008-01-01T23:59:59.000Z

304

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

electricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed (electricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed (demand via utility purchases and burns natural gas to meet

Stadler, Michael

2008-01-01T23:59:59.000Z

305

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

306

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

New Methods for the Storage of Hydrogen in Microspheres,15 th World Hydrogen Energy Conference, Yokohama, Japan,Uhlemann, M. , etals. , Hydrogen Storage in Different Carbon

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

307

Energy Storage | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

308

Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop  

DOE Green Energy (OSTI)

The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

Ferraro, R.J. [Ferraro, Oliver, and Associates, Inc., Knoxville, TN (United States); McConnell, B.W. [Oak Ridge National Lab., TN (United States)

1993-06-01T23:59:59.000Z

309

Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992  

SciTech Connect

This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

310

Exploratory Technology Research Program for Electrochemical Energy Storage. Executive Summary report, 1992  

SciTech Connect

This summary denotes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

311

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

312

Demonstration Initiative for a Grid Support Energy Storage System using Li-ion Technology: Phase I Report  

Science Conference Proceedings (OSTI)

This report documents a research project to scope and implement an initiative to catalyze the early market deployment of a utility-scale electric energy storage system, a project that leverages Lithium-ion (Li-ion) battery technology being globally scaled to serve emerging electric and hybrid electric vehicle markets. The impressive scale of Li-ion battery production and R&D is driving a trend in cost reduction and performance improvements that make this technology attractive for certain grid storage app...

2012-07-31T23:59:59.000Z

313

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

Science Conference Proceedings (OSTI)

This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

Staiger, M. Daniel, Swenson, Michael C.

2011-09-01T23:59:59.000Z

314

Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center  

Science Conference Proceedings (OSTI)

This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

M. D. Staiger; Michael Swenson; T. R. Thomas

2004-05-01T23:59:59.000Z

315

Optimal Control of Harvesting Ice Thermal Storage Systems  

E-Print Network (OSTI)

Thermal storage is becoming a standard consideration in HVAC and process cooling systems. As the technology is refined, more attention is being given to minimize the energy consumption and power demand requirements. This paper addresses a method for optimal control of a harvesting ice storage system. A simplified procedure is used to develop 24 hour load data. Example installations will be shown.

Knebel, D. E.

1988-01-01T23:59:59.000Z

316

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

317

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

318

Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993  

DOE Green Energy (OSTI)

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

319

Exploratory Technology Research Program for electrochemical energy storage. Executive summary report for 1991  

SciTech Connect

The US DOE Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (EM) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This executive summary summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

Kinoshita, K. [ed.

1992-06-01T23:59:59.000Z

320

Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991  

SciTech Connect

The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

Kinoshita, K. [ed.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993  

SciTech Connect

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

322

Future demand for electricity in the Nassau--Suffolk region  

DOE Green Energy (OSTI)

Brookhaven National Laboratory established a new technology for load forecasting for the Long Island Lighting Company and prepared an independent forecast of the demand for electricity in the LILCO area. The method includes: demand for electricity placed in a total energy perspective so that substitutions between electricity and other fuels can be examined; assessment of the impact of conservation, new technology, gas curtailment, and other factors upon demand for electricity; and construction of the probability distribution of the demand for electricity. A detailed analysis of changing levels of demand for electricity, and other fuels, associated with these new developments is founded upon a disaggregated end-use characterization of energy utilization, including space heat, lighting, process energy, etc., coupled to basic driving forces for future demand, namely: population, housing mix, and economic growth in the region. The range of future events covers conservation, heat pumps, solar systems, storage resistance heaters, electric vehicles, extension of electrified rail, total energy systems, and gas curtailment. Based upon cost and other elements of the competition between technologies, BNL assessed the likelihood of these future developments. An optimistic view toward conservation leads to ''low'' demand for electricity, whereas rapid development of new technologies suggests ''high'' demand. (MCW)

Carroll, T.W.; Palmedo, P.F.; Stern, R.

1977-12-01T23:59:59.000Z

323

Exploratory technology research program for electrochemical energy storage. Annual report for 1996  

DOE Green Energy (OSTI)

The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

Kinoshita, K. [ed.

1997-06-01T23:59:59.000Z

324

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

325

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

326

Demand-side management in office buildings in Kuwait through an ice-storage assisted HVAC system with model predictive control.  

E-Print Network (OSTI)

??Examining methods for controlling the electricity demand in Kuwait was the main objective and motivation of this researchp roject. The extensiveu se of air-conditioning for… (more)

Al-Hadban, Yehya

2005-01-01T23:59:59.000Z

327

An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009  

Science Conference Proceedings (OSTI)

Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

2009-06-26T23:59:59.000Z

328

Economic valuation of energy storage coupled with photovoltaics : current technologies and future projections  

E-Print Network (OSTI)

A practical framework for the economic valuation of current energy storage systems coupled with photovoltaic (PV) systems is presented. The solar-with-storage system's operation is optimized for two different rate schedules: ...

Mosher, Trannon

2010-01-01T23:59:59.000Z

329

The lifetime of carbon capture and storage as a climate-change mitigation technology  

E-Print Network (OSTI)

In carbon capture and storage (CCS), CO[subscript 2] is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued ...

Szulczewski, Michael Lawrence

330

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

331

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network (OSTI)

Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system. Significant energy usage and demand savings are verified for the retrofitted injection molding machine. The savings are realized by electronically attenuating the torque of a positive displacement pump irrespective of the volumetric flow required by the cycle. With help of a power analyzer, power quality issues are addressed. Some voltage distortion was observed due to the harmonic currents introduced by the control algorithm of the high efficiency hydraulic system. A comparative study of electrical energy and demand savings between an injection molding machine retrofitted with the high efficiency hydraulic pump system or variable frequency drive will also be presented.

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

332

Communicating Carbon Capture and Storage Technologies: Opportunities and Constraints across Media  

E-Print Network (OSTI)

In 2003, the U.S. Department of Energy created regional joint governmentindustry partnerships as part of a larger incentive to develop carbon dioxide capture and storage (CCS) technologies to address the issue of climate change. As part of their missions, DOE and their partners are responsible for creating and distributing public outreach and education materials discussing climate change and CCS technologies. In this dissertation, I sought to evaluate processes for communicating CCS to the public by examining different pathways including direct communication through DOE and regional partnership websites (Chapter I), news media from states with energy projects proposed or underway (Chapter II), and alternative strategies for communication such as an online educational game for youth (Chapter IV). My study also included focus groups in communities where CCS technologies have been piloted to determine public knowledge and acceptance of CCS (Chapter III). In Chapter I, a critique of DOE and partnership websites, I found authority to be a dominant theme throughout DOE and partnership website content, often incorporating technical jargon beyond laymen understanding and, in many cases, targeting industry audiences over the intended public. In Chapter II, I analyzed newspaper articles from the states of Massachusetts, Minnesota, Montana and Texas using Luhmann’s social theory and the SPEED framework to determine how CCS has been framed by the media. Findings indicated that political, legal, economic and technical frames dominated, with emphasis on benefits, rather than risks of adoption. I also found that CCS reporting increased dramatically as pilot projects started to come on line. In my study of community acceptance of CCS in the American Southwest, Chapter III, I found that participants focused their conversations on industry and government knowledge, risks and unknowns of CCS and processes for decision-making. These topics also provided an impetus for caution. Skepticism and distrust of government entities and corporations influenced participant willingness to accept storage risks to mitigate for CO2 emissions. After open discussion of pros and cons associated with the technology, however, participants were more willing to consider CCS as an option, indicating a need to talk through the issue and to come to their own conclusions. Finally, in focus groups used to evaluate of an online game titled The Adventures of Carbon Bond, I found that it was difficult for participants to discuss environmental issues with students that are viewed as contentious (i.e. climate change and CCS), but that gaming was a valuable tool for addressing such sensitive subjects. Overall, these four chapters demonstrate that communication of CCS has only reached portions of the public and has not consistently connected with those potentially impacted by the technology. They also show that CCS must overcome numerous barriers to deployment, foremost of which is public acceptance.

Feldpausch-Parker, Andrea Marie

2010-08-01T23:59:59.000Z

333

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

334

STANDARDIZED TESTING PROGRAM FOR EMERGENT CHEMICAL HYDRIDE AND CARBON STORAGE TECHNOLOGIES  

E-Print Network (OSTI)

hydride/carbon hydrogen storage systems. The development of a standardized protocol and testing system to an urgent need for accelerated development of hydrogen storage systems. In vehicular applications, hydrogen storage and distribution presents the greatest challenge in creating the hydrogen fuel infrastructure

335

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

336

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

337

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

338

Towards a systematic characterization of the potential of demand side management  

E-Print Network (OSTI)

With an increasing share of electric energy produced from non-dispatchable renewable sources both energy storage and demand side management might gain tremendously in importance. While there has been significant progress in general properties and technologies of energy storage, the systematic characterization of features particular to demand side management such as its intermittent, time-dependent potential seems to be lagging behind. As a consequence, the development of efficient and sustainable strategies for demand side management and its integration into large-scale energy system models are impeded. This work introduces a novel framework for a systematic time-resolved characterization of the potential for demand side management. It is based on the specification of individual devices both with respect to their scheduled demand and their potential of load shifting. On larger scales sector-specific profiles can straightforwardly be taken into account. The potential for demand side management is then specifie...

Kleinhans, David

2014-01-01T23:59:59.000Z

339

NREL: Energy Analysis - Energy Sciences Technology Analysis Models...  

NLE Websites -- All DOE Office Websites (Extended Search)

of system flexibility. It can also evaluate the role of enabling technologies such as demand response and energy storage. It is an updated version of the PVFlex model described in...

340

Understanding technology diffusion and market adoption through modeling : implications on strategy for demand-side energy firms  

E-Print Network (OSTI)

Deregulation shaping the Electricity industry across the world is a systems challenge cutting across interdisciplinary fields of technology, economics, public policy, environment and sociology. Decision makers that shape ...

Nath, Vivin

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and N. Zhou, “Distributed Generation with Heat Recovery andattractiveness of distributed generation with storage. Thecosts for distributed generation (DG) investments. The

Stadler, Michael

2008-01-01T23:59:59.000Z

342

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

343

Characteristics of Electricity Storage Technologies for Maintaining Reliability of Grid with High Amounts of Intermittent Energy.  

E-Print Network (OSTI)

??For the grid to be stable, the supply of power must equal the demands of the consumer at every moment during the day. The unpredictable… (more)

Sundararagavan, Sandhya

2010-01-01T23:59:59.000Z

344

Battery energy storage systems life cycle costs case studies  

SciTech Connect

This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

1998-08-01T23:59:59.000Z

345

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources… (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

346

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

347

On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy  

DOE Green Energy (OSTI)

Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

2008-05-27T23:59:59.000Z

348

Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment  

DOE Green Energy (OSTI)

The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

349

Lifetime of carbon capture and storage as a climate-change mitigation technology  

E-Print Network (OSTI)

of the storage process: Because the subsurface fluid dynamics of CO2 storage are complicated, studies use). 24. International Energy Agency (2011) Electricity generation by fuel in the United States (1972 and Environmental Engineering and b Mechanical Engineering, c Energy Initiative, and d Center for Computational

350

Review of Literature on Terminal Box Control, Occupancy Sensing Technology and Multi-zone Demand Control Ventilation (DCV)  

Science Conference Proceedings (OSTI)

This report presents an overall review of the standard requirement, the terminal box control, occupancy sensing technology and DCV. There is system-specific guidance for single-zone systems, but DCV application guidance for multi-zone variable air volume (VAV) systems is not available. No real-world implementation case studies have been found using the CO2-based DCV. The review results also show that the constant minimum air flow set point causes excessive fan power consumption and potential simultaneous heating and cooling. Occupancy-based control (OBC) is needed for the terminal box in order to achieve deep energy savings. Key to OBC is a technology for sensing the actual occupancy of the zone served in real time. Several technologies show promise, but none currently fully meets the need with adequate accuracy and sufficiently low cost.

Liu, Guopeng; Dasu, Aravind R.; Zhang, Jian

2012-03-01T23:59:59.000Z

351

Flywheel energy storage using superconducting magnetic bearings  

DOE Green Energy (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

352

A Successful Cool Storage Rate  

E-Print Network (OSTI)

Houston Lighting & Power (HL&P) initiated design and development of its commercial cool storage program as part of an integrated resource planning process with a targeted 225 MW of demand reduction through DSM. Houston's extensive commercial air conditioning load, which is highly coincident with HL&P's system peak, provided a large market for cool storage technologies. Initial market research made it very clear that a special cool storage rate was required to successfully market the technology. Development of the rate required an integrated, multidepartment effort and extensive use of DSManager, an integrated resource planning model. An experimental version of the rate was initially implemented as part of the initial phase of the cool storage program. A permanent rate, incorporating lessons learned from the experimental rate, was then developed for the long term implementation of the program. The permanent rate went through a lengthy regulatory approval process which included intervention by a local natural gas distribution company. The end result is a very successful cool storage program with 52 projects and 31 megawatts of demand reduction in the first three and one-half years of program implementation.

Ahrens, A. C.; Sobey, T. M.

1994-01-01T23:59:59.000Z

353

Collection and representation of GIS data to aid household water treatment and safe storage technology implementation in the northern region of Ghana  

E-Print Network (OSTI)

In 2005, a start-up social business called Pure Home Water (PHW) was begun in Ghana to promote and sell household water treatment and safe storage (HWTS) technologies. The original aim of the company was to offer a variety ...

VanCalcar, Jenny E. (Jenny Elizabeth)

2006-01-01T23:59:59.000Z

354

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

355

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Storage Fuels Storage and Transportation Planning Project (NFST) Program Status Jeff Williams Project Director National Transportation Stakeholders Forum Buffalo, New York May 2013 2  "With the appropriate authorizations from Congress, the Administration currently plans to implement a program over the next 10 years that:  Sites, designs and licenses, constructs and begins operations of a pilot interim storage facility by 2021 with an initial focus on accepting used nuclear fuel from shut-down reactor sites;  Advances toward the siting and licensing of a larger interim storage facility to be available by 2025 that will have sufficient capacity to provide flexibility in the waste management system and allows for acceptance of enough used

356

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and heat-driven absorption chillers. Figure 1 shows a high-contains also heat for absorption chillers, and therefore,storage 11 flow battery absorption chiller solar thermal

Stadler, Michael

2008-01-01T23:59:59.000Z

357

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

B. , and Ovshinsky, S.R. , A Hydrogen ICE Vehicle Powered byM. , and Stetson, N. , Solid Hydrogen Storage Systems forpaper from Texaco Ovonic Hydrogen Systems, Rochester Hills,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

358

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

and installed DG equipment (PV, solar thermal, natural gas5. a low storage, PV, and solar thermal price run; and 6. aenergy sources such as PV or solar thermal. However, this

Stadler, Michael

2008-01-01T23:59:59.000Z

359

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

parameters, i.e. , the electricity tariff structure. Due toenergy loads, 2 electricity and natural gas tariff structureelectricity ($/kWh) demand ($/kW) Natural Gas $/kWh fixed ($/day) Sources: PG&E commercial tariffs,

Stadler, Michael

2008-01-01T23:59:59.000Z

360

Energy Storage Technology and Application Cost and Performance Data Base-2011  

Science Conference Proceedings (OSTI)

This product, an update to EPRI product 1020071, presents 2011 updated data on the cost, performance, and capabilities of energy storage systems for various applications. The data is presented in the form of an Excel workbook database. The goal of this research was to develop objective and consistent installed costs and operational and maintenance costs for a set of selected energy storage systems in the identified applications. Specific objectives included development of the installed costs and operatin...

2011-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Storage of spent fuel from the nation's nuclear reactors: Status, technology, and policy options  

SciTech Connect

Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the spent fuel'' elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

1989-10-01T23:59:59.000Z

362

Ice Bear Energy Storage Demonstration at Hawaii Department of Education Operations and Maintenance  

Science Conference Proceedings (OSTI)

Energy storage strategies can play a major role in helping a utilities use their existing assets to meet projected loads. This project demonstrated the operational effectiveness and technical feasibility of the Ice Bear Ice Storage Air Conditioner for use with Direct-Expansion (DX) air-conditioners as an appropriate technology for demand reduction and peak load management in Hawaii.

2007-06-05T23:59:59.000Z

363

PURPA and Superconducting Magnetic Energy Storage: Energy Conservation, Environmental Protection and Entrepreneurial Opportunity in the Next Technological Revolution  

E-Print Network (OSTI)

1988] SUPERCONDUCTING MAGNETIC ENERGY STORAGE Corp. ,60 theSupercon- ducting Magnetic Energy Storage, 2 SUPERCURRENTS1988] SUPERCONDUCTING MAGNETIC ENERGY STORAGE facilities (

Bovett, Robert E.

1988-01-01T23:59:59.000Z

364

PURPA and Superconducting Magnetic Energy Storage: Energy Conservation, Environmental Protection and Entrepreneurial Opportunity in the Next Technological Revolution  

E-Print Network (OSTI)

SUPERCONDUCTING MAGNETIC ENERGY STORAGE Corp. ,60 the Unitednational defense, 7 energy storage and environmental protec-and accompanying text. 8. Energy storage and the resulting

Bovett, Robert E.

1988-01-01T23:59:59.000Z

365

Available Technologies  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

366

Giant Magnetoresistance: Technology and Markets for Sensors, Disk Storage, Mram, and Spintronics  

Science Conference Proceedings (OSTI)

From the Publisher:During the past decade, the process technologies driving improved fabrication of traditional electronic devices have allowed development of a number of electron spin, or spintronic, technologies. This 136-page Report, the product of ...

Peter R. Savage

2000-09-01T23:59:59.000Z

367

Thermal energy storage : a key technology for the food cold chain Denis Leducq(a), P. Schalbart(a), F. Trinquet(a), G. Alvarez(a), B. Verlinden(b),P.  

E-Print Network (OSTI)

ID: 123 Thermal energy storage : a key technology for the food cold chain Denis Leducq(a), P and intermittent renewable energy sources, energy storage, and more specifically thermal energy storage is one of thermal energy storage devices, is also an important factor of food quality and security enhancement

368

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

369

Impact of Enabling Technologies on Customer Load Curtailment Performance Summer 2001 Results from NYSERDA's PON 585 and 577 Programs and NYISO's Emergency Demand Response Program  

SciTech Connect

This report describes a market and load research study on a small group of participants in the NYISO Emergency Demand Response Program (EDRP) and the NYSERDA Peak Load Reduction and Enabling Technology Program Opportunity Notices. In-depth interviews were conducted with 14 individual customers that participated in the NYISO EDRP program through New York State Electric and Gas (NYSEG), AES NewEnergy, and eBidenergy/ ConsumerPowerLine. These contractors used funding from NYSERDA to apply enabling technologies that were hypothesized to improve customers' ability to curtail load. Both NYSEG and eBidenergy/ConsumerPowerLine offered their customers access to their hourly load data on a day-after basis and, during curtailment events, on a near-real-time basis. Phone interviews were conducted with most customers, however 25% of customers provided initial responses to the survey protocol via email. We then combined the market research information with load data during the curtailment events of August 7-10, 2001 to evaluate the impact of technology on curtailment responses.

Goldman, Charles; Heffner, Grayson; Kintner-Meyer, Michael CW

2002-03-29T23:59:59.000Z

370

Program on Technology Innovation: Adiabatic Compressed Air Energy Storage Systems for Renewable Energy Integration  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the research, development, and demonstration (RD&D) work at the Electric Power Research Institute (EPRI) on adiabatic no-fuel compressed air energy storage (CAES) for wind integration. Bulk energy storage (BES) is necessary to provide grid damping in order to mitigate wind power variability. The objective of adiabatic no-fuel CAES RD&D is to combine the lowest-cost BES option (which is CAES) with carbon-free operation. The research focuses on system desig...

2010-11-08T23:59:59.000Z

371

Ride-Through Technology Applications in Hawaii  

Science Conference Proceedings (OSTI)

Electrical utility commercial customers are demanding ever-increasing levels of power quality as their on-site electronic equipment grows in sophistication. Of particular concern is the regulation of constant voltage to critical loads as the service voltage experience sags or short-duration outages. Ride-through technology, and in particular flywheel energy storage technology, provides a solution to this vexing problem.

2002-03-05T23:59:59.000Z

372

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

373

OEM Perspective on Cryogenic H2 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

compressed compressed Hydrogen Storage. Tobias Brunner February 15 th , 2011, Washington D.C. BMW Hydrogen. Hydrogen Storage Workshop. BMW EfficientDynamics Less emissions. More driving pleasure. BMW Hydrogen Washington DC 02/15/2011 Page 2 BMW Hydrogen Technology Strategy. Advancement of key components. Source: BMW Advanced key components Next vehicle & infrastructure Hydrogen 7 small series LH 2 Storage  Capacity   Safety   Boil-off loss   Pressure supply   Complexity   Infrastructure  Technology leap storage & drive train Efficient long-range mobility:  Zero Emission  Focus on vehicles with high energy demand.  Range > 500 km (6-8 kg H 2 )  Fast refueling (< 4 min / 6 kg)  Optimized safety oriented vehicle package & component

374

V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels  

Science Conference Proceedings (OSTI)

The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

2012-10-01T23:59:59.000Z

375

Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology  

DOE Green Energy (OSTI)

Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

2013-11-01T23:59:59.000Z

376

Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage  

Science Conference Proceedings (OSTI)

HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

None

2011-12-01T23:59:59.000Z

377

Use of the NII to study impacts of new technologies and policies on supply and demand of electric power  

Science Conference Proceedings (OSTI)

This paper describes a proposal to use an implementation of client-server technology on the Internet for simulating a number of aspects of electric power production, distribution, and consumption within a wholly new regulatory, financing, operating, and control environment. This approach would use a large number of people to generate strategies and decisions, in a real-time context, needed to drive the simulation. A World Wide Web server would provide background information about the simulation for those who chose to participate as actors in one of supported roles. Roles would be based on activities associated with different business areas and would include utility manager, independent power producer (entrepreneur), electric power futures trader, electric power futures investor, electric power wheeler, industrial customer, commercial customer, and residential customer. The simulation program would run on a system of high-performance computers (parallel computer system) that communicate between each other on a high speed communications bus. These computers would also be the server systems for the client programs used by the actors. People who want to be actors would be required to register before being given a client program, as a way to have some control over the simulation results. Each role will have its corresponding client program with graphical user interface. Each client program will support a common view of the simulation results and a role specific view.

Munro, J.K. Jr. [Oak Ridge National Lab., TN (United States). Instrumentation and Controls Div.

1995-04-01T23:59:59.000Z

378

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

379

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

380

Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project  

SciTech Connect

Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

2010-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report  

DOE Green Energy (OSTI)

During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

NONE

1995-05-01T23:59:59.000Z

382

Market Driven Distributed Energy Storage Requirements for Load Management Applications  

Science Conference Proceedings (OSTI)

Electric energy storage systems are an enabling technology that could help meet the needs of electric utility by managing peak energy demands, helping shift the peak loads to off peak hours and improving the load factor of the electric distribution system. Applications of distributed energy storage systems (DESS) could also provide power quality and reliability benefits to customers and to the electric system. EPRI collaborated with several investor owned utilities to conduct a study to understand the te...

2007-04-18T23:59:59.000Z

383

Bulk Energy Storage Technologies: Performance Potential, Grid Services, and Cost Expectations  

Science Conference Proceedings (OSTI)

Bulk energy storage (BES) can play a valuable role in enhancing grid flexibility for variable generation (VG) integration. Other approaches, such as combustion turbines, over-sizing renewable generation, and over-sizing transmission capacity, do not solve the spectrum of challenges associated with VG integration. Without BES, fossil generators will be operating more at part load with higher emissions, wind spillage rates will tend to rise, and wind plant economics will tend to deteriorate. Given the ...

2012-12-20T23:59:59.000Z

384

Engineering/Economic Evaluations of Advanced Coal Technologies with Carbon Capture and Storage - 2012  

Science Conference Proceedings (OSTI)

This is the 2012 update in an annual report series that distills the results of engineering and economic studies by the Electric Power Research Institute (EPRI) and others to provide an overview of the expected costs and performance for fossil-fuel-based power plants with carbon capture and storage (CCS). Power plant types covered in the report include pulverized coal, fluidized-bed combustion, integrated-gasification combined-cycle, and natural-gas combined-cycle. The report surveys publicly ...

2012-08-31T23:59:59.000Z

385

Technology Assessment and Application Guide for an Active Voltage Conditioner with Storage Option (AVC-Store)  

Science Conference Proceedings (OSTI)

This report describes and documents the construction, performance, and application of an active voltage conditioner (AVC) with energy storage. The system8211called the AVC-Store8211is manufactured by Vectek in Napier, New Zealand. Composed of a novel power electronics module, the system is organized to mitigate voltage sags, phase shift, and outages. This report describes the various subsystems within the AVC-Store, its operation, results of characterization tests, and issues related to its application a...

2006-06-27T23:59:59.000Z

386

Program on Technology Innovation: Materials Selection for Compressed Air Energy Storage System  

Science Conference Proceedings (OSTI)

EPRI is evaluating materials compatibility issues as they relate to aboveground compressed air energy storage (CAES) pipelines. The factors determining materials performance include pressure and thermal cycling; adiabatic cooling as pressurized air is released, causing condensation of water and corrosion; and any gaseous impurities in the air affecting corrosion. This report focuses on evaluation of corrosion behavior and provides a systematic decision-making approach to the selection of appropriate mate...

2009-12-21T23:59:59.000Z

387

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

388

Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Long-term commercialization approach with first products first Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop Washington, DC Glenn Rambach August 11, 2011 Potential market area for fuel cells (or other power plants). Defined by peak power vs. cost per unit power capacity (W vs. $/kW) for typical applications currently satisfied by legacy technologies. Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Less difficult Less difficult (smaller units) (cost tolerant market) Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Range of application size and specific cost that all can be commercially satisfied

389

Simulation of a green wafer fab featuring solar photovoltaic technology and storage system  

Science Conference Proceedings (OSTI)

A semiconductor wafer fab requires a significant amount of energy to maintain its daily operations. Solar photovoltaics (PV) is a clean and renewable technology that can be potentially used to power large wafer fabs. There exist some critical factors ...

Leann Sanders; Stephanie Lopez; Greg Guzman; Jesus Jimenez; Tongdan Jin

2012-12-01T23:59:59.000Z

390

Request for Comments Regarding Rates, Accounting and Financial Reporting for New Electric Storage Technologies Docket No. AD10-13-000  

E-Print Network (OSTI)

Innovation, under 18 C.F.R. § 375.315, comments are requested in the above-referenced docket regarding rates, accounting and financial reporting associated with services provided by electric storage technologies. 1 Commission staff has been considering the growing interest in the use of nontraditional technologies to help meet the Nation’s electricity needs. In particular, newer storage technologies like flywheels and chemical batteries have recently achieved technological maturity and are well into successful pilot stages and, in some cases, commercial operation. The roles of traditional generation, transmission, and distribution assets within the electric system are well understood and each has set method(s) of rate recovery, accounting and financial reporting. However, the same is not necessarily true of electric storage. Under appropriate circumstances, storage can act like any of the traditional asset categories, and also like load. The only electricity storage technology that has been widely adopted to date, pumped storage hydropower, was generally built at a time when the majority of utility assets were constructed by vertically integrated load-serving utilities at retail ratepayer expense. In many parts of the country today, entities other than vertically integrated load-serving utilities have expressed interest in building and owning electric storage assets of varying sizes. Suggested business models range from traditional cost-of-service rates to competing in wholesale commodity trading; some are considering the possibility of multiple revenue streams which may blend both cost-of-service recovery for some costs with other costs being at risk in competitive wholesale market Commission. 1 The statements herein do not necessarily reflect the views of the20100611-3032 FERC PDF (Unofficial) 06/11/2010

Washington D. C

2010-01-01T23:59:59.000Z

391

Survey of technology for storage of thermal energy in heat transfer salt  

DOE Green Energy (OSTI)

The widespread use of nitrate-based fused salt mixtures as heat transport media in the petroleum and chemical process industries and in metallurgical heat-treatment operations has led to the development of satisfactory equipment for handling and containing these materials. A mixture known as heat transfer salt (HTS), which is composed of 40 percent NaNO/sub 2/, 7 percent NaNO/sub 3/, and 53 percent KNO/sub 3/ by weight, has been used commercially in large quantities as a heat transfer fluid. It has been suggested that this salt be used for storing energy as sensible heat in the temperature range 200 to 540/sup 0/C (400 to 1000/sup 0/F). The eutectic 54 percent KNO/sub 3/--46 percent NaNO/sub 3/ by weight known as ''draw salt,'' which has undergone less testing but is more stable thermally and more attractive economically than HTS and has similar physical properties, may be a desirable alternative. Several specific energy storage applications, such as intermediate-load and peaking electric power, solar energy, and energy from fluidized-bed coal burners, are discussed. Long-term stability and corrosion data on these salts are presently available only to approximately 480/sup 0/C. However, for the design and construction of energy storage facilities to operate over many years at temperatures up to approximately 540/sup 0/C, long-term tests of thermal stability and corrosion are needed. Means for obtaining such information are proposed.

Silverman, M.D.; Engel, J.R.

1977-01-18T23:59:59.000Z

392

Demand response enabling technology development  

E-Print Network (OSTI)

Culler: Electrical Engineering and Computer Science (EECS)Chen, Electrical Engineering and Computer Science Dept. , UCkai Chen, Electrical Engineering and Computer Science Dept,

2006-01-01T23:59:59.000Z

393

Demand response enabling technology development  

E-Print Network (OSTI)

first situation, energy is wasted, and in the second, thefirst situation, energy is wasted, and in the second, the

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

394

Demand response enabling technology development  

E-Print Network (OSTI)

Wright, “Thin Film Piezoelectric Energy Scavenging SystemsWright, “Thin Film Piezoelectric Energy Scavenging Systems,”in the field of piezoelectric vibration energy scavenging

2006-01-01T23:59:59.000Z

395

Demand response enabling technology development  

E-Print Network (OSTI)

is normally of thermistor or RTD (resistance temperatureour temperature sensors (RTD’s) were prepackaged with matingsimulation model MZEST. The RTD temperature sensor boards

2006-01-01T23:59:59.000Z

396

Demand response enabling technology development  

E-Print Network (OSTI)

achieved by connecting an RTD (temperature sensor elsewhereterminals. Because the RTD is powered straight off thethat when calibrating the RTD, the current battery level

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

397

Demand response enabling technology development  

E-Print Network (OSTI)

occupied Bay Area house under study. Passive Proximity ACPASSIVE PROXIMITY AC CURRENT SENSOR 27 WIRELESSLY CONTROLLED MONITORING-OUTLETS28 WIRELESS MONITORING OF A TEST HOUSE House Meter”. ) Some final observations for sensors a) Size matters: Though the passive

2006-01-01T23:59:59.000Z

398

Thermal energy storage technical progress report, April 1990--March 1991  

DOE Green Energy (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory`s TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

399

Thermal energy storage technical progress report, April 1990--March 1991  

DOE Green Energy (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under Oak Ridge National Laboratory's TES program from April 1990 to March 1992 is reported and covers research in the areas of low temperature sorption, direct contact ice making, latent heat storage plasterboard and latent/sensible heat regenerator technology development.

Tomlinson, J.J.

1992-03-01T23:59:59.000Z

400

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Develop improved metal hydride technology for the storage of hydrogen. Final technical report  

DOE Green Energy (OSTI)

The overall objective was to develop commercially viable metal hydrides capable of reversibly storing at least 3 wt.% hydrogen for use with PEM fuel cells and hydrogen fueled internal combustion engine (HICE) applications. Such alloys are expected to result in system capacities of greater than 2 wt.%, making metal hydride storage systems (MHSS`s) a practical means of supplying hydrogen for many consumer applications. ECD`s (Energy Conversion Devices, Inc.) past work on sputtered thin films of transition metal-based alloys led to the commercialization of it`s nickel/metal hydride batteries, and similar work on thin film Mg-based alloys demonstrated potential to achieve very high gravimetric and volumetric energy densities approaching 2,500 Wh/Kg and 2,500 Wh/M{sup 3} respectively. Under this 2-year cost shared project with the DOE, the authors have successfully demonstrated the feasibility of scaling up the Mg-based hydrides from thin film to bulk production without substantial loss of storage capacity. ECD made progress in alloy development by means of compositional and process modification. Processes used include Mechanical Alloying, Melt spinning and novel Gas Phase Condensation. It was showed that the same composition when prepared by melt-spinning resulted in a more homogeneous material having a higher PCT plateau pressure as compared to mechanical alloying. It was also shown that mechanically alloyed Mg-Al-Zn results in much higher plateau pressures, which is an important step towards reducing the desorption temperature. While significant progress has been made during the past two years in alloy development and understanding the relationship between composition, structure, morphology, and processing parameters, additional R and D needs to be performed to achieve the goals of this work.

Sapru, K.

1998-12-04T23:59:59.000Z

402

Peak Load Management of Thermal Loads Using Thermal Energy Storage Technologies  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update reviews the technology of storing energy in hot water. The report presents test results from three strategies that can be implemented using a grid connected controller to control the heating elements in a water heater. A separate section analyzes utility Supervisory Control and Data Acquisition (SCADA) data to study the impact of renewable generation on conventional generation. The report also includes a hypothetical case developed for ...

2012-12-21T23:59:59.000Z

403

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

404

Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998  

DOE Green Energy (OSTI)

The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

Kinoshita, K. (editor)

1999-06-01T23:59:59.000Z

405

Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998  

SciTech Connect

The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

Kinoshita, K. (editor)

1999-06-01T23:59:59.000Z

406

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

407

Demand or Request: Will Load Behave?  

Science Conference Proceedings (OSTI)

Power planning engineers are trained to design an electric system that satisfies predicted electrical demand under stringent conditions of availability and power quality. Like responsible custodians, we plan for the provision of electrical sustenance and shelter to those in whose care regulators have given us the responsibility to serve. Though most customers accept this nurturing gladly, a growing number are concerned with the economic costs and environmental impacts of service at a time when technology (particularly distributed generation, storage, automation, and information networks) offers alternatives for localized control and competitive service. As customers’ and their systems mature, a new relationship with the electricity provider is emerging. Demand response is perhaps the first unsteady step where the customer participates as a partner in system operations. This paper explores issues system planners need to consider as demand response matures to significant levels beyond direct load control and toward a situation where service is requested and bargains are reached with the electricity provider based on desired load behavior. On one hand, predicting load growth and behavior appears more daunting than ever. On the other, for the first time load becomes a new resource whose behavior can be influenced during system operations to balance system conditions.

Widergren, Steven E.

2009-07-30T23:59:59.000Z

408

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility… (more)

Peng, Dan

2013-01-01T23:59:59.000Z

409

Variability in electricity demand highlights potential roles for ...  

U.S. Energy Information Administration (EIA)

Demand-response programs and technologies that tend to reduce the variability of hourly electric demand and the resulting supply requirement would reduce the need ...

410

Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report  

SciTech Connect

The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

1994-02-01T23:59:59.000Z

411

Smart Grid Technologies Report  

Science Conference Proceedings (OSTI)

The electric utility industry is pushing forward into advanced automation and communication systems that are becoming the base of the Smart Grid. Each new deployment adds more intelligence to the grid and expands the information gathering capability available to energy suppliers and system operators. It also brings new challenges in the form of standards, data mining, and automated control. New technologies for electric energy storage and demand response open opportunities to integrate distributed genera...

2010-12-01T23:59:59.000Z

412

Renewable Energy, Demand Response, Energy Efficiency, and Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy, Demand Response, Energy Efficiency, and Advanced Energy Storage Infrastructure in UC San Diego's Microgrid Speaker(s): Byron Washom Date: August 14, 2008 -...

413

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

414

Variability in electricity demand highlights potential roles ...  

U.S. Energy Information Administration (EIA)

These technologies convert electricity into another form of energy for storage: the potential energy in water pumped uphill to a reservoir and in compressed air, ...

415

When it comes to Demand Response, is FERC its Own Worst Enemy?  

E-Print Network (OSTI)

made between traditional demand response (DR) programs andpricing. Traditional demand response programs typically payFor overviews of demand response technologies and program

Bushnell, James; Hobbs, Benjamin; Wolak, Frank A.

2009-01-01T23:59:59.000Z

416

Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot  

E-Print Network (OSTI)

Martin Aspen. 2006. Demand Response Enabling TechnologiesDon. 2007. “Pricing for Demand Response from Residential andthe Level of Demand Response,” Power Point Presentation, 24

Herter, Karen

2010-01-01T23:59:59.000Z

417

Price Responsive Demand in New York Wholesale Electricity Market using OpenADR  

E-Print Network (OSTI)

Advanced Metering, and Demand Response in Electricity2006. Benefits of Demand Response in Electricity Markets and2010. Open Automated Demand Response Technologies for

Kim, Joyce Jihyun

2013-01-01T23:59:59.000Z

418

Energy storage fundamentally decouples supply and demand  

Science Conference Proceedings (OSTI)

... MARKET PRICE 10 – 50 mills Frequency Regulation average market clearing price ... 14 Wind Challenge: Persistent Cycling Intermittency ...

2010-08-12T23:59:59.000Z

419

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 – REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFC’s core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 – Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

420

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

2003-04-22T23:59:59.000Z

422

NREL: Energy Storage - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home About the Project Technology Basics Research & Development Awards &...

423

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

424

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Compressed Air Energy Storage (CAES) Jump to: navigation, search Contents 1 Introduction 2 Technology Description 3 Plants 4 References Introduction Compressed air energy storage (CAES) is a way to store energy that is generated at night and deliver the energy during the day to meet peak demand. This is performed by compressing air and storing it during periods of excess electricity and expanding the air through a turbine when electricity is needed. Technology Description Diabatic Diabatic compressed air energy storage is what the two existing compressed air energy storage facilities currently employ. This method is

425

ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE  

Science Conference Proceedings (OSTI)

Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

NONE

1998-09-01T23:59:59.000Z

426

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 3, 2010 ... This program focuses on developing energy storage technologies to ... Ultimately , technologies developed through this program will be ...

427

Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report  

Science Conference Proceedings (OSTI)

Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

none

1998-09-30T23:59:59.000Z

428

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

Science Conference Proceedings (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

429

Program on Technology Innovation: New York Power Authority Advanced Sodium Sulfur (NaS) Battery Energy Storage System  

Science Conference Proceedings (OSTI)

Electric utilities, energy service companies, and utility customers lack familiarity with distributed electric storage systems. Demonstration projects highlighting the benefits, safety, and effectiveness of such systems will promote their propagation. The benefits derived from the storage of electrical energy are well defined in the EPRI-DOE Handbook of Energy Storage for Transmission and Distribution Applications (Electric Power Research Institute [EPRI] report 1001834). This report documents system des...

2011-12-22T23:59:59.000Z

430

NREL: Technology Transfer - 22nd Industry Growth Forum ...  

22nd Industry Growth Forum Presentations. ... Technology: Energy storage ... Technology Transfer Home; About Technology Transfer;

431

Economic analysis of low-pressure natural-gas-vehicle storage technology. Task 3 topical report, March 1989-April 1990  

SciTech Connect

The economic analysis concludes that, under the assumptions of the base case, a low pressure adsorbed natural gas (ANG) system for vehicle fuel storage is a viable and competitive alternative to compressed natural gas (CNG) storage systems. ANG systems offer the ability to reduce compressor capital and operating costs, and eliminate costs associated with periodic recertification of CNG storage cylinders. The only cost element to realize and increase due to ANG is the vehicle fuel storage apparatus. Specifically, the cost for purchasing adsorbent carbon becomes the most significant additional expenditure.

Biederman, R.T.; Blazek, C.F.

1990-04-01T23:59:59.000Z

432

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

433

Enhanced oil recovery: major equipment and its projected demand  

Science Conference Proceedings (OSTI)

After years of research and pilot tests, the enhanced oil recovery (EOR) industry is taking major leaps forward in 1981. With the launching of several hundred new EOR pilot tests, the announcement of major CO/sub 2/ pipelines into W. Texas, and a $3.6-billion purchase of South Belridge heavy oil by Shell, oil companies are showing their confidence in this technologically-emerging area. While much research remains to be done to make these processes more efficient and economic, the important commercial stage of the EOR industry's growth has clearly been reached. Along with the growth of the EOR industry will come a major demand for equipment and facilities. This demand will include traditional requirements for steam generators and compressors, although on a scale many times larger than at present, as well as new requirements for gas separation, chemical storage, and special tubulars.

Kuuskraa, V.A.; Hammershaimb, E.C.; Wicks, D.E.

1981-09-01T23:59:59.000Z

434

Available Technologies: Football Wrench  

Energy Efficiency; Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging ...

435

Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume II. Final report, Appendix A: selected DSG technologies and their general control requirements  

SciTech Connect

A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this survey and identification of DSG technologies is to present an understanding of the special characteristics of each of these technologies in sufficient detail so that the physical principles of their operation and the internal control of each technology are evident. In this way, a better appreciation can be obtained of the monitoring and control requirements for these DSGs from a remote distribution dispatch center. A consistent approach is being sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. From this study it appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.

1980-10-01T23:59:59.000Z

436

Using Alternative Energy Storage in UPS Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Management for Data Management for CEC/DOE Energy Storage Demonstration Project Work performed under contract with Sandia National Labs Garth Corey Project Manager Project funded by the US DOE ESS Program Dr. Imre Gyuk, Program Manager Presented by Doug Dorr ESI Project Manager ddorr@eprisolutions.com 2 Presentation Outline  Project Overview and Objectives  Data acquisition status for the demonstration projects  Updates to the Energy Storage Initiative Website  Examples of Website Data Analysis 3 Project Overview and Objectives  Promote New Energy Storage Technologies that can achieve California's long range energy goals:  Increased energy utilization efficiency  Reduced demand for out of state energy procurement  Reduced overall energy costs to consumers

437

DOE Hydrogen and Fuel Cells Program: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search help Home > Hydrogen Storage Printable Version Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power...

438

Thermal energy storage technical progress report, April 1992--March 1993  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is supporting development of thermal energy storage (TES) as a means of efficiently coupling energy supplies to variable heating or cooling demands. Uses of TES include electrical demand-side management in buildings and industry, extending the utilization of renewable energy resources such as solar, and recovery of waste heat from periodic industrial processes. Technical progress to develop TES for specific diurnal and industrial applications under the Oak Ridge National Laboratory`s TES program from April 1992 to March 1993 is reported and covers research in the areas of low temperature sorption, thermal energy storage water heater, latent heat storage wallboard and latent/sensible heat regenerator technology development.

Olszewski, M.

1993-05-01T23:59:59.000Z

439

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network (OSTI)

Capacitors as Energy Storage in Hybrid- Electric Vehicles:uncertainty regarding the energy storage technologies.Whether a particular energy storage technology is suitable

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

440

Synthesis and characterization of nanostructured transition metal oxides for energy storage devices  

E-Print Network (OSTI)

Figure 1.1. Ragone plot of various energy storage systems [in technology and energy storage has become the limitingthe limit of commercial energy storage technology comprised

Kim, Jong Woung

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Role of Energy Storage for Mini-Grid Stabilization  

E-Print Network (OSTI)

storage technologies. . . . . . . . . . . . 42 List of Figures 1 Measured and modelled PV system output.4 Lifetime discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Reliability Summary of energy storage technologies for small PV systems . . . . . . . 36 4 Storage technologies

Paris-Sud XI, Université de

442

Diesel Rig Mechanical Peaking System Based on Flywheel Storage Technolgy  

Science Conference Proceedings (OSTI)

Flywheel energy storage technology is an emerging energy storage technology, there is a great development in recent years promising energy storage technology, with a large energy storage, high power, no pollution, use of broad, simple maintenance, enabling ... Keywords: Flywheel energy storage technology, mechanical peaking, diesel rig, peak motor

Shuguang Liu, Jia Wang

2012-07-01T23:59:59.000Z

443

Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint  

SciTech Connect

An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

Anderson, R.; Christensen, C.; Horowitz, S.

2006-08-01T23:59:59.000Z

444

Electric rate structures for thermal energy storage evaluation  

DOE Green Energy (OSTI)

Future electric rate structures are critical to thermal energy storage (TES) technologies that are specifically designed to take advantage of electric energy costs that vary depending on the magnitude, duration, and timing of power demand (e.g., cool storage). In fact, rate structure characteristics may affect the TES system design and operating approach as well as economic feasibility. The objective of this study, conducted by the Pacific Northwest Laboratory for the US Department of Energy, was to define reference electric utility rate structures to be used in technical assessments of TES technologies. Electric rate structures were characterized for residential, commercial and industrial sectors. A range of conditions for several alternative rate structures was identified for each sector to capture the variability of likely conditions. Individual rate structure characteristics include demand charges and energy charges applicable during different months of the year, days of the week, and hours of the day. 7 refs., 21 tabs.

Brown, D R; Garrett, S M; Sedgewick, J M

1991-05-01T23:59:59.000Z

445

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Technology Description Advanced storage technologies under active development include processes that are mechanical (flywheels, pneumatic), electrochemical...

446

NERSC Nick Balthaser NERSC Storage Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Archival Storage at NERSC Nick Balthaser NERSC Storage Systems Group nabalthaser@lbl.gov NERSC User Training March 8, 2011 * NERSC Archive Technologies Overview * Use Cases for the...

447

Advanced Vehicle Testing Activity: Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's Vehicle Technologies Office to conduct various types of energy storage...

448

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

449

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

450

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

451

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

452

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

453

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

454

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site,...

455

Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Bart van Hassel (Primary Contact), Jose Miguel Pasini, Andi Limarga, John Holowczak, Igor Fedchenia, John Khalil, Reddy Karra, Ron Brown, Randy McGee United Technologies Research Center (UTRC) 411 Silver Lane East Hartford, CT 06108 Phone: (860) 610-7701 Email: vanhasba@utrc.utc.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19006 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Collaborate closely with the Hydrogen Storage * Engineering Center of Excellence (HSECoE) partners to advance materials-based hydrogen storage system

456

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

2003-04-22T23:59:59.000Z

457

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey W.

2010-08-12T23:59:59.000Z

458

Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads  

SciTech Connect

This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

Denholm, P.; Ong, S.; Booten, C.

2012-05-01T23:59:59.000Z

459

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

460

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

Storage Technologies on Microgrid Viability Siddiqui, A.S. ,of Storage Technologies on Microgrid Viability List ofStorage Technologies on Microgrid Viability List of Figures

Stadler, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "demand storage technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

of Storage Technologies on Microgrid Viability Figure 41.of Storage Technologies on Microgrid Viability List ofStorage Technologies on Microgrid Viability List of Figures

Stadler, Michael

2009-01-01T23:59:59.000Z

462

SERI Solar Energy Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

Copeland, R. J.; Wright, J. D.; Wyman, C. E.

1980-02-01T23:59:59.000Z

463

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper describes a methodology to design a successful thermal energy storage program for electric utilities. The design process is addressed beginning with the market research phase. The research includes information obtained from utilities having successful thermal storage programs. In addition, information is gathered from interviews with local architects and engineers, air conditioning contractors and potential thermal energy storage customers. From this information a marketing p